微积分的思想和方法

微积分的思想和方法
微积分的思想和方法

微积分的思想和方法

(部分讲义)

黄荣

第四讲

第四章定积分与不定积分

[教学目标]

1、了解定积分产生的历史、实际背景,理解定积分的概念,掌握定积分的性质;

2、理解原函数与不定积分的概念;

3、掌握不定积分性质与其本积分公式;

4、掌握定积分的牛顿一莱布尼兹公式;

5、了解定积分在实际问题中的应用;

6、了解简单微分方程的概念。

[重点难点]

定积分、不定积分的概念、牛顿一莱布尼兹公式。

[学习建议]

1、学习定积分概念时,应充分注意体现微积分的基本思想。

2、学员学习不定积分时,要注意加强练习,尽量做到掌握不定积分的计算方法。

3、牛顿一莱布尼兹公式,建立了微分和积分之间的联系,学员应适当练习,切实掌握。

4、为了掌握计算技能,学员必须做适当的练习。

[课时分配]

面授8课时,自学16 课时。

[面授辅导]

1、不定积分 1.1不定积分定义

1.1.1原函数

▲如果函数f(x)与f(x)定义在同一区间(a,b),并且处处都有:F1(x)=f(x) 或df(x)=f(x)dx

则称f(x)是f(x)的一个原函数。

下列是一些简单函数的原函数:

出数原函数

cosx sinx

sinx -cosx

ex ex

en xn+1

▲设函数f(x)与F(x)定义在同一区间(a,b) 内。苦F(x)是f(x)的一个原函数,则F(x)+c也是f(x)的原函数,c为常数。

例1:求2x的原函数F(x),且使F(2)=7。

解:∵x2=2x

∴x2是2x的一个原函数。

2x的全体原函数为

F(x)=x2+c (c为常数)

F(2)=22+c=7

c=3

∴F(x)=x2+3为所求。

例2:求sinx的原函数F(x),且使F(0)=4。

解:由于(-cosx)=sinx

因此-cosx就是sinx的一个原函数。

sinx的全体原函数记为

F(x)=-cosx+c

依题意有:F(o)=-cosD+c=4

c=5

所求F(x)=-cosx+5

例3:求f(x)=x3-3x2+2x+7的原函数。

解:f(x)的一个原函数为

x4-x3+x2+7x

则f(x)的全部原函数为

F(x)= x4-x3+x2+7x+c (c为常数)

1.1.2不定积分定义

函数F(x)的原函数的全体称为f(x)的不定积分,记为(x)

dx。

其中称为积分号,x称的积分变量,(x) 称为被积函数。

虽然(x)dx=F(x)+c

(c为任意常数,称为积分常数)

注意:“不定积分”与“求导数”、“求微分”互为逆运算。

v ,求自由落体的路程公式。例1已知自由落体的运动速度gt

解 设自由落体的路程公式为()t f s =。由导数的力学意义可知,速度gt

t f v ==)('。联想到gt gt =??? ??'221,并且常数的导数为0,所以gt C gt =??? ??+'221。于是路程公式为

()C gt t f s +==221 (C 为任意常数)

又因当0=t 时()00=s ,代入上式,可得0=C ,故所求的路程公式为 ()221gt t f s == 该物理问题是已知速度求路程。抽象为数学问题,就是已知导数求原来的函数,这是求导数的逆运算。数学中的逆运算我们已经碰到过不少,比如相对于加法的减法,相对于乘法的除法,相对于乘方的开方等。这里需要解决两个问题:一是逆运算是否存在?二是如果逆运算存在的话,结论有几个?现在就来围绕这两个问题解决求导数(或微分)的逆运算问题。

首先我们要知道什么是原函数。

根据导数公式或微分公式,我们很容易得出一些简单函数的原函数。如

函数 原函数

x cos x sin

x sin x cos -

x e x e

n x 1

11++n x n

从这些例子不难看出,x sin 是x cos 的原函数,)(sin C x +也是x cos 的原函数,这里C 是任意常数。于是产生这样一个问题:同一个函数究

竟有多少原函数?

定理 设函数)(x f 与)(x F 定义在同一区间),(b a 内。若)(x F 是)(x f 的一个原函数,则C x F +)(也是)(x f 的原函数,这里C 是任意常数;而且C x F +)(包含了)(x f 的全部原函数。

证明 因为

)()(')')((x f x F C x F ==+

所以C x F +)(是)(x f 的原函数。

下面证明C x F +)(包含了)(x f 的一切原函数。而这只需证明,)(x f 的任一原函数 )(x G 必然有C x F +)(的形式。

证明 根据假设

)()('x f x G =,)()('x f x F =,

从而

0)()()(')('=-=-x f x f x F x G ,

由中值定理推理2得

C x F x G =-)()(,

C x F x G +=)()( 。

例1 求x 2的原函数)(x F ,且使7)2(=F 。

解 我们知道x x dx d 22=,因此2x 就是x 2的一个原函数,x 2的全体原函

数记为)(x F =2x +C 。根据题意,我们求常数C 。

72)2(2=+=C F ,C =3

所以

)(x F =2x +3

例2 求x sin 的原函数)(x F ,且使4)0(=F 。

解 求解的思路同例1一样。我们知道x x dx d sin )cos (=-,因此x cos -就

是x sin 的一个原函数,x sin 的全体原函数记为)(x F =x cos -+C 。根据题意,

我们求常数C 。

410cos )0(=+-=+-=C C F ,C =5 所以

)(x F =x cos -+5

例3 求723)(23++-=x x x

x f 的原函数 解 723)(23++-=x x x x f 的一个原函数为 x x x x x F 741)(2340++-=

则)(x f 的全部原函数为C x F x F +=)()(0(C 为常数)。

不定积分定义

定义 函数)(x f 的原函数的全体称为)(x f 的不定积分,记为 ?dx x f )(,

其中?称为积分号,x 称为积分变量,)(x f 称为被积函数。 由定理可知,如果知道了)(x f 的一个原函数)(x F ,则

C x F dx x f +=?)()(, 其中C 是一个任意常数,称为积分常数。

关于不定积分运算和微分运算

从不定积分的概念可知,“不定积分”与“求导数”、“求微分”互为逆运算:

[])(')(x f dx x f =?或?=dx x f dx x f d )()(;

反过来,

?+=C x F dx x F )()('或?+=C x F x dF )()(。

这就是说,若先积分后微分,则两者的作用互相抵消;若先微分后积分,则抵消后差一常数。

例4 求?

xdx 2 解 ?xdx 2是指求x 2的一切原函数,所以

?xdx 2=C x

+2

不定积分的几何意义 作例4的函数族图,得到一曲线族,不定积分的几何意义就是曲线族。由一条曲线上下平移而得到。它们在同一点的切线斜率相等,如图所示。

[思考题]

(1)德.摩根说积分就是“回忆微分”,你能默想导数公式并列出相应的基本不定积分公式吗?

(2)你了解数学的三次危机吗?它们对你又何启示?

微积分-求极限的方法

求极限方法一:直接代入法 例一:()=24 例二:()= 类似这种你直接把x趋近的值代入到函数里面,就可以直接得到函数的极限了。 知识点1:当x趋近值代入后,分子为0,分母不为0时,函数极限等于0 知识点2:当x趋近值代入后,分子不为0,分母为0时,函数极限等于 方法二:因式分解法(一般是平方差,完全平方,十字相乘) 普通的就是分子分母约去相同的项,因为x是趋近值,所以上下是可以约去的,不用考虑0的问题。类似=() 下面讲个例 知识点3:=(x-y)() 例三:== 方法三:分母有理化(用于分母有根式,分子无根式) 例四:= 方法四:分子有理化(用于分子有根式,分母无根式) 例五:==1 方法五:分子分母同时有理化(用于分子有根式,分母有根式) 例六:

知识点4:(使用这个知识点时,必须注意只能在x趋近于无穷时使用,且使用时只用看各项的最高次数,不用管其他) 例七:()=(分子的最高次是两次,大于分母最高次一次,所以直接得出极限为无穷大) 例八:=0 (分子的最高次是一次,小于分母最高次两次,所以直接得出极限为零) ) 例九:(分子的最高次是一次,等于分母最高次一次,所以直接得出极限为分子最高次数项系数 分母最高次数项系数 方法六:通分法(若函数为两个分数相加减时,通常先同分再做处理,一般情况下同分后都要进行因式分解,然后分子分母约去相同的多项式) 例十:- 知识点5:当一个无穷小的函数乘以一个有界函数时,新函数的极限仍为无穷小。(有限个无穷小仍为无穷小=常量与无穷小量的乘积仍是无穷小量) 例十一:()=0 函数左边用知识点4得出是无穷小,右边3+cosx是有界函数,所以新函数极限为无穷小,即0 所有求极限的题中,代入x趋近值后,若出现或,都可以使用洛必达法则求解极限。

物理中的微积分思想

高中物理中微积分思想 浙江省湖州中学物理组 潘建峰 伟大的科学家牛顿,有很多伟大的成就,建立了经典物理理论,比如:牛顿三大定律,万有引力定律等;另外,在数学上也有伟大的成就,创立了微积分。 微积分(Calculus )是研究函数的微分、积分以及有关概念和应用的数学分支。微积分是建立在实数、函数和极限的基础上的。微积分最重要的思想就是用"微元"与"无限逼近",好像一个事物始终在变化你很难研究,但通过微元分割成一小块一小块,那就可以认为是常量处理,最终加起来就行。 微积分学是微分学和积分学的总称。 它是一种数学思想,‘无限细分’就是微分,‘无限求和’就是积分。无限就是极限,极限的思想是微积分的基础,它是用一种运动的思想看待问题。微积分堪称是人类智慧最伟大的成就之一。在高中物理中,微积分思想多次发挥了作用。 1、解决变速直线运动位移问题 匀速直线运动,位移和速度之间的关系x=vt ;但变速直线运动,那么物体的位移如何求解呢? 例1、汽车以10m/s 的速度行驶,到某处需要减速停车,设汽车以等减速2m/s 2刹车,问从开始刹车到停车,汽车走了多少公里? 【解析】 现在我们知道,根据匀减速直线运动速度位移公式at v v +=0 2021at t v x +=就可以求得汽车走了0.025公里。 但是,高中所谓的的匀变速直线运动的位移公式是怎么来的,其实就是应用了微积分思想:把物体运动的时间无限细分。在每一份时间微元内,速度的变化量很小,可以忽略这种微小变化,认为物体在做匀速直线运动,因此根据已有知识位移可求;接下来把所有时间内的位移相加,即“无限求和”,则总的位移就可以知道。现在我们明白,物体在变速直线运动时候的位移等于速度时间图像与时间轴所围图形的“面积”,即202 1at t v x +=。 【微积分解】汽车在减速运动这段时间内速度随时间变化的关系t at v v 2100-=+=,从开始刹车到停车的时间t=5s , 所以汽车由刹车到停车行驶的位移 km t t t a t v dt at v dt t v x 025.0)10()2()()(5025 02050050=-=+=+==?? 小结:此题是一个简单的匀变速直线运动求位移问题。对一般的变速直线运动,只要结合物理知识求速度关于时间的函数,画出v -t 图像,找“面积”就可以。或者,利用定积分就可解决. 2、解决变力做功问题 恒力做功,我们可以利用公式直接求出Fs W =;但对于变力做功,我 们如何求解呢? 例2:如图所示,质量为m 的物体以恒定速率v 沿半径为R 的竖直圆轨道运 动,已知物体与竖直圆轨道间的摩擦因数为μ,求物体从轨道最低点运动到

浅谈大一微积分

浅谈大一微积分 姓名:龚文皓学号:1511010411 关键词:微积分,极限,求导,不定积分 什么是微积分?它是一种数学思想,‘无限细分’就是微分,‘无限求和’就是积分。无限就是极限,极限的思想是微积分的基础,它是用一种运动的思想看待问题。 微积分是每个大学生都必修的内容,而学习微积分,我们首先学习的就是极限,数列,函数都有极限,在没有进入大学之前,我们的知道了极限这个名词。但是一次没有介绍过,然而在我们的学习中一直在用到极限思想来解决一些数学问题。极限思想揭示了变量与常量、无限与有限的对立统一关系,是唯物辩证法的对立统一规律在数学领域中的应用。借助极限思想,人们可以从有限认识无限,从“不变”认识“变”,从直线形认识曲线形,从近似认识精确。所以学习极限对于学习微积分这一块是十分重要的,极限就是微积分学习的基础,盖房的砖瓦。 再接着我们学习的就是导数了,求导我们在高中的学习中已经无数次的用到了它,有时候解决一些物理问题,如天体的运动也要利用到求导。导数的概念是从良多现实的科学问题抽象而发生的,在经济剖析、经济抉择妄想、经济打点中,有着普遍的应用意义其作为数学剖析课程中最主要的根基概念之一,反映了一个变量对另一个变量的转变率。在经济学中,也存在转变率问题,如:边际问题和弹性问题。运用导数可以对经济活动中的实际问题进行边际分析、需求弹性分析和最值分析,从而为企业经营者科学决策提供量化依据。如今许多企业在判断一项经济活动对企业的利弊时,仅仅依据它的全部成本。而我认为还应当依据它所引起的边际收益与边际成本的比较。求导也就是求函数的变化率,它直观的反映出一种变化趋势,所以我们要学会求导,掌握好这一数学工具。 求导是微分运算,而不定积分是积分运算,微分运算和积分运算是互逆的。我们可以通过积分的形式可以求出路程,不规则图形面积,可以帮我们解决一些问题复杂问题,而求积分又涉及了多种方法,学习掌握好不定积分的求法很重要,也可以帮助我们更加深层次的理解理解微分,什么是微分以及为什么要微分。对于微积分的学习很有帮助。 总而言之,因为微积分是高等数学学习的入门,所有很有必要每个大学生都掌握好微积分的知识,以便今后的高等数学的学习。以为微积分还可以解决很多经济学上的问题,可以帮助我们从数学角度去分析经济学,对于之后所要学习的其他学科也有一定的帮助。以上是我关于微积分学习的一点收获。

微积分方法及应用

微积分方法及应用(部分) 1.求导公式 ()0'=c ()1'-=n n nx x ()Ina a a x x =' ()= 'l o g x a x I n a 1 ()x x cos 'sin = ()x x s i n 'c o s -= ()x x 2sec 'tan = ()x x 2c s c 'c o t -= ()x x x tan sec 'sec = ()x x x c o t c s c 'c s c -= ()2 11'arcsin x x -= ()2 11'a r c c o s x x --= ()211'arctan x x += ()2 11 'a r c t a n x x +-= 【应用】 求()x e x f =的导数. 解:由公式知,()x x e Ine e x f =='. 2.链法则与导数法则运算 链法则: 二次复合:()[]{}()[]()x g x g f x g f '''= 三次复合:()[]{} {}''f x g f =?()[]{}()[]()x x g x g ''??? 运算法则: 加法减法: ()()[]()()'''x v x u x v x u ±=± 乘法: ()()[]()()x v x u x v x u ''=()()x v x u '+ 除法: ()()()()()()()[]2 '''x v x u x v x v x u x v x u -=?????? 【应用】

求y=()[] x x e Inx x cos sin -+的导数 解:设()x e Inx x cos sin -+为u ,则原式为:xInu x e u =,对其求导,有 ()单,'''xInx xInu e u x u Inu e xInu y ?? ? ?? +==独求 ()()()()x e Inx x x x e Inx x Inx x u u x x sin cos 11'cos cos '','cos cos ++??? ??+=-++=,再将 .'代入即可与u u 隐函数求导 隐函数是隐藏的函数,不易求出,其导数却较易求出. 在求导时,只需将y 看作含x 的式子,求导时写作y ’即可 例如:.0'.,2,时的导数值并求出的导数求隐函数满足已知=+=y y y e x y x y xy ()()'1'22'1'22y e xy y In y e xy In y xy y xy +=+?+=解:两边求导得 .2 2122''In x e y In y y xy y xy --=提至一边,有:将 1'',00-===y y x y ,求出再一起代入代入原式,得将 3.极限公式与用法 ★★★注:以下x 可任意替换成含.,322 等的式子,如ax x x - 极限四则运算

微积分的起源与发展.

微积分的起源与发展 主要内容: 一、微积分为什么会产生 二、中国古代数学对微积分创立的贡献 三、对微积分理论有重要影响的重要科学家 四、微积分的现代发展 一、微积分为什么会产生 微积分是微分学和积分学的统称,它的萌芽、发生与发展经历了漫长的时期。公元前三世纪,古希腊的阿基米德在研究解决抛物弓形的面积、球和球冠面积、螺线下面积和旋转双曲体的体积的问题中,就隐含着近代积分学的思想。作为微分学基础的极限理论来说,早在古代以有比较清楚的论述。比如我国的庄周所著的《庄子》一书的“天下篇”中,记有“一尺之棰,日取其半,万世不竭”。三国时期的刘徽在他的割圆术中提到“割之弥细,所失弥小,割之又割,以至于不可割,则与圆周和体而无所失矣。”这些都是朴素的、也是很典型的极限概念。 到了十七世纪,哥伦布发现新大陆,哥白尼创立日心说,伽利略出版《力学对话》,开普勒发现行星运动规律--航海的需要,矿山的开发,火松制造提出了一系列的力学和数学的问题,这些问题也就成了促使微积分产生的因素,微积分在这样的条件下诞生是必然的。归结起来,大约有四种主要类型的问题:第一类是研究运动的时候直接出现的,也就是求即时速度的问题。 已知物体移动的距离表为时间的函数的公式,求物体在任意时刻的速度和加速度;反过来,已知物体的加速度表为时间的函数的公式,求速度和距离。 困难在于:十七世纪所涉及的速度和加速度每时每刻都在变化。例如,计算瞬时速度,就不能象计算平均速度那样,用运动的时间去除移动的距离,因为在给定的瞬刻,移动的距离和所用的时间都是0,而0 / 0 是无意义的。但根据物理学,每个运动的物体在它运动的每一时刻必有速度,是不容怀疑的。 第二类问题是求曲线的切线的问题。 这个问题的重要性来源于好几个方面:纯几何问题、光学中研究光线通过透镜的通道问题、运动物体在它的轨迹上任意一点处的运动方向问题等。 困难在于:曲线的“切线”的定义本身就是一个没有解决的问题。 古希腊人把圆锥曲线的切线定义为“与曲线只接触于一点而且位于曲线的一边的直线”。这个定义对于十七世纪所用的较复杂的曲线已经不适应了。

数学中的极限思想及其应用

摘要:本文对数学极限思想在解题中的应用进行了诠释,详细介绍了数学极限思想在几类数学问题中的应用,如在数列中的应用、在立体几何中的应用、在函数中的应用、在三角函数中的应用、在不等式中的应用和在平面几何中的应用,并在例题中比较了数学极限思想与一般解法在解题中的不同。灵活地运用极限思想解题,可以避开抽象、复杂的运算,优化解题过程、降低解题难度。极限思想有利于培养学生从运动、变化的观点看待并解决问题。 :极限思想,应用关键词Abstract: In this paper, the application of in solving problems is the limit idea explained. What's more, the applications in several mathematic problems, such as the application in series of numbers, the application in solid geometry, the application in function, the application in trigonometric function, the application in inequalities, the application in plane geometry are introduced in detail. The mathematic limit idea is compared with a common solution in a example, showing their differences in solving a problem. Solving problem by applying the limit idea can avoid abstract and complex operation, optimize the process of solving problem and reduce difficulty of solving problem. Students will benefit from the limit idea, treating and resolving problems from views of the movement and the change.

高等数学求极限的常用方法附例题和详解完整版

高等数学求极限的常用 方法附例题和详解 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

高等数学求极限的14种方法 一、极限的定义 1.极限的保号性很重要:设 A x f x x =→)(lim 0 , (i )若A 0>,则有0>δ,使得当δ<-<||00x x 时,0)(>x f ; (ii )若有,0>δ使得当δ<-<||00x x 时,0A ,0)(≥≥则x f 。 2.极限分为函数极限、数列极限,其中函数极限又分为∞→x 时函数的极限和0x x →的极限。要特别注意判定极限是否存在在: (i )数列{}的充要条件收敛于a n x 是它的所有子数列均收敛于a 。常用的是其推论,即 “一个数列收敛于a 的充要条件是其奇子列和偶子列都收敛于a ” (ii ) A x x f x A x f x =+∞ →= -∞ →? =∞ →lim lim lim )()( (iii)A x x x x A x f x x =→=→? =→+ - lim lim lim 0 )( (iv)单调有界准则 (v )两边夹挤准则(夹逼定理/夹逼原理) (vi )柯西收敛准则(不需要掌握)。极限 )(lim 0 x f x x →存在的充分必要条件是: εδεδ<-∈>?>?|)()(|)(,0,021021x f x f x U x x o 时,恒有、使得当 二.解决极限的方法如下:

1.等价无穷小代换。只能在乘除.. 时候使用。例题略。 2.洛必达(L ’hospital )法则(大题目有时候会有暗示要你使用这个方法) 它的使用有严格的使用前提。首先必须是X 趋近,而不是N 趋近,所以面对数列极限时候先要转化成求x 趋近情况下的极限,数列极限的n 当然是趋近于正无穷的,不可能是负无穷。其次,必须是函数的导数要存在,假如告诉f (x )、g (x ),没告诉是否可导,不可直接用洛必达法则。另外,必须是“0比0”或“无穷大比无穷大”,并且注意导数分母不能为0。洛必达法则分为3种情况: (i )“ 00”“∞ ∞ ”时候直接用 (ii)“∞?0”“∞-∞”,应为无穷大和无穷小成倒数的关系,所以无穷大都写成了 无穷小的倒数形式了。通项之后,就能变成(i)中的形式了。即 )(1)()()()(1)()()(x f x g x g x f x g x f x g x f ==或;) ()(1 )(1 )(1 )()(x g x f x f x g x g x f -=- (iii)“00”“∞1”“0∞”对于幂指函数,方法主要是取指数还取对数的方法,即 e x f x g x g x f ) (ln )()()(=,这样就能把幂上的函数移下来了,变成“∞?0”型未定式。 3.泰勒公式(含有x e 的时候,含有正余弦的加减的时候) 12)! 1(!!21+++++++=n x n x x n e n x x x e θ ; cos=221242)! 22(cos )1()!2()1(!4!21+++-+-+-+-m m m m x m x m x x x θ

微积分2方法总结

第七章 矢量代数与空间解析几何 ★类型(一) 向量的运算 解题策略 1. a a a ?=,2.},,{321a a a a = , .||232221a a a a ++= 3. 利用 点积、叉积、混合积的性质及几何意义. ★类型(二) 求直线方程 解题策略 首先考虑直线方程的点向式与一般式,否则再用其它形式. 类型(三) 直线点向式与参数式转化 类型(四) 异面直线 ★类型(五) 点到直线的距离、两直线的夹角 ★类型(六) 求平面方程 解题策略 平面方程的点法式、一般式、平面束. 类型(七) 直线与平面的位置 类型(八)求曲线与曲面方程 解题对策 一般用定义求曲线与曲面方程 疑难问题点拨 一般参数方程?? ???===Γ)()()(:t h z t g y t f x 绕Oz 轴旋转所成旋转曲面∑的方程 .)]}([{)]}([{212122z h g z h f y x --+=+ 证如图4-7, 设),,(z y x M 是曲面 上任意一点,而M 是由曲线Γ上某点),,(1111z y x M (对应的参数为t 1)绕Oz 轴旋转所得到。因此有).(),(),(111111t h z t g y t f x === ,1z z =,2 12122y x y x +=+),()(111z h t t h z -=?=? )]([)],([1111z h g y z h f x --==, 故所求旋转曲面方程为.)]}([{)]}([{212122z h g z h f y x --+=+ 特别地,若Γ绕Oz 轴旋转时,且Γ参数方程表示为???==). (),(z g y z f x 则 ).()(2222z g z f y x +=+ 事实上,由前面的证明过程可知),(),(1111z g y z f x ==1z z =,212122y x y x +=+ ),(),(11z g y z f x ==? 故).()(2222z g z f y x +=+ 图4-7

极限思想的产生及发展

毕业论文 题目极限思想的产生与发展 专业数学教育 院系数学系 学号 131002145 姓名 指导教师 二○一三年五月

定西师范高等专科学校 2010 级数学系系毕业论文开题报告专业班级:数学教育姓名:指导教师:

目录 内容摘要: ............................................................................................................... (4) 关键词: (4) 引言: (5) 一、极限思想的产生 (6) 二、极限思想发展的分期 (6) (一)极限思想的萌芽时期 (6) (二)极限思想的发展时期 (8) (三)极限思想的完善时期 (8) 三、极限思想与微积分 (9) (一)微积分的孕育 (10) (二)牛顿与微积分 (11) (三)莱布尼茨与微积分 (12) (四)微积分的进一步发展 (13) 结束语 (14) 参考文献 (15) 致谢 (15)

内容摘要本文综述了极限思想的产生和发展历史。极限思想的产生与完善是社会实践的需要,它的产生为数学的发展增加了新的动力,成为了近代数学思想和方法的基础和出发点。 关键词极限;无穷;微积分

引言 极限思想作为一种哲学和数学思想,由远古的思想萌芽,到现在完整的极限理论,其漫长曲折的演变历程布满了众多哲学家、数学家们的勤奋、智慧、严谨认真、孜孜以求的奋斗足迹。极限思想的演变历程,是数千年来人类认识世界和改造世界的整个过程的一个侧面反应,是人类追求真理、追求理想,始终不渝地求实、创新的生动写照。 在数学的发展中,数学问题的来源和发展表现为多种多样的途径和极其复杂的情况。纵观极限思想的发展,首先哲学为其提供了直觉上的发展方向,数学家们依据这种直觉或直观进行应用和探索;其后悖论一次次地出现,又促使数学家们一次一次地进行探究求证,使这一思想不断得以发展和完善。而数学的求证又给予了哲学以实在的支持,为哲学更好地描述和论证世界提供了强有力的工具。从最初时期朴素、直观的极限观,经过了2000多年的发展,演变成为近代严格的极限理论,这其中的思想演变是渐进的、螺旋式发展的、相互推动的。 极限理论是微积分学的基础,极限方法为人类认识无限提供了强有力的工具,它从方法论上突出地表现了微积分学不同于初等数学的特点,是近现代数学的一种重要思想。极限思想蕴含着丰富的辩证法思想,是唯物辩证法的对立统一规律在数学领域中的极好应用。理清极限思想的发展脉络,揭示极限思想的核心内容及其与哲学思想的内在联系,对于理解数学史和数学哲学史上的一些问题将具有一定的理论意义。对于培养人的思维方法、思维品质,提高其分析问题和解决问题的能力都有极好的促进作用。

高数微积分思想的实践运用研究

高数微积分思想的实践运用研究 微积分是高等数学中的一门非常重要的科目,是用对变量近似计算和求解的方法完成对其变化规律的了解和认识。随着高等教育的普遍发展,高数微积分被逐渐运用到人类的日常生活中,并发挥了极其重要的作用。文章通过对高数微积分的概述和介绍,结合微积分的实际应用,以此论述高数微积分思想的意义。 一、高数微积分的概述 微积分是一门主要研究微分学和积分学的相关概念和应用的数学分支。它的主要内容是极限思想、微分和积分。微分学是一套有关变化率的理论,重点是求导数的计算,微分学使函数、速度和加速度、曲线的斜率可以运用一套符号进行表示。积分学则是用于计算面积和体积的一种通用的求积分的运算。 高等数学的范围要大于微积分,因为高等数学既包括微积分,也包括常微分方程、空间几何解析等内容。高等数学和微积分之间的关系其本质理解则为包括与被包括的关系。 二、高数微积分在社会中的实际应用 (1)在物理学中的应用。高数微积分思想在物理学中可用于研究匀变速直线运动位移问题,我们可以把物体运动的时间进行无限的细分,在每一份运动时间内,物体运动的速度发生的变化及其细小,可以忽略这种细微的变化,因此可认为物体的运动速度是匀速不变的。而位移和速度之间的关系式为x=vt,根据已知的条件可求得位移;同时在研究变力做功的问题时也可以运用微积分相关知识。对于恒力做功,可以运用公式直接求得,但是对于变力做功,我们需要利用所学微积分思想将位移无限细分,每一份位移上力的变化细微,因此将其看作恒力,求出所做的功,然后将每一份位移上的功进行无限求和,便可以算出变力所做的功。 (2)在医学方面的应用。由于现代医学正在从定性向定量方向发展,高数微积分思想在医学各个方面均有涉及。微积分主要是对分段和累加进行研究,就是把一个整体细分成若干份,把非线性分成很小可以看做线性的部分,并用线性知识解决,最后进行累加的过程。在医学方面,在用药或者研究某些病变的时候,该情况并不是连续的,我们可以将其细分为多个部分进行分析和研究,将小部分看成连续性的。这种方可以帮助我们更好地分析其发展过程,有利于进一步分析和控制病变的机理,最后通过计算,推算出继续累加后病变的发展方向。 (3)在经济方面的应用。经济学在本质上则为一个数学公式:F(x)=f(x1、x2、...xn),在此公式中,x1、x2、xn为经济生活各种不定性的变量。经济学中的“边际”就是将导数经济化的例子。“边际效用”是指多消费一种单位产品时,对消费者所增加或减少的效用。“弹性”更是体现了高数微积分的思想,例如,需求的收入弹性,就是其需求和收入之间的变化率的比,在经济方面的表述则为其他

高等数学求极限的常用方法

高等数学求极限的14种方法 一、极限的定义 1.极限的保号性很重要:设 A x f x x =→)(lim 0 , (i )若A 0>,则有0>δ,使得当δ<-<||00x x 时,0)(>x f ; (ii )若有,0>δ使得当δ<-<||00x x 时,0A ,0)(≥≥则x f 。 2.极限分为函数极限、数列极限,其中函数极限又分为∞→x 时函数的极限和0x x →的极限。要特别注意判定极限是否存在在: (i )数列{} 的充要条件收敛于a n x 是它的所有子数列均收敛于a 。常用的是其推论,即“一个数列收敛于a 的充要条件是其奇子列和偶子列都收敛于a ” (ii )A x x f x A x f x =+∞ →=-∞ →?=∞ →lim lim lim )()( (iii) A x x x x A x f x x =→=→?=→+ - lim lim lim 0 )( (iv)单调有界准则 (v )两边夹挤准则(夹逼定理/夹逼原理) (vi )柯西收敛准则(不需要掌握)。极限 ) (lim 0 x f x x →存在的充分必要条件是: εδεδ<-∈>?>?|)()(|)(,0,021021x f x f x U x x o 时,恒有、使得当 二.解决极限的方法如下: 1.等价无穷小代换。只能在乘除.. 时候使用。例题略。 2.洛必达(L ’hospital )法则(大题目有时候会有暗示要你使用这个方法) 它的使用有严格的使用前提。首先必须是X 趋近,而不是N 趋近,所以面对数列极限时候先要转化成求x 趋近情况下的极限,数列极限的n 当然是趋近于正无穷的,不可能是负无穷。其次,必须是函数的导数要存在,假如告诉f (x )、g (x ),没告诉是否可导,不可直接用洛必达法则。另外,必须是“0比0”或“无穷大比无穷大”,并且注意导数分母不能为0。洛必达法则分为3种情况: (i )“ 00”“∞ ∞ ”时候直接用 (ii)“∞?0”“∞-∞”,应为无穷大和无穷小成倒数的关系,所以无穷大都写成了无穷小的倒数形式了。通 项之后,就能变成(i)中的形式了。即)(1)()()()(1)()()(x f x g x g x f x g x f x g x f ==或;) ()(1 )(1 )(1 )()(x g x f x f x g x g x f -=- (iii)“00”“∞1”“0 ∞”对于幂指函数,方法主要是取指数还取对数的方法,即e x f x g x g x f ) (ln )()()(=, 这样就能把幂上的函数移下来了,变成“∞?0”型未定式。 3.泰勒公式(含有x e 的时候,含有正余弦的加减的时候)

微积分求解技巧

有时候就是需要大胆去想,大胆去尝试。你自认为不可能的事情恰恰成为出卷人考察你的把柄。 计算不定积分:x e x x e x x d ) () 1(2 ?-- 我的解法: C xe xe xe xe xe x xe x e x e x x e x x x x x x x x x +-=-=--=--=--=---------????11)1d()1(1)1()d(d )1()1(d )()1(2 222 同类型的题目 C x x x x x x x x x x x x x x x x x x x x x x x x x x x x x +-=---=-=-+=-+=-+?????tan 11)tan 1()tan 1d()tan 1()tan d()tan 1(d tan dtan d )tan 1(tan cos d )sin (cos cos sin 222222再来一题: x x x d ln 1 ln 2?- 我的解法: C x x x x x x x x x x x x x x x x x x x x x x x x x +=++-=-+--=--=---=-?????ln d ln ln 1ln ])1(ln d[ln 1 ln )1(ln ln 1d )1(ln d ln )1(ln d ln 1ln 22 不要把出题人想象的多么神圣,他只是看的题目比你多,仅此而已! 下面一题是用分部积分算的,但是我们可以用微分的性质快速的进行计算。 其实过度的依赖规则就是对思维的桎梏,有时候我们就是要转变思想,打破规则! 再来一个抽象函数的题目:

()ln()()ln()ln()ln() =d d ()()()() ln()d ln()ln()d ln()d[ln()ln()]ln()ln()x a x a x b x b x a x b x x x a x b x b x a x a x b x b x a x a x b x a x b C +++++++=+++++=+++++=++=+++? ???原式 有时候就是要换个角度看问题,避开出题人设置的障碍,虽然这并不是出题人的本意,但是这却是他没有充分考虑的Bug !怪只能怪出题人太笨,脑子不转弯。

高等数学思想方法

高等数学思想方法 第一章函数与极限 主要的思想方法: (1)函数的思想 高等数学的核心内容是微积分,而函数是微积分的主要研究对象。我们在运用微积分解决实际问题时,首先就要从实际问题中抽象出变量与变量之间的函数关系,这是一个通过现象抽象出本质特征的思维过程,体现的是科学的抽象是数学的一个思维方法和主要特征。 (2)极限的思想 极限的思想方法是微积分的基础。极限是变量在无限变化过程中的变化趋势,是一个确定的数值。把一些实际问题的确定结果视为一系列的无限近似数值的变化趋势,即函数或者数列的极限,这是一种重要的数学思想方法。 第二章导数与微分 主要的思想方法: (1)微分的思想 微分表示自变量有微小变化时函数的近似变化,一般地,求导的过程就称为微分;导数则反映函数相对于自变量的瞬时变化率。从导数与微分的概念中可看出,在局部的“以直代曲”的微分思想得到了充分的体现,而这也是微积分的一个基本思想。 (2)数形结合的思想 书本中在引入导数与微分概念时,也讨论了它们的几何意义,这显然更好地帮助我们理解这两个概念。通过几何图形来直观地理解概念以及定理的证明等等内容是高等数学中常用的方法,这是抽象思维与现象思维有机结合的典型体现。 (3)极限的思想 不难发现导数概念的引入与定义深刻地体现了极限的思想。 (4)逻辑思维方法 在本章中,归纳法(从特殊到一般),分类(整合)法等逻辑思维方法都得到了充分的体现,理解与掌握此类思维方法有助于良好的理性思维的形成。 第三章中值定理与导数的应用 主要的思想方法: 导数本质上是一种刻画函数在某一点处变化率的数学模型,它实质上反映了函数在该点处的局部变化性态;而中值定理则是联系函数局部性质与整体性质的“桥梁”,利用中值定理我们就能够从函数的局部性质推断函数的整体性质,具体表现为在理论和实际问题中可利用中值定理把握函数在某区间内一点处的导数与函数在该区间整体性质的关系。

微积分、极限思想推导圆周长、面积公式

圆周长公式推导 1.积分法 在平面直角坐标下圆的方程是x^2 + y^2 = r^2 这可以写成参数方程 x = r * Cos t y = r * Sin t t∈[0, 2π] 于是圆周长就是 C = ∫(0到2π)√( (x'(t))^2 + (y'(t))^2 ) dt (Q:此处x,y对t为什么都要导? A: 将一个圆的周长分成n份,x'(t)=△x=xn-x(n-1), y'(t)=△y=yn-y(n-1).当n→∞,△x,△y→0时,可将每一份以直代曲,即每一份的长度C/n=√(△x^2+△y^2)= √( (x'(t))^2 + (y'(t))^2 ).所以C就是√( (x'(t))^2 + (y'(t))^2 )从0到2π的积分.虽然不导得出的结果是一样的,但原理方面就解释不通了.) =∫(0到2π)√( (-rSint)^2 + (rCost)^2 ) dt =∫(0到2π) r dt = 2πr 2.极限法 在圆内做内接等n边形, 求等n边形周长:可以分割成n个以圆心为顶点的三角形, 其底边长为 2*r*sin(π/n) ,所以等n边形周长为 n*2*r*sin(π/n) 这个周长对n→∞求极限 lim[n*2*r*sin(π/n)] 运用等价无穷小规则,当x→0时,有sinx→x 所以lim[n*2*r*sin(π/n)] =lim[n*2*r*π/n]=2πr. 圆面积公式推导 应用圆周长C = 2π r

1.可以将圆分成两个半圆两个半圆,再将两个半圆分成无数个面积相等的扇形 并展开,在拼接起来,底边可以以直代曲,那么就是一个底边长为πr,高为r的矩形。这是小学的推导法,但有微积分的思想在其中。 2.积分法 可将圆看成由无数个同心圆环组成. 设圆半径为R,里面的同心圆环半径为r,为自变量.设每个圆环厚度为dr→0,则圆环周长可看为2πr,圆面积为所有这些圆环的面积之和.所以S = ∫ 2πr dr,从0积到R. 所以S=2π[1/2(R^2-0^2)]= πR^2.(球体积公式推导方法中的“球壳法 Shell Method”与此法是类似的.) 不应用圆周长C = 2π r 1. 积分法 (1)圆方程为x^2+y^2=r^2.只需算出第一象限(0积到r),然后乘以4.方法和求曲边梯形面积类似,具体不再叙述. (2)我们回过头来看到上面周长推导中的Q和A. C/n=√(△x^2+△y^2)= √( (x'(t))^2 + (y'(t))^2 ),每份C/n与两条半径组成的扇形的底面曲边是可以以直代曲的,那每个小扇形可以看成以C/n为底、r为高的等边三角形,每个面积就是r* C/n*1/2=1/2*r*√(△x^2+△y^2)= 1/2*r*√( (x'(t))^2 + (y'(t))^2 ). 于是圆的面积就是 S=∫(0到2π) 1/2*r*√( (x'(t))^2 + (y'(t))^2 ) dt =1/2*r*∫(0到2π) √( (x'(t))^2 + (y'(t))^2 ) dt =1/2*r*C =1/2*r*2πr =πr^2. 2.极限法 类似于上面周长公式的极限法推导,在圆内做内接等n边形, 求等n边形面积:可以分割成n个以圆心为顶点的三角形,

物理中的微积分思想

物理中的微积分思想 你们不要老提我,我算什么超人,是大家同心协力的结果。我身边有300员虎将,其中100人是外国人,200人是年富力强的香港人。 高中物理中微积分思想 浙江省湖州中学物理组潘建峰 伟大的科学家牛顿 有很多伟大的成就 建立了经典物理理论 比如:牛顿三大定律 万有引力定律等;另外 在数学上也有伟大的成就 创立了微积分 微积分(Calculus)是研究函数的微分、积分以及有关概念和应用的数学分支 微积分是建立在实数、函数和极限的基础上的 微积分最重要的思想就是用"微元"与"无限逼近"

好像一个事物始终在变化你很难研究 但通过微元分割成一小块一小块 那就可以认为是常量处理 最终加起来就行 微积分学是微分学和积分学的总称 它是一种数学思想 '无限细分'就是微分 '无限求和'就是积分 无限就是极限 极限的思想是微积分的基础 它是用一种运动的思想看待问题 微积分堪称是人类智慧最伟大的成就之一 在高中物理中 微积分思想多次发挥了作用 1、解决变速直线运动位移问题 匀速直线运动 位移和速度之间的关系x=vt;但变速直线运动那么物体的位移如何求解呢? 例1、汽车以10m/s的速度行驶

到某处需要减速停车 设汽车以等减速2m/s2刹车 问从开始刹车到停车 汽车走了多少公里? 【解析】现在我们知道 根据匀减速直线运动速度位移公式就可以求得汽车走了0.025公里 但是 高中所谓的的匀变速直线运动的位移公式是怎么来的 其实就是应用了微积分思想:把物体运动的时间无限细分 在每一份时间微元内 速度的变化量很小 可以忽略这种微小变化 认为物体在做匀速直线运动 因此根据已有知识位移可求;接下来把所有时间内的位移相加 即"无限求和" 则总的位移就可以知道 现在我们明白 物体在变速直线运动时候的位移等于速度时间图像与时间轴所围图形的"面积" 即

论文----浅谈微积分思想在几何中的应用

毕业论文 题目:浅谈微积分思想在几何 问题中的应用 学院:数学与统计学院 专业:数学与应用数学 毕业年限:2013年 学生姓名:*** 学号:************ 指导教师:**

说 明:1. 成绩评定均采用五级分制,即优、良、中、及格、不及格。 2. 评语内容包括:学术价值、实际意义、达到水平、学术观点及论证有无错误等。 指导教师预评评语 指导教师 职称 预评成绩 年 月 日 答 辩小 组 评 审 意见 答辩小组评定成绩 答辩 委员 会终 评 意 见 答辩委员会终评成绩 答辩小组组长(签字): 年 月 日 答辩委员会主任(签章): 年 月 日

目录 摘要 (2) 关键字 (2) Abstract (2) Keywords (2) 1微积分介绍 (3) 1.1微积分的基本内容 (3) 2微分在几何问题中的应用 (5) 2.1一元微分的几何应用 (5) 2.2多元微分的几何应用 (7) 3积分在几何问题中的应用 (9) 3.1定积分的几何应用 (9) 3.2二重积分的几何应用 (16) 3.3三重积分的几何应用 (17) 结束语 (20) 参考文献 (21)

浅谈微积分思想在几何问题中的应用 *** (西北师范大学数学与统计学院甘肃兰州 730070) 摘要:微积分思想在几何问题中的应用主要分为一元微分、多元微分、定积分、二重积分、 三重积分分别在几何问题中的应用。一元微分可以求曲线的长;多元微分可以求曲线的切线、 切平面、法线、法平面;定积分可以求曲线的长、图形的面积、立体的体积;二重积分可以 求图形的面积、立体的体积;三重积分可以求立体的体积。 关键词:一元微分多元微分定积分二重积分三重积分曲线的长面积体积 Application of differential calculus thought in geometric problems. Lv Danqin (College of mathematics and statistics, Northwest Normal University, Gansu Lanzhou 730070) Abstract:Application of differential calculus thought in geometric problems consists of a differential, multiple differential, integral, double integral, integral respectively three applications in geometric problems. A differential can find the length of the curve; tangent, multivariate differential can find the curve tangent plane, normal, normal plane; definite integral can be the length of the curve, the graph area, volume of solid; double integral can be graphics area, three-dimensional volume; three points can be obtained three-dimensional volume. Keywords: A differential multiple differential ntegral double integral three integral curve length area volume

高等数学求极限的14种方法(完整资料).doc

【最新整理,下载后即可编辑】 高等数学求极限的14种方法 一、极限的定义 1.极限的保号性很重要:设 A x f x x =→)(lim 0 , (1)若A 0>,则有0>δ,使得当δ<-<||00x x 时,0)(>x f ; (2)若有,0>δ使得当δ<-<||00x x 时,0A ,0)(≥≥则x f 。 2. 极限分为函数极限、数列极限,其中函数极限又分为∞→x 时函数的极限和0x x →的极限。 要特别注意判定极限是否存在在: (1)数列{}的充要条件收敛于a n x 是它的所有子数列均收敛于a 。常用的是其推论,即 “一个数列收敛于a 的充要条件是其奇子列和偶子列都收敛于a ” (2)A x x f x A x f x =+∞ →=-∞ →?=∞ →lim lim lim )()( (3) A x x x x A x f x x =→=→?=→+ - lim lim lim 0 )( (4) 单调有界准则 (5)两边夹挤准 (夹逼定理/夹逼原理) (6) 柯西收敛准则(不需要掌握)。极限)(lim 0 x f x x →存在的充分必要条件。是: εδεδ<-∈>?>?|)()(|)(,0,021021x f x f x U x x o 时,恒有、使得当 二.解决极限的方法如下: 1.等价无穷小代换。只能在乘除.. 时候使用。例题略。 2.洛必达(L ’hospital )法则(大题目有时候会有暗示要你使用这个方法) 它的使用有严格的使用前提。首先必须是X 趋近,而不是N 趋近,所以面对数列极限时候先要转化成求x 趋近情况下的极限,数列极限的n 当然是趋近于正无穷的,不可能是负无穷。其次,必须是函数的导数要存在,假如告诉f (x )、g (x ),没告诉是否可导,不可直接用洛必达法则。另外,必须是“0比0”或“无穷大比无穷大”,并且注意导数分母不能为0。洛必达法则分为3种情况: (1)“0 0”“∞ ∞”时候直接用 (2)“∞?0”“∞-∞”,应为无穷大和无穷小成倒数的关系,所以无穷大都写成

相关文档
最新文档