函数的单调性(说课稿) 全国高中青年数学教师参赛优秀教案
《函数单调性》的说课稿

《函数单调性》的说课稿《函数单调性》的说课稿作为一名优秀的教育工作者,总不可避免地需要编写说课稿,认真拟定说课稿,我们该怎么去写说课稿呢?下面是小编整理的《函数单调性》的说课稿,供大家参考借鉴,希望可以帮助到有需要的朋友。
《函数单调性》的说课稿1今天我要说课的课题是人教版《数学》(基础模块上册)第三章第一节的内容《函数的单调性》。
我将从教材分析;学情分析;教法学法分析;教学过程设计;板书设计五个方面来陈述我对本节课的设计方案。
恳请各位评委老师批评指正。
一、教材分析1、教材的地位和作用①、函数单调性是高中数学中相当重要的一个基础知识点,是已学习过的函数的概念、图象、表示方法等知识的延续和拓展,同时又为后面学习指数函数、对数函数、三角函数奠定了理论基础。
②、是培养学生逻辑推理能力和渗透数形结合思想的重要素材,在整个高中数学中起着承前启后的重要作用。
③、本节中利用函数图象研究函数性质的数形结合思想将贯穿于整个高中数学教学。
④、本节是历年高考的热点,难点问题。
2、教学目标(1)知识目标①、理解函数单调性的概念。
②、掌握判断一些简单函数的单调性的方法;(2)能力目标通过证明函数的单调性的学习,使学生体验和理解从特殊到一般的数学归纳推理思维方式,培养学生的观察能力,分析归纳能力,严密的逻辑思维能力;让学生体会数形结合、类比的数学思想。
(3)情感目标培养学生细心观察、认真分析、严谨论证的良好思维习惯;培养学生勇于探索的精神和善于合作的意识。
3、教学重点和难点教学重点:(1)函数单调性概念的形成,领会函数单调性的实质与应用明确单调性是一个局部的概念。
(2)判断并证明函数的单调性。
教学难点:(1)引导学生归纳并抽象出函数单调性的定义,在学生已有知识的基础上,从学生的学习心理和认知结构出发,教师讲清楚概念的形成过程;(2)根据定义证明简单函数的单调性,学生通过认真观察思考,并通过小组合作探究的办法来实现突破。
二、学情分析在知识准备上学生已经学习了函数的概念,对函数图象的上升和下降已经有了初步的感性认识;掌握了比较大小关系的方法。
《函数的单调性》说课稿doc高中数学

《函数的单调性》说课稿doc高中数学一、教材分析-----教学内容、地位和作用本课是苏教版新课标一般高中数学必修一第二章第1节«函数的简单性质»的内容,该节中内容包括:函数的单调性、函数的最值、函数的奇偶性。
总课时安排为3课时,«函数的单调性»是本节中的第一课时。
函数的单调性是函数众多性质中的重要性质之一,函数的单调性一节中的知识是今后研究具体函数的单调性理论基础;在解决函数值域、定义域、不等式、比较两数大小等具体咨询题中均有着广泛的应用;在历年的高考中对函数的单调性考查每年都有涉及;同时在这一节中利用函数图象来研究函数性质的数形结合思想将贯穿于我们整个高中数学教学。
按现行教材结构体系,该内容安排在学习了函数的现代定义及函数的三种表示方法之后,了解了在生活实践中函数关系的普遍性,另外学生已在初中学过一次函数、反比例函数、二次函数等初等函数。
在学生现有认知结构中能依照函数的图象观看出〝随着自变量的增大函数值增大〞等变化趋势,因此在教学中要充分利用好函数图象的直观性、发挥好多媒体教学的优势;在本节课是以函数的单调性的概念为主线,它始终贯穿于整个课堂教学过程;这是本节课的重点内容。
利用函数的单调性的定义证明具体函数的单调性一个难点,也是对函数单调性概念的深层明白得,且在〝作差、变形、定号〞过程学生不易把握。
学生刚刚接触这种证明方法,给出一定的步骤是必要的,有利于学生明白得概念,也能够对学生把握证明方法、形成证明思路有所关心。
另外,这也是以后要学习的不等式证明的比较法的差不多思路,现在提出来对今后的教学也有了一定的铺垫。
二、学情分析教学目标的制定与实现,要紧取决于我们对学习者把握的程度。
只有了解学习者原先具有的认知结构,学习者的预备状态,学习风格,情感态度等,我们才能制定合适的教学目标,安排合适的教学活动与评判标准。
不同的教学环境,不同的学习主体有着不同的学习动机和学习特点。
高中数学《函数的单调性》说课稿设计

高中数学《函数的单调性》说课稿设计一、说课目标通过本节课的学习,学生将能够:1.了解函数的单调性的概念;2.理解单调递增和单调递减的定义;3.掌握判断函数的单调性的方法;4.运用单调性的性质解决实际问题。
二、说课重点1.函数的单调性的定义和判定方法;2.单调性与函数图像的关系;三、说课难点1.单调性的判定方法;2.实际问题的解决。
四、教学过程1. 导入新知识(5分钟)引入函数的概念,并提问学生是否了解函数的图像特征。
然后,引入函数的单调性的概念,引导学生思考函数的单调性与图像的关系。
2. 函数的单调性定义和判定方法(10分钟)首先,解释函数的单调性的定义:函数在定义域上递增或递减。
然后,介绍函数单调性的判定方法:•对于y=f(x),若f′(x)>0,则函数在该区间上单调递增;•对于y=f(x),若f′(x)<0,则函数在该区间上单调递减。
3. 单调性与函数图像的关系(15分钟)通过上述定义和判定方法,引导学生观察函数图像的形状,并与函数的单调性进行对比。
引导学生发现,递增函数对应的图像是上凸的,递减函数对应的图像是下凸的。
4. 判定函数单调性的例题讲解(20分钟)选择两道合适的例题进行讲解,让学生掌握判定函数单调性的具体步骤和方法。
通过讲解例题,解释函数在不同区间上单调递增或单调递减的原因。
5. 实际问题的解决(20分钟)引入实际问题,例如一辆汽车的加速度问题。
通过构建相关函数模型,运用函数的单调性的性质,解决实际问题。
引导学生分析问题的关键点,理解单调性在实际问题中的应用。
6. 总结和拓展(10分钟)回顾单调性的定义和判定方法,总结单调性与函数图像的关系,强调单调性在解决实际问题中的重要性。
鼓励学生进一步拓展单调性的应用领域,并提醒他们关注函数的单调性在高考和日常生活中的重要性。
五、课堂作业1.完成课堂上的练习题;2.思考并总结函数单调性的应用场景,写一篇300字的小结。
六、板书设计函数的单调性定义:函数在定义域上递增或递减。
函数的单调性与导数 说课稿 教案 教学设计

函数的单调性与导数教学目标:1.了解可导函数的单调性与其导数的关系;2.能利用导数研究函数的单调性,会求函数的单调区间,对多项式函数一般不超过三次.教学重点:利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间;教学难点:利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间. 教学过程设计(一)、情景引入,激发兴趣。
【教师引入】黑暗中,你是怎样通过远处汽车自身的灯光判断该车是上坡还是下坡的?(二)、探究新知,揭示概念探究1.问题:图1.3-1(1),它表示跳水运动中高度h 随时间t 变化的函数2() 4.9 6.510h t t t =-++的图像,图3.3-1(2)表示高台跳水运动员的速度v 随时间t 变化的函数'()()9.8 6.5v t h t t ==-+的图像. 运动员从起跳到最高点,以及从最高点到入水这两段时间的运动状态有什么区别?通过观察图像,我们可以发现:(1) 运动员从起点到最高点,离水面的高度h 随时间t 的增加而增加,即()h t 是增函数.相应地,'()()0v t h t =>.(2) 从最高点到入水,运动员离水面的高度h 随时间t 的增加而减少,即()h t 是减函数.相应地,'()()0v t h t =<.探究2.2.函数的单调性与导数的关系观察下面函数的图像,探讨函数的单调性与其导数正负的关系.如图1.3-3,导数'0()f x 表示函数()f x 在点00(,)x y 处的切线的斜率.猜想:导数与函数的单调性有什么联系呢?在0x x =处,'0()0f x >,切线是“左下右上”式的,这时,函数()f x 在0x 附近单调递增; 在1x x =处,'0()0f x <,切线是“左上右下”式的,这时,函数()f x 在1x 附近单调递减.(三)、分析归纳,抽象概括 函数的单调性与导数的关系曲线 切线斜率k >0 上升函数()y f x = ()0f x '> ? 递增()x I ∈在某个区间(,)a b 内,如果'()0f x >,那么函数()y f x =在这个区间内单调递增; 如果'()0f x <,那么函数()y f x =在这个区间内单调递减.说明:(1)特别的,如果'()0f x =,那么函数()y f x =在这个区间内是常函数.(2)“某区间”指的是定义域的子集,研究函数单调性问题“定义域优先”. (四)、知识应用,深化理解例1.已知导函数'()f x 的下列信息: 当14x <<时,'()0f x >; 当4x >,或1x <时,'()0f x <; 当4x =,或1x =时,'()0f x = 试画出函数()y f x =图像的大致形状.解:当14x <<时,'()0f x >,可知()y f x =在此区间内单调递增; 当4x >,或1x <时,'()0f x <;可知()y f x =在此区间内单调递减; 当4x =,或1x =时,'()0f x =,这两点比较特殊,我们把它称为“临界点”. 综上,函数()y f x =图像的大致形状如图3.3-4所示. 例2.判断下列函数的单调性,并求出单调区间.(1)3()3f x x x =+; (2)2()23f x x x =--(3)()sin (0,)f x x x x π=-∈; (4)32()23241f x x x x =+-+ 解:(1)因为3()3f x x x =+,所以, '22()333(1)0f x x x =+=+>因此,3()3f x x x =+在R 上单调递增,如图3.3-5(1)所示.(2)因为2()23f x x x =--,所以, ()'()2221f x x x =-=-当'()0f x >,即1x >时,函数2()23f x x x =--单调递增; 当'()0f x <,即1x <时,函数2()23f x x x =--单调递减; 函数2()23f x x x =--的图像如图3.3-5(2)所示.(3)因为()sin (0,)f x x x x π=-∈,所以,'()cos 10f x x =-< 因此,函数()sin f x x x =-在(0,)π单调递减,如图3.3-5(3)所示. (4)因为32()23241f x x x x =+-+,所以 .当'()0f x >,即 时,函数2()23f x x x =-- ; 当'()0f x <,即 时,函数2()23f x x x =-- ; 函数32()23241f x x x x =+-+的图像如图3.3-5(4)所示. 注:(3)、(4)生练课堂练习1.求下列函数的单调区间1.f (x )=2x 3-6x 2+7 2.f (x )=x1+2x3. f (x )=sin x , x ]2,0[π∈4. y=xlnx(五)、归纳小结、布置作业。
函数单调性优秀教案

函数单调性优秀教案【篇一:《函数单调性》教学设计】《函数单调性》教学设计【设计思路】有效的概念教学必须建立在学生已有的知识结构基础之上顺应学生的思维发展,因此在教学设计中注意在学生已有知识结构和新概念间寻找“最近发展区”,呈现知识的发生和形成过程,使学生始终处于问题探索研究状态之中。
为达到本节课的教学目标,突出重点,突破难点,在探索概念阶段, 让学生经历从直观到抽象、从特殊到一般、从感性到理性的认知过程,使得学生对概念的认识不断深入.在应用概念阶段, 通过对证明过程的分析,帮助学生掌握用定义证明函数单调性的方法和步骤.考虑到学生数学思维较为活跃的特点,对判断方法进行适当的延展,加深对定义的理解,同时也为用导数研究函数单调性埋下伏笔。
在教学设计中发挥好多媒体教学的优势,注意结合图形,由浅入深,采用数形结合方法,从感知发展到理性思维,让学生经历“创设情境——探究概念——理解反思——拓展应用——归纳总结”的活动过程,体验了参与数学知识的发生、发展过程,培养“用数学”的意识和能力,成为积极主动的建构者。
【教学目标】1.理解函数单调性的概念,初步掌握判断、证明函数单调性的方法. 2.通过观察、归纳、抽象、概括自主建构函数单调性概念的过程,体会数形结合的思想方法,提高发现、分析、解决问题的能力;通过对函数单调性的证明,体会数学的严谨性,提高学生的推理论证能力.3.在学习中体会数学的科学价值和应用价值,培养学生细心观察、认真分析、严谨论证、勇于探索的良好习惯和严谨的科学态度,让学生感知从具体到抽象,从特殊到一般,从感性到理性的认知过程.【背景分析】1、教材分析本节是高中数学新教材必修1第1章第1.3.1节第一课时,主要学习函数单调性的概念,依据函数图象判断函数的单调性和应用定义证明函数的单调性。
他是高中数学中相当重要的一个基础知识点。
是高中数学中起着承上启下作用的核心知识之一.是函数概念的延续和拓展,又是后续研究指数函数、对数函数单调性的基础.在比较数的大小、解方程或不等式、求函数的值域或最值、函数的定性分析以及相关的数学综合问题中也有广泛的应用。
高中数学-《函数的单调性》说课稿

《函数的单调性》说课稿各位领导、老师你们好!我今天说课的内容是《函数的单调性》。
以下我从五个方面来汇报我是如何研究教材、备课和设计教学过程的。
一、教材分析教材:我选用的教材是苏教版《普通高中课程标准实验教科书数学》(必修一)第二章2.1.3第一节《函数的单调性》。
在备课中,我主要思考的问题是:教材的地位和作用是什么?学生在学习中可能会遇到什么困难?如何依据现代教育理论和新课程理念,设计教学过程?如何结合教学内容,发展学生能力?(一) 教学内容本节课内容教材共分两课时进行,这是第一课时,该课时主要学习函数的单调性的的概念,依据函数图象判断函数的单调性和依据定义证明函数的单调性。
(二) 教材的地位和作用本节课是在学生学习了函数概念的基础上所研究的函数的一个重要性质,常伴随着函数的其它性质出现。
它既是在学生学过函数概念图象、表示方法等知识后的延续和拓展,又是后面研究指数函数、对数函数、幂函数等各类函数的单调性的基础,在整个高中数学中起着承上启下的作用。
研究函数单调性的过程体现了数学的“数形结合”和“从一般到特殊”的思想方法,这对培养学生的创新意识、发展学生的思维能力,掌握数学的思想方法具有重大意义。
函数的单调性是函数的一个重要性质,是研究函数时经常要注意的一个性质.并且在比较几个数的大小、对函数作定性分析、以及与其他知识的综合应用上都有广泛的应用.(三)学情分析知识上已经掌握了一次函数、二次函数的图象和基本性质以及集合等内容,但对知识的理解和方法的掌握一些细节上不完备,反应在解题中就是思维不缜密,过程不完整;能力上具备了一定的观察、类比、分析、归纳能力,但知识整合和主动迁移的能力较弱,数形结合的意识和思维的深刻性还需进一步培养和加强;情感上多数学生有积极的学习态度,能主动参与研究,少数学生的学习主动性还需要通过营造一定的学习氛围来加以带动。
根据上述教学内容的地位和作用,结合教学大纲和学生的实际,确定了以下教学重点和难点:(四)教材的重点﹑难点﹑关键及成因教学重点:函数单调性的概念与判断,单调区间的概念。
高中数学《函数的单调性》说课稿范文

高中数学《函数的单调性》说课稿范文一、说课目的和要求本节课主要讲解高中数学中的函数的单调性,通过引入函数的递增和递减概念,帮助学生理解函数在某个区间上的变化趋势。
通过本节课的学习,学生应能正确分析函数的单调性,并能运用所学知识解决相关问题。
二、教学内容分析本节课主要围绕以下内容展开: 1. 函数的增减区间的定义; 2. 函数的递增和递减定义; 3. 函数单调性的判定方法; 4. 函数单调性与导数之间的关系。
三、教学过程设计1. 导入与引入(5分钟)通过提问或举例,引导学生思考函数的变化趋势,并引导学生思考如何描述函数的单调性。
2. 展示函数的增减区间概念(10分钟)通过给出一个具体函数的图像,引导学生理解函数在不同区间上的变化趋势并讨论函数的增减区间。
3. 函数的递增和递减定义与性质(15分钟)引导学生通过观察函数的图像体验函数的递增和递减特性,并展示函数递增和递减的定义,强调函数递增和递减的性质。
4. 函数单调性的判定方法(20分钟)介绍函数单调性的判定方法,包括求导数及利用导数判定函数单调性的原理。
通过讲解和示例演练,引导学生掌握单调性的判定方法。
5. 函数单调性与导数之间的关系(15分钟)引导学生思考导数与函数单调性之间的关系,并说明导数在函数单调性判定中的作用。
通过示例演练,帮助学生理解该关系。
6. 拓展与延伸(10分钟)通过举一些实际问题引导学生运用所学知识解答相关问题,拓展学生对函数单调性的应用能力。
7. 小结与展望(5分钟)总结本节课的主要内容,并展望下一节课将学习的内容。
四、课堂互动设计1.引导学生通过讨论、思考等方式积极参与互动,加深对函数单调性的理解。
2.在讲解函数递增和递减定义时,可以让学生用自己的语言描述相关概念,增加学生对函数性质的感性认识。
3.在判定函数单调性的方法中,可以让学生分组讨论并向全班展示自己的解题思路,促进合作学习。
五、板书设计函数的递增和递减定义:如果对于任意x1和x2(x1 < x2),有f(x1) <= f(x2),则称函数f在区间[a, b]上递增;如果对于任意x1和x2(x1 < x2),有f(x1) >= f(x2),则称函数f在区间[a, b]上递减。
函数单调性说课稿高中.doc

函数单调性说课稿高中函数的单调性也可以叫做函数的增减性。
下面是的函数单调性说课稿高中,希望对你有帮助。
一、教材分析-----教学内容、地位和作用本课是苏教版新课标普通高中数学必修一第二章第1节《函数的简单性质》的内容,该节中内容包括:函数的单调性、函数的最值、函数的奇偶性。
总课时安排为3课时,《函数的单调性》是本节中的第一课时。
函数的单调性是函数众多性质中的重要性质之一,函数的单调性一节中的知识是今后研究具体函数的单调性理论根底;在解决函数值域、定义域、不等式、比拟两数大小等具体问题中均有着广泛的应用;在历年的高考中对函数的单调性考查每年都有涉及;同时在这一节中利用函数图象来研究函数性质的数形结合思想将贯穿于我们整个高中数学教学。
按现行教材结构体系,该内容安排在了函数的现代定义及函数的三种表示方法之后,了解了在生活实践中函数关系的普遍性,另外学生已在初中学过一次函数、反比例函数、二次函数等初等函数。
在学生现有认知结构中能根据函数的图象观察出“随着自变量的增大函数值增大”等变化趋势,所以在教学中要充分利用好函数图象的直观性、发挥好多媒体教学的优势;在本节课是以函数的单调性的概念为主线,它始终贯穿于整个课堂教学过程;这是本节课的重点内容。
利用函数的单调性的定义证明具体函数的单调性一个难点,也是对函数单调性概念的深层理解,且在“作差、变形、定号”过程学生不易掌握。
学生刚刚接触这种证明方法,给出一定的步骤是必要的,有利于学生理解概念,也可以对学生掌握证明方法、形成证明思路有所帮助。
另外,这也是以后要学习的不等式证明的比拟法的根本思路,现在提出来对今后的教学也有了一定的铺垫。
二、学情分析教学目标的制定与实现,主要取决于我们对学习者掌握的程度。
只有了解学习者原来具有的认知结构,学习者的准备状态,学习风格,情感态度等,我们才能制定适宜的教学目标,安排适宜的教学活动与评价标准。
不同的教学环境,不同的学习主体有着不同的学习动机和学习特点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数的单调性(说课稿)
各位老师,你们好!我今天说课的内容是全日制普通高中教科书第一册(上)第二章第三节《函数的单调性》。
以下我从六个方面来汇报我是如何研究教材、备课和设计教学过程的。
一、教材分析
1、教材内容
本节课是人教版第二章《函数》第三节函数单调性的第一课时,该课时主要学习增函数、减函数的定义,以及应用定义解决一些简单问题。
2、教材所处地位、作用
函数的单调性是对函数概念的延续和拓展,也是后续研究几类具体函数的单调性的基础;此外在比较数的大小、函数的定性分析以及相关的数学综合问题中也有广泛的应用。
在方法上,教学过程中还渗透了数形结合、类比化归等数学思想方法。
它是高中数学中的核心知识之一,在函数教学中起着承上启下的作用。
二、学情分析
1、知识基础
高一学生已学习了函数的概念等知识,并且接触了一些特殊的单调函数。
2、认知水平与能力
高一学生已初步具有数形结合思维能力,能在教师的引导下解决问题。
3、任教班级学生特点
学生基础较扎实、思维较活跃,能较好地应用数形结合解决问题,但归纳转化的能力还有待进一步提高,观察讨论能力有待加强。
三、目标分析
(一)知识技能
1.让学生理解增函数和减函数的定义;
2.根据定义证明函数的单调性;
3.了解函数的单调区间的概念,并能根据图象说出函数的单调区间。
(二)过程与方法
1.通过证明函数的单调性的学习,培养学生的逻辑思维能力;
2.通过运用公式的过程,提高学生类比化归、数形结合的能力。
(三)情感态度与价值观
让学生积极参与观察、分析、探索等课堂教学的双边活动,在掌握知识的过程中体会成功的喜悦,以此激发求知欲。
领会用从特殊到一般,再从一般到特殊的方法去观察分析事物。
由教学目标和学生的实际水平,我确定本节课的重、难点:
教材的重点、难点、解决策略
教学重点:函数单调性的概念与判断。
教学难点:利用函数单调性定义或者函数图象判断简单函数的单调性。
解决策略:
本课在设计上采用了由特殊到一般、从具体到抽象的教学策略。
利用数形结合、类比化归的思想,层层深入,通过学生自主观察、讨论、探究得到单调性概念;同时,借助多媒体的直观演示,帮助学生理解,并通过范例后的变式训练和教师的点拨引导,师生互动、讲练结合,从而突出重点、突破难点。
四、教学法分析
(一)教法:
1、从学生熟悉的实际生活问题引入课题,为概念学习创设情境,拉近数学与现实的距离,激发学生求知欲,调动学生主体参与的积极性。
2、在鼓励学生主体参与的同时,不可忽视教师的主导作用。
具体体现在设问、讲评和规范书写等方面,教会学生清晰的思维、严谨的推理,并成功地完成书面表达。
3、应用多媒体,增大教学容量和直观性。
(二)学法:
1、让学生从问题中质疑、尝试、归纳、总结、运用,培养学生发现问题、研究问题和解决问题的能力。
2、让学生利用图形直观启迪思维,并通过正、反例的构造,来完成从感性认识到理性思维的认知飞跃。
五、过程分析
教学流程:(一)问题情景,引出新知(3’)(二)学生活动,归纳特征(5’)(三)对比抽象,建构定义(7’)(四)定义讲解,理解概念(3’)
让学生观察两个图象从左到右变化趋势,指出图象这
种在某区间内上升或下降的性质,正是今天要讲的函
数的单调性。
教学过程
170。