自由基

自由基
自由基

自由基

台大郑剑廷助理教授演讲后心得分享

壹、什么是自由基

究竟什么是自由基呢?无论是活蹦乱跳的动物,还是静止不动的岩石;无论是奔流不息的河水,还是触摸不到的空气,地球上的所有物体都是由分子构成的,例如氧分子、氢分子、水分子、醣类、蛋白质、脂质...,一个稳定的分子,它所包含的电子应该都是成双成对的,即是电子的总数必定是偶数,但是有时由于某些原困,分子或电子内出现了一个落单的电子或分子,使总数变成单数,此种分子很不稳定它们十分活泼,与原物质相比,衍生而来的分子是具有更高的自由能及高度的活动性,我们把它命名为﹝自由基﹞(Free Radical),自由基以它特有的氧化作用进攻邻近的分子,以抢夺或者分享它们的电子,尤其是生物大分子,这称之为自由基的活跃性。而这种使自己电子配对,造成对方失去电子的过程,是种『氧化』作用,在『氧化』过程中,能产生大量的加成物,使分子发生交联作用,因此具有极大的破坏性,特别当它失去电子,就会积极的主动地寻找对象进行反应,这就形成了损伤组织的连锁反应,因此自由基形成的氧化反应对生物体可以导致严重地生理衰老和病理性变化。

自由基的活跃性有强弱的不同,通常越小,越简单的自由基活性越大,氢氧自由基(OH或羟)就是最具破坏力的。自由基也有好坏之分,有些免疫细胞释放自由基以杀死入侵的细菌,病毒或癌细胞,有些自由基则参与了细胞内的重要代谢功能,而一氧化氮(NO)却对人体在适当量时是有帮助的。例如男人的阴茎勃起是靠一氧化氮(NO)来使阴茎充血的,威尔刚的作用是使一氧化氮(NO)作用时间延长而达到勃起。它们多属于『好』自由基,而有害的自由基是指具有破坏性的自由基,它们攻击毁坏正常分子,包括DNA、蛋白质、脂质等等,如果细胞不断地受到有害自由基的攻击而导致了永久性的损伤,细胞正常的运作就会受到影响,长期下来细胞的损坏积少成多,直至总体无法修复的程度,造成了老化现象,而且不可避免的疾病丛生,最后导致死亡。

贰、自由基的种类:

一、生物合成的:人体内因需要而由胺基酸而合成的,譬如一氧化氮(NO)是由L-精胺酸在一氧化氮(NO)合成酸下合成的。

二、新陈代谢产物:在新陈代谢过程中产生的,例如氧自由基,包括超氧化物及羟基自由基。

三、污染物:包括空气、水质、辐射、食品、药物、农药及防腐剂。环境污染物本身就是自由基。例如烟烟,只要一口烟烟就会有上千万的自由基产生。有些进入人体才形成自由基,例如水质污染重金属会促进羟基自由基形成。

四、广义的自由基还包括一些氧化力或还原力强的物质,他们本身虽然没有自由电子,但进入人体后却会经化学反应产生自由基。这类物质如农药中的巴拉刈(paraquat),在过去很多人失恋时会喝巴拉刈自杀,巴拉刈进入人体后会提供血液中的氧分子一个电子,因此产生很多氧自由基。氧自由基则进一步引起严重肺水种,导致呼吸困难,若来不及救治则将因缺氧而死亡.我们四周存在很多自由基的来源,燃烧的烟草.工业污染或汽机车排放的废气、农药、酒精、化学药品、油炸食品、煮菜时的油烟、强烈紫外线的照射等等,都是自由基的重要来源。

参、自由基的产生途径

自由基的产生途径有很多种,遗憾的是其祸首是我们吸入体内的氧气及食物在体内发酵所产生的废气,氧气是人类生存所必须的养分,但也是人类难逃老化病死的命运的慢性毒药,细胞内产生能量的工厂,是粒线体,当粒线体进行氧化作用而产生能量时,有时会因电子传递系出现漏网之鱼而产生自由基,科学家估算,粒线体内约有5%的氧气转化成含氧的自由基,因此每天每个细胞会产生大约一兆个自由基,人体产生的自由基主要有氢氧自由基(Hydroxyl Free Radicals-OH-羟)和过氧化物自由基(Superoxide Free Radicals.O2)除此之外,过氧化氢(Hydrogen Peroxide-H2O2.俗称双氧水)虽然本身不是自由基,但是如果受到紫外光激发或者二价铁离子(Fe++)的催化,就会产生羟自由基(OH),故双氧水必须用深色塑料容器盛装,道理在此。活跃性高的自由基存在的时间都很短,只有约亿分之一秒,因为它们对邻近分子的攻击易如反掌。

现代人享受到文明的益处,但同时也在不知不觉中付出了代价,我们比老祖先受了更多自由基的迫害,例如各种环境污染、紫外线、放射线、吸烟、杀虫剂及许多化学药品,尤其是环境污染(汽车的废气,HC工厂的SO2)都会增加体内大量有害的自由基。

根据美国加洲柏克莱大学布鲁斯.艾姆斯博士(Bruce N Ames Ph.D)的估算,每天每个细胞内的遗传基因DNA大约会受到十万个自由基的攻击,所幸的是;细胞里的抗氧化脢系统修补脢系统可以修复99%一99.9%的伤害,尽管如此,每天每个细胞内的遗传基因仍然会增加大约一千个新伤口,到了老年之时,伤口总数将达到数百万个,在我们迈入五十岁时钿胞内大约30%的蛋白质已经被自由基击毁而报废。另外,构成细胞膜主要成分之一的脂质,以及血液中的胆固醇,也有不少因为受到自由基攻击而变成如同酸败的奶油一般,当这些人体内的主要成员由于自由基的破坏,而逐渐失去各自的机能时,我们的身体和精神也日渐衰老,科学家们估计大约80%一90%的老化性,退化性疾病都与自由基有关,其中包括癌症.老人痴呆症,帕金森氏症、肌肉营养不良、皮肤黑班沈积、皱纹生成、气喘、肺气肿、白内障、黄班、退化心脏病、中风、溃疡、类风湿性关节炎、多发性硬化等等。

肆、细胞对自由基的防御机制

细胞对自由基所带来的破坏并非视若无睹,相反地由细胞合成的各种抗氧化脢,如麸胱甘太过氧

化脢(Glutathione Peroxidase)触脢(Catalase),过氧化物转化脢(Superoxide Dismutasc简称SOD)这种酵素能将超氧阴离子清除2O2- +2H+ H2O2 + O2等,以及体内自然产生的一些物质,如麸胱甘太(Glutathione)、尿酸(Uric Acid)等组成了人体内对抗自由基的第一道防线,科学家发现,长寿动物体内的SOD含量比较高,而人类是目前所知体内SOD含量最高的动物。然而,举凡年长老化、体质改变、环境因素等,我们体内的抗氧化脢都可能出现供应不足的情况。

不过,我们可藉由呼吸方法,吸入大量的正常氧(02)及单氧(0)与有害的自由基接触后,会将有害的自由基转化为稳定安全的分子,而自已则变成活跃性很低的自由基,(恢复总数为偶数的电子荷)这种低活跃性的自由基,不易攻击其它正常分子,而会有较多机会排出体外,或者与另一个邻近的自由基结合,而双双变成安定分子,人体内必须随时保持足够的抗氧化物质,以切保有害自由基维持在可控制的程度。如此人体的免疫系统就会增强,就不至于容易感染各种疾病。

小分子抗氧化物质则包括维他命E,维也命C,β-胡萝卜素等,这些抗氧化物来自吾人日常饮食的蔬菜水果当中,唯有自由基的产生系统与抗氧化系统发生不平衡时,过剩的自由基才会对人体产生伤害。

伍、避免自由基的伤害以防止老化

﹝自由基理论﹞是目前科学界最为一致认同的老化理论,1954年美国林肯大学医学院丹汉哈曼博士(Denham Harmam M.D.,Ph.D.)首次提出该理论时,并未受到重视,走过漫长的二十年后,『自由基理论』才逐渐被接受,如今已成为老化理论的主流之一,哈曼教授在1995年荣获提名诺贝尔医学奖。

追求长生不老是自有人类以来的梦想,古代秦始皇虽然统一天下贵为至尊,最后遗留的心愿仍是寻求长生不老的秘方。究竟人类为什么会老化呢?至目前为止,科学家们提出了很多有关老化理论的学说。其中最被广泛接受的有两个理论,一是遗传理论,另一个则是自由基的理论。所谓遗传理论乃认为人类之所以老化与遗传基因有关。人体细胞内的染色体中有许多老化基因,当这些老化基因逐渐浮现时,细胞会走向自我凋亡(apoptosis)的途径。由于每个人体内老化基因多寡有所不同,因此我们可以观察到,有些家族的人很容易变老,四十几岁却已白发苍苍,可是有些家族的人就像「小玉型」品种的西瓜,看起来总是那么年轻。因此「老化」多少与遗传有关,既然有「老化基因」,也就有「抗老化基因」。故寻找「抗老化基因」来阻止老化的进行,正是生物科学家努力的方向。遗传学说的一个未解决的问题是,为何这些「老化基因」会逐渐浮现?有些人原来看来很年轻,可是生了一场大病后突然变得很苍老,究竟是什么后天的因素导致老化现像加速?自由基(Free radical)理论可以解释这些问题,含氧的自由基,包括有超氧阴离子O2-、过氧化氢H2O2、氢氧基自由基OH-,都统称为活性氧分子。

陆、自由基最容易攻击的目标

对人类细胞而言,过剩的自由基最容易攻击细胞膜上的不饱和脂肪酸。脂肪酸被自由基攻击后,会产生过氧化脂质。此种反应是一种连锁反应,若来不及制止,最后会导致细胞膜的瓦解。此外,自由基也会攻击细胞质内的蛋白质,使其发生变性。由于很多参与生化反应的酵素都是蛋白质的结构。因此,自由基会使大部份的酵素因变性而丧失活性。自由基也可以进入细胞核内,攻击染色体内的遗传基因,使其发生突变,诱发癌症的发生。最近学者们也发现,自由基可以诱导老化基因的出现,促进老化的进行。

许多疾病的进展过程中,自由基常担任组织伤害的重要角色,譬如类风湿性关节炎患者体内的白血球会产生大量的自由基,伤害关节组织。在脑中风或心肌梗塞等血管阻塞性疾病发生时,也会出现很多氧自由基攻击脑组织及心脏组织。

许多化学药物的毒性,如抗癌药Adriamycin引起心脏发炎,Bleomycin引起肺脏发炎,或Cisplatin 引起肾脏毒性也与自由基的产生有密切关系。癌症患者接受放射线治疗时会出现副作用,乃与放射线产生自由基有关。喝酒过多会引起肝炎、肝硬化或肝癌,乃因酒精经肝脏代谢后会产生乙醛等自由基物质,也们会伤害肝细胞。我们常以为动脉硬化与血中脂质过高有关,事实上,血中脂质必须有自由基攻击,形成过氧化脂质,而过氧化脂质才进一步促进动脉硬化的进行。

糖尿病患者由于其血中SOD被糖化后,清除自由基的功能会大大降低,另一方面糖化蛋白质会促进过氧化脂质的产生,因此糖尿病患者很容易出现动脉硬化的合并症。

年老时皮肤会出现黑斑、皱纹及变得干燥也与自由基有密切的关系。黑斑内的黑色素乃是一种氨基酸称为酪氨酸经很多氧化反应后,也就促进黑色素的产生。绉纹的产生则与皮肤内的胶原纤维及弹性纤维被自由基攻击,因而失去原有的排列顺序及弹性有关。皮肤粗糙则是皮肤内部的玻尿酸被自由基攻击失去保湿能力所致。强烈的紫外线会诱发皮肤内部产生自由基,因此,常曝露在阳光下工作的农夫或工人,其皮肤就像老年人一样,很容易出现黑斑、皱纹及干燥等现象。

柒、如何避免自由基的伤害

那么我们怎样去避免自由基的伤害以防止老化呢?

一、禁烟、戒酒、远离污染的空气、勿滥服药物、避免长期阳光曝晒都是重要的手段。家庭主妇特别必须记住炒菜时打开吸油烟机,以免吸入过多的油烟。食物方面,腌制品、长霉的食品及油炸物都是必须避免的,目前我们食用的蔬菜水果常有农药的残留,最好经过充分的清洗。另一方面,饮用水最好经过煮开后才饮用,以减少自来水中的氯气。有很多地下水,事实上常遭污染而产生很多自由基物质,最好不要随便饮用。

二、在饮食方面,均衡的饮食对维持人体内部抗氧化系统的完整相当重要。抗氧化酵素都是蛋白质构成的,若缺乏充分的蛋白质供应,很难维持其正常功能的运作。很多民众花大把钞票去吃坊间抗氧化的健康食品,却忽略了均衡饮食的必要性,那是本末倒置的作法.食物中新鲜的黄绿色蔬菜水果就含有很丰富的抗氧化物质,只要充分摄取就不用怕抗氧化物的不足。有些人怕蔬菜水果中有农药不敢食用,反而去吃不新鲜或含有防腐剂的抗氧化健康食品,不但无益反而有害。

三、规律的生活、减少精神压力及适当的运动对防止自由基的伤害也相当重要。无规则的生活及精神压力会引起体内交感神经的紧张,进一步促使白血球产生过剩的自由基,这也就是许多经常过度忙碌或精神忧郁的人容易老化的原因。剧烈的运动会促进自由基的过度产生,但适当的运动则会诱导人体内部清除自由基系统的强化。因此,每天适当的运动对维持体内清除自由基的能力相当重要。对老年人而言,练气功、打太极拳、慢跑或快走都是不错的运动方法,但是必须配合自己的体力状况,而且必须持之以恒才有效。

四、人类的身体在25岁时大致发育结束,以后即走向老化;若置之不理,脑细胞会以一天十万个速度逐渐死去。而人类在25岁以前会制造充足的SOD来中和自由基,但25岁以后开始衰退,且为了保持脑的年轻,要分泌大量的脑内吗啡,借着脑内吗啡的分泌减少自由基的产生及中和自由基。

五、许多中药如银杏叶、丹参等不但具有良好的抗氧化作用,而且可以改善血液循环,对有氧化问题的老年人而言,是不错的选择。

六、改善环境降低自由基的侵害

(一)外在环境--改善空气质量减少自由基侵害

人每天平均吸入一万公升的空气,相当于13.5公斤,人一天约有八成以上的时间待在室内,可是室内空气比室外空气还脏,而我们却把自己的肺当作空气滤净器,毫无抵抗与防护的措施。

(二)内在环境--

1.减少精神压力所带来的自由基。

2.不同的植物刺激分泌不同脑内吗啡(附注),改善体内由自由基所产生的疾病。

3.使用芳香疗法、瑜迦、气功、冥想、远红外线疗法等均不妨一试。

捌、如何监测人体内的自由基

究竟有什么方法可以监测人体内是否自由基过剩呢?目前中华民国血液净化基金会已经开发出测定氧化蛋白质及过氧化脂质的方法可以了解我们的体内是否有自由基过剩的问题。若有自由基过剩的问题,可以进一步帮我们测定体内抗氧化能力。

(附注)﹕脑内吗啡-

一个人如果心情常显得乐观、愉怏,凡事都往好的方面着想,脑内就会分泌B内啡太等物质;由于其分子结构与吗啡(MORPHINE)很相似,故称其为脑内吗啡。此类物质能使身体细胞返老还童,提升免疫力以防止患病。

饮茶是中国古老文化生活的一部份,它不仅是最古老的饮料,它的药用价值至少有16种古医药书记载茶的疗效。神农本草经记载:「神农尝百草,日过七十毒,得茶而解之」。现代科学研究发现茶有医疗价值,茶叶所含的茶多酚成分即是强效的抗氧化剂,即抗氧自由基物质。现代医学证实癌症、糖尿病、老化、心脏血管症等与氧自由基有关系。所以茶叶对人类的益处是值得我们探讨的。

玖、结论

大致而言,只要每个人注意生活质量,避开自由基的伤害,不但可以减少动脉硬化及癌症的发生,而且可以延缓老化。不仅可以活得久,也可以活得更健康,更有活力!

羟基自由基的测定方法

羟基自由基(.OH)是最活跃的一种活性分子,也是进攻性最强的化学物质之一,几乎可以与所有的生物分子、有机物或无机物发生各种不同类型的化学反应,并伴有非常高的反应速率常数和负电荷的亲电性。羟基自由基是目前所知活性氧自由基中对生物体毒性最强、危害最大的一种自由基,可以通过电子转移、加成以及脱氢等方式与生物体内的多种分子作用,造成糖类、氨基酸、蛋白质、核酸和脂类等物质的氧化损伤,使细胞坏死或突变,羟基自由基还与衰老、肿瘤、辐射损伤和细胞吞噬等有关。羟基自由基由于其寿命短,反应活性高,存在浓度低,目前尚未有专一、有效的方法可以精确测定羟基自由基的含量,其测定方法也成为一项国际性的难题。本文对近几年出现的羟基自由基检测方法进行了综述。 1电子自旋共振法 电子自旋共振法或电子顺磁共振法主要研究对象为未成对的自由基或过渡金属离子及其化合物。自旋捕捉(spin trapping)技术的出现为化学反应中自由基中间体及生命活动过程中短寿命自由基的检测开辟了新的检测途径[[1]]。此方法是利用捕捉剂与自由基结合形成相对稳定的自旋加合物(spin adducts),然后进行ESR测定。 2HPLC法 HPLC法可用于间接测定自由基。测定过程中必须先选择合适的化合物捕集被测体系中的自由基,使之生成具有一定稳定性,且能被液相色谱分离与检测的产物,然后用HPLC进行测定。1)、采用二甲基亚砜捕集羟基自由基的HPLC测 2)、采用水杨酸捕集羟基自由基的HPLC测定方法 3化学发光法 化学发光法是一种灵敏、准确的检测自由基的方法,其原理是利用发光剂被活性氧自由基氧化成激发态,当其返回到基态时放出大量光子,从而对发光起放大作用。且自由基产生越多,发光值就越大。通过函数换算间接反应系统中自由基的量。与ESR和HPLC法相比,具有操作简便、设备成本较低、测定快速等优点。4氧化褪色光度法 6极谱法 7毛细管电泳-电化学检测法 8胶束电动毛细管色谱法

自由基

自由基 自由基是指能够独立存在的,含有一个或多个未成对电子的分子或分子的一部分。由于自由基中含有未成对电子,具有配对的倾向。因此大多数自由基都很活泼,具有高度的化学活性。自由基的配对反应过程,又会形成新的自由基。在正常情况下,人体内的自由基是处于不断产生与清除的动态平衡之中。自由基是机体有效的防御系统,如不能维持一定水平的自由基则会对机体的生命活动带来不利影响。但自由基产生过多或清除过慢,它通过攻击生命大分子物质及各种细胞,会造成机体在分子水平、细胞水平及组织器官水平的各种损伤,加速机体的衰老进程并诱发各种疾病。 自由基过量产生的原因 1、人体非正常代谢产物 2、有毒化学品接触 3、毒品、吸烟、酗酒 4、长时间的日晒 5、长期生活在富氧/缺氧环境 6、环境污染因素 7、过量运动 8、疾病 9、不健康的饮食习惯(营养过剩以及脂肪摄入过量)10、辐射污染11、心理因素 自由基对生命大分子的损害 ★由于自由基高度的活泼性与极强的氧化反应能力,能通过氧化作用来攻击其所遇到的任何分子,使机体内大分子物质产生过氧化变性,交联或断裂,从而引起细胞结构和功能的破坏,导致机体组织损害和器官退行性变化。 ★自由基作用于核酸类物质会引起一系列的化学变化,诸如氨基或羟基的脱除、碱基与核糖连接键的断裂、核糖的氧化和磷酸酯键的断裂等。 在体内以水分为介质环境中通过电离辐射诱导自由基的研究表明,大剂量辐射可直接使DNA断裂,小剂量辐射可使DNA主链断裂。 ★自由基对蛋白质的损害 自由基可直接作用于蛋白质,也可通过脂类过氧化产物间接与蛋白质产生破坏作用。 ★自由基对糖类的损害 自由基通过氧化性降解使多糖断裂,如影响脑脊液中的多糖,从而影响大脑的正常功能。自由基使核糖、脱氧核糖形成脱氢自由基,导致DNA主链断裂或碱基破坏,还可使细胞膜寡糖链中糖分子羟基氧化生成不饱和的羰基或聚合成双聚物,从而破坏细胞膜上的多糖结构,影响细胞免疫功能的发挥。 ★自由基对脂质的损害 脂质中的多不饱和脂肪酸由于含有多个双键而化学性质活泼,最易受自由基的破坏发生氧化反应。磷脂是构成生物膜的重要部分,因富含多不饱和的脂肪酸故极易受自由基所破坏。这将严重影响膜的各种生理功能,自由基对生物膜组织的破坏很严重,会引起细胞功能的极大紊乱。 自由基与疾病 (一)自由基与衰老 从古至今,依据对衰老机理的不同理解,人们提出各种各样的衰老学说多达300余种。自由基学说就是其中之一。反映出衰老本质的部分机理。 英国Harman于1956年率先提出自由基与机体衰老和疾病有关,接着在1957年发表了第一篇研究报告,阐述用含0.5%-1%自由基清除剂的的饲料喂养小鼠可延长寿命。由于自由基学说能比较清楚地解释机体衰老过程中出现的种种症状,如老年斑、皱纹及免疫力下降等,因此倍受关注,已为人们所普遍接受。自由基衰老理论的中心内容认为,衰老来自机体正常代谢过程中产生自由基随机而破坏性的作用结果,由自由基引起机体衰老的主要机制可以概括为以下三个方面。

自由基的最佳克星

自由基的最佳克星──葡萄干 葡萄很好──尤其是易过敏及都市人 葡萄神奇效用新发现!从里到外都有健康Power 夏日的水果很多,但却没有1种和葡萄一样,从果肉、种籽甚至果皮,都能作为食材,且具不同的健康功效!快来看看小小的葡萄有什么大功用,和最聪明的摄取方法吧! 100g葡萄含有 热量57卡、钾120m g、钙4mg、镁5mg、维他命C 4m g 葡萄皮--改善过敏 当花粉等异物入侵时,人体会释放出组织胺(Histamine)等发炎物质,造成打喷嚏、流鼻水以排出异物的症状。 葡萄皮中的白蔾芦醇(resveratrol)能抑制发炎物质的运作,缓和过敏症状。要摄取葡萄皮中的抗敏成份,推荐妳实用去除水份、浓缩营养的葡萄干。 【Smart摄取方式】1天吃50g 葡萄干,就有改善过敏症状的功效哦! 葡萄干--整肠作用超强 1天吃84g葡萄干,就能有效缩短便便在肠内滞留的时间,消除便秘哦! 在葡萄干里被发现的酒石酸,是葡萄特有的物质,它在胃酸中消化后进入肠道,能吸附造成便秘、癌细胞的有害物质,并排出体外,再配上葡萄干的食物纤维,能发挥整肠作用。 葡萄籽--去除自由基 葡萄籽所含的前花青素是唯有在葡萄内才有的物质,有超强抗酸化的功用,能与多酚结合,在自由基伤害细胞前将它除去,并能运行于全身,预防细胞老化。 要摄取葡萄籽,最有效的方法就是饮用以整颗葡萄发酵制成的红酒,因为红酒会将葡萄籽的成份全部榨出来。 【Smart摄取方式】1天喝180g红酒(约2杯),就能达到去除自由基的功效。 果肉--改善脑机能 忙碌的现代生活中,总是不断要追赶、吸收最新的讯息,再加上睡眠不足、庞大

的工作压力,多数人都呈现慢性脑部疲乏的状态! 此时脑部会产生过多的磷酸肌酸(phosphoenol-pyrurate),阻挠神经顺利传达讯息,导致记忆力减弱。而葡萄果肉中含有特殊胺基酸,构造和神经传达物质类似,有助于提升脑机能。 【Smart摄取方式】因1 天摄取0.2mg的葡萄胺基酸,就能达到提升脑部活力的功效。所以葡萄是宝,1天只要吃12颗就能变聪明唷! ________________________________ 浸醋葡萄干,早上吃两大匙(成本约5元),整天精力充沛 成本概算 售价两大匙成本概算 美国三叶葡萄干51元/ 15oz = 425克25克3元 金门赵王陈年高粱醋84元/ 600c 15cc 2元 合计5元 葡萄干能袪病延年 自由基的最佳克星──葡萄干 现在这个时代,葡萄干是一种很普遍的食物,他不像生葡萄一般具有季节性,而且价格相当低廉,一年到头都可以购买到。别看葡萄干外型很小,不起眼,但是它却含有对我们的健康很有帮助的成分。 葡萄干的营养价值非常高,它的主要成份为葡萄糖;葡萄糖在体内被吸收后,立刻就会变成身体所需要的能源。正因为如此,它对恢复疲劳非常有效。除此之外,葡萄干也含有非常丰富的铁,所以它对贫血症状也很有功效。 葡萄干跟生葡萄最不同的地方为──葡萄干必须经过曝晒的过程。正因为如此,它含有生葡萄所缺乏的贵重成分,其中的一种为多元酚。 我们的身体有所谓「自由基」的物质,它的职责是保护我们的身体,以免受到病原菌的侵犯。不过,这只是在一般的情况之下才有的现象。一旦以某种理由使自由基的作用变成超常的话,它将会干扰到细胞的正常状态,导致黑斑、皱纹等老化现象,并且还会成为癌、动脉硬化、高血压、糖尿病等现代文明病的原因。 为了保护身体,以免受到自由基之害,必须摄取能够消除自由基的抗氧化物质。以食品所含有的抗氧化物质来说,最为大众所知晓的,就是红葡萄酒所含有的多元酚。但是,「多元酚」有很多不同种类,它们的作用力与效力各有不同。如果考虑到我们身体状况的话,最好是摄取含多元酚最多、效果比较好、又不必费时间处理的葡萄干。

重金属砷的危害分析

重金属砷 1.砷的性质及危害 1.1砷的性质 砷,俗称砒,是一种非金属元素,在化学元素周期表中位于第4周期、第VA族,原子序数33,元素符号As,单质以灰砷、黑砷和黄砷这三种同素异形体的形式存在。砷元素广泛的存在于自然界,共有数百种的砷矿物是已被发现。砷与其化合物被运用在农药、除草剂、杀虫剂,与许多种的合金中。 在古代,三氧化二砷被称为砒霜,但是少量的砷对身体有益。 1.2砷的危害 肠胃道、肝脏、肾脏毒性:肠胃道症状通常是在食入砷或经由其它途径大量吸收砷之后发生。肠胃道血管的通透率增加,造成体液的流失以及低血压。肠胃道的黏膜可能会进一步发炎、坏死造成胃穿孔、出血性肠胃炎、带血腹泻。砷的暴露会观察到肝脏酵素的上升。慢性砷食入可能会造成非肝硬化引起的门脉高血压。急性且大量砷暴露除了其它毒性可能也会发现急性肾小管坏死,肾丝球坏死而发生蛋白尿。 心血管系统毒性:因自杀而食入大量砷的人会因为全身血管的破坏,造成血管扩张,大量体液渗出,进而血压过低或休克,过一段时间后可能会发现心肌病变。至于流行病学研究显示慢性砷暴露会造成血管痉挛及周边血液供应不足,进而造成四肢的坏疽,或称为乌脚病,在台湾饮用水含量为10-1820ppb 的一些地区曾有此疾病盛行。有患乌脚的人之后患皮肤癌的机会也较高,不过研究也显示这些饮用水中也有其它造成血管病变的物质,应该也是引起疾病的一部份原因。 神经系统毒性:砷在急性中毒24-72小时或慢性中毒时常会发生周边神经轴突的伤害,主要是末端的感觉运动神经,异常部位为类似手套或袜子的分布。中等程度的砷中毒在早期主要影响感觉神经可观察到疼痛、感觉迟钝,而严重的砷中毒则会影响运动神经,可观察到无力、瘫痪, 皮肤毒性:砷暴露的人最常看到的皮肤症状是皮肤颜色变深,角质层增厚,皮肤癌。全身出现一块块色素沈积是慢性砷暴露的指标 ( 曾在长期饮用 >400ppb 砷的水的人身上发现 ) ,较常发生在眼睑、颞、腋下、颈、乳头、阴部,严重砷中毒的人可能在胸、背及腹部都会发现,这种深棕色上散布白点的病变有人描述为「落在泥泞小径的雨滴」。 呼吸系统毒性:极少见暴露于高浓度砷粉尘的精炼工厂工人会发现其呼吸道的黏膜发炎且溃疡甚至鼻中隔穿孔。研究显示这些精炼工厂工人和暴露于含砷农药杀虫剂的工人有得肺癌机率升高的情形。 血液系统毒性:不管是急性或慢性砷暴露都会影响到血液系统,可能会发现骨髓造血功能被压抑且有全血球数目下降的情形,常见白血球、红血球、血小板下降,而嗜酸性白血球数上升的情形。红血球的大小可能是正常或较大,可能会发现嗜碱性斑点。 2.砷的危害机理 1 砷对·O2-(超氧阴离子自由基)的影响:超氧阴离子自由基(·O2-)

自由基聚合

2.自由基聚合 2.1引言 连锁聚合 根据聚合反应机理分类,聚合反应可以分为 逐步聚合 连锁聚合反应需要活性中心,单体在活性中心上反应形成大分子。活性中心可以是自由基,也可以是阴、阳离子。活性中心的性质与化合物共价键断裂的方式有关。 共价键有两种断裂方式:均裂和异裂 均裂: 共价键上一对电子分属于两个基团,这种带独电子的基团呈电中性,称作自由基或游离基。 异裂: 共价键上一对电子全部归属于某一基团,形成阴离子或负离子,则另一缺电子基团称作阳离子或正离子。 自由基、阴离子、阳离子都有可能成为活性中心,可打开烯类单体或羰基单体中的π键,或使环状单体的σ键断裂开环,使之链引发和链增长,分别成为自由基聚合,阴离子聚合,阳离子聚合,和配位聚合,实际上配位聚合也属于离子聚合的范畴。 Eg: 自由基聚合: 2.2连锁聚合的单体 单体能否聚合,须从热力学和动力学两方面考虑,热力学上能聚合的单体还要求有适当的引发剂、温度等动力学条件,才能保证一定的聚合速度。从热力学考虑可以进行连锁聚合的单体有: 2.2.1适合连锁聚合的单体 大致可以分为三类: 1.含有碳碳双键的烯类单体:包括单烯类、共轭二烯类,甚至炔烃。其中:

单烯类:乙烯基单体中的碳碳双键中π键可以均裂也可以异裂,因此可以进行自由基聚合或离子聚合。具体选择哪种聚合方式,由取代基的性质决定。 共轭二烯类:如苯乙烯,丁二烯,异戊二烯等单体处于共轭体系,在外界的影响下,双键的电子云易流动,诱导极化。因此单体既可以进行自由基聚合,也可以进行离子聚合。 2.羰基化合物如HCHO,CH3CHO,甚至酮类。 Eg: HCHO 羰基的双键有极性,使氧原子带有部分负电荷,而碳原子则带有部分正电荷。 3.杂环化合物 羰基化合物和杂环化合物的极性较强,一般不能自由基聚合,只适合于离子聚合。因此实际上只有碳碳双键的烯类单体可以进行自由基聚合,但也不是所有的都行,其取代基的性质有很大影响。 2.2.2取代基对于乙烯类单体聚合能力的影响。 除了取代基的种类和性质外,取代基的数量和体积也颇有影响,概括起来,分电子效应和位阻效应两个方面。电子效应又有诱导(极性)效应和共轭效应之分。乙烯基单体取代基的诱导效应和共轭效应能改变双键的电子云密度,并且对所形成的活性种的稳定性也有影响,因此决定着对自由基,阴、阳离子聚合的选择性。 1.无取代基时 乙烯结构对称,偶极矩为零,对进攻试剂选择性差。(目前只有两种聚合途径,在高温高压下可进行自由基聚合;在低压下可进行配位聚合。) 2.一取代乙烯 1)取代基为供电基团 供电基团有:烷氧基,烷基、苯基、乙烯基等 它可以(1)使碳碳双键电子云密度增加,有利于阳离子进攻,生成碳阳离子。 (2)使生成的阳离子增长种共振稳定。(碳阳离子生成后,由于供电子基团的存在,使电子云密度缺少的情况有所改善,体系的能量有所降低,碳阳离子的稳定性有所增加。)例如: 从诱导效应来看:烷氧基使双键电子云密度下降,理应进行阴离子或自由基聚合。 从共轭效应看:氧上未共用电子对能和双键形成P-π共轭,使双键电子云密度增加。 一般情况下,共轭效应占主动,所以是碳碳双键上电子云密度增加。同时又因为烷氧基的共轭,使正电荷不单单集中在碳阳离子上,而分散在碳氧两个原子上,使形成的

自由基总结

f 也称氧化压力。化学上也称为“游离基”,是含有一个不成对电子的原子团。由于原子形成分子时,化学键中电子必须成对出现,因此自由基就到处夺取其他物质的一个电子,使自己形成稳定的物质。在化学中,这种现象称为“氧化”。我们生物体系主要遇到的是氧自由基,例如超氧阴离子自由基、羟自由基、脂氧自由基、二氧化氮和一氧化氮自由基。加上过氧化氢、单线态氧和臭氧,通称活性氧。体内活性氧自由基具有一定的功能,如免疫和信号传导过程。但过多的活性氧自由基就会有破坏行为,导致人体正常细胞和组织的损坏,从而引起多种疾病。如心脏病、老年痴呆症、帕金森病和肿瘤等等疑难杂症。此外,外界环境中的阳光辐射、空气污染、吸烟、农药等都会使人体产生更多活性氧自由基,使核酸突变,这是人类衰老和患病的根源。 氧自由基:我们生活在富含氧气的空气中,离开氧气我们的生命就不能存在,但是氧气也有对人体有害的一面,有时候它能杀死健康细胞甚至致人于死地。当然,直接杀死细胞的并不是氧气本身,而是由它产生的一种叫氧自由基的有害物质,它是人体的代谢产物,可以造成生物膜系统损伤以及细胞内氧化磷酸化障碍,是人体疾病、衰老和死亡的直接参与者,对人体的健康和长寿危害非常之大。

正常情况下,参与代谢的氧大多数与氢结合生成水,然而有4-5%的氧将被酶所催化形成超氧阴离子,后者又可形成过氧化氢,它们都属于自由基。自由基有多种,如氧自由基和羟自由基 ,是指那些最外层电子轨道上含有不配对电子的原子、离子或分子。自由基具有高度的氧化活性,它们极不稳定,活性极高,它们攻击细胞膜、线粒体膜,与膜中的不饱和脂肪酸反应,造成脂质过氧化增强。脂质过氧化产物(mda等)又可分解为更多的自由基,引起自由基的连锁反应。这样,膜结构的完整性受到破坏,引起肌肉、肝细胞、线粒体、DNA、RNA 等广泛损伤从而引起各种疾病,诸如炎症、癌症、扩张性心肌病、老年性白内障、哮喘等疾患,故自由基是人体疾病、衰老和死亡的直接参与和制造者。 氧自由基的克星------抗氧化剂,(也就是氧自由清除剂或者抑制剂)它对人体的健康可是有着密切的关系。根据医学上的研究,维他命、矿物质及酵素中具保护身体、防止自由基(free radicals)形成功能者,就称作抗氧化剂。 而我们的身体,当然也会有自然产生的自由基清除者来抑制自由基形成,此外,身体自然制造的酵素,也可中和自由基。除了这些酵素,我们还可由饮食中摄取天然的抗氧化剂,例如:维他命A、C、E及硒,以协助体内清除自由基。如果人体系统在自由基的充斥下,而自然产生的自由基清除者无法“应付”时,健康就会亮起红灯。因此,人们在平时就应通过饮食,摄取天然的抗氧化剂,或服用一些补充品,来协助身体破坏自由基。号称第六生命元素的壳寡糖,可完全净化自由基,使自由基失去活性,达到抵御疾病和延缓衰老的作用。在1991年的国际学术会议上,美欧等许多国家的科学家一致把壳寡糖与蛋白质、脂肪、糖类、维生素、矿物质并列誉为人体第六生命要素。壳寡糖能降血脂、降血压、能抗癌,对现代文明病有惊人的防治作用。壳寡糖是机体“清道夫”,能排除体内自由基,提高机体免疫力,减肥美肤,延缓衰老。 我们知道,细胞经呼吸获取氧,其中98%与细胞器内的葡萄糖和脂肪相结合,转化为能量,满足细胞活动的需要,另外2%的氧则转化成氧自由基。由于这种物质非常活跃,几乎可以与各种物质发生作用,引起一系列对细胞具有破坏性的连锁反应。 在一般情况下,细胞不会遭到这种分子杀手的杀害,这是因为我们人体细胞存在着大量氧自由基的克星——抗氧化剂,比如,脂溶性的维生素E、水溶性的维生素C及一些酶类等等,这些天然的抗氧化剂能够与氧自由基发生氧化还原反应,使氧自由基被彻底清除,而只有在某些情况下,氧自由基才会致细胞甚至肌体于死地。 自由基清除剂:至于对付氧自由基的办法,目前已经发现了许多氧自由基的克星,也就是氧自由清除剂或者抑制剂,其作用机理有

自由基的致病和花青素在机体内抗氧化去除自由基机理

自由基的致病和花青素在机体内抗氧化去除自由基机理 天然色素应用技术推广实验室aingw@https://www.360docs.net/doc/9811237733.html, 花青素是机体内抗氧化,还原自由基的重要成分。自由基的作用及危害:自由基是一些具有不配对电子的氧分子,它们在机体内漫游,损伤任何与其接触的细胞和组织,摧毁细胞膜,导致细胞膜发生变性,使细胞不能从外部吸收营养,也排泄不出细胞内的代谢废物,并走失了对细菌和病毒的抵御能力;自由基攻击正在复制中的基因,造成基因突变诱发癌症发生;自由基激活人体的免疫系统,使人体表现出过敏反应,或出现如红斑狼疮等的自体免疫疾病;自由基作用于人体内酶系统,导致胶原蛋白酶和硬弹性蛋白酶的释放,这些酶作用于皮肤中的胶原蛋白和硬弹性蛋白并使这两种蛋白产生过度交联并降解,结果使皮肤失去弹性,出现皱纹及囊泡;类似的作用使体内毛驯血管脆性增加,使血管容易破裂,这可导致静脉曲张、水肿等与血管通透性升高有关疾病的发生;自由基侵蚀机体组织,可激发人体释放各种炎症因子,导致出各种非菌性炎症;自由基侵蚀脑细胞,使人得早老性痴呆的疾病;自由基氧化血液中的脂蛋白造成胆固醇向血管壁的沉积,引起心脏病和中风;自由基引起关节膜及关节滑液的降解,从而导致关节炎;自由基侵蚀眼睛晶状体约织引起白内障;自由基侵蚀胰脏细胞引起糖尿病。自由基破坏胶原蛋白及其它结缔组织,干扰重要的生理过程,引起细胞的DNA突变,自由基与70多种疾病有关包括心脏病、动脉硬化、静脉炎、关节炎、过敏、早老性痴呆、冠心病及癌症。

自由基和体内细胞中的有机物质发生链式反应,使得体内过氧化合物大量堆积,让细胞失去正常的生理功能,从而导致疾病的产生。 花青素的发现及清除自由基的机理:1986年,法国波尔多大学的玛斯魁勒博士发现花青素(原花青素)具有强烈的自由基清除功效。花青素属于酚类化合物中的类黄酮(flavonoids)的一种,类黄酮则为水溶性色素,存在于细胞的液泡中,易受细胞内化学环境所影响,酸度、温度及其他在液泡中的新陈代谢,都会使其分子结构改变,造成颜色的变化,而能产生粉红色、红色、紫色及蓝色的颜色。花青素是迄今为止所发现的最强效的自由基清除剂,其抗自由基氧化能力是维生素C的20倍、维生素E的50倍,尤其是体内活性,更是其他抗氧化剂无法比拟的。 花青素的应用范围:花青素作为一种抗氧化功能食品由于不受作为药物需有明确适应症的限制,花青素基于清除体内自由基的功效,其应用范围越来越大。目前已发现花青素对近70多种疾病具有直接或间接的预防和治疗作用。花青素在国外的应用非常广泛。作为一种抗氧化功能食品,它具有非常强大的清除自由基的能力,花青素的防病保健功效的基础就是其清除自由基的能力。 另外花青素还有一些其它特点,如很好的生物利用度,易与胶原蛋白结合,稳定细胞膜以及抗酶活性(组胺脱羧酶),这些特点与抗氧化能力协作,使花青素成为一种基于清晰理论基础和严格实验结果之上的保健功能食品。

可逆加成-断裂链转移(RAFT)聚合概述与最新研究进展

可逆加成-断裂链转移(RAFT)聚合概述与最新研究进展 摘要可逆加成-断裂链转移(RAFT)聚合是一种十分重要的“活性”自由 基聚合方法。这种聚合方式被人们发现以来,RAFT聚合被化学和材料界广泛应用于聚合物的设计和合成上。本文对RAFT聚合的产生、反应机理等做了简要描述,并综述了其最新研究进展。 关键词RAFT聚合“活性”自由基聚合链转移剂 前言 活性聚合最早由美国科学家Szwarc于1956年提出。所谓活性聚合是指那些不存在任何使聚合链增长反应停止或不可逆转副反应的聚合反应。经历了60年的发展,活性聚合已从最早的阴离子聚合扩展到其它典型的链式聚合:如阳离子(1986年),自由基(1993年)等,并在人们的生产和生活中产生了巨大影响。活性聚合是高分子发展史上最伟大的发现之一。 活性聚合中依引发机理的不同,分为阴离子活性聚合、阳离子活性聚合、活性自由基聚合、配位活性聚合等。活性自由基聚合较其它几种聚合方式可聚合的单体多,反应温度范围较宽,能采用的溶剂种类和聚合方法多[1],因而引起了化学和材料界的极大重视。 活性自由基聚合依据其方法可分为引发转移终止(Iniferter)法,稳定自由基聚合(SFRP,NMP)法,原子转移自由基聚合(ATRP)法[2]和可逆加成-断裂链转移聚合(RAFT)法[3]。其中Iniferter法的缺点是聚合过程难以控制,所得聚合物的相对分子质量与理论值偏差较大,相对分子质量分布较宽;NMP的主要缺点表现在需要使用价格昂贵氮氧自由基,而且氮氧自由基的合成较为困难;ATRP 的劣势则表现在当聚合一些能与过渡金属催化剂形成配位键的单体(如丙烯酸)时的控制力不强,而且较难除去金属离子和催化剂,此外还需要较为苛刻的反应条件(对除氧的要求较高)[4]。相比而言,可逆加成-断裂链转移聚合(RAFT)法有着其它几种无法比拟的优点(如反应条件温和、适用单体范围广等),使得“活性”自由基聚合技术的发展又向前迈进了一步[5]。 1RAFT聚合概述 1.1RAFT聚合的提出 1998年,Rizzardo E.等人在第37届国际高分子学术讨论会上提出了一种新的CRP方法即可逆加成-断裂链转移自由基聚合(RAFT)[6]。他们以二硫代酯类化合物为链转移剂,通过增长自由基与二硫代酯类化合物的可逆链转移反应,实现控制聚合体系中增长自由基浓度,达到“活性”/可控的目的。 RAFT技术几乎是在同时被澳大利亚联邦科学与工业研究组织(CSIRO)的Rizzardo课题组和法国的Charmot等人发现和申请专利的。Charmot等人将他们的发现命名为通过磺酸盐交换的大分子设计(MADLX),他们的专利仅仅限制在磺

如何降低自由基对人体的危害

如何降低自由基对人体的危害 自由基是客观存在的,对人类来说,无论是体内的还是体外的,自由基还在不断地,以前所未有的速度被制造出来。与自由基有关的疾病发病率也呈加速上升的趋势。既然人类无法逃避自由基的包围和夹击,那么就只有想方设法降低自由基对我们的危害。 随着科学家们对自由基研究的日渐深入,清除自由基,以减少自由基对人体的危害的方法也逐渐被揭示出来。 研究表明,自由基从产生到衰亡的过程就是电子转移的过程。在生命体系中,电子的转移是一种最基本的运动,而氧的的电子能力很强,因此,生物体内许多化学反映都与氧有关。科学家们发现损害人体健康的自由基几乎都与那些活性较强的含氧物质有关,他们把与这些物质相结合的自由基叫作活性氧自由基。活性氧自由基对人体的损害实际上是一种氧化过程。因此,要降低自由基的损害,就要从抗氧化做起。 既然自由基不仅存在于人体内,也来自于人体外,那么,降低自由基危害的途径也有两条:一是,利用内源性自由基清除系统清除体内多余自由基;二是发掘外源性抗氧化剂--自由基清除剂,阻断自由基对人体的入侵。 大量研究已经证实,人体内本身就具有清除多余自由基的能力,这主要是靠内源性自由基清除系统,它包括超氧化物歧化酶(SOD)、过氧化氢酶、谷胱甘肽过氧化酶等一些酶和维生素C、维生素E、还原性谷胱甘肽、胡萝卜素和硒等一些抗氧化剂。酶类物质可以使体内的活性氧自由基变为活性较低的物质,从而削弱它们对肌体的攻击力。酶的防御作用仅限于细胞内,而抗氧化剂有些作用于细胞膜,有些则是在细胞外就可起到防御作用。这些物质就深藏于我们体内,只要保持它们的量和活力它们就会发挥清除多余自由基的能力,使我们体内的自由基保持平衡。 要降低自由基对人体的危害,除了依靠体内自由基清除系统外,还要寻找和发掘外源性自由基清除剂,利用这些物质作为替身,让它们在自由基进入人体之前就先与自由基结合,以阻断外界自由基的攻击,使人体免受伤害。 在自然界中,可以作用于自由基的抗氧化剂范围很广,种类极多。目前,国内外已陆续发现许多有价值的天然抗氧化剂。在这方面的研究中,中国的科学家们已经走在世界的前列。他们已经发现并证明了,我国一些特有的食用和药用植物中,含有大量的酚类物质,这些物质的特点是,有着很容易被自由基夺走的电子,而它们在失去电子后就会成为一种对人没有伤害的稳定物质。 中国科学院生物物理研究所的专家历经八年时间从这些植物中研制出了天然抗氧化剂--自由基清除剂配方。在与卷烟厂技术人员合作的对动物的急性毒性实验中证明,在高浓度香烟的毒害下,使用了自由基清除剂

自由基生物学

第一章自由基的产生及其化学性质 一、什么是自由基 如方程式(1)、(2)所示,当A与B两个分子或原子间形成共价键时,可以看作它们共享一对电子,这两个电子既可以是一个分子所提供的,也可以是每个分子各贡献出一个电子,前者称为配位作用,后者称为共价结合。 A:- + B+A:B (配位作用)(1) A.+ B. A:B (共价结合)(2) 其逆过程,即当一个共价键离解时,必须要供给能量(自由能)。反应式(1)的逆过程称为异裂,反应式(2)的逆过程称为均裂。在均裂时所产生的分子或原子含有一个不配对电子,这种分子常具有高度化学活性——氧化活性。正因为如此,它们的寿命也极短暂。这些可以单独存在的具有一个或几个不配对电子的分子或原子就称为自由基(free radical),用R·表示,即在分子式的右上角加一个黑点作为自由基的特征标记,以表示存在着不配对电子。根据这个定义,我们可知道氯原子(Cl·)、氧原子(O:)和OH.等都是自由基。 有些自由基即使在室温的溶液中也是稳定的,如氧原子(一个稳定的双基)。有些自由基带有负电荷或正电荷,所以叫做离子自由基或离子基。这种自由基往往又是氧化还原反应的中间产物。在氧化还原反应过程中,中性分子接受一个电子而变成负离子基,或失去一个电子而成为正离子基。 二、自由基的产生 一般而言,自由基是通过共价键的均裂而产生的,但也可通过电子俘获而产生。 R + e-R. 天然存在的自由基一般都是有用的自由基(如氧原子),或者是半衰期比较短的自由基(如氯原子)。但是,由于某些分子,尤其是共价结合的有机分子吸收外部能量而产生均裂时,所形成的自由基是非常有害的。共价分子发生均裂而形成自由基的机制有:热解、光解和氧化还原反应。 (1)热解 很多化合物,特别是含有弱键的有机化合物可以发生热均裂反应,生成活泼的自由基。典型的例子是热锅炒菜时,脂肪、蛋白质和糖类等有机营养物发生的热均裂反应;抽烟时,烟草的不完全燃烧也产生大量的自由基。 (2)光解 电磁辐射(可见光、紫外线、X射线)或粒子轰击(如高能电子)都可提供使共价键裂解的能量而形成自由基。如紫外线照射可使水发生均裂而生成羟自由基(OH.): H2O 紫外线H.+ OH. 羟自由基可与机体内的有机物发生一系列的氧化还原反应,导致机体损伤,突变,甚至死亡。这就是紫外线杀菌的原理。

抗自由基药物研究状况

抗自由基药物研究状况 自由基(Free Radical,FR),即外层轨道有不成对电子的原子、原子团或分子的总称。其中95%以上是氧自由基(OFR),如超氧阴离子(O2 -)、羟自由基(OH)、单线态氧(O12)、过氧化氢(H2O 2)、脂质自由基(RO- ,ROO- )、氮氧自由基等。OFR参与许多疾病发生,如肺气肿、癌症、帕金森氏病、老年性痴呆、冠心病、衰老等。因此抗氧化治疗对防病延衰有重要作用。 许多抗氧化剂如V itE、褪黑素、谷胱甘肽(GSH)等,享有很高的声誉。人们又发现:一些抗冠心病药如丙丁酚,降压药如卡托普利、维拉帕米、地尔硫,解热镇痛药如阿司匹林等,也有抗氧化活性。FR与这些疾病发展相关,给人以启示:这些药物是否也通过清除FR 发挥疗效?从“标本兼治”的角度讲,能否治疗其他由FR介导的疾病呢?本文综述了兼具有抗氧化活性的药物分类、代表药,研究现状及进展,通过发现这些药物结构的相似性,提出抗氧化剂研发的新方向,为利用现有的抗氧化剂及发掘新的抗氧化剂提供一些信息。 市面上主要抗氧化药物: 1 维生素类 VitE、VitC、VitA是强抗氧化剂,硫辛酸和二氢硫辛酸能清除O2 -、OH、O12、H2O2[1]。 2 激素类 褪黑素清除OH、O12、H2O2,提高SOD、CA T活性,与V itC、VitE、GSH协同,使DNA、Pro和细胞膜脂质免受氧化损伤。促红细胞生成素提高抗氧化酶活性,减少NO释放[2]。EE 3 是雌激素,阻止LDL过氧化,提高抗氧化酶活力,清除体内FR。其他如糖皮质激素(氢化考地松,地塞米松,21-氨基类固醇代表药Tirilazad),β-蜕皮激素等。 3 钙拮抗剂 维拉帕米降低家兔缺血再灌注损伤(I/R)肝GOT、GPT、MDA含量,抑制XO活性[3]。地尔硫降低MDA含量,增强SOD活性[4]。赛庚啶和拉西地平抗脂质过氧化。其他还有尼莫地平、硝苯地平、拉西地平、硫氮酮、汉防己甲素等。 4 ACEI类及A TⅡ受体拮抗剂 卡托普利降低家兔I/R组心肌Ca 2+ ,MDA、LDH、CPK含量。培哚普利诱导SOD生成[5]。氯沙坦减轻脂质过氧化反应,抑制OX-LDL,提高抗氧化酶活性[6]。 5 他汀类辛伐他汀 降低食饵性AS家兔血清MDA含量,提高SOD活性[7]。洛伐他汀降低血MDA 含量[8]。普伐他汀增强高脂血症患者血清LDL和VLDL的抗氧化性[9]。 6 其他丙丁酚 抑制LDL氧化和LPO生成[10]。异丙酚清除O 2 ?- 和过氧化硝酸盐[11]。TA9901可清除FR,螯合金属离子[12]。TA9902是EGB761配伍TA9901形成,抗氧化性强于TA9901。N-乙酰半胱氨酸清除FR,维持体内GSH活性[13]。GSH提高抗氧化酶活性。其他如巯丙基甘氨酸,巯基乙醇等[14]。 7 酶抑制剂 别嘌呤醇抑制黄嘌呤氧化酶,阻止FR及其介导的脂质过氧化。氧嘌呤醇和二甲基硫脲也能抗氧化。单胺氧化酶抑制剂司立吉林与其类似物4-Methyldeprenyl,Methylam-phetamine,Clorgyline抑制OH、O12、H2 O 2。消炎痛降低I/R家兔脑组织LPO含量,增加SOD活力。APC清除OH,抑制SiO 2诱导的细胞脂质过氧化和DNA损伤[15]。同类还有前列环素、吲哚美辛等。 8 脱水剂

自由基对生殖健康的危害及对策

自由基对生殖健康的危害及对策--中医男科专家谈生殖健康 作者:中日友好医院中医男科实验室主任技师 发布时间:2006-01-26 曹兴午 1.自由基学说 美国Harman博士于1956年公开提出衰老的氧自由基(Free Radical)学说。因为人体的老化和多种疾病的发生都与自由基和密切关系。就像日常生活中看到,铁器在空气中曝露日久要生锈,洁白的银器也会由于氧化变黑。生命科学研究到细胞分子层面分析,发现人体的衰老与机器生锈的过程一样,也是受到氧化的结果。近年国际上有关自由基的研究显示,由于自由基引起的疾病包括动脉硬化、脑中风、心脏病、白内障、肺气肿、糖尿病,以及多项癌症等和人体衰老有关。为此,认为自由基是万病的元凶。 2.自由基的产生 自由基又称活性氧,体积约为一个原子大小,活性极强。已知,正常氧原子具有4对电子,机体正常代谢可以使原子失去一个电子,这样就形成了自由基。因此,人体内任何具有不成对的电子化合物都叫自由基,许多原子亦可以成为自由基,氧分子具有两个未配对的电子结构,故称为双自由基。 由于人体需要运动,无论是机体或组织,必须由自由基产生能量,这时就会产生自由基,为此,自由基的产生,可以说是人体细胞内正常代谢的副产品。当自由基从细胞膜上夺取一个电子后,就会产生出另一个新的自由基,以此类推,我们可以知道,当电子夺取链反应侵蚀细胞膜,导致细胞完整性丢失,这就为疾病和癌症打开方便的大门。据英国生物化学家霍威尔教授研究结论,一个70公斤的人,每年自己产生的自由基可达2公斤。而且,通过污染的空气、食入不洁的食物、水、吸入毒素(吸烟),以及日晒或放射性的辐射,不良习惯(过量饮酒、过饱饮食),周围环境和家居环境的污染,以及工作和人际关系压力,甚至是生气等,都会不断地产生自由基。为此,我们人类的每个细胞每天都要受到自由基的几百次的冲击和侵害。为了证实过量饮食对长寿的影响,学者们进行了研究,用小老鼠分3组进行实验,甲组为自由摄食(不限制量);乙组为限量进食八成;丙组为限量进食六成,结果以进食六成老鼠的寿命最长,八成次之,自由进食的最短。说明不要拼命吃的过饱,对健康长寿不利。 3.微生物侵入导致人体产生自由基 大量的基础和临床研究证实,当受到病毒、细菌侵入人体时,机体的免疫细胞会产生自由基物质(主要是氧自由基和一氧化氮自由基等)来杀灭细菌、病毒等微生物,是人体免疫系统中相当重要的一环。但是,当免疫反应过度,自由基产生过量时,由于它们的非特异反应性(不能分辨敌我),对受感染机体的生命基本结构分子如蛋白质、核苷酸、脂肪等具有极强的氧化硝化反应能力,可以导致对细胞和组织的攻击。由此可以诱导细胞的凋亡,增高血管的通透性,以至出现水肿,出血等病理现象,可以引起组织损害、功能丧失,以至组织坏死,导致患者死亡。 4.自由基对男性生殖健康的危害 最近研究证实,自由基还是危害男性生殖健康的“杀手”。诸如环境污染、吸烟、酗酒、熬夜、生殖道感染、接触含有酚类和铅等化学物质,生殖系统的自由基明显增多,使男性生殖健康受到危害。 4.1损害生育能力在男性的生殖系统如睾丸的生精细胞中、精液中和精子中,都富含有丰富的抗氧化物和抗氧化酶类物质,这些物质可以有效地保护和清除多余的自由基,保持睾丸的正常的生殖功能,使精子永不停止地生长、繁殖、发育、成熟,供应人类繁衍的需要。 一旦自由基的产生,超出抗氧化物和抗氧化酶类物质的清除能力时,自由基就可以损害生精细胞,使细胞膜受到破坏,攻击精子,使精子膜也受到伤害,精子失去活动能力,以至死亡。从而出现精子数量不断下降,或死亡精子过多,进而影响男性的生育能力,出现不育症。

自由基聚合机理以及四种常见共聚物

自由基聚合机理 烯类单体的加聚反应多属连锁聚合,连锁聚合反应由链引发、链增长、链终止等基元反应组成,各步的反应速率和活化能相差很大。连锁聚合链引发形成活性中心(或称活性种),活性中心不断与单体加成而使链增长(单体之间并不反应),活性中心的破坏就是链终止。自由基、阳离子、阴离子都可能成为活性中心引发聚合,故连锁聚合又可分为自由基聚合、阳离子聚合、阴离子聚合和配位聚合等,其中自由基聚合产物约占聚合物总产量的60%。 热力学上能够聚合的单体对聚合机理的选择是有差异的,如氯乙烯只能自由基聚合、异丁烯只能阳离子聚合、MMA可以进行自由基聚合和阴离子聚合、苯乙烯则可按各种连锁机理聚合。 自由基聚合产物约占聚合物总产量60%以上,其重要性可想而知。高压聚乙烯、聚氯乙烯、聚苯乙烯、聚四氟乙烯、聚醋酸乙烯酯、聚丙烯酸酯类、聚丙烯腈、丁苯橡胶、丁腈橡胶、氯丁橡胶、ABS树脂等聚合物都通过自由基聚合来生产。本节将对自由基链式聚合反应作较详细的讨论。 自由基聚合的基元反应 烯类单体的自由基聚合反应一般由链引发、链增长、链终止等基元反应组成。此外,还可能伴有链转移反应。现将各基元反应及其主要特征分述如下。 1 链引发 链引发反应是形成单体自由基活性种的反应。用引发剂引发时,将由下列两步组成:(1)引发剂I分解,形成初级自由基R?; (2)初级自由基与单体加成,形成单体自由基。 单体自由基形成以后,继续与其他单体加聚,而使链增长。 比较上述两步反应,引发剂分解是吸热反应,活化能高,约105~150kJ/mo1,反应速

率小,分解速率常数约10-4~10-6s-1。初级自由基与单体结合成单体自由基这一步是放热反应,活化能低,约20~34kJ/mo1,反应速率大,与后继的链增长反应相似。但链引发必须包括这一步,因为一些副反应可以使初级自由基不参与单体自由基的形成,也就无法继续链增长。 有些单体可以用热、光、辐射等能源来直接引发聚合。这方面的研究工作不少,苯乙烯热聚合已工业化;紫外光固化涂料也已大规模使用。 2 链增长 在链引发阶段形成的单体自由基,仍具有活性,能打开第二个烯类分子的π键,形成新的自由基。新自由基活性并不衰减,继续和其他单体分子结合成单元更多的链自由基。这个过程称做链增长反应,实际上是加成反应。 为了书写方便,上述链自由基可以简写成,其中锯齿形代表由许多单元组成的碳链骨架,基团所带的独电子系处在碳原子上。 链增长反应有两个特征:一是放热反应,烯类单体聚合热约55~95kJ/mol;二是增长活化能低,约20~34KJ/mol,增长速率极高,在0.01~几秒钟内,就可以便聚合度达到数千,甚至上万。这样高的速率是难以控制的,单体自由基一经形成以后,立刻与其他单体分子加成,增长成活性链,而后终止成大分子。因此,聚合体系内往往由单体和聚合物两部分组成,不存在聚合度递增的一系列中间产物。 对于链增长反应,除了应注意速率问题以外,还须研究对大分子微观结构的影响。在链增长反应中,结构单元间的结合可能存在“头-尾”和“头-头”或“尾-尾”两种形式。经实验证明,主要以头-尾形式连接。这一结果可由电子效应和空间位阻效应得到解释。对一些取代基共轭效应和空间位阻都较小的单体聚合时头-头结构会稍高,如醋酸乙烯酯、偏二氟乙烯等。聚合温度升高时,头-头形式结构将增多。

人体内的一把双刃剑——自由基

人体内的一把双刃剑——自由基 一、自由基的定义 自由基(free radical)是指能独立存在,含有未成对电子的原子,原子团、分子或离子。如含有不成对电子的氧则称为氧自由基(oxygen free radical,OFR);自由基具有不成对电子的原子或分子。含有基数电子或不配对电子的原子、原子团和分子。具有很强的反应性。 自由基,化学上也称为“游离基”,是含有一个不成对电子的原子团。由于原子形成分子时,化学键中电子必须成对出现,因此自由基就到处夺取其他物质的一个电子,使自己形成稳定的物质。在化学中,这种现象称为“氧化”。我们生物体系主要遇到的是氧自由基,例如超氧阴离子自由基、羟自由基、脂氧自由基、二氧化氮和一氧化氮自由基。加上过氧化氢、单线态氧和臭氧,通称活性氧。体内活性氧自由基具有一定的功能,如免疫和信号传导过程。但过多的活性氧自由基就会有破坏行为,导致人体正常细胞和组织的损坏,从而引起多种疾病。如心脏病、老年痴呆症、帕金森病和肿瘤。此外,外界环境中的阳光辐射、空气污染、吸烟、农药等都会使人体产生更多活性氧自由基,使核酸突变,这是人类衰老和患病的根源。 二、自由基的来源与形成 自由基的来源 自由基在生物体内来源有二:一是细胞正常生理过程产生;二是化学毒物在体内代谢过程产生。在人体和环境中持续形成的自由基来自人体正常新陈代谢过程,大量体育运动、吸烟、食用脂肪和腌熏烤肉、发生炎症、某些抗癌药物、安眠药、射线、农药、有机物腐烂、塑料用品制造过程、油漆干燥、石棉、空气污染、化学致癌物、大气中的臭氧等也都能产生自由基。已知自由基可损伤蛋白质,可使蛋白质的转换增加;损害DNA可导致细胞突变;作用于-SH可使某些酶的活性降低或丧失;攻击未饱和脂肪酸可引起脂质过氧化,其氧化产物可引起-SH氧化、酶失活、膜功能受损、干扰膜的运送功能等。另外,由燃料废气、香烟和一些粉尘造成的大气污染,使大气上空的自由基占分子污染物总量的1%~10%,因此环境污染中的自由基反应也是不可忽视的。 自由基有两个来源:一是来自体外,如环境污染、紫外线照射、室内外废气、烟尘、细菌等等,它们会直接导致自由基的产生;二是来自体内,人体内也会自然形成自由基,这是人体代谢过程的正常产物,十分活跃又极不稳定,它们会附着于健康细胞之上,再慢慢瓦解健康细胞,而被破坏的细胞又转而侵害更多健康的细胞,如此恶性循环从而导致肌体的早衰现象。 过量运动在《抗氧化革命》一书中,肯尼斯-库珀医生强调,过量的运动可以明显增加我们身体产生的自由基的数量。 《抗氧化革命》一书在结尾处忠告读者,过量运动实际上是有害健康的,尤其是在我们多年持续过量运动的情况下。库珀医生建议我们每个人都应适量运动,他还建议我们每人在进行营养补充时都应服用抗氧化剂。只有真正的运动员才应该进行艰苦的训练,而且他们也应该补充大量的抗氧化剂来抵消这种侵害。空气污染环境对我们提内形成的自由基的数量影响巨大。空气污染是导致我们肺部和体内氧化压力的主要原因之一。现在当你开车进入任何一个大城市时,你不仅能够看到空气中厚重的烟雾,甚至能够用舌头尝得出来。在石棉中添加含铁纤维能够产生更多的自由基。吸烟香烟的烟雾含有多种毒素,它们联合在一起使肺部和身体各部分的自由基数量增加。食物和水源污染我们的水

自由基生物环化学

利用SmI2-H2O体系进行的内酯还原环化串联反应摘要拥有双烯或者烯炔的内酯,在SmI2-H2O体系下进行的还原环化串联反应,可以以很高的产率和非对映选择性得到修饰的甘菊环结构单元。 如果可以改变基本的合成反应途径得到非传统的中间体,新的选择性或者反应活性,那么就可以发现新的合成反应空间。比如,我们最近利用SmI2作为酯羰基的还原试剂进行研究的过程中,发现SmI2-H2O体系在内酯或者1,3-双内酯还原到醇的过程中有着出其不意的选择性。在这里,我们报道了在上述条件下,不饱和内酯进行自由基串联一步构筑甘菊环结构单元。此环化串联反应是由经电子转移的酯羰基形成的非一般的自由基离子引发的。 最近,我们首次报道了利用H2O作为活化助溶剂,SmI2作为还原剂来还原非活化的,环状的,脂肪族性的的酯。并且,我们也是第一次证明通过电子转移的酯羰基自由基离子可以应用在与烯加成上。我们推测5位具有烯烃支链的内酯结构单元1可以通过自由基离子2环化得到七元碳环3,进一步存在于2位的烯可以再次进行经过自由基离子4环化得到双环醇5(Scheme 1)。 具有甘菊环的5环系可以形成众多具有生物活性的天然产物,同时也是一种新的方法得到重要的目标结构。例如,包括phorbol, prostratin, and 12-deoxyphorbol-13-phenylacetate (DPP)在内的tigliane 家族,此外抗癌化合物pseudo- laric acid B and englerin A近年也受到有机合成化学家的重点关注。 为了证明串联反应第一步的合理性,我们选择内酯6在SmI2-H2O体系中进行研究,幸运的是我们以很好的产率拿到了非对映消旋化合物8(Scheme 2)。5位具有烷基取代的的内酯也具有很好的环化。粗品化合物进一步氧化得到9,同时也使得C-C键的形成时非对映选择化合物的比率得以确定。 带有芳基取代的烯在环化过程中以3:1到6:1非对映选择比率得到环化产物。主要产物9j 9l的相对构型用X单晶衍射得以进行确定。6n到8n就是通过巯基自由基的消除进行环化的。

相关文档
最新文档