lingo线性规划

合集下载

实验利用Lingo求解整数规划和非线性规划问题

实验利用Lingo求解整数规划和非线性规划问题

三、Lingo 循环编程举例
例5 用Lingo循环编程语句求解线性规划模型
max z 72x1 64x2
x1 x2 50, 132xx1 1180x0,2 480, x1 0, x2 0.
三、划 模型
max z 72x1 64x2
MODEL: SETS: person/A,B,C,D/; task/1..4/; assign(person,task):a,x; ENDSETS DATA: a=1100,800,1000,700,
600,500,300,800, 400,800,1000,900, 1100,1000,500,700; ENDDATA min=@sum(assign:a*x); @for(person(i):@sum(task(j):x(i,j))=1); @for(task(j):@sum(person(i):x(i,j))=1); @for(assign(i,j):@bin(x(i,j))); END
12,8 3,0; enddata
!数据赋值;
max=@sum(bliang(i):a(i)*x(i)); !目的函数;
@for(yshu(j):@sum(bliang(i):x(i)*c(j,i))<=b(j));
!约束条件;
例6、指派问题
企业在各地有4项业务,选定了4位业务员去处理。因为 业务能力、经验和其他情况不同,4业务员去处理4项业 务旳费用(单位:元)各不相同,见下表:
(3) 集合旳循环函数 集合旳循环函数能够使全部旳元素反复完毕某些操作.
函数
函数功能
• 形成集合全部元素需满足旳约
@for
束条件
• 计算集合中元素所在体现式旳
@sum

应用lingo软件实现线性规划和整数规划

应用lingo软件实现线性规划和整数规划

一、 实验目的应用lingo 软件实现线性规划和整数规划。

二、 实验内容:1.线性规划方法的lingo 软件实现。

2.整数规划方法的Lingo 软件实现三、 实验环境:1 硬件要求:计算机一台2 操作系统:WindowsXP3 软件要求:lingo10四、实验步骤及程序编写:1.线性规划模型。

某战略轰炸机群奉命摧毁敌人军事目标。

已知该目标有四个要害部位,只要摧毁其中之一即可达到目的。

为完成此项任务的汽油消耗量限制为48000升、重型炸弹48枚、轻型炸弹32枚。

飞机携带重型炸弹时每升汽油可飞行2千米,带轻型炸弹时每升汽油可飞行3千米。

又知每架飞机每次只能装载一枚炸弹,每出发轰炸一次除来回路程汽为了使摧毁敌方军事目标的可能性最大,应如何确定飞机轰炸的方案。

解:设用了x 枚重型炸弹,用了y 枚轻型炸弹,攻击的是第i 个部位,再设一标志变量f 定义如下: ⎩⎨⎧=个部位不攻击第个部位攻击第i i f i 01目标函数为: ()[]∑=⨯⨯+⨯=41max i i li ih f p y px()()480002004/3/2004/2/≤++⨯+++⨯i i i i d d y d d x48≤x ,32≤y141=∑=i if2、整数规划模型。

某厂生产甲、乙两种产品,生产甲种产品每件要消耗煤9t ,电力4kw ,使用劳动力3个,获利70元;生产乙种产品每件消耗煤4t ,电力5kw ,使用劳动力10个,获利120元。

有一个生产日,这个厂可动用的煤是360t ,电力是200kw ,劳动力是300个,问应该如何安排甲、乙两种产品的生产,才能使工厂在当日的获利最大,并问该厂当日的最大获利是多少? 解:模型建立:⎪⎪⎩⎪⎪⎨⎧<+<+<++=取整x x x x x x x x x x t s f 2121212121,3001032005436049..12070max五、程序调试及实验总结1.线性规划模型。

最优化方法(线性规划)——用Lingo对线性规划进行灵敏度分析

最优化方法(线性规划)——用Lingo对线性规划进行灵敏度分析

lingo 软件求解线性规划及灵敏度分析注:以目标函数最大化为例进行讨论,对求最小的问题,有类似的分析方法!所有程序运行环境为lingo10。

一、用lingo 软件求解线性规划例1:m a x 23..43103512,0z x ys t x y x y x y =++≤+≤≥在模型窗口输入:model:max=2*x+3*y;4*x+3*y<=10;3*x+5*y<12;! the optimal value is :7.454545 ;End如图所示:运行结果如下(点击 工具栏上的‘solve ’或点击菜单‘lingo ’下的‘solve ’即可):Global optimal solution found. Objective value: 7.454545(最优解函数值)Infeasibilities: 0.000000Total solver iterations: 2(迭代次数)Variable (最优解) Value Reduced CostX 1.272727 0.000000Y 1.636364 0.000000Row Slack or Surplus Dual Price1 7.454545 1.0000002 0.000000 0.9090909E-013 0.000000 0.5454545例2:12123124125m a x 54..39028045z x x s t x x x x x x x x x x =+++=++=++=≥在模型窗口输入:model:max=5*x1+4*x2;x1+3*x2+x3=90;2*x1+x2+x4=80;x1+x2+x5=45;end运行(solve )结果如下:Global optimal solution found.Objective value: 215.0000Infeasibilities: 0.000000Total solver iterations: 3Variable Value Reduced CostX1 35.00000 0.000000X2 10.00000 0.000000X3 25.00000 0.000000X4 0.000000 1.000000X5 0.000000 3.000000Row Slack or Surplus Dual Price1 215.0000 1.0000002 0.000000 0.0000003 0.000000 1.0000004 0.000000 3.000000例323123234235m in 2..22312z x x s t x x x x x x x x x x =-+-+=-+=-+=≥在模型窗口输入:model:min=-x2+2*x3;x1-2*x2+x3=2;x2-3*x3+x4=1;x2-x3+x5=2;end运行结果如下:Global optimal solution found.Objective value: -1.500000Infeasibilities: 0.000000Total solver iterations: 2Variable Value Reduced CostX2 2.500000 0.000000X3 0.5000000 0.000000X1 6.500000 0.000000X4 0.000000 0.5000000X5 0.000000 0.5000000Row Slack or Surplus Dual Price1 -1.500000 -1.0000002 0.000000 0.0000003 0.000000 0.50000004 0.000000 0.5000000例4:(非线性)m in ..124x y zs t x y x z +++≤+= 在模型窗口输入:model :min =@abs (x)+@abs (y)+@abs (z);x+y<=1;2*x+z=4;@free (x);@free (y);@free(z);End求解器状态如下:(可看出是非线性模型!)运行结果为:Linearization components added:Constraints: 12Variables: 12Integers: 3Global optimal solution found.Objective value:(最优解函数值) 3.000000Objective bound: 3.000000 Infeasibilities: 0.000000Extended solver steps: 0Total solver iterations: 3Variable(最优解) Value Reduced Cost X 2.000000 0.000000Y -1.000000 0.000000 Z 0.000000 0.000000Row Slack or Surplus Dual Price1 3.000000 -1.0000002 0.000000 1.0000003 0.000000 -1.000000二、用lingo软件进行灵敏度分析实例例5:m a x 603020864842 1.5202 1.50.585,,0S x y zx y z x y z x y z y x y z =++++≤++≤++≤≤≥ 在模型窗口输入:Lingo 模型:model:max=60*x+30*y+20*z;8*x+6*y+z<48;4*x+2*y+1.5*z<20;2*x+1.5*y+0.5*z<8;y<5;end(一)求解报告(solution report )通过菜单Lingo →Solve 可以得到求解报告(solution report )如下:Global optimal solution found at iteration: 0Infeasibilities: 0.000000Objective value: 280.0000Total solver iterations: 2Variable Value Reduced CostX 2.000000 0.000000Y 0.000000 5.000000Z 8.000000 0.000000Row Slack or Surplus Dual Price1 280.0000 1.0000002 24.00000 0.0000003 0.000000 10.000004 0.000000 10.000005 5.000000 0.000000分析Value,Reduced Cost ,Slack or Surplus ,Dual Price 的意义如下:1、最优解和基变量的确定Value 所在列给出了问题的最优解。

线性规划问题的Lingo求解

线性规划问题的Lingo求解

Lingo中参数设置与调整
01
参数设置
02
调整策略
Lingo允许用户设置求解器的参数, 如求解方法、迭代次数、收敛精度等 。这些参数可以通过`@option`进行 设置。
如果求解过程中遇到问题,如无解、 解不唯一等,可以通过调整参数或修 改模型来尝试解决。常见的调整策略 包括放松约束条件、改变目标函数权 重等。
02
比较不同方案
03
验证求解结果
如果存在多个可行解,需要对不 同方案进行比较,选择最优方案。
可以通过将求解结果代入原问题 进行验证,确保求解结果的正确 性和合理性。
感谢您的观看
THANKS
问题,后面跟随线性表达式。
02 03
约束条件表示
约束条件使用`subject to`或简写为`s.t.`来引入,后面列出所有约束条 件,每个约束条件以线性表达式和关系运算符(如`<=`, `>=`, `=`, `<`, `>`)表示。
非负约束
默认情况下,Lingo中的变量是非负的,如果变量可以为负,需要使用 `@free`进行声明。
问题的解通常出现在约束条件的边界上 。
变量通常是连续的。
特点 目标函数和约束条件都是线性的。
线性规划问题应用场景
生产计划
确定各种产品的最优生产量, 以最大化利润或最小化成本。
资源分配
在有限资源下,如何最优地分 配给不同的项目或任务。
运输问题
如何最低成本地将物品从一个 地点运输到另一个地点。
金融投资
03
求解结果
通过Lingo求解,得到使得总加工时间最短的生产计划安 排。
运输问题优化案例
问题描述
某物流公司需要将一批货物从A地运往B地,可以选择不同的运输方式和路径,每种方式和路径的运输时间和成本不 同。公司需要在满足货物送达时间要求的前提下,选择最优的运输方式和路径,使得总成本最低。

lingo解决线性规划问题的程序(经典)

lingo解决线性规划问题的程序(经典)

lingo解决线性规划问题的程序(经典)•线性规划问题概述•Lingo软件介绍•使用Lingo解决线性规划问题步目录骤•经典线性规划问题案例解析•Lingo在解决线性规划问题中的优势•总结与展望01线性规划问题概述定义:线性规划(Linear Programming,简称LP)是数学规划的一个分支,它研究的是在一组线性约束条件下,一个线性目标函数的最大或最小值问题。

特点目标函数和约束条件都是线性的。

可行域是凸集,即对于任意两个可行解,它们的凸组合仍然是可行解。

最优解如果存在,则一定在可行域的某个顶点上达到。

定义与特点生产计划资源分配运输问题金融投资01020304企业如何安排生产,使得在满足市场需求和资源限制的前提下,成本最低或利润最大。

如何合理分配有限的资源(如资金、人力、时间等),以达到最佳的效果。

如何安排货物的运输路线和数量,使得在满足供需关系的前提下,总运费最低。

投资者如何在一定的风险水平下,使得投资收益最大。

决策变量表示问题的未知量,通常用$x_1, x_2, ldots, x_n$表示。

目标函数表示问题的优化目标,通常是决策变量的线性函数,形如$z = c_1x_1 + c_2x_2 + ldots + c_nx_n$。

约束条件表示问题的限制条件,通常是决策变量的线性不等式或等式,形如$a_{11}x_1 + a_{12}x_2 + ldots + a_{1n}x_n leq (=, geq) b_1$。

01$begin{aligned}02& text{max} quad z = c_1x_1 + c_2x_2 + ldots +c_nx_n03& text{s.t.} quad a_{11}x_1 + a_{12}x_2 + ldots + a_{1n}x_n leq (=, geq) b_1& quadquadquad vdots& quadquadquad a_{m1}x_1 + a_{m2}x_2 + ldots + a_{mn}x_n leq (=, geq) b_m•& \quad\quad\quad x_i \geq 0, i = 1, 2, \ldots, n线性规划问题数学模型end{aligned}$其中,“s.t.”表示“subject to”,即“满足……的条件下”。

应用LINGOMATLAB软件求解线性规划课件

应用LINGOMATLAB软件求解线性规划课件

-4.166667
5 0.000000
0.8833333
第11页/共26页
1.2 应用MATLAB求解线性规划
• MATLAB(MATrix LABoratory)的基本含义是矩阵实验室,它是由美国 MathWorks公司研制开发的一套高性能的集数值计算、信息处理、图形显示 等于一体的可视化数学工具软件。它是建立在向量、数组和矩阵基础之上的 ,除了基本的数值计算、数据处理、图形显示等功能之外,还包含功能强大 的多个“工具箱”,如优化工具箱(optimization toolbox)、统计工具箱、 样条函数工具箱和数据拟合工具箱等都是优化计算的有力工具。在这里仅介 绍用MATLAB6.5优化工具箱求解线性规划问题。
A=[1,4,-1;2,-2,1];
b=[4;12];
Aeq=[1,1,2];
beq=6;
lb=[0,0,-inf];
ub=[inf,inf,5];
[x,z]=linprog(c,A,b,Aeq,beq,lb,ub) 运行后得到输出
Optimization terminated successfully.
表1.1 生产计划问题的数据
产品 资源
A
B
C
资源 限量
材料费用(元) 2 2.5 4 320
劳动力(人天) 6 1 8 640
电力(度) 5 5 10 750
单位价格(百元

6 4 10
第21页/共26页
(2)某疗养院营养师要为某类病人拟订一周的菜单。可供选择的蔬菜 及其费用和所含营养成分的数量以及这类病人每周所需各种营养成分 的最低数量如表1.2所示。另外,为了口味的需要,规定一周内所用卷 心菜不多于2份,其他蔬菜不多于4份。若病人每周需要14份蔬菜,问 选用每种蔬菜各多少份,可使生活费用最小。建立线性规划问题的数 学模型。

运用Lingo进行线性规划求解(实例)

运用Lingo进行线性规划求解(实例)
LinDo/LinGo软件
LinDo
输入模型 求解
点击求解按钮 结果
即可
♂返回
!注释内容,可用中文

!目标函数:最大-max,最小-min,大小写不分
max 3 x1+5 x2+4 x3

!约束,以subject to开始

subject to

2 x1+3 x2<=1500
2 x2+4 x3<=800
3*x1+2*x2+5*x3<=2 000; end
注意与LinDo的区别
目标函数中加等号 变量与系数之间用“*” Model:-end可省略
♂返回
LinGo 模 式
Model: Sets: !定义集合
Endsets
Data:
!定义数据
Enddata 调用函数与计算
end
♂返回
model: !开始

@sum(set(set_index_list)|condition:expressi
on)
@min(max)(set(set_index_list)|condition:ex pression)
♂返回
Global optimal solution found at
iteration:
3

Objective value: 2675.000

Variable Value
Reduced Cost
C( 1) 3.000000
0.000000
C( 2) 5.000000
0.000000
C( 3) 4.000000
0.000000

用lingo解线性规划问题

用lingo解线性规划问题

2. 所用原料钢管总根数最少
决策变量 xi ~按第i 种模式切割的原料钢管根数(i=1,2,…7)
目标1(总余量) Min Z1 3x1 x2 3x3 3x4 x5 x6 3x7
模 式 1 2 3 4 5 6 7 需 求 4米 根数 4 3 2 1 1 0 0 50 6米 根数 0 1 0 2 1 3 0 20 8米 根数 0 0 1 0 1 0 2 15 余 料 3 1 3 3 1 1 3
x1 x2 50
12x1 8x2 480
约束条件
劳动时间 加工能力 非负约束
3x1 100 x1 , x2 0
线性 规划 模型 (LP)
模型求解
20桶牛奶生产A1, 30桶生产A2,利润3360元。
结果解释
Max= 72x1+64x2
2)x1+x2<50 3)12x1+8x2<480
解:直接在LINGO的模型窗口中输 入程序
LINDO/LINGO软件的求解过程
1. 确定常数
2. 识别类型
LINDO/LINGO预处理程序
LP QP NLP IP 全局优化(选) 分枝定界管理程序
ILP
线性优化求解程序 1. 单纯形算法 2. 内点算法(选)
IQP
INLP
非线性优化求解程序
LINDO和LINGO软件能求解的优化模型
钢管下料问题1
模式 1 2 3 4 5 6 7 4米钢管根数 4 3 2 1 1 0 0
合理切割模式
8米钢管根数 0 0 1 0 1 0 2 余料(米) 3 1 3 3 1 1 3
6米钢管根数 0 1 0 2 1 3 0
为满足客户需要,按照哪些种合理模式,每种模式 切割多少根原料钢管,最为节省? 两种 标准 1. 原料钢管剩余总余量最小
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

lingo线性规划
线性规划(Linear Programming)是一种在数学和运筹学中常用的优化方法,用于求解遵循线性约束条件的最优解问题。

它的应用非常广泛,包括生产计划、供应链管理、资源分配、投资组合和运输调度等领域。

线性规划的目标是找到一组变量的最优值,使目标函数达到最大值或最小值。

这些变量受到各种约束条件的限制,包括线性等式和线性不等式。

线性规划的数学模型可以表示为:
目标函数:max/min Cx
约束条件:
Ax ≤ b
{x ≥ 0}
其中,C是一个包含决策变量的向量,表示目标函数的系数;x是一个包含决策变量的向量,表示需要求解的变量;A是一个约束矩阵,表示线性约束条件;b是一个包含常数的向量,表示约束条件的右边值。

线性规划的解决方法通常有两种:单纯形法和内点法。

单纯形法是最常用的方法,它通过不断迭代,从一个解走向下一个更优的解,直到找到最优解。

内点法是一种较新的方法,通过在可行域的内部搜索解,而不是在边界上搜索解。

线性规划的一般步骤可以概括为以下几点:
1. 建立线性规划模型:确定目标函数和约束条件,并对其进行数学表示。

2. 求解约束条件的可行域:化约束条件为等式或不等式,画出约束条件所构成的区域。

3. 确定最佳解的可行域:确定目标函数在可行域中的最大值或最小值的位置。

4. 通过单纯形法或内点法求解最优解:找到目标函数的最优解,并得出最优解的数值结果。

5. 解释和应用最优解:根据最优解的数值结果,解释它对问题的意义,并应用于实际决策中。

总之,线性规划是一种强大的数学优化方法,可以有效解决许多实际问题。

它具有明确的数学模型和求解流程,可以通过计算机软件进行自动求解。

然而,在实际应用中,建立准确的数学模型和选择合适的求解方法仍然是一项具有挑战性的任务。

相关文档
最新文档