定积分的应用练习题

合集下载

定积分练习题

定积分练习题

定积分练习题定积分练习题在微积分学习中,定积分是一个重要的概念和工具。

它不仅可以用来计算曲线下的面积,还可以解决各种实际问题。

为了更好地理解和应用定积分,下面将给出一些练习题,通过解题的过程来加深对定积分的理解。

1. 计算定积分∫[0, 2] x^2 dx。

解析:根据定积分的定义,我们可以将曲线y = x^2与x轴所围成的面积表示为∫[0, 2] x^2 dx。

为了计算这个积分,我们可以使用定积分的基本性质,即将曲线下的面积分成若干个小矩形,然后将这些矩形的面积相加。

将区间[0, 2]均匀分成n个小区间,每个小区间的长度为Δx = (2-0)/n = 2/n。

在每个小区间中,选择一个任意点xi,然后计算该点处的函数值f(xi) = (xi)^2。

然后将每个小矩形的面积f(xi)Δx相加,即可得到曲线下的面积。

当n趋向于无穷大时,这个和式就可以表示为定积分∫[0, 2] x^2 dx。

通过计算这个和式,我们可以得到∫[0, 2] x^2 dx = 8/3。

2. 计算定积分∫[1, 3] (2x+1) dx。

解析:这个定积分的计算与上一个例子类似。

我们可以将曲线y = 2x+1与x轴所围成的面积表示为∫[1, 3] (2x+1) dx。

同样地,我们可以将区间[1, 3]均匀分成n个小区间,每个小区间的长度为Δx = (3-1)/n = 2/n。

在每个小区间中,选择一个任意点xi,然后计算该点处的函数值f(xi) = 2xi+1。

然后将每个小矩形的面积f(xi)Δx相加,即可得到曲线下的面积。

当n趋向于无穷大时,这个和式就可以表示为定积分∫[1, 3] (2x+1) dx。

通过计算这个和式,我们可以得到∫[1, 3] (2x+1) dx = 12。

3. 计算定积分∫[0, π/2] sin(x) dx。

解析:这个定积分的计算稍微复杂一些,因为它涉及到三角函数。

我们可以将曲线y = sin(x)与x轴所围成的面积表示为∫[0, π/2] sin(x) dx。

第六章 定积分的应用

第六章 定积分的应用

解:方法一,
如图,曲线的参数方程为
⎧ ⎨ ⎩
x y
= =
4 5
cos t + 4sin
t
,
0 ≤ t ≤ 2π ,那么
∫ ∫ 所求旋转体的体积为V =

−4

y12 ( x)dx


−4

y22 ( x)dx
∫ ∫ = 4π 0 (4sin t + 5)2d cos t − 4π 2π (4sin t + 5)2d cos t
解:如图,
∫ ∫ A =
2π a
ydx =
2π a2 (1− cos t )2 dt
0
0
= 3a2π
3、在[0,1] 上给定函数 y = x 2 ,问 t 取何值时,图中曲边三角形 OACO 与 ADBA 的面积之和最小?
何时最大?
解:设 A(t, t 2 ), (0 ≤ t ≤ 1) ,记曲边三角形 OACO 与 ADBA 的面积 y
这一小块闸门所受压力即压力元素为 dP = ρ gx 50 − x dx ,于是所求压力为 5
∫ P = 20 ρ gx 50 − x dx = 14373 (KN)
0
5
5、设有一长度为 l 、线密度为 μ 的均匀细直棒,在与棒的一端平行距离为 a 单位处有一质量为 m 的质点 M ,试求这细棒对质点的引力。 解:如图,去 y 轴经过细直棒,棒的一端为原点,质点 M 位于 x 轴上,取 y 为积分变量,其变化
62
∫ ∫ S = 2[
π 6
1(
02
2 sinθ )2 dθ +
π 4 π 6
1 2

习题课_定积分的应用(解答)

习题课_定积分的应用(解答)
2 f ( x) (2)又设 f ( x ) 在 (0,1) 中可导,且 f '( x) ,证明(1) x
中的 x0 唯一。
证明: (1)构造函数 g( x ) x f (t )dt ,对 g ( x ) 用罗尔定理即 可得证 。
x 1
(2) 考虑 g '( x) 的单调性来证明。
11

dx dx dx 2 2 2 2 0 1 2cos x 1 2cos x 2 1 2cos x

令 tan x t dx d tan x dt 2 2 而 ; 0 1 2cos 2 x 0 3 tan 2 x 0 3 t2 2 3
S S1 S2 (2 x x )dx ( x 2 2 x )dx 2
y x2 2 x
V y [(1 1 y )2 12 ]dy
1
0
[33 (1 1 y )2 ]dy 9
0
3 2 2 1 1
3
S2
1
o
3 2
d tan x 令 tan x t 0 dx dt 2 1 2cos2 x 2 3 tan2 x 3 t 2 2 3 ;
故原式

3
15
定积分的物理应用:
常 数 ,长度为 L 的细杆, 1.如图,x 轴上有一线密度为
有一质量为 m 的质点到杆右端的距离为 a ,已知引力 系数为 k,则质点和细杆之间引力的大小为( A ) (A) L
3
5. 设曲线 y f ( x ) 在 x 轴的上方,并过点 (1,1) ,该曲线与直线
x 1 , y 0 及动直线 x b(b 1) 所围图形绕 y 轴旋转所得的旋

定积分应用练习题

定积分应用练习题

定积分的应用练习题1. 抛物线22y x = 把圆228x y +=分为两部分,分别求出这两部分的面积。

2. 直线将椭圆2236x y y +=分成两部分,分别求出这两部分的面积。

3. 在抛物线21y x =-上找一点00(,)P x y ,其中00x ≠,过00(,)P x y 作抛物线的切线,使该切线与抛物线及两坐标轴所围成的图形的面积最小。

4. 从抛物线21y x =-上的点00(,)P x y 引另一条抛物线2y x =的切线,求该切线与2y x=所围成的图形的面积。

5. 求有抛物线24(0)y ax a =>与过焦点的弦所围成图形面积的最小值。

6. 求星形线33cos (02)sin x a t t y a tπ⎧=≤≤⎨=⎩所围成的图形的面积A ,全长L ,绕Ox 轴旋转一周所形成的旋转体的体积,和该旋转体的侧表面积。

7. 求伯努利双纽线22cos 2a ρθ=的面积A ,及绕Ox 轴旋转的旋转体的体积和侧表面积。

8. 求圆域222()()x y b ab a +-≤>绕Ox 轴旋转而成的圆环体的体积。

9. (1)求曲线32y x x =-与2y x =所围成的图形的面积;(2)若该图形绕Oy 绕一周,求所得旋转体的体积。

10. 求螺线(0)m ae θρθπ=≤≤与Ox 轴所围成的面积A ,弧长L ,绕Ox 轴旋转一周所形成的旋转体的体积,和该旋转体的侧表面积。

11. 在曲线2(04)3y x =≤≤上人一点的密度等于该点至原点一段曲线的弧线长度,求其质量。

12. 半径为R ,长为l 的圆柱体平放在深度为2R 的水池中(柱体的侧面与水面相切),设柱体的密度为(1)ρρ>,问将柱体移出水中需要做多少功?13. 设半径为R ,高为h 的圆柱体水池盛满了水,若将水池中的水吸干,要做多少功?14. 将半径为的半圆形板竖直放入水中,是其直径与水面相齐。

(1)求该板一侧所受的压力;(2)欲使压力增加一倍,该板应下移多少米?15. 一根半径为R 的圆环金属丝,其线密度为ρ,以等角速度ω绕其某一条直径旋转,求金属丝的动能。

定积分计算平均数练习题

定积分计算平均数练习题

定积分计算平均数练习题一、基础题1. 计算函数 $ f(x) = x^2 $ 在区间 [1, 3] 上的平均数。

2. 计算函数 $ f(x) = \sqrt{x} $ 在区间 [0, 4] 上的平均数。

3. 计算函数 $ f(x) = \sin x $ 在区间 $[0,\frac{\pi}{2}]$ 上的平均数。

4. 计算函数 $ f(x) = e^x $ 在区间 [0, 1] 上的平均数。

5. 计算函数 $ f(x) = \ln x $ 在区间 [1, e] 上的平均数。

二、提高题1. 计算函数 $ f(x) = x^3 3x $ 在区间 [1, 2] 上的平均数。

2. 计算函数 $ f(x) = 2x^2 + 4x + 1 $ 在区间 [2, 3] 上的平均数。

3. 计算函数 $ f(x) = \frac{1}{x} $ 在区间 [1, 3] 上的平均数。

4. 计算函数 $ f(x) = \cos x $ 在区间 $[0,\frac{\pi}{3}]$ 上的平均数。

5. 计算函数 $ f(x) = \frac{1}{\sqrt{1+x^2}} $ 在区间 [0,1] 上的平均数。

三、综合题1. 计算函数 $ f(x) = \sin^2 x $ 在区间 $[0,\frac{\pi}{2}]$ 上的平均数。

2. 计算函数 $ f(x) = e^{x^2} $ 在区间 [1, 1] 上的平均数。

均数。

4. 计算函数 $ f(x) = \frac{x}{x^2 + 4} $ 在区间 [0, 3] 上的平均数。

5. 计算函数 $ f(x) = \sqrt{x^3 + 2x} $ 在区间 [1, 4] 上的平均数。

四、应用题1. 计算速度函数 $ v(t) = 3t^2 2t + 1 $ 在时间区间 [0, 2] 内的平均速度。

2. 计算密度函数 $ \rho(x) = \frac{1}{x+1} $ 在区间 [1, 4] 内的平均密度。

定积分练习题

定积分练习题

定积分练习题一、基本概念题1. 计算定积分 $\int_{0}^{1} (3x^2 + 4) \, dx$。

2. 计算定积分 $\int_{1}^{2} (x^3 2x) \, dx$。

3. 设函数 $f(x) = x^2 3x + 2$,求 $\int_{1}^{3} f(x) \,dx$。

4. 已知函数 $g(x) = \sqrt{1 x^2}$,求 $\int_{1}^{1} g(x) \, dx$。

5. 计算 $\int_{0}^{\pi} \sin x \, dx$。

二、定积分的性质题6. 利用定积分的性质,计算 $\int_{0}^{2} (3x^2 + 4x) \,dx$。

7. 已知 $\int_{0}^{1} f(x) \, dx = 2$,求 $\int_{1}^{2}f(x) \, dx$。

8. 设 $f(x)$ 是奇函数,证明 $\int_{a}^{a} f(x) \, dx = 0$。

9. 已知 $\int_{0}^{1} (f(x) + g(x)) \, dx = 5$,$\int_{0}^{1} (f(x) g(x)) \, dx = 3$,求 $\int_{0}^{1} f(x) \, dx$ 和 $\int_{0}^{1} g(x) \, dx$。

三、定积分的计算题10. 计算 $\int_{0}^{\pi} x \cos x \, dx$。

11. 计算 $\int_{0}^{\frac{\pi}{2}} \ln(\sin x) \, dx$。

12. 计算 $\int_{1}^{e} \frac{1}{x} \, dx$。

13. 计算 $\int_{0}^{1} \frac{1}{\sqrt{1 x^2}} \, dx$。

14. 计算 $\int_{0}^{2} |x 1| \, dx$。

四、定积分的应用题15. 计算由曲线 $y = x^2$,直线 $x = 2$ 和 $y = 0$ 所围成的图形的面积。

最新定积分的几何应用例题与习题(学生用)

最新定积分的几何应用例题与习题(学生用)

定积分的几何应用例题与习题1曲线】的极坐标方程T=「COSR(0),求该曲线在所对应的点处的切线L的2 4直角坐标方程,并求曲线〕、切线L与x轴所围图形的面积。

2、设直线y=ax与抛物线y=x2所围成的面积为S n它们与直线x =1所围成的面积为务并且a <1(1)试确定a的值,使S ' S2达到最小,并求出最小值;(2)求该最小值所对应的平面图形绕x轴旋转一周所得旋转体的体积。

3、设xoy平面上有正方形D = {(x, y) 0兰x乞1,0兰y兰1}及直线L:x+y = t(t^O)x若S(t)表示正方形D位于直线I左下部分的面积,试求S(t)dt(x _0)4、求由曲线y =e»J sinx|(x Z0)与x轴所围图形绕x轴旋转所得旋转体的体积乂35、求由曲线^aC0S3t(a -0^n<-)与直线y=x及y轴所围成的图形[y=asi n3t 4 2绕x轴旋转所得立体的全表面积。

X _x6. 曲线y = e e—与直线x = 0, x =t(t • 0)及y = 0围成一曲边梯形,该曲边梯2形绕x轴旋转一周得一旋转体,其体积为V(t),侧面积为S(t),在x = t处的底面积为F(t)(1) 求的值;(2)计算极限limV(t) t-和F(t)泄2伽抄 (1)V(t) -::F(t)7、求由摆线x=a(t -sint),y= a(1-cost)的一拱(0辽t辽2二)与横轴所围成的平面图形的面积, 及该平面图形分别绕x轴、y轴旋转而成的旋转体的体积。

(1)A=3二a2 , (2)V x =5二2a3 , (3)V y =6二3a38、设平面图形A由x2y2 -2x及y-x所确定,求图形A绕直线x=2旋转一周所得旋转体的体积。

兀2 2V 二2 39设函数f (x), g(x)可微,且f (x)二g(x), g (x)二f (x), f (0) = 0, g(x) = 0.求:1)F(x)二丄©;(2)作出函数曲线y二F(x)的图形;(3)计算由曲线y = F(x)及直线g(x)x=0,x二b(b 0)和y =1围成的面积•(1) F(x)=1—飞^.e +1(2) 当XA0时,F"(x)c0,曲线上凸;当xc0时,F"(x)>0,曲线下凹,所以(0,0)为拐点,且y二_1为其水平渐近线•b b 2(3) S= °(1-F(x))dx= °孑”dx = 2b I n2-ln( 2b 1).10. 已知曲线y=a.x,(a 0)与曲线y = In ■■、x在点(x0, y0)处有公共切线,求(1常数a及切点(x0, y0);(2)两曲线与x轴围成的平面图形的面积;(3)两曲线与x轴围成的平面图形绕x轴旋转一周所得旋转体的体积V(1 a =1 ,切点(e2,1) RjsJe2—1(3)V x :e 6 2 2x11. 对于指数曲线y =e2(1)试在原点与x(x 0)之间找一点.-v x (0 ::: x :: 1),使这点左右两边有阴影部分的面积相等,并写出 v的表达式(2)求lim v -?x T十x xt xe" -2e2 2lim J xj •2_ xx(e2 -1)12、抛物线y=ax2・bx,c通过点(0,0),且当0_x_1时,y_0,它和直线x = 1及y=0所围的图形的面积是4,问这个图形绕x轴旋转而成的旋转体的体积为最小值时,a,b与c的9值应为多少?5a ,b = 2,c = 0313、过点P(1,0)作抛物线y x-2的切线,该切线与上述抛物线及x轴围成一平面图形(如图),求此图形绕x轴旋转所成旋转体的体积。

第6章定积分的应用习题集及答案

第6章定积分的应用习题集及答案

第六章 习题 定积分的应用一.选择题1.曲线x y ln =、a y ln =、b y ln =(b a <<0)和y 轴所围图形的面积为( C ) (A )⎰ba xdx ln ln ln ; (B )⎰be a e xdx e ; (C )⎰ba ydy e ln ln ; (D )⎰ae b e xdx ln .2.曲线x e y =下方与该曲线过原点的切线左方和y 轴右方所围图形的面积为(a )(A )⎰-10)(dx ex e x ; (B )⎰-edy y y y 1)ln (ln ; (C )⎰-e x x dx x e e 1)(; (D )⎰-10)ln (ln dy y y y .3.摆线)sin (t t a x -=、)cos 1(t a y -=(0>a )的一拱(π20≤≤t )与x 轴所围图形绕x 轴旋转一周所成旋转体的体积为( D )(A )⎰-ππ2022)cos 1(dt t a ; (B )⎰--at t a d t a ππ2022)]sin ([)cos 1(; (C )⎰-a dt t a ππ2022)cos 1(; (D )⎰--ππ2022)]sin ([)cos 1(t t a d t a . 4.曲线θρcos 2a =(0>a )所围图形的面积为( D )(A )⎰22)cos 2(21πθθd a ; (B )⎰-ππθθd a 2)cos 2(21;(C )⎰πθθ202)cos 2(21d a ; (D )⎰202)cos 2(212πθθd a .5.连续曲线)(x f y =与直线a x =、b x =(b a <≤0)及x 轴围成的图形绕y 轴旋转一周生成的旋转体体积为( B )(A )⎰ba dx x xf )(2π;(B )⎰ba dx x f x )(2π;(C )⎰ba dx x xf )(22π;(D )⎰ba dx x f x )(22π. 6.半径为R 的半球形水池已装满水.要将水全部吸出水池,需做功的为 ( C )(A )⎰-Rdy y R 022)(π;(B )⎰Rdy y 02π;(C )⎰-Rdy y R y 022)(π;(D )⎰Rdy y 03π.二.计算题1.求曲线221x y =与822=+y x 所围图形(上半平面部分)的面积.解:易知:曲线221x y =与822=+y x 的交点为(2,2)±。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

题型
1.由已知条件,根据定积分的方法、性质、定义,求面积
2.由已知条件,根据定积分的方法、性质、定义,求体积

一.微元法及其应用
二.平面图形的面积
1.直角坐标系下图形的面积
2.边界曲线为参数方程的图形面积
3. 极坐标系下平面图形的面积
三.立体的体积
1.已知平行截面的立体体积
2.旋转体的体积
四.平面曲线的弦长
五.旋转体的侧面积
六.定积分的应用
1.定积分在经济上的应用
2.定积分在物理上的应用
题型
题型I微元法的应用
题型II求平面图形的面积
题型III 求立体的体积
题型IV 定积分在经济上的应用 题型V 定积分在物理上的应用
自测题六
解答题
4月25日定积分的应用练习题
一.填空题
1. 求由抛物线线x x y 22
+=,直线1=x 和x 轴所围图形的面积为__________
2.抛物线x y 22
=把圆82
2
≤+y x 分成两部分,求这两部分面积之比为__________
3. 由曲线y x y y x 2,42
2==+及直线4=y 所围成图形的面积为 4.曲线3
3
1x x y -
=
相应于区间[1,3]上的一段弧的长度为 5. 双纽线θ2sin 32
=
r 相应于2
2
π
θπ

≤-
上的一段弧所围成的图形面积
为 . 6.椭圆)0,0(1
sin 1
cos b a t b y t a x ⎩⎨
⎧+=+=所围成的图形的面积为
二.选择题
1. 由曲线2
2
,y x x y ==所围成的平面图形的面积为( ) A .
31 B . 32 C . 21 D . 2
3 2. 心形线)cos 1(θ+=a r 相应于ππ2≤≤x 的一段弧与极轴所围成的平面图形的面积为( )
A .
223a π B . 243a π C . 2
8
3a π D . 23a π 3. 曲线2
x
x e e y -+=相应于区间],0[a 上的一段弧线的长度为 ( )
A . 2a a e e -+
B . 2
a
a e e -- C .
12++-a a e e D .12-+-a a e e 4. 由曲线2,0,===y x e y x 所围成的曲边梯形的面积为( )。

A.dy y ⎰
2
1
ln B.
dy e e x

2
C.dy y ⎰
2
ln 1
ln D.
()d x e x
⎰-2
1
2
三.解答题
1. 求曲线2
2,2,4
x y x xy y ===所围成的平面图像的面积.
2. 求C 的值(0<C <1=,使两曲线2x y =与3Cx y =所围成图形的面积为3
2
3. 已知曲线)0(2
>=k ky x 与直线x y -=所围图形的面积为
48
9
,试求k 的值.
4. 求a 的值,使曲线)1(2
x a y -=)0(>a 与在点(-1,0)和(1,0)处的法线所围成的
平面图形的面积最小.
5.在第一象限求曲线12
+-=x y 上的一点,使该点处的切线及两坐标轴所围成图形的面积
最小,并求此最小面积
6. 求椭圆1322
=+y x 与13
22
=+y x 所围公共图形的面积
7.求由下列各平面图形的面积:
(1)ϑcos 2a r = (2)θsin 2=r 与1=r 的公共部分 (3))cos 1(3θ+=r (4)θsin 2=
r 与θ2cos 2=r 的公共部分
8. 求由下列曲线所围区域的面积:(②,③,④图应补全)
①摆线
)
0(sin ,cos 33>==a t a y t a x ; ②
431,t y t t x -=-=;
③⎥⎦
⎤⎢⎣⎡∈==2,0,sin ,cos 4
4
πt t y t x ; ④3
222,2t t y t t x -=-=.
4月26日定积分的应用练习题
基础题:
1. 由曲线x y sin =和它在2
π=
x 处的切线以及直线π=x 所围成的图形的面积是
__________,以及它绕x 轴旋转而成的旋转体的体积为__________
2. 星形线t a x 3
cos =,t a y 3
sin =的全长为________
3. 由抛物线2
x y =及x y =2
所围成图形的面积,并求该图形绕x 轴旋转所成旋转体的体
积为__________
4. 半立方抛物线()32
132
-=
x y 被抛物线32x y =截得的一段弧的长度为__________ 5. 轴与求抛物线x x x y 2
2-=所围成的图形绕y 轴旋转所成的旋转体体积为___________
6. 由3
,2,0y x x y ===所围成的图形,分别绕x 轴及y 轴旋转,计算所得两个旋转体的体积分别为
______________
7.由曲线4,==x y x 和x 轴所围成的平面图形绕x 轴旋转生成的旋转体的体积为
( )
A . π16
B . π32
C . π8
D . π4
8. 曲线2
x
x e e y -+=相应于区间],0[a 上的一段弧线的长度为 ( )
A . 2a a e e -+
B . 2
a
a e e -- C .
12++-a a e e D .12-+-a a e e 9. 水下由一个矩形闸门,铅直地浸没在水中.它的宽为2m ,高为3m ,水面超过门顶2m ,则闸门上所受水的压力为( )
A . 245kN
B . 245N
C . 205.8N
D . 205.8kN
10..(1)由曲线x y x y =
=,2
所围成的图形绕x 轴旋转生成的旋转体的体积
为 .
(2)由双曲线x
y 1
=
和直线1,-=-=x e x 与x 轴围成的平面图形绕y 轴旋转生成的旋转体的体积为 .
(3)曲线3
3
1x x y -
=
相应于区间[1,3]上的一段弧的长度为 . (4) 曲线16)5(2
2=-+y x 绕x 轴旋转所得旋转体的体积为 .
11. 如右图,阴影部分面积为( ) A .[()()]b
a f x g x -⎰d x
B .[()()][()()]c
b
a
c
g x f x dx f x g x -+-⎰⎰d x C .[()()][()()]b
b
a
c
f x
g x dx g x f x -+-⎰⎰d x
D .[()()]b
a
g x f x +⎰d x
12.如图,设点P 从原点沿曲线y =x 2
向点A (2,4)移动,
记直线OP 、曲线y =x 2
及直线x =2所围成的面积 分别记为S 1,S 2,若S 1=S 2,则点P 的坐标为________.
13. 求曲线x y =
()40≤≤x 上的一条切线,使此切线与直线0=x , 4=x 以及曲线
x y =所围成的平面图形的面积最小
14. 曲线2
22x y -=和21x y -=围成一平面图形.求
(1)该平面图形的面积.
(2)将该平面分别绕x 轴和y 轴旋转而成的旋转体的体积. 15. 求曲线)20()cos (sin )
sin (cos π≤≤⎩

⎧-=+=t t t t a y t t t a x 的弧长
16. 一截面为等要梯形的贮水池,上底宽6m,下底宽4m ,深2m ,长8m .要把满池水全部抽到距水池上方20m 的水塔中,问需要做多少功?
17. 有一立体以抛物线x y 22=与直线2=x 所围成的图形为底,而垂直于抛物线轴的截面都是等边三角形,求其体积。

18.设1D 是由抛物线2
2x y =和直线0y ,a x ==所围成的平面区域,2D 是由抛物线
22x y =和直线2,==x a x 及0=y 所围成的平面区域,其中20<<a .试求:
(1)1D 绕y 轴旋转所成的旋转体的体积1V ,以及2D 绕x 轴旋转所成的旋转体的体积2V .
(2)求常数a 的值,使得1D 的面积与2D 的面积相等.
19.设平面图形由曲线2
x y =,22x y =与直线1=x 所围成.
(1)求该平面图形绕x 轴旋转一周所得的旋转体的体积.
(2)求常数a ,使直线a x =将该平面图形分成面积相等的两部分.
20.设由抛物线2
(0)y x x =≥,直线2
(01)y a a =<<与y 轴所围成的平面图形绕x 轴旋转一周所形成的旋转体的体积记为1()V a ,由抛物线2
(0)y x x =≥,直线2
(01)
y a a =<<与直线1x =所围成的平面图形绕x 轴旋转一周所形成的旋转体的体积记为2()V a ,另
12()()()V a V a V a =+,试求常数a 的值,使()V a 取得最小值。

相关文档
最新文档