双光子显微镜的独特优势
双光子显微镜原理

双光子显微镜原理
1 、双光子显微镜原理
双光子显微镜是一种新型的三维显微技术,它由一个复杂的光子传输仪、一个激光源和一个光学探头组成。
双光子显微镜的基本原理是利用微米级的激光束分别照射样品表面,多达几千个光子则被反射到仪器的探头,这些光子经过聚焦到固定的电子探测器上,并被计算机整合,获得了样品的三维结构信息。
双光子显微镜最大的优点在于可以实现快速、高分辨率、高空间分辨率的三维显微成像。
此外,由于光学部分的几乎完全抑制,可以大大减少在样品上的损伤。
双光子显微镜的应用可以分为两个主要方面:一是定量构象成像,在生物和材料科学等领域有着广泛的应用,可以用来获得更多的生物结构信息以及揭示细胞活性的详细机理;另一个是影像计算术,主要是利用图像分析的方法来解决复杂的问题,如双光子显微镜可以用来分析样品深度和结构,从而获得物质成分、表面形貌以及更多的三维信息。
- 1 -。
双光子显微镜的应用优势与维护要素

综 述①中山大学中山医学院科研仪器中心 广东 广州 510080*通信作者:**************作者简介:李娟,女,(1983- ),硕士,助理实验师,从事科研仪器共享服务与管理工作。
中国医学装备2021年12月第18卷第12期 China Medical Equipment 2021 December V ol.18 No.12双光子显微镜是结合了激光扫描共聚焦显微镜及双光子激发技术的一种新精密仪器。
在激光扫描显微镜的基础上,双光子显微成像技术以红外飞秒激光作为光源,受散射影响较小,易穿透样本,可深入组织内部非线性地激发荧光,减小激光对生物体的损伤,光毒性小且具有高空间分辨率,适合生物样品的深层成像及活体样品的长时间观察成像[1-2]。
双光子显微镜已成为生命科学各领域重要的研究工具,可在细胞甚至是亚细胞水平对活体动物的神经细胞形态结构、离子浓度、细胞运动、分子相互作用等生理现象进行直接的长时间成像监测,还能进行光激活染及光损伤等光学操纵,广泛应用于脑科学、免疫学、肿瘤、胚胎发育等生物医学相关研究。
通过阐述双光子显微镜的工作原理、样品前期准备、成像难点及设备使用及日常维护要点,梳理双光子激光共聚焦与其他同类成像类设备在成像原理、配置参数、成像特点及应用领域等方面的不同,为使用者提供更多实验方法参考,使之更好地服务于医学临床、教学和科研。
1 双光子显微镜成像技术原理、优势及应用范围1.1 双光子激发技术的基本原理双光子激发理论由诺贝尔奖得主Goppert Mayer于1931年提出,1961年得到了实验验证[3-4]。
该技术的基本原理是:在高光子密度情况下,荧光分子可同时吸收2个长波长的光子,其效果与使用一个波长为长波长一半的光子去激发荧光分子相同。
长波长的光受散射影响小于短波长的光,易穿透标本;长波长的近红外光对细胞毒性小于短波长的光。
此外,双光子激发要较高的光子密度,为不损伤细胞,双光子显微镜使用高能量锁模脉冲激光器,激光具有高峰值能量及低平均能量,物镜将脉冲激光的光子聚焦时,物镜焦点处的光子密度最高,故双光子激发只发生在物镜的焦点处,只有在焦点平面上才有光漂白及光毒性,所以双光子显微镜无需共聚焦针孔,提高了荧光检测效率。
基于双光子显微成像技术的活细胞研究

基于双光子显微成像技术的活细胞研究
活细胞是细胞学研究中的一个重要研究对象。
传统的细胞学研究方法通常需要对细胞进行染色或杀死细胞,以获取细胞的形态和结构信息。
然而,这种方法无法研究活体的生物过程,给细胞学研究带来了局限性。
随着现代生物学技术的发展,基于双光子显微成像技术的活细胞研究成为了细胞学研究的重要手段。
双光子显微成像技术是一种非侵入式、无损伤、高分辨率的成像方法。
它利用一种称为二光子激发的光学过程,在活体组织中直接成像活细胞的生物活动。
在这种技术中,激光束的能量与样品中的荧光标记物相互作用,从而引发二光子吸收过程。
这个过程产生的荧光信号可以被探测器捕捉并进行成像。
与传统的荧光显微镜相比,双光子显微成像技术的成像深度更大,光伤害也更小。
利用基于双光子显微成像技术的活细胞研究,可以获取活体细胞的三维成像,观察细胞内部分子的分布和定位,探究细胞分子间的相互作用和信号传递机制。
同时,这种技术还可以用于研究细胞的动力学过程,如细胞迁移、分裂等生物过程。
与传统的成像技术相比,双光子显微镜在深度成像和时间分辨率上都有很大的优势。
双光子显微成像技术的应用范围非常广泛。
例如,在神经科学中,这种技术可以用于研究神经元的突触形态和功能。
在免疫学研究中,它可以用于观察免疫细胞在淋巴结内的迁移和互动。
另外,双光子显微成像技术在药物筛选和开发中也有广泛应用。
总体而言,双光子显微成像技术的发展给细胞学研究带来了革命性变革。
它不仅可以提供更加精细的细胞成像,而且还可以研究活体细胞的生物过程,为生命科学的发展提供了强大的技术支持。
贝塞尔双光子光片显微镜在活体生物成像中的应用

贝塞尔双光子光片显微镜在活体生物成像中的应用第一篇范文贝塞尔双光子光片显微镜在活体生物成像中的应用引言:活体生物成像技术在生物学和医学领域中起着重要的作用。
近年来,贝塞尔双光子光片显微镜作为一种先进的成像技术,被广泛应用于活体生物成像领域。
本文将介绍贝塞尔双光子光片显微镜在活体生物成像中的应用,并探讨其优势和挑战。
一、贝塞尔双光子光片显微镜的原理:贝塞尔双光子光片显微镜是一种基于双光子激发荧光显微镜的技术。
它利用两个光子的能量同时激发样品中的荧光分子,从而实现了更深层次的成像。
与传统的单光子激发荧光显微镜相比,贝塞尔双光子光片显微镜具有更高的分辨率和对样品的损伤较小的优点。
二、贝塞尔双光子光片显微镜在活体生物成像中的应用:1. 神经科学研究:贝塞尔双光子光片显微镜在神经科学研究中有着广泛的应用。
通过该技术,研究人员能够实时观察神经元的行为和信号传递过程,进一步了解大脑的功能和疾病机制。
2. 心血管研究:贝塞尔双光子光片显微镜也被应用于心血管研究领域。
通过该技术,研究人员能够清晰地观察心脏细胞的动作电位和心肌组织的结构变化,为心脏疾病的研究和治疗提供重要的信息。
3. 细胞生物学研究:在细胞生物学研究中,贝塞尔双光子光片显微镜能够实时观察细胞内部结构和分子的动态变化,帮助研究人员深入了解细胞的行为和功能。
4. 肿瘤研究和药物开发:贝塞尔双光子光片显微镜在肿瘤研究和药物开发领域也发挥着重要作用。
通过该技术,研究人员能够观察肿瘤细胞的生长、转移和药物反应,为肿瘤的诊断和治疗提供新的思路和方法。
三、贝塞尔双光子光片显微镜的优势和挑战:1. 优势:- 高分辨率:贝塞尔双光子光片显微镜具有更高的分辨率,能够实现更深层次的成像。
- 最小化样品损伤:双光子激发具有较低的光剂量,能够减少对样品的损伤。
- 实时观察:该技术能够实时观察活体生物样本,提供更准确的数据和信息。
2. 挑战:- 设备成本高:贝塞尔双光子光片显微镜的设备成本相对较高,限制了其在广泛领域的应用。
双光子显微镜的独特优势.

相关技术指标与进口必要性双光子显微镜的独特优势有以下几点:1)双光子显微镜采用长波长激发,长波长的光比短波长的光受散射影响较小,容易穿透标本,双光子显微镜的穿透深度通常是共聚焦显微镜的2到3倍。
对于皮层较深处神经元的活动观察更加全面。
2)焦平面外的荧光分子不被激发,成像的亮度和信噪比高。
更加适合活体下微弱荧光信号的观察。
3)长波长的近红外光比短波长的光对细胞毒性小,比较适合活细胞长时间的动态观察。
4)使用双光子显微镜观察标本的时候,只有在焦平面上才有光漂白和光毒性。
所以,双光子显微镜比单光子显微镜更适合用来观察厚标本、更适合用来观察活细胞、或用来进行定点光漂白实验。
利用活体双光子显微镜,我们可以对脑科学的几个前沿领域进行更加深入的研究。
利用活体双光子显微镜的光遗传学操作能力,我们可以对某类神经元的激活和失活进行高精度的操作,对这些神经元的特殊功能的进行研究。
在活体水平下,我们可以对皮层在清醒、静息状态下就存在有组织的脑功能活动进行观察,从而加深我们对大脑在内外环境的监测、情节记忆及自我意识方面的理解。
利用活体双光子显微镜的多点光激活能力,我们可以研究多个神经细胞之间的连接和控制,来更好的了解神经信号之间复杂动态的编码过程。
目前国内没有同类产品,其他设备在各个技术层面都无法满足我单位要求,为更好的开展神经学研究,故申请购置此套设备。
主要技术指标:1 显微镜1.1 适用于活体动物操作的正置显微镜,物镜下自由空间高度≥23 cm;1.2 显微镜镜体置于XY电动载物台之上,可通过移动显微镜镜体的方式对样品进行定位和观察;1.3 显微镜镜体移动通过软件控制,XY方向行程≥35 mm,步进≤100 nm;1.4 配备长寿命落射荧光光源;1.5 配备可观察FITC和DsRed的滤色块;1.6 配备全角度物镜转盘,物镜可旋转、可倾斜,能够以任何角度垂直接近样品表面;1.7 配有放大倍率为4倍, NA≥0.2, WD≥20mm的物镜。
双光子成像在中医药领域的应用

双光子成像在中医药领域的应用作者:林思思阿列克谢·沃瑞克哈特斯基唐勇来源:《世界中医药》2020年第11期摘要双光子显微镜作为现代最重要的光学显微镜技术,具有3D成像、在体成像、光漂白和光毒性低等特点。
该技术已被运用到与中医药相关的细胞成像、组织成像和在体成像研究中,为中医药治疗相关疾病提供更科学和直观的理论依据。
本文对现有的双光子显微镜技术在中医药领域的应用研究进行概述,以期为中医药研究提供新方向。
关键词双光子显微镜;中医药;细胞成像;组织成像;在体成像Application of Two-photon Microscopy in the Field of Traditional Chinese MedicineLIN Sisi1,Alexei Verkhratsky1,2,TANG Yong1,3(1 College of Acupuncture and Tuina,Chengdu University of TCM,Chengdu 610075,China; 2 The University of Manchester,Manchester M139PL,United Kingdom; 3 Key Laboratory of Sichuan Province for Acupuncture and Chronobiology,Chengdu 610075,China)Abstract Two-photon microscope,as the most important optical microscope technology,showed remarkable advantages of 3D imaging,in vivo imaging,photobleaching and low phototoxicity.It has been utilized in cell imaging,tissue imaging and in vivo imaging related to traditional Chinese medicine (TCM) to provide a more scientific and intuitive theoretical basis for the treatment of related diseases by TCM.This paper summarizes the application research of the existing two-photon microscope technology in the field of TCM,in the hope of providing new directions for the research of TCM.Keywords Two-photon microscope; Traditional Chinese medicine; Cell imaging; Tissue imaging; In-vivo imaging中图分类号:R2-03文献标识码:Adoi:10.3969/j.issn.1673-7202.2020.11.002双光子显微镜是现代重要的光学显微镜,具有3D成像、活体动物成像、检测灵敏度高、空间定位性高、光漂白和光损伤低等特点,在生物学、神经科学等领域中广泛运用。
双光子显微成像技术的最新进展

双光子显微成像技术的最新进展双光子显微成像技术是一种新兴的生物显微技术,它可以在活体组织内实现高分辨率、三维成像,因此在生物医学研究中引起了广泛关注。
近年来,双光子显微成像技术得到了快速发展,出现了许多新的应用和改进,本文将对双光子显微成像技术的最新进展进行介绍。
一、什么是双光子显微成像技术?双光子显微成像技术是利用长波长的激光经过非线性作用,产生双光子激发荧光来实现显微成像的技术。
它与传统的荧光显微镜相比有很大的优势,可以在活体组织深处实现高分辨率、三维成像,对于生物医学研究有很大的价值和应用前景。
二、双光子显微成像技术的最新进展1. 激光技术的改进激光是双光子显微成像技术的核心部分,它需要具备高功率、短脉冲、高稳定性等特点。
近年来,激光技术一直在不断改进和更新,现在已经出现了一些新型的激光器,如飞秒激光器、光纤激光器等,它们具有更高的功率和更短的脉冲宽度,可以提高显微成像的质量和速度。
2. 显微成像系统的改进显微成像系统是双光子显微成像技术的另一个重要组成部分,它需要具备高度的稳定性、精度和灵敏度。
近年来,显微成像系统也得到了一些改进,如新型的探测器、新型的光学透镜、新型的样品扫描器等,这些改进可以提高显微成像的分辨率和灵敏度,有效地解决了一些技术难题。
3. 应用扩展双光子显微成像技术除了在生物医学研究中得到广泛应用外,还可以在其他领域得到应用。
例如,在材料科学中,双光子显微成像技术可以用来研究材料的光学性质、表面形貌和微观结构;在环境科学中,双光子显微成像技术可以用来研究地球表面的生物和生态系统。
随着技术的不断改进和应用范围的不断扩大,双光子显微成像技术的研究将会更加深入和广泛。
三、双光子显微成像技术的前景双光子显微成像技术在生物医学研究中具有广泛的应用前景,尤其在癌症、神经科学、血管形成等领域有着重要的应用。
未来,随着技术的不断发展和改进,双光子显微成像技术的分辨率将会进一步提高,成像速度会更加快速,应用范围也将不断扩大。
two_photon

• 动物活体 • 活的离体器官、组织、胚胎 • 长时间、高频率延时摄影 • 厚组织三维成像 • 与单光子激发光不匹配的染料
• 固定的样本 • 薄样本 • 单张拍摄 • 短时间、低频率延时摄影 • 对分辨率有要求 • 对温度敏感的样本 • 对红外光强吸收的样本
能用单光子解决的问题,就无需使用双光子成像。
双光子成像解决的科学问题 1—细胞形态学分析
计数 长度 面积 体积 形状 分布 突起长度 突起复杂度 荧光定量……
小鼠视皮层中间神经元树突形态监测 Chen L et. al. Nature Neuroscience (2011) 14, 587–94
• 细胞分布 • 细胞迁移能力 • 细胞迁移路线 • 细胞相互作用 ……
双光子成像解决的科学问题 4—血流动力学
小鼠脑血管血流监测
双光子成像解决的科学问题 5—胞内活动监测
大鼠beta细胞中胰岛素囊泡的外吐监测
Lam PL et. al. Diabetes (2013) 62, 2416-‐28
减少光损伤 闭环控制
声光振镜
多焦点复合扫描
二次谐波成像技术(SHG)
二次谐波原理 二次谐波成像设备
强激光穿过非线性光学介 质时,产生波长减半的二 次谐波。
• 无激发过程,不需荧光染色 • 无光毒性和光漂白 • 可正向、背向收集信号 • 对微观结构高度敏感 • 与双光子显微镜高度兼容
ቤተ መጻሕፍቲ ባይዱ
• 囊泡转运 • 细胞骨架 • 细胞凋亡 • 分子动力学
……
双光子成像解决的科学问题 6—新陈代谢监测
通过NADH自发荧光强度反映冠状动脉供应区供氧情况
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关技术指标与进口必要性
双光子显微镜的独特优势有以下几点:
1)双光子显微镜采用长波长激发,长波长的光比短波长的光受散射影响较小,容易穿透标本,双光子显微镜的穿透深度通常是共聚焦显微镜的2到3倍。
对于皮层较深处神经元的活动观察更加全面。
2)焦平面外的荧光分子不被激发,成像的亮度和信噪比高。
更加适合活体
下微弱荧光信号的观察。
3)长波长的近红外光比短波长的光对细胞毒性小,比较适合活细胞长时间的动态观察。
4)使用双光子显微镜观察标本的时候,只有在焦平面上才有光漂白和光毒性。
所以,双光子显微镜比单光子显微镜更适合用来观察厚标本、更适合用来观察活细胞、或用来进行定点光漂白实验。
利用活体双光子显微镜,我们可以对脑科学的几个前沿领域进行更加深入的研究。
利用活体双光子显微镜的光遗传学操作能力,我们可以对某类神经元的激活和失活进行高精度的操作,对这些神经元的特殊功能的进行研究。
在活体水平下,我们可以对皮层在清醒、静息状态下就存在有组织的脑功能活动进行观察,从而加深我们对大脑在内外环境的监测、情节记忆及自我意识方面的理解。
利用活体双光子显微镜的多点光激活能力,我们可以研究多个神经细胞之间的连接和控制,来更好的了解神经信号之间复杂动态的编码过程。
目前国内没有同类产品,其他设备在各个技术层面都无法满足我单位要求,为更好的开展神经学研究,故申请购置此套设备。
主要技术指标:
1 显微镜
1.1 适用于活体动物操作的正置显微镜,物镜下自由空间高度≥23 cm;
1.2 显微镜镜体置于XY电动载物台之上,可通过移动显微镜镜体的方式对样品进行定位和观察;
1.3 显微镜镜体移动通过软件控制,XY方向行程≥35 mm,步进≤100 nm;
1.4 配备长寿命落射荧光光源;
1.5 配备可观察FITC和DsRed的滤色块;
1.6 配备全角度物镜转盘,物镜可旋转、可倾斜,能够以任何角度垂直接近样品表面;
1.7 配有放大倍率为4倍, NA≥0.2, WD≥20mm的物镜。
1.8 配有高数值孔径长工作距离物镜(水镜)。
放大倍率为16倍,NA≥0.8,WD≥3mm;
1.9 配有高数值孔径长工作距离物镜(水镜)。
放大倍率为40倍,NA≥0.6,WD≥
2.8mm;
1.10 使用Pockels Cell对激光能量进行控制,响应时间≤10 μs;
2. 调焦装置和载物平台:
2.1. 配备电动Z轴调焦装置,行程≥30 mm,步进≤200 nm;
2.2 配备压电高速扫描平台,行程≥400 μm;
2.3 配备大样品电动载物平台,X轴行程≥150 mm,Y轴行程≥75 mm,步进≤200 nm;
3 扫描装置
3.1. 提供三种扫描模式:普通振镜点扫描,普通振镜螺旋扫描,共振扫描;
3.2 普通振镜螺旋扫描模式下成像速度≥6帧/秒(512*512像素);
3.3 共振扫描模式下成像速度≥30帧/秒(512*512像素)。
4. 探测器
4.1 配备两个或两个以上高灵敏PMT;
4.2 PMT安放位置接近物镜以提高信号探测效率;
4.3 PMT在550 nm的量子效率≥45%,暗电流≤1 nA;
5 光漂白和光解笼锁装置
5.1 独立的光漂白和光解笼锁光路,采用独立振镜控制,与成像光路可同时进行操作;
5.2 自动光路校正:根据扫描图像自动校正漂白和解笼锁位置;
5.3 可进行多点光漂白(或解笼锁)、可任意设定漂白(或解笼锁)的区域、时间、时程(时间控制精度10 微
秒);
5.4 配备空间光调制模块,可同时对三维空间内的多个独立区域进行光遗传学操作,可同时进行操作的独立区
域数量≥10;
5.5 空间光调制器可与扫描振镜协同工作,以保证进行光遗传学操作区域内的能量密度;
6 软件和外围设备控制功能:
6.1软件可以实现多种图像采集模式:点扫描,自定义线扫描,矩形扫描,旋转扫描,任意区域扫描;
6.2 三维大视野拼图
6.3 软件可输出常用的图像格式;
6.4 提供至少8个模拟输入和输出皆空用于外周设备控制;
6.5 软件可对模拟输出信号进行编程控制,并对模拟输入信号进行测量和记录;
7 图像采集和处理工作站
7.1 四核高性能处理器;
7.2 内存≥32 G内存
7.3 配备512 G高速固态硬盘用于数据采集;
7.4 配备双128 G高速固态硬盘用于操作系统和数据采集软件安装,两硬盘互为备份;
7.5 配备2T硬盘空间用于数据存储;
7.6 Windows 7操作系统;
8 双光子与飞秒光纤激光器:
8.1全自动宽带调谐钛宝石飞秒振荡器;
8.2 平均输出功率≥3.5瓦;
8.3 调谐波长范围:680-1080 nm;
8.4 脉宽≤ 140 fs;
8.5调谐速度≥40 nm/s;
8.6 飞秒光纤激光器输出功率≥2.0瓦,脉宽≤ 55 fs,波长1070 nm。