基于小波变换的脑电信号特征提取讲解

合集下载

小波变换特征提取

小波变换特征提取

小波变换特征提取小波变换是一种用于信号分析的数学工具,它在信号处理、图像处理、模式识别等领域中有很广泛的应用。

小波变换具有区间局限性和多分辨率分析的特性,可以有效地提取信号中的特征信息,对于信号分析和识别具有重要意义。

小波变换的基本原理是将信号分解成不同频率的小波分量,从而得到信号在不同频率下的信息。

小波基函数的选择和分解层数会直接影响到得到的小波系数,进而影响到特征提取的效果。

通常,小波基函数可以选择Haar、Daubechies、Symlet等常用的小波基函数。

在小波变换的基础上,可以进行特征提取的处理,常见的方法有:1.小波包变换小波包变换可以根据需求对小波分解的结果进行更细致的调整,以更好地提取信号的特征。

小波包变换将小波系数进一步分解成多个分量,可以得到更多的信息,进而进行更精细的特征提取。

2.小波包能量特征小波包能量特征是通过计算小波包分解后的能量分布来提取特征。

利用小波包变换得到的分解系数,可以计算每一层分解后的能量占比,从而得到信号在不同频率下的能量分布。

可以根据某一频带的能量分布情况来分析信号的特征。

小波包熵特征是通过计算小波包分解后的信息熵来提取特征。

信息熵可以反映信号的复杂度和随机性,小波包熵特征可以提取出信号的随机性和更深层次的特征。

小波变换可以有效地提取信号的特征信息,对于信号分析和识别具有重要意义。

特征提取的方法可以根据信号的特点和需求进行选择,可以选择小波包变换、小波包能量特征、小波包熵特征和小波包峰值特征等方法。

在实际应用中,可以根据具体条件和要求进行选择和优化,以更好地提取信号的特征信息。

结合小波包和ICA的脑电信号特征波提取方法

结合小波包和ICA的脑电信号特征波提取方法

取的特征 波 ; 再利 用 IA分 离技 术 , 次提取 的特征 波为参 考信号对其进 行增 强。 实验 结果表 明, 比于独 立 C 以初 对 地应 用某一种 方法 , 两种 方法相结合 更能有效 地提取脑 电信号特征 波 。
关 键 词 :小 波 包 ;独 立 分 量 分 析 ;特 征 提 取 ;脑 电信 号
0 引 言
脑 电信号是一种典型的非平稳随机信号 , 且存在一定的非
高斯 性 和 非 线 性 。传 统 的分 析 处 理 方 法 是 将 脑 电信 号 近 似 看
1 基本原 理及算 法研究
1 1 小波 包 原 理 .
小波变换是一种分析非平稳信号 的有效方法 , 它能够把信
号分 解 成 不 同尺 度 基小 波 的加 权 和 , 主 要 不 足是 在 高 频 段 的 其
中图分 类号 :T 3 1 P 9
文献标 志码 :A
ቤተ መጻሕፍቲ ባይዱ
文 章编号 :10 — 6 5 20 )9 2 7 — 3 0 13 9 (0 8 0 — 6 10
Fe t r xr cin o au e e ta t fEEG in lb s d o v ltp c a e a d I o sg a a e n wa ee a k g n CA
XI S n — u E o g y n, PAN i ZHANG e— i g Hu , W ip n
( colfEet nc I o t n N r ws r o t h i l n e i , i( 0 2,hn Sho o l r i& n r i , ot ee P le n a i rt X ’n7 07 C i co f ma o h tn y c c U v sy t 1 a)

基于小波包变换的癫痫脑电信号特征提取

基于小波包变换的癫痫脑电信号特征提取

基于小波包变换的癫痫脑电信号特征提取
周红标;陈若珠;李军红
【期刊名称】《电子测量技术》
【年(卷),期】2009()10
【摘要】为了有效识别癫痫脑电信号,提出了一种适合于非平稳脑电信号的特征提取方法。

以临床采集的包含癫痫发作期的5组500个EEG公共数据为样本,选择了具有任意多分辨分解特性的小波包变换,对信号进行多尺度分解,并提取了各级节点的小波包系数。

将小波包系数能量作为特征值,构建了特征向量并输入到BP神经网络分类器中进行自动识别。

实验结果表明,该算法的识别率达到了91.5%。

【总页数】4页(P36-39)
【关键词】癫痫脑电;小波包;特征提取;BP神经网络
【作者】周红标;陈若珠;李军红
【作者单位】淮阴工学院电子与电气工程学院;兰州理工大学电信学院
【正文语种】中文
【中图分类】TP391
【相关文献】
1.基于小波包变换的眼电信号特征提取及分类 [J], 周婷婷;罗志增
2.基于小波包变换的癫痫心电信号特征提取 [J], 易子川;钟清华
3.基于最优小波包变换与核主分量分析的局部放电信号特征提取 [J], 唐炬;谢颜斌;周倩;张晓星
4.基于小波包变换的肌电信号特征提取 [J], 石君;周美娇;朱正平;傅志中
5.脑电信号的混沌分析和小波包变换特征提取算法 [J], 罗志增;李亚飞;孟明;孙曜因版权原因,仅展示原文概要,查看原文内容请购买。

基于小波包能量的脑电信号特征提取方法

基于小波包能量的脑电信号特征提取方法

基于小波包能量的脑电信号特征提取方法徐宝国;宋爱国;王爱民【期刊名称】《东南大学学报(自然科学版)》【年(卷),期】2010(040)006【摘要】在脑机接口研究中,针对运动想象脑电信号的特征抽取,提出了一种基于小波包变换和AR模型的特征提取方法.该方法首先利用小波包变换对大脑C3和C4处采集的2路运动想象脑电信号进行3层分解,抽取小波系数的能量特征;然后,利用Burg算法提取脑电信号的5阶AR模型系数;最后,将这2类特征组合,使用基于马氏距离的线性判别分类器对左右手运动想象脑电模式进行分类,正确率达到91.43%.该方法提取的特征向量较好地反应了运动想象脑电信号的事件相关去同步和事件相关同步的变化时程,为BCI研究中脑电信号的模式识别提供了新的思路.此外,该方法的识别率高,复杂性低,适合应用于在线脑机接口中.【总页数】4页(P1203-1206)【作者】徐宝国;宋爱国;王爱民【作者单位】东南大学仪器科学与工程学院,南京210096;东南大学仪器科学与工程学院,南京210096;东南大学仪器科学与工程学院,南京210096【正文语种】中文【中图分类】R318【相关文献】1.基于小波包和ICA的ERD/ERS脑电信号特征提取 [J], 段锁林;徐亭婷;庄玮2.基于小波包和ICA的ERD/ERS脑电信号特征提取 [J], 段锁林;徐亭婷;庄玮;3.基于CSP算法与小波包分析方法的运动想象脑电信号特征提取性能的比较 [J], 吴林彦;鲁昊;高诺;王涛4.结合小波包和ICA的脑电信号特征波提取方法 [J], 谢松云;潘辉;张伟平5.基于小波包和共同空间模型的运动想象脑电信号特征提取算法 [J], 高枫; 鲁昊; 高诺因版权原因,仅展示原文概要,查看原文内容请购买。

脑电信号分析中的小波变换技术研究

脑电信号分析中的小波变换技术研究

脑电信号分析中的小波变换技术研究脑电信号在人类大脑活动中具有至关重要的作用,脑电信号的测量和分析对于理解大脑的机制以及研究神经系统疾病有着重要的意义。

随着人工智能技术的发展,人们在脑电信号分析领域应用了越来越多的新技术和新算法。

其中,小波变换技术是一个被广泛使用的技术,它在脑电信号分析中具有重要的应用价值。

小波变换是对信号进行分析的一种数学工具,它可以将信号分解成不同的频率和幅度分量,从而可以更好地理解信号的特性。

在脑电信号中,小波变换可以被用来检测脑电信号中的节律性和非节律性成分。

这些成分与不同的神经活动相关,例如睡眠、觉醒和癫痫等。

小波变换可分为连续小波变换和离散小波变换两种。

在脑电信号分析中,离散小波变换是被广泛利用的。

它将信号展开成多个分辨率的小波系数,并且用于对不同的频段信号进行分析。

通过选择适当的小波基函数,可以进一步优化分析结果。

小波分析在实际应用中的主要任务是加强信号中重要信息的信噪比。

在这种情况下,应用多层小波分析是比较常见的。

这种方法可以依次减少信号中的高频成分,从而突出并加强更低频成分的信息。

这种连锁的效应可以在人脑电信号的分析中是非常有用的。

小波变换作为一种新颖的信号分析方法并非没有缺点,使用小波变换进行信号分析存在一些问题需要解决。

其中最主要的问题就是小波基函数的选择。

小波基函数的选择对于信号处理的结果有着决定性的影响。

目前,学界和业界在对小波基函数的选择进行了大量研究和探讨,以期解决这一问题。

在脑电信号分析应用中,小波变换通过提供对信号的更好分辨率和时频特性分析,已经成为一个有利的分析工具。

因为它可以更准确地检测和描述不同的神经活动,它的研究和应用将有助于揭示人类大脑的活动机制,并为人们寻找到更好的脑电信号处理方法提供帮助。

脑电信号处理中的特征提取方法研究

脑电信号处理中的特征提取方法研究

脑电信号处理中的特征提取方法研究脑电信号处理是神经科学领域中的一项重要研究,它通过记录和分析头皮表面的脑电波形信号,为研究大脑功能和疾病提供了重要的数据来源。

然而,脑电信号存在信噪比低、干扰多等问题,因此对信号进行预处理和特征提取非常关键。

特征提取是脑电信号处理的一个重要环节,它通过对信号进行抽象和简化,提取其中的关键特征,为后续数据分析和应用提供基础。

当前,脑电信号处理中常用的特征提取方法包括时域特征提取、频域特征提取和时频域特征提取。

时域特征提取是指对信号的幅度、波形等进行分析,常用的特征包括平均值、方差、均方根、峰值等。

这些特征能够反映信号的基本特性,并广泛应用于脑电信号分类、事件相关电位分析等方面。

频域特征提取是指对信号的频谱分布进行分析,常用的特征包括功率谱密度、频谱峰值等。

这些特征能够反映信号在不同频率段内的能量分布情况,有利于分析不同频段对信号意义的影响。

频域特征提取应用广泛,如用于脑电信号振荡分析、脑电图的特征提取等。

时频域特征提取是指对信号的时域和频域进行联合分析,提取其中的时域和频域特征,常用的方法包括小波变换、时频分析等。

时频域特征提取能够反映信号在不同时间和频率上的变化规律,更加丰富的特征信息使其在诸如脑电信号复杂事件分类、睡眠分期识别等方面得到广泛应用。

除了上述传统的特征提取方法,近年来还涌现出了很多新方法,如深度学习、模式识别等,这些方法不仅能够提取更加复杂的特征,也能够应用于更加复杂的任务。

例如,深度学习通过构建深度神经网络,能够有效地提取脑电信号中的非线性特征,应用于自然语言、视觉识别等领域,已经在脑电信号处理中得到广泛应用。

为了更好地挖掘脑电信号中的特征,特征提取方法也在不断发展变化。

例如,近年来多学科的交叉探究,为特征提取提供了更加多样化的思路。

仿生学、图形学、机器视觉等方向的研究,可以为特征提取提供启示,从而创造出更加优秀的特征。

同时,随着智能化的发展,人工智能方法也将会在脑电信号特征提取方面产生更深入的影响。

脑电图信号处理中的特征提取算法优化

脑电图信号处理中的特征提取算法优化

脑电图信号处理中的特征提取算法优化脑电图信号是一种记录脑电活动的电信号,被广泛应用于脑科学、认知神经科学、临床神经病学和精神病学等领域。

对于脑电图信号的分析和处理,特征提取算法是其中的重要环节之一。

本文将探讨如何优化脑电图信号处理中的特征提取算法。

一、背景介绍脑电图信号的特征提取是指从原始的脑电图信号中提取出有意义的信息。

这些信息可以帮助研究人员了解大脑的状态和特性,同时也可以推断患者的神经系统健康状况。

在脑电图信号的特征提取过程中,常用的方法有:时域特征、频域特征、小波包变换、独立成分分析、经验模态分解等。

这些方法各自有其优劣,因此选择适合的特征提取算法非常关键。

二、特征提取算法的优化2.1 基于时域特征的算法时域特征主要是依据脑电信号的振幅、频率、相位、斜率等参数,从而反映出不同的脑电信号特点。

而在实际应用中,时域特征提取较为简单,计算速度快,同时也不需要太高的计算机性能,因此使用较多。

然而,时域特征的提取只是简单的基础处理,如果要进行更深入的研究,比如对信号的频域进行分析,就需要使用其他方法。

2.2 基于频域特征的算法频域特征指的是对脑电信号进行傅里叶变换后,得出不同频率的能量分布情况。

可以通过计算中心频率、带宽、相位等参数,得出不同脑区活动的频率规律。

然而,频域特征提取存在着一些缺点,如容易受到脑电信号噪声的影响,无法准确反映出信号的时域特征等。

因此,在实际应用中也需要其他的方法与之结合。

2.3 基于小波包变换的算法小波包变换可以看作一种信号的分解方法,通过对脑电信号进行小波包分解,得到多级频带的小波包系数,然后可以计算出每个频带所含的信息以及它们之间的相关性。

小波包变换提供了一种更为全面的脑电信号特征提取手段,可以获得频域和时域信息,并能够剔除信号中的噪声,因此在实际应用中十分有用。

2.4 基于独立成分分析的算法独立成分分析可以将多维信号拆分成多个独立的成分,以便于后续的分析处理。

在脑电信号中,其可以拆分出多个相互独立的成分,并可以用于提取特定的信息。

脑电波信号分析中的特征提取方法研究

脑电波信号分析中的特征提取方法研究

脑电波信号分析中的特征提取方法研究脑电波信号是一种复杂的生理信号,具有高度的时变和非线性特性,是研究大脑活动和认知机制等的重要数据来源。

脑电波信号分析中的特征提取方法是一种有效的技术手段,可以从脑电波信号中提取出不同频率和时域特征,并将其用于诊断、分类、定位、交互等应用领域。

本文将对脑电波信号特征提取方法的研究现状和发展趋势进行综述。

1. 时间域特征提取方法时间域特征是指从脑电信号的时域波形中提取出的特征,包括幅值、均值、标准差、斜率、能量、方差、脊线等。

这些特征可以反映脑电信号的整体特征和有效信息量。

其中最常用的是均值、方差和能量三种特征,它们可以用于描述脑电波信号的基本形态和频率成分。

2. 频域特征提取方法频域特征是指从脑电信号的频域谱中提取出的特征。

频谱分析可以将脑电信号分解为不同的频率成分,从而可以提取出该信号的频率成分特征。

常用的频域特征包括功率谱密度、相干函数、相位差、谱峰值、谱带宽等。

这些特征可以用于描述脑电波信号的频率成分和功率分布情况。

3. 时频域特征提取方法时频分析是一种将时间域和频域分析相结合的方法,可以提取出脑电信号的时频特征。

时频域特征可以更准确地描述脑电信号的时变性质和非线性特性。

常用的时频域特征包括小波包系数、Hilbert-Huang变换、时频瞬时能量、时频熵等。

这些特征可以被用于分析脑电信号的时频特征和相互关系。

4. 非线性特征提取方法非线性特征是指从脑电信号的非线性动力学特性中提取出的特征,常用的非线性特征包括分形维数、近似熵、改进后的准确熵等。

这些特征可以用于描述脑电信号的复杂度和混沌性质,有助于研究大脑认知和行为过程的复杂性。

5. 模式识别特征提取方法模式识别特征是指从脑电波信号的特征空间中提取出的特征,以实现多分类和个体分类的目的。

常用的模式识别技术包括神经网络、支持向量机和随机森林等。

这些技术可以基于脑电波信号的多种特征进行分类和预测,具有很高的分类准确度和稳定性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基于小波变换的EEG(脑电信号)特征提取
姓名: 学号:
复旦大学
Contents
一、EEG特点及一般处理流程 二、小波变换 三、基于小波变换的 EEG 特征提取
2
重庆邮电大学
一、脑电信号特点及一般处理流程 脑电信号特点:
? 随机性及非平稳性相当强。人脑是一个庞大而复杂的系统,按生理功能可分为
许多基本环节,这些基本环节的生理活动相互影响、相互渗透地交ቤተ መጻሕፍቲ ባይዱ在一起,而其中 存在的联系、制约关系及活动规律还没有被我们清楚地认识。因而,脑电信号表现出 明显的随机性,一般不能用数学函数来准确表达,它们的规律主要从大量的统计结果 中反映出来。
A、具有有限的持续时间和突变的频率和振幅; B、在有限时间范围内平均值为0。
10 重庆邮电大学
二、小波变换
小波的“容许”条件:
用一种数学的语言来定义小波,即满足“容许”条件的一种函数,“容许” 条件
非常重要,它限定了小波变换的可逆性。? ? (? ) 2
? ( x ) ? ? (? )
? C? ? ? ? ? d? ? ?
(2)克服第二个不足:由于小波函数具有紧支撑的性质即某一区间外为零。 这样在求各频率水平不同时刻的小波系数时,只用到该时刻附近的局部信息。从 而克服了上面所述的第二个不足。
(3)克服第三个不足:通过与加窗傅立叶变换的“时间—频率窗”的相似分 析,可得到小波变换的“时间—频率窗”的笛卡儿积。小波变换的“时间--频率
窗” 的宽度,检测高频信号时变窄,检测低频信号时变宽。这正是时间--频率分析所 希望的。根据小波变换的 “时间—频率窗” 的宽度可变的特点,为了克服上面
所 述的第三个不足,只要不同时检测高频与低频信息,问题就迎刃而解了。
9
重庆邮电大学
二、小波变换
小波是什么?
小波可以简单的描述为一种函数,这种函数在有限时间范围内变化,并且平 均值为0。这种定性的描述意味着小波具有两种性质:
傅里叶闭环具有一定的局限性。 ? 用傅立叶变换提取信号的频谱需要利用信号的全部时域信息。 ? 傅立叶变换没有反映出随着时间的变化信号频率成分的变化情况。 ? 傅立叶变换的积分作用平滑了非平稳信号的突变成分。
由于上述原因,必须进一步改进,克服上述不足,这就导致了小波分析。
8
重庆邮电大学
二、小波变换
(1)克服第一个不足:小波系数不仅像傅立叶系数那样,是随频率不同而变 化的,而且对于同一个频率指标j, 在不同时刻 k,小波系数也是不同的。
7
重庆邮电大学
二、小波变换
小波变换与傅里叶变换的比较:
小波分析是在傅里叶分析的基础上发展起来的,但小波分析与傅里叶分析存 在着极大的不同,与Fourier变换相比,小波变换是空间(时间)和频率的局部变 换,因而能有效地从信号中提取信息。通过伸缩和平移等运算功能可对函数或信 号进行多尺度的细化分析,解决了Fourier变换不能解决的许多困难问题。小波变 换联系了应用数学、物理学、计算机科学、信号与信息处理、图像处理、地震勘 探等多个学科。
5
重庆邮电大学
一、脑电信号特点及一般处理流程
小波变换
CSP AR 特征提取的主要方法(滤波器): AAR FFT HHT
LDA SVM 模式分类的主要方法(分类器): BP人工神经网络 贝叶斯分类法
最后,将分类好的EEG信号以指令形式用于控制外部设备。
6
重庆邮电大学
二、小波变换
小波发展史:
小波变换是近十几年新发展起来的一种数学工具,是继一百多年前的傅里叶 (Fourier)分析之后的又一个重大突破,它对无论是古老的自然学科还是新兴的高 新应用技术学科均产生了强烈的冲击。
? 脑电信号具有非线性。脑电信号是大脑中各种神经元之间相互作用的信号的复杂
组合,组合的非线性导致脑电信号具有非线性的特点。
? 信噪比低。在维持正常生理活动的条件下,生物体的各个基本系统之间存在着有机
的联系,因而在脑电信号中存在着严重的背景噪声,而且噪声常常超过信号,导致信 噪比很低。
? 信号微弱。人体脑电信号的强度很微弱,一般在微、毫伏级 。
3
重庆邮电大学
一、脑电信号特点及一般处理流程
?频率低。脑电信号是低频率的慢变信号,通常频率范围0.5—100Hz。 根据频率可把脑电信号分为以下几个基本节律:
δ波:频率:0.5~4Hz,振幅:20~200μV。 θ波:频率:4~7Hz,振幅:20~150μV。 α 波:频率:8~13Hz,振幅:20~100μV。 β 波:频率:14~30Hz,振幅:5~20μV。 γ波:频率:30~45Hz,振幅:一般不超过30μV。
4
重庆邮电大学
一、脑电信号特点及一般处理流程 一般处理流程:
脑电信号 BBCCII信信号号采采集集
EEG
特征提取 反馈
特征向量 模式识别分类
控制命令 控制装置
外部设备
采集:各种脑电采集的电极帽。
例如有:ECI 公司的 128 通道 Ag/AgCl 电极帽,还有如图所示 的Emotiv SDK Headset采集帽, 常用采样频率为128Hz。
小波本身是紧支撑的,即只有小的局部非零定义域,在窗口之外函数为零; 本身是振荡的,具有波的性质,并且完全不含有直流趋势成分,即满足
?
? ? (0) ? ? (x)dx ? 0 ??
11 重庆邮电大学
二、小波变换
为什么选择小波:
小波提供了一种非平稳信号的时间-尺度分析手段,不同于FT方法,与STFT方 法比较具有更为明显的优势
度 幅
时间






时间
12 重庆邮电大学
二、小波变换
小波变换的定义:
小波变换是一种信号的时间——尺度(时间——频率)分析方法,它具有多 分辨分析的特点,而且在时频两域都具有表征信号局部特征的能力,是一种窗口 大小固定不变但其形状可改变,时间窗和频率窗都可以改变的时频局部化分析方 法。即在低频部分具有较低的时间分辨率和较高的频率分辨率,在高频部分具有 较高的时间分辨率和较低的频率分辨率,很适合于分析非平稳的信号和提取信号 的局部特征,所以小波变换被誉为分析处理信号的显微镜。在处理分析信号时, 小波变换具有对信号的自适应性,也是一种优于傅里叶变换和窗口傅里叶变换的 信号处理方法。
1909: Alfred Haar——发现了Haar小波。 1980:Morlet——Morlet小波,并分别与20世纪70年代提出了小波变换的概念,
20世纪80年代开发出了连续小波变换CWT( continuous wavelet transform ) 1986:Y.Meyer ——提出了第一个正交小波Meyer小波 1988: Stephane Mallat——Mallat快速算法(塔式分解和重构算法)
相关文档
最新文档