回转支承选型计算

回转支承选型计算
回转支承选型计算

回转支承选型计算:

一、单排球式回转支承的选型计算

1、计算额定静容量

C0 = f ·D·d

式中:Co ——额定静容量,kN

f ——静容量系数,0.108 kN / mm2

D ——滚道中心直径,mm

d ——钢球公称直径,mm

2、根据组合后的外载荷,计算当量轴向载荷

式中:Cp ——当量轴向载荷,kN

M ——总倾覆力矩,kN·m

Fa ——总轴向力,kN

Fr ——总倾覆力矩作用平面的总径向力,kN 3、计算安全系数

fs = Co / Cp

fs值可按下表选取。

二、三排柱式回转支承的选型计算

1、计算额定静容量

C0 = f ·D·d

式中:Co ——额定静容量,kN

f ——静容量系数,0.172 kN / mm2

D ——滚道中心直径,mm

d ——上排滚柱直径,mm

2、根据组合后的外载荷,计算当量轴向载荷

式中:Cp ——当量轴向载荷,kN

M ——总倾覆力矩,kN·m

Fa ——总轴向力,kN

3、计算安全系数

fs = Co / Cp

fs值可按下表选取。

回转支承安全系数fs

工作类型工作特性机械举例fs

堆取料机,汽车起重机,非港口轻型不经常满负荷,回转平稳冲击小

1.00~1.15

用轮式起重机

塔式起重机,船用起重机,履带中型不经常满负荷,回转较快,有冲击

1.15~1.30

起重机

抓斗起重机,港口起重机,单斗

1.30~1.45

重型经常满负荷,回转快冲击大

挖掘机,集装箱起重机

斗轮式挖掘机,隧道掘进机,冶特重型满负荷,冲击大或工作场所条件恶劣

1.45~1.70

金起重机,海上作业平台起重机

回转支承产品标准对合理选型的影响

《建筑机械》2002年第三期

现行的单排球式回转支承有两个行业标准JJ36.1-91《建筑机械用回转支承》和JB/T2300-99《回转支承》,也就是在以前的建设部标准JJ36-86和机械部标准JB2300-84的基础上重新修订的。在JJ36.1的基本参数系列表中列出了145种基本参数的145种型号单排球式回转支承,在JB/T2300中列出了120种基本参数的220种型号单排球式回转支承。目前我国除引进主机外,绝大多数主机都是按现行的两个标准规定的参数选择回转支承型号。由于JB2300-84较JJ36-86颁布实施得早,其覆盖面要略大于JJ36-86,两个标准都为回转支承标准化生产做出了贡献。随着各主机待业和回转支承行业的飞速发展,国外机型的大量引进,标准中的问题也显现出来,甚至阻碍了各主机行业和回转支承行业的发展,应引起我们高度重视。

单排球式回转支承的滚道中心直径(D0)和钢球直径(d0)是它的两个主参数,它们不但决定了回转支承的承载能力和使用寿命,也是其它参数设计的依据,因此两者的匹配合理与否不仅是回转支承设计水平的反映,将直接影响主机选用的科学性、经济性和结构的合理性。通常我们用D0/d0的比值来分析主参数匹配的合理性,在D0=500~2500范围内,JJ36.1中D0/d0=31.25~41.67;JB/T2300中,D0/d0=16.67~62.5。德国ROTHEERDE公司标准系列单排球式回转支承D0/d0=30~56。那么该比值在什么范围内科学合理呢?通过计算和比较我们不难找到答案。

当回转支承的D0和d0值确定以后,它的额定静容量和额定动容量也随之可计算出来,并可作出其静载和动载曲线,显然当静载曲线和动载曲线靠得很近时,在满足静载荷要求的同时又满足了动载荷(即寿命)的要求。如果两条承载能力曲线离得较远,只能按承载能力较低的一条曲线选用,势必造成另一种能力的浪费。从JB/T2300附录B承载能力曲线中不难看出30·900、30·1000、30·1120、35·1250、35·1400、45·1400、45·1600、45·1800、60·2000、60·2240、60·2500的动、静载曲线靠得较近,主参数匹配合理,它们的比值为30~41.67。同时也可看出,D0/d0比值过小,动载曲线远高于静

载曲线(例30·500比值为16.67),比值过大动载曲线远低于静载曲线(例40·2500比值为62.5),在此附录中共有图B1~图B48共48幅曲线图覆盖220种型号,除上述11种主参数匹配代表的55种型号外,其余165种型号(占75%)的主参数匹配不合理。通过以上分析得道的答案是:D0/d0=30~40为比较合理的主参数匹配。

JB/T2300-99在修订中也意识到这一问题,将JB2300-84原有型号保留之外,每种规格又增加了直径小一档的钢球,共增加了20种匹配100种型号(例在40·900基础上增加一档30·900,两者除钢球直径不同外,其余参数完全一致),但令人遗憾的是在D0≥1600时,所增加10种匹配共50种规格却背离了合理匹配范围,新增的100种型号无论是匹配趋于合理还是背离合理都没多大使用价值,这是因为每一种规格都只是在原有规格的基础上将钢球减小一档,而外型尺寸等保持不变,除降低动、静能力外,生产成本降低甚少,两者的销售价格相差无几,用户又何苦接受这样的“新生事物”呢?JB2300-84中D0≤1250的所有规格,D0/d0值都过小,换言之,钢球都太大了,套用轴承的概念,我们可以把它称之谓重型回转支承,而对一般的工程建筑机械是没必要的。以20 t级挖掘机为例,国产大多选用的回转支承为40·1120,钢球直径为40,而进口及国内合(独)资企业生产的20t级挖掘机配套的回转支承钢球直径都在Ф28.575以内,滚道中心直径在1073~1212范围内。由此而产生的直接后果是钢球直径越大,回转支承轴向载面积越大,自重越重,生产成本越高,用户采购成本也越高,造成大量的资金和原材料浪费。

JB2300-99除了两大主参数匹配不合理外,钢球直径系列参数设计也存在不足。它的滚道中心直径D0是按R20优先数字选取的(公比为1.12的等比数列),但钢球直径系列为:20、25、30、35、40、45、50、60、75(JB230-84为d0=30、40、45、60、75)一个没有科学性的数列。数字游戏在此当然没有实际意义,问题是回转支承的额定静容量与D0·d0成正比。我们暂且抛开D0与d0匹配是否合理不谈,把JB2300-99中所有匹配的D0·d0的值计算后,排列起来,显然是一个杂乱无章的数列,也就是说各种匹配的额定静容量所组成的数列也是杂乱无章的数列,而不是等比数列,这时用户有什

么影响呢?塔吊的吨·米数,汽车吊的起重量,挖掘机的吨级数为什么采用选先数的等比数列呢,有级变速机床转速也是如此,借用机床转速设计时“速度损失”这一概念,额定静容量组成等比数列可使选用回转支承时,“承载能力损失”最小,例30·710的上一档为40·800两者CO相差50%,而40·800与上一档40·900两者CO只相差12.5%,当你初选30·710计算出安全系数尚差5%时,选40·800显然“承载能力损失”45%。而初选40·800安全系数差5%改选40·900时“承载能力损失”仅为7.5%。

JJ36.1标准中,主参数匹配和基本参数设计都比较科学、合理,部分滚道中心直径的重叠设计(例1000·25和1000·32),使“承载能力损失”最小,并各具有单独的基本参数。因此,我们建议并希望主机厂按JJ36.1-91标准选用单排球式回转支承,这会使采购成本下降10%~30%,综合经济效益和社会效益都十分显著。我们作为回转支承专业制造厂提出这样的建议,完全是站在尊重科学的立场,因为这除了会使我们的销售收入减少外,而并没有其它任何好处。

合理选用回转支承

《建筑机械》1996年第八期

回转支承作为建筑机械的重要基础元件,近十年来,随着主机行业的迅速发展,得到了广泛的应用,除为挖掘机、塔吊、汽车吊及各类起重机配套外,还广泛应用于轻工机械、冶金机械、医疗机械、工业机器人、隧道掘进机、堆取料机、旋转舞台等。总之,它是一切两部分之间需作相对回转运动,又需同时承受轴向力、径向力、倾覆力矩的机械所必需的重要传力元件。

我国回转支承行业从建立至今超过了近20年的历程,它从无到有,从小到大,逐步走向成熟。目前已具备了满足各类主机需要的回转支承的设计、制造、测试的综合开发能力,为主机行业的发展做出了一定的贡献。特别是马鞍山回转支承厂,自1984年与建设部北京建筑机械综合研究所合作,成功地开发出具有80年代国际先进水平的单排球式回转支承后,打破了我国回转支承行业以3片式交叉滚柱和双排球式为主的落后局面,大缩小了与发达国家之间的差距,带动了我国回转支承行业的迅速发展。11年来马鞍山回转支承厂作为回转支承专业厂,共为国内外用户提供四大类回转支承2

万余套,产品覆盖全国25个省、市、自治区,为十几个行业的200余种主机配套。

随着各主机行业的迅速发展,无论是自行开发,还是引进技术、合资、合作,对回转支承的要求都在日益提高,作为回转支承专业厂,加强新品开发,不断提高产品质量,满足主机发展需要,是我们责无旁贷的责任,也是市场竞争和自我发展的根本要求。但主机如何正确选择回转支承的结构型式(单排球式、交叉滚柱式、双排球式、三排柱式等)和规格尺寸(滚道中心直径D0,滚动体直径d0),却由于外负荷是个复杂力系以及滚道承载能力的机理未被深刻理解,在选用中存在着一些不合理的状况,影响了主机行业的经济效益,甚至导致重大质量事故,从而引起主机行业和回转支承行业的共同重视。本文就是以长期的回转支承设计生产和为主机选型服务的经验来探讨合理的选型,以克服使用的盲目性,保证主机使用的可靠性。

▲结构型式的选择

常用回转支承的结构型式有四种:单排球式、交叉滚柱式、双排球式、三排柱式。为使选型科学合理,先进行数据对比。

1.1 单排球式和交叉滚柱式额定静容量、额定动容量对比

额定静容量C0和额定动容量Ca的大小决定了回转支承的承载能力和使用寿命,现以外型及安装尺寸完全相同的单排球式Q1600*50和交叉滚柱式J1600*36为例分析对比如下:

→单排球式Q1600*50额定静、动容量(C01,Ca1)

C01=f0·d02·Z·sinα

=38×502×89×sin50°=6476906(N)

式中f0——滚道硬度系数,55HRC时为38N/mm2

Z——滚动体个数

α——滚道接触角,一般机械取α=50°

Ca1= 95·f1·fs·fc·fα·fd·Z2/3·fH

=95×0.299052×3.74244×0.837510×0.651309×872.672×19.9339×0.732247

= 738760(N)

式中各符号含义及子式从略。

→交叉滚柱式J1600*36的额定静、动容量(C02,Ca2)

C02= f0·d0·L0·(Z/2) ·sinα

=76×36×0.8×36×(122/2)×sin45°

=3398783(N)

式中L0 —滚动体有效接触长度

Ca2= 410·f1·fc·fα·f07/9·d020/27·(Z/2)3/4 ×fH

=410×0.390100×0.874740×0.682713×13.6484×46.9444×21.8272×0.732247

= 978133(N)

从上述计算,得到单排球的静载能力较交叉滚柱式高90%,但动载能力小25%,任选二种基本参数相同的单排球式和交叉滚柱式对比计算,其结论是一致的。

需要说明的是,交叉滚柱的动、静载能力实际上远达不到理论计算值。原因有二:第一,滚道角度误差,90°±3’;第二,轴径向间隙的存在,使内、外套圈在工作时发生相对倾斜,两者叠加,使内、外套圈本应平行的对应滚道面,沿滚动体母线全长,最大可产生0.1mm左右的倾斜,因此,滚柱受载沿长度方向是不均匀的,两端应和差最大,最大应力高出平均应力很多,甚至一倍以上或更多,再加上两端的相对滑动,即使其负载尚未达到其额定载荷时,其最大应力已超出许用应力,而使滚道破坏失效。尽管腰鼓形滚子的使用使上述情况有所改善,但效果并不明显。这是因为,滚柱两端的微量修缘,并不能补偿滚道角度误差及内外套圈对应面在工作过程的倾斜;而且,一种修缘尺寸,只适用于一定的D0、d0及轴径向间隙,要想取得较好的效果,除对滚道角度公差有较高要求外,还应将轴、径向间隙控制在0.05mm以内。显然,目前无论是制造还是使用都难以达到(一般要求与回转支承连

接的平台的平面度公差为回转支承轴、径向间隙的1/2)。即使达到了,交叉滚柱的实际动、静载能力也只是向理论动静载能力靠近了一点,差距的存在是必然的。

1.2 单排球式和双排球式对比

有一种错觉,认为双排球较单排球多一排球,因此承载能力较同一滚道中心直径的单排球式高。我们一起来做一个改型设计,看看理论计算结果:

以JB2300—84中双排球021*30*1120为对象,先计算其额定静容量C03 。

C03= f0·d02·Z ·sin90°

=38×302×103×1=3522600(N)

若保持其滚道中心直径、安装孔组节圆直径和孔径不变,将它改型设计为单排球,可安排d0=50~60的钢球。若取d0=50,则单排球Q1120*50的额定静容量为:

C04= f0·d02·Z ·sin50°

=38×502×62·sin50°=4512002(N)

很明显C04 >C03,大28%。

同理,其它规格的改型设计得到的结论与此是类似的。不但如此,因双排球为三片式、双滚道,材料费用,加工制造,运输费用都较单排球高,一般同一D0的差价达60~100%,而且,滚道的形状精度和表面粗糙度因不易磨削而很差。因此,是否可以说双排球式是一种质次、价高的落后结构呢?

1.3 三排柱式是重载的首选型式

三排柱式较其它三种型式有着承载能力大的明显优点,但其造价也是最高的(同一D0)。为什么它能成为重载机械的首选型式呢?我们不妨在引进单位成本额定静容量r这一判断选用回转支承型式的经济技术指数后,来分析四种型式随着D0的变化与r值变化的规律,需说明的是,r值越大,单位成本的额定静容量越大。

笔者对JJ36-91和JB2300-84标准中所有型式各种规格的r值都进行了详细计算,并以D0为横坐

标,r值为纵坐标,绘制了D0—r曲线图,从图中可明显看出:①随着D0的增加,四种型式的r值都在增加;②在D0≤1800时,单排球式的r线最高。当D0>1800时,三排柱式的r线最高。也就是说在D0≤1800范围内承受同样的载荷,用单排球式造价最低;D0>1800时,承受同样的载荷,用三排柱式造价最低。

如果同意以上的分析和计算,那么结论是明显的:中小规格的回转支承应以单排球式为首选型式,大规格是三排柱式。近几年来,有些主机厂由于型式选择失当,已为此付出了沉重的代价,历史的经验值得注意。

▲规格尺寸的选择

回转支承的滚道中心直径(滚动体组节圆直径)D0和滚动体直径d0是构成回转支承基本参数的核心主参数,当型式选定后,如何正确选择D0—d0呢?

可以将外负载折算成当量静容量,再乘以合理的安全系数后与回转支承的额定静容量对比来选择D0—d0,但我国回转支承待业既有现行的两个标准规定的数百个规格,又有自行设计或引进技术和进口主机所带来的规格,特别是单排球式规格相近的甚多,如何才能科学、合理地选择D0—d0呢?

笔者对四种结构型式近千个品种的额定动、静容量用计算机进行了详细计算,并结合主机待业对寿命试验的有关规定,得出如下结论:任一型式的回转支承其D0/d0的比都有一个合理取值范围,该值的大小是根据额定动、静载能力匹配的条件计算得到的。计算结果是:单排球式D0/d0=30~35,交叉滚柱式D0/d0=50~60,双排球式D0/d0=35~40,三排柱式D0/d0=80~100。大于上述值则在额定静容量下使用寿命不足,反之使用寿命过剩,前者造成回转支承过早失效,后者造成浪费。例如将单排球式1400*32(D0/d0=43.75)用于25t汽车吊,虽然其额定静容量满足使用工况计算,使用寿命仅为4500次循环。国内去年就有过这种例子,虽然超载25%,静容量试验没有问题,但当进行到5000余次循环时,滚道产生了剥落,后改用1400*40(D0/d0=35)通过考核。我们对JB2300—84的性能曲线图中动、静载曲线进行了分析比较,也能得出类似的结论。

当然,在一些因结构限制和一些特殊要求的使用场合,应根据具体情况确定D0—d0。例如挖掘机,回转支承负载最大的工况是挖掘过程中,而回转过程中回转支承的负载较挖掘过程中要小得多。因此,只要根据静容量确定D0—d0就行了。

以上观点,供主机选择回转支承时参考。

回转支承早期断齿分析及解决措施

《建筑机械》2002年第七期

造成挖掘机用回转支承早期失效的主要原因有二条:一是断齿;二是滚道破坏。其中,断齿是主要原因,占90%以上,且绝大多数发生在挖掘机出厂后六个月以内。这不但严重困扰着回转支承制造厂产品质量信誉,同时也对主机厂产品市场造成不利影响,因此认真解决好这一问题是回转支承制造厂和主机厂的共同的目标和责任,也是双方进一步合作共同发展的根本保证。

因断齿而使回转支承早期失效的根本原因是什么呢?设计问题;制造问题,材质问题;装配问题还是使用问题。透过下列现象不难发现问题的本质之所在:

①在过去的十二年里,马鞍山回转支承厂共为各类主机配套回转支承二万余套,除挖掘机行业外,仅有一起回转支承断齿记录,而且是发生在晚期。当然,挖掘机的工况较塔吊、汽车吊等其它大部分使用回转支承的行业的主机工况要恶劣,回转速度较快,冲击负荷也较大,断齿的可能性相应地也大些,这也是不争的事实。因此,挖掘机用回转支承的模数较同一滚道直径的其它行业主机用回转支承要大一档,而且是硬齿面(一般在47HRC~58HRC之间选取不同的硬度段),基本满足了挖掘机对回转支承齿轮的要求。虽然统计资料表明挖掘机用回转支承早期断齿的概率大于其它主机,但也仅限于极少的二、三种挖掘机上,大部分机种极少有回转支承早期断齿事故发生。

②从我们掌握的资料分析,国内外绝大多数20~22吨级的挖掘机使用的回转支承齿轮模数都为10mm(或径节=2.5),热处理和精度等级基本一致,国产挖掘机一般采用标准齿高和标准压力角。回转支承齿轮周向许用力P可按下式计算:

P=Kz*m*b/78 (吨)

式中Kz=(z/150)^(±0.09)外齿取+;内齿取-

z-齿数m-模数mmb-齿宽mm

若设齿宽b=80;齿数z=90~110;且为内啮合,则齿轮周向许用力为:

p=(90~110/150)^(-0.09)*10*80/78

=10.74~10.55(吨)

可见齿轮的周向许用力能够满足该吨级的挖掘机对回转支承齿轮负荷要求,但在该级别中个别机型出现的回转支承早期断齿率却高达2%,其它绝大部分机型无此现象发生。

③通过对多起早期断齿实物的分析研究发现,大部分断齿发生在沿齿宽方向的上半部,一半以上的断裂面与轮齿的上端面相交,并成45°~60°左右的夹角,即使全齿脱落其裂纹也是自上而下扩张所致。齿轮受挤压而产生的塑性变形也相当明显,且上部较下部严重得多,整圈齿槽宽都有不同程度变化,从下至上、从根至顶齿槽宽递增。

我们是否可以认为:造成挖掘机回转支承早期断齿的作用力并非是周向回转驱动力,而是与之啮合的小齿轮对其施加的径向挤压力,且挤压时小齿轮的轴线与回转支承齿轮轴线不平行。该力产生于挖掘过程中地面对斗的反作用力,由于回转支承有间隙的原故,与回转支承内外圈分别联接的上下两部分在倾覆力矩的作用下,将发生在回转支承通过大臂的轴向剖面上的相对倾斜,同时产生沿回转支承径向与大臂反方向的相对位移,位移量与回转支承径向间隙相当。因与回转支承啮合的小齿轮安装在大臂的相反方向,当两者齿侧间隙过小时,位移尚未完成,小齿轮便压上大齿轮,这种情况下本应由回转支承滚道承担的负荷却由齿轮担当了,由于小齿轮是悬臂安装原本倾斜的轴线在挤压力的反作用下进一步加剧,致使作用在大齿轮上的挤压力集中在齿宽的上部。开始齿轮由塑性变形来补偿齿侧间隙的不足,随着回转支承滚道的进一步磨合,其径向间隙渐渐加大,而变形量却是有限的。通过受力分析可以看到:小齿轮对大齿轮的挤压力是地面对斗的反作用力的几倍甚至十几倍,并且作用在齿

廓上的力将被再一次放大,压力角越小放大系数越大。这一经过两次放大的力足以造成大小齿轮断齿。以上分析的结论与第③条现象是吻合的。

因此,笔者认为:回转支承早期断齿的根本原因是与小齿轮的配合侧隙过小。建议侧隙值不小于回转支承径向间隙的1.25倍。值得参改的是,我厂近期为加拿大制造的四种型号的挖掘机用回转支承的齿轮压力角分别为25°和27°,国内合资厂也有采用。这对提高齿轮抗径向挤压能力是有效的。

当然,诸如回转支承材质缺陷;齿淬后残余内应力较大、内部有裂纹;因回转支承滚道失效回转卡滞;挖掘机违章操作等也可导致回转支承齿轮早期失效,但应该分布面较广且离散。

影响回转支承承载能力的四个参数

《建筑机械》2002年第一期

回转支承的失效形式有两种,一是滚道损坏,二是断齿,而滚道损坏占的比例达98%以上,因此我们说,滚道质量是回转支承质量的核心问题,影响回转支承滚道质量的因素较多,其中滚道淬火硬度、淬硬层深度、滚道曲率半径和接触角无疑是最重要的四个影响因素,它们以不同的方式影响着滚道质量,并决定了回转支承的承载能力和使用寿命。

?滚道硬度

回转支承滚道淬火硬度对其额定静容量影响较大,如以HRC55时额定静容量为标准1,则滚道硬度与额定静容量有下列对应关系:

标准规定的最低硬度为HRC55,通常实际平均淬火硬度在HRC57左右,因此绝大多数回转支承实际承载能力均高于按HRC55计算的理论值。从上表也可看出当硬度低于HRC53时,即使留有1.2的安

全系数,使用也不安全了,特别当硬度只有HRC50时,1.7倍的安全系数也形同虚设,非常危险。硬度不够极易造成回转支承失效,从滚道表面点蚀开始到坍塌结束。

?滚道淬硬层深度

滚道淬硬层深度目前尚无无损检测的方法,主要靠工艺和装备来保证,必要的淬硬层深度是回转支承滚道不产生剥落的保证。当回转支承受外负荷作用时,钢球与滚道的点接触就变成了面接触,是一个长半轴为a,短半轴为b的椭圆面,滚道除受压应力外,还受到剪切应力作用,最大剪切应力发生在表面下0.47a深处,因此滚道淬硬层深度须大于0.47a(一般取0.6a),这也是标准中根据钢球直径大小,而不是根据回转支承直径大小来规定淬硬层深度的原因,同时给出了具体最小保证值。深度不够又会对回转支承的承载能力产生什么样的影响呢?它定量化的描述是:额定静容量CO与淬硬层深度H0.908成正比,由此可计算出,将要求为4mm的淬硬层深度只淬到2.5mm,那么CO将由1降至0.65,由此而产生的回转支承失效形式为滚道剥落,即使采取焊补措施也无济于事。

?滚道曲率半径

这里的滚道曲率半径是指滚道在垂直剖面内的曲率半径,它与钢球半径的比值t(一般为1.04~1.08)的大小也显著影响着回转支承的额定静容量和动容量(寿命Lh),设t=1.04时为额定静容量和寿命均为1,则有下列对比关系:

从表中可看出半径比越大额定静容量越低,使用寿命越短,即使滚道热处理硬度和淬硬层深度都符合

标准要求,而不能有效控制该半径比,回转支承的承载能力和使用寿命仍达不到标准值,而这一点往往被忽视,但它却是影响回转支承性能的重要参数。

滚道曲面是通过成型砂轮磨削得到的,砂轮的修整精度直接复印到滚道上,砂轮修正时主要有三个误差源:半径对刀误差,上、下圆弧偏心距误差和修正笔回转误差,其中前二个误差的大小除与装备水平有关外,很大程度上取决于操作工的责任心和操作水平,因此有很大的不确定性,对刀误差影响着滚道半径,且它和偏心距误差共同影响着滚道接触角。

?滚道接触角α

该接触角是指钢球在滚道上的接触点和钢球球心连线与回转支承径向剖面(水平面)之间的夹角。回转支承的额定静容量CO与sinα成线性正比,一般原始接触角α取45o,之所以称之谓原始接触角,是因它是滚道设计计算和测量的角度,在回转支承轴、径向间隙为0时,原始接触角和装配后的实际接触角一致,当回转支承有间隙时,实际接触角大于原始接触角,间隙越大,实际接触角越大,在标准规定的间隙范围内一般将增加2o~10o,即实际接触角将达到47o~55o,这是一个对承载能力有利的变化,如果原始接触角和间隙都较大,实际接触角超过60o,随着滚道的磨损间隙将进一步加大,实际接触角也将增大,也就是钢球的落点向滚道边缘靠近,这时将出现接触椭圆面超出滚道边缘,滚道实际受力将高于理论计算应力,而造成滚道边缘压溃,回转支承失效。因此控制好原始接触角和装配间隙已不是一个简单的精度问题,而是保证承载能力和使用寿命的大事。

影响原始接触角的因素是滚道半径误差和上、下半弧偏心距的误差,而实际接触角以原始接触角为最小值,随着间隙的加大而加大,当钢球与滚道的曲率比不同时,同样的滚道半径和上、下弧偏心距误差对原始接触角误差大小的影响程度不同,见下表(一)、(二)。

表(一)

表(二)

同样,装配间隙对实际接触角的影响也与曲率比有关,曲率比越小,实际接触角越大,换言之曲

率比越小,原始接触角越难控制,间隙对实际接触角影响越大。轴向间隙对接触角的见表(三):

表(三)

从提高滚道的承载能力角度考虑,我们希望滚道与钢球的半径比越小越好,然从控制接触角角度考虑,又不希望太小。目前国内大多数回转支承厂普遍使用的砂轮修整方式都很难兼顾两者。顾此失彼,而这往往被一些制造厂有意无意地忽视了。不是接触角失控就是采用增大滚道半径牺牲滚道承载能力来控制接触角,不管哪种情况出现都是用户所不愿接受的。

解决这一矛盾的有效办法是采用数控装置修整砂轮。数控三坐标联动自动修整,从原理上避免了半径对刀和偏心距调整而产生的误差,滚道半径和原始接触角得到有效保证。如果我们把滚道的淬火硬度和淬硬层深度称之谓滚道的“硬件”,那么滚道的半径和接触角就是滚道的“软件”,只“硬”不“软”事倍功半,只有“软、硬”兼备的滚道才是回转支承品质的保证。数控三坐标联动修整砂轮,有效地保证了滚道的“软件”水平,而滚道在热处理之前的数控车削,则为“硬件”提供了重要保证,这种保证体现在两个方面,其一:数控车削的滚道曲面、形状规则、表面粗糙度低、滚道边口圆弧倒角半径一致,且与滚道面平滑连接。规则的滚道曲面,使淬硬层深度均匀成为可能,平滑连接的倒角避免了淬火时的“尖角效应”,根除了滚道边口易淬裂的缺陷。一致的倒角半径解决了过大的倒角造成的滚道有效承载区域的缩小,使钢球在滚道上的接触面过早地到达边口,而影响使用寿命。其二:数控车削的滚道曲面,除表面粗糙度外,其余尺寸与磨削后的滚道曲面完全一致,因此滚道的磨削量很小(为普通方法加工的1/2~1/3),最大限度地保留了淬硬层深度和表面硬度,同时数控车削滚道使内、外圈的滚道中心直径的一致性得到了很好的保证,避免了因配磨而损失的淬硬层深度和表面硬度,进一步提高

了回转支承的承载能力和使用寿命。

综上所述,只有“软、硬”兼备的滚道,才是回转支承承载能力的有效保证,而数控化加工是目前

最有效和最可靠的手段。

1. 结构型式的选择

常用回转支承的结构型式有四种:单排球式、交叉滚柱式、双排球式、三排柱式。

根据我们的经验和计算,有以下结论:

?相同外形尺寸的回转支承, 单排球式的承载能力高于交叉滚柱式和双排球式。

?在倾覆力矩160吨米载荷以下,选用单排球式回转支承其性价比高于三排柱式回转支承,为首选形式。当倾覆力矩高于160吨米时应该优先考虑选用三排柱式回转支承。

2. 单排球式回转支承系列的选择

在国内,目前单排球式回转支承有3个系列的尺寸规格: HS系列,Q系列和01系列。对于新用户一般不知如何选择那个系列,我们认为每种系列各有优点,分析如下:

3个系列的参数比较(以滚道中心直径1250外齿式为例)

公司主要回转支承产品的类型和规格

a. HS系列单排球式回转支承是历史的延续。在1984年以前,国内生产的回转支承的主要型式是交叉滚柱式,在1984年马鞍山回转支承厂开始生产单排球式回转支承以后,交叉滚柱式回转支承被取代,为了保持主机的安装尺寸不受影响,设计了外形及安装尺寸与原来交叉滚柱式回转支承完全相同但内部结构改为单排球式的HS系列单排球式回转支承。其特点是外形尺寸大,例如:HSN1250.40的重量是470Kg, 而相同承载能力的QNA1250.40的重量是388 Kg, 所以HS系列回转支承占用较多的资源,制造成本比相同的承载能力的Q系列和01系列回转支承高10%以上,同国外相同承载能力的回转支承相比差得更远。

因此,从节约成本和资源出发,HS系列应该尽可能不用。考虑到改变回转支承后会改变主机的相关尺寸,因此这个过程会比较痛苦,但是新的设计不应该再选用HS系列。

b. 01系列单排球式回转支承是1984年原机械部推出的以轴承编号为基准的回转支承系列。其安装螺栓孔数量多,比较合理,但是滚道参数存在不合理匹配,例如011.45.1400与 011.35.1400回转支承,其外形尺寸和安装尺寸完全相同,其制造成本基本相同,但是011.45.1400使用的是直径45mm钢球,而

011.35.1400使用的是直径35mm钢球,后者的承载能力降低了22%。所以在选用01系列单排球式回转支承应注意选择较大钢球的规格。

c. Q系列单排球式回转支承是1986年建设部在参考了01系列回转支承的参数后,经过优化后设计的单排球式回转支承系列,相同承载能力的回转支承的截面尺寸更紧凑,重量更轻,具有更好的性价比。

《JG/T66-1999》标准回转支承编号方法

1. 无齿式单排式回转支承由相同滚道中心直径的外齿式内圈和内齿式外圈组成,其堵塞与油孔布置在外圈上。

2. 交叉滚柱式回转支承其滚道中心直径系列与单排球式回转支承滚道中心直径系列完全一致,但同一滚道中心直径的交叉滚柱回转支承和单排球式回转支承的滚动体直径不同,对应如下:

《JB/T2300》标准回转支承编号方法

回转支承选型计算

快有冲击

重型经常满负荷,回转快冲

击大

单斗挖掘机,抓斗起重机,港口起重机,集装箱

起重机

1.30~1.60

特重型满负荷,冲击大或工作

场所条件恶劣

斗轮式挖掘机,隧道掘进机,冶金起重机,海上

作业平台起重机

1.60~

2.00

单排球式回转支承

单排球式回转支承,采用国际先进的四点接触球式结构,为各类起重机、挖掘机、打桩机、消防云梯车、高空作业车、混凝土泵车等机械设备配套。这种支承是需要承受轴向力、径向力、倾覆力矩且两大部分需要相对旋转的机械最理想的配套件。

单排球式回转支承,其最新的产品生产标准有《JG/T66-1999单排球式回转支承》和《JB/T2300-1999回转支承》两种。

Q系列(JG/T66)

外齿式QWA QWB QWC QWD

内齿式QNA QNB QNC QND

无齿式QUA QUB QUC QUD HS系列(JG/T66)HSW HSN

01系列(JB/T2300)

010型0型孔1型孔2型孔3型孔011,012型0型孔1型孔2型孔3型孔

013,014型0型孔1型孔2型孔3型孔HS系列(JB/T2300)HSW HSN HSB

三排柱式回转支承

三排柱式回转支承,有3个座圈,上下及径向滚道, 各自分开,分别承受不同方向的力。滚柱与滚道是线接触,承载能力大,是重型机械的理想配套件。常见的配套设备有:轮式起重机,斗轮式挖掘机,船用起重机,钢水运转台及大吨位起重机。

三排柱式回转支承,其最新的产品生产标准有《JG/T68-1999单排SW系列(JG/T68)

外齿式SWA SWB SWC SWD

内齿式SNA SNB SNC SND

13系列(JB/T2300)

回转支承选型计算与结构

回转支承选型计算(JB2300-1999) ?转支承受载情况 回转支承在使用过程中,一般要承受轴向力Fa 、径向力Fr 以及倾覆力矩M 的共同作用,对不同的应用场合,由于主机的工作方式及结构形式不同,上述三种荷载的作用组合情况将有所变化,有时可能是两种载荷的共同作用,有时也有可能仅仅是一个载荷的单独作用。 通常,回转支承的安装方式有以下两种形式—座式安装和悬挂式安装。两种安装形式支承承受的载荷示意如下: 二、回转支承选型所需的技术参数 ?回转支承承受的载荷 ?每种载荷及其所占有作业时间的百分比 ?在每种载荷作用下回转支承的转速或转数 ?作用在齿轮上的圆周力 ?回转支承的尺寸 ?其他的运转条件

主机厂家可根据产品样本所提供的信息,利用静承载能力曲线图,按回转支承选型计算方法初步选择回转支承,然后,与我公司技术部共同确认。也可向我公司提供会和转支承相关信息,由我公司进行设计选型。 每一型号回转支承都对应一个承载力曲线图,曲线图可帮助用户初步的选择回转支承。 曲线图中有二种类型曲线,一类为静止承载曲线( 1 线),表示回转支承保持静止状态时所能承受的最大负荷。另一类为回转支承螺栓极限负荷曲线(8.8 、10.9 ),它是在螺栓夹持长度为螺栓工称直径 5 倍,预紧力为螺栓材料屈服极限70% 是确定的。 ?回转支承选型计算方法 ?静态选型 1 )选型计算流程图 2 )静态参照载荷Fa' 和M' 的计算方法:

?单排四点接触球式: 单排四点接触球式回转支承的选型计算分别按承载角45 °和60 °两种情况进行。 I、a=45° II、a=60° Fa'=(1.225*Fa+2.676*Fr)*fs Fa'=(Fa+5.046*Fr)*fs M'=1.225*M*fs M'=M*fs 然后在曲线图上找出以上二点,其中一点在曲线以下即可。 ?单排交叉滚柱式 Fa'=(Fa+2.05Fr)*fs M'=M*fs ?双排异径球式 对于双排异径球式回转支承选型计算,但Fr ≦10%Fa 时,Fr 忽略不计。当Fr ≧10%Fa 时,必须考虑轨道内侧压力角的变化,其计算请与我们联系。 Fa'=Fa*fs M'=M*fs ?三排滚柱式 三排滚柱式回转支承选型时,仅对轴向滚道负荷和倾覆力矩的作用进行计算。 Fa'=Fa*fs M'=M*fs ?动态选型 对于连续运转、高速回转和其它对回转支承的寿命有具体要求的应用场合,请与我公司联系。 ?螺栓承载力验算: ?把回转支承所承受的最大载荷(没有乘静态安全系数fs )作为选择螺栓的载荷。 ?查对载荷是否在所需等级螺栓极限负荷曲线以下;

回转支承的选型设计

回转支承的选型计算 A.1 外载荷的确定 单排球式回转支承上的外载荷是组合后的总载荷,包括: a) 总倾翻力矩M, 单位为N?mm; b) 总轴向力P, 单位为N; c) 总倾翻力矩M 作用平面的总径向力Hr, 单位为 N。 在计算M、P、Hr 过程中,应根据主机的工作类型,考虑其工作条件,按实际计算工况,最不利载荷组合机型计算。 A.2 单排球式回转支承的当量静容量 按公式 (A.1)计算 C o=f0×d02×z×sinα…………………………………………(A.1) 式中: C o---当量静容量,单位为N; f o---静容量系数,按表A.1 选取,单位为N/mm2 ; d o---钢球公称直径,单位为mm; α---公称接触角,单位为(°); 对一般建筑机械,可取α=50°, 当2M/PD0≥10 时, 可取α=45°, 对于特殊受力的情况,应根据外力的大小,作用方向另行计算: z---钢球个数,按公式(A.2)计算 z=(πD0-0.5d0)/(d0 + b)………………………………………(A.2)

z取较小的圆整值; 式中: D o ---滚道中心直径,单位为mm; b---隔离块隔离宽度,单位为mm, 按表7选取。 表A.1 静容量系数f0 Static Capacity Factor A.3 选型计算 根据组合后的外荷载M、P、Hr ,按公式(A.3)计算当量轴向载荷: JB/T 10839-2008 C P =P+4.37M/D0 +3.44Hr …………………………………(A.3) 式中: C P ---当量轴向载荷,单位为N. 单排球式回转支承选型应满足下式要求: C0/C P≥f S 式中: f S---单排式回转支承安全系数, 按表A.2 选取

驱动轮直流电机选择计算

驱动轮电机用于驱动 AGV 的运行,包括AGV 的直行及差速转弯。在选择电机时,我们通常需要计算出电机的额定功率、额定转矩、额定转速等[28]。而在驱动电机的参数计算之前首先需要明确 AGV 的各项设计要求,如表3-1 所示。 3.1.1 电动机的选择 1. 驱动力与转矩关系 AGV 在地面行驶时,轮子与地面接触,AGV 克服摩擦力向前行驶,电机输出转矩Tq 为小车提供驱动力。而Tq 经减速机减速后得到输出转矩Tt 输出至驱动轮,输出转矩Tt 为: q t g T i T η= 式中 g i ——减速机减速比; q T ——电机输出转矩; t T ——输出转矩; η——电机轴经减速机到驱动轮的效率。 驱动轮在电机驱动下在地面转动,此时相对于地将形成一个圆周力,而地面对驱动轮也将产生一个等值、反向的力t F ,该力即为驱动轮的驱动力[29] 。驱动力为: q q q t g t R T i R T F η= = 式中 q R ——驱动轮的驱动半径。 由于驱动轮一般刚性较好,视其自由半径、静力半径、滚动半径三者相同,均为q R 。 2. 驱动力与阻力计算 小车在行驶过程中要克服各种阻碍力,这些力包括:滚动阻力f F 、空气阻力w F 、

坡度阻力r F 、加速度阻力j F 。这些阻力均由驱动力t F 来克服,因此: j r w f t F F F F F +++= (1) 滚动阻力f F 滚动阻力在 AGV 行驶过程中,主要由车轮轴承阻力以及车轮与道路的滚动摩擦阻力所组成,f F 大小为: fg fz f F F F += 式中 fz F ——车轮与轴承间阻力; fg F ——车轮与道路的滚动摩擦阻力。 其中,车轮轴承阻力fz F 为: N 6.3200 48 015.010002 /2 /fz =?? ===D d P D d P F μμ 式中 P ——车轮与地面间的压力,AGV 设计中,小车自重m 为100kg ,最大载 重量m ax M 为200kg ,因此最大整车重量为300kg ,一般情况下,AGV 前行过程中,有三轮同时着地,满足三点决定一平面的规则,各轮的压力为P =1000N [30]; d ——车轮轴直径,驱动轮在本次设计中选择8寸的工业车轮,即d=48mm ; D ——车轮直径,查文献[40]可知,驱动轮在本次设计中选择8 寸的工业车轮,即D =200mm ; μ——车轮轴承摩擦因数,良好的沥青或混凝土路面摩擦阻力系数为0.010—0.018,μ =0.015。 车轮与道路的滚动摩擦阻力fg F 为: N 15015.01000fg =?==Qf F 式中 Q ——车轮承受载荷,Q =1000N ; f ——路面摩擦阻力系数,f =0.015。 则: N 6.18fg fz f =+=F F F (2) 空气阻力w F : 空气阻力是 AGV 行驶过程当中, 车身与空气间形成了相对运动而产生于车身上的阻力,该阻力主要由法向力以及侧向力两部分组成。空气阻力与AGV 沿行驶方向的投影面积以及车身与空气的相对运动速度有关, 但由于AGV 工作于

电机选型计算和涡轮蜗杆传动选型计算

电机选型计算和涡轮蜗杆传动选型计算 主要性能参数要求: 履带底盘总重:40 kg 现取履带底盘平地行驶最大速度:1m/s,加速度:2 m s 0.2/ 爬坡最大速度:0.5m/s,加速度:2 0.2/ m s 驱动轮直径:200mm; 35; 爬坡角度:o 履带底盘主履带驱动电机的选择 1、基于平地最大速度的驱动电机功率计算 在城市道路上行驶时,履带底盘受力较简单。进行简化计算,假设车体以最大速度1m/s直线行驶,不考虑履带底盘行驶中的空气阻力,则其受力情况,如图1所示: 图1 履带底盘平地行驶示意图 假设在运动过程中,轮子作瞬时纯滚动。 根据理论力学平衡条件,有平衡方程: X方向受力平衡: +=(1-1) ma f Y方向受力平衡: +=(1-2) mg N

以O 点为对象力矩平衡: 0l f fR M M ++= (1-3) 滚动摩阻力矩: f M N δ= (1-4) 式中: m —— 车体总重量(kg ); a —— 车体运行加速度(2/m s ) ; f —— 地面对履带底盘的摩擦阻力(N ); N —— 地面对履带底盘的支撑力(N ); R —— 驱动轮半径(m ); M l —— 作用于驱动轮的驱动力矩(Nm ); M f —— 驱动轮滚动摩阻力矩(Nm ); δ—— 地面履带滚动摩阻系数,δ=0.007。 假设车体在5秒内达到最大速度1m/s ,则加速度: 20.2 /a m s = 联立上述方程: l f M M fR =+=1.02.0408.940007.0??+??=3.544Nm 同时,根据公式: ωνR = (1-5) 代入v =1m/s ,R=0.1m 的值,可求得主动轮角速度为ω=10/rad s 。 又根据要求的行驶最大速度max v =1m/s , max max 60 v n D π?= (1-6) 由公式1-6初步确定电机经过减速后的最大输出转速: max n =160 3.140.2 ??=95.54 r /min

回转支承的选型计算

回转支承的选型计算 A5 安装螺栓的选择 A.5.1 螺栓按GB/T3098.1 和GB/T5782选用,亦可自行设计大六角头螺栓。性能等级为8.8级,10.9级和12.9级 A.1 外载荷的确定 单排球式回转支承上的外载荷是组合后的总载荷,包括: a) 总倾翻力矩M, 单位为N?mm; b) 总轴向力P, 单位为N; c) 总倾翻力矩M 作用平面的总径向力Hr, 单位为 N。 在计算M、P、Hr 过程中,应根据主机的工作类型,考虑其工作条件,按实际计算工况,最不利载荷组合机型计算。 A.2 单排球式回转支承的当量静容量 按公式 (A.1)计算 Co=f0×d02×z×sinα…………………………………………………………(A.1) 式中: Co---当量静容量,单位为N; fo---静容量系数,按表A.1 选取,单位为N/mm2 ; do---钢球公称直径,单位为mm; α---公称接触角,单位为(°); 对一般建筑机械,可取α=50°, 当2M/PD0≥10 时, 可取α=45°, 对于特殊受力的情况,应根据外力的大小,作用方向另行计算: z---钢球个数,按公式(A.2)计算 z=(πD0-0.5d0)/(d0 + b)………………………………………(A.2) z取较小的圆整值; 式中: Do ---滚道中心直径,单位为mm; b---隔离块隔离宽度,单位为mm, 按表7选取。 表A.1 静容量系数f0 Static Capacity Factor A.3 选型计算 根据组合后的外荷载M、P、Hr ,按公式(A.3)计算当量轴向载荷: JB/T 10839-2008 C =P+4.37M/D0 +3.44Hr ………………………………………………(A.3) P 式中:

伺服电机选型计算

电机: 电机是指依据电磁感应定律实现电能转换或传递的一种电磁装置。电机在电路中是用字母M表示,它的主要作用是产生驱动转矩,作为用电器或各种机械的动力源,发电机在电路中用字母G表示,它的主要作用是利用机械能转化为电能。 伺服电机: 伺服电机是指在伺服系统中控制机械元件运转的发动机,是一种补助马达间接变速装置。 伺服电机可使控制速度,位置精度非常准确,可以将电压信号转化为转矩和转速以驱动控制对象。伺服电机转子转速受输入信号控制,并能快速反应,在自动控制系统中,用作执行元件,且具有机电时间常数小、线性度高、始动电压等特性,可把所收到的电信号转换成电动机轴上的角位移或角速度输出。分为直流和交流伺服电动机两大类,其主要特点是,当信号电压为零时无自转现象,转速随着转矩的增加而匀速下降。 工作原理: 1、伺服系统是使物体的位置、方位、状态等输出被控量能够跟随输入目标的任意变化的自动控制系统。伺服主要靠脉冲来定位,基本上可以这样理解,伺服电机接收到1个脉冲,就会旋转1个脉冲对应的角度,从而实现位移,因为,伺服电机本身具备发出脉冲的功能,所以伺服电机每旋转一个角度,都会发出对应数量的脉冲,这样,和伺服电机接受的脉冲形成了呼应,或者叫闭环,如此一来,系统就

会知道发了多少脉冲给伺服电机,同时又收了多少脉冲回来,这样,就能够很精确的控制电机的转动,从而实现精确的定位,可以达到0.001mm。直流伺服电机分为有刷和无刷电机。有刷电机成本低,结构简单,启动转矩大,调速范围宽,控制容易,需要维护,但维护不方便(换碳刷),产生电磁干扰,对环境有要求。因此它可以用于对成本敏感的普通工业和民用场合。 无刷电机体积小,重量轻,出力大,响应快,速度高,惯量小,转动平滑,力矩稳定。控制复杂,容易实现智能化,其电子换相方式灵活,可以方波换相或正弦波换相。电机免维护,效率很高,运行温度低,电磁辐射很小,长寿命,可用于各种环境。 2、交流伺服电机也是无刷电机,分为同步和异步电机,运动控制中一般都用同步电机,它的功率范围大,可以做到很大的功率。大惯量,最高转动速度低,且随着功率增大而快速降低。因而适合做低速平稳运行的应用。 3、伺服电机内部的转子是永磁铁,驱动器控制的U/V/W三相电形成电磁场,转子在此磁场的作用下转动,同时电机自带的编码器反馈信号给驱动器,驱动器根据反馈值与目标值进行比较,调整转子转动的角度。伺服电机的精度决定于编码器的精度(线数)。 交流伺服电机和无刷直流伺服电机在功能上的区别:交流伺服要好一些,因为是正弦波控制,转矩脉动小。直流伺服是梯形波。但直流伺服比较简单,便宜。

回转支承选型计算

回转支承选型计算 一、回转支承承载 回转支承在使用过程中,一般要承受轴向力Fa,径向力Fr以及倾覆力矩M的共同作用,对不同的应用场合,由于主机的工作方式及结构型式不同,上述三种载荷的作用组合情况将有所变化,有时可能是两种载荷的共同作用,有时也有可能仅仅是一个载荷的单独作用。 通常,回转支承的安装方式有以下两种型式——座式安装和悬挂式安装。两种安装形式支承承受的载荷示意如下: 客户在选型时,若所用回转支承为座式安装,可按下面的选型计算来进行选型;若所用回转支承为悬挂式安装或其他安装型式,请与我公司技术部进行联系。 二、回转支承的选型 1、结构型式的选择 常用回转支承的结构型式有四种:单排球式、交叉滚柱式、双排球式、三排柱式。 根据我们的经验和计算,有以下结论: ? Do ≤1800时,单排球式为首选型式;Do >1800时,优先选用三排柱式回转支承。 ? 相同外形尺寸的回转支承, 单排球式的承载能力高于交叉滚柱式和双排异径式。 ? Q系列单排球式回转支承,尺寸更紧凑,重量更轻,具有更好的性价比,为单排球式的首选系列。 2、回转支承的选型计算 单排球式回转支承的选型计算 ①计算额定静容量 C O = 0.6× D O×do0.5 式中:C O─── 额定静容量, kN D O─── 滚道中心直径, mm do───钢球公称直径, mm ②根据组合后的外载荷,计算当量轴向载荷 Cp = Fa + 4370M/D O + 3.44Fr 式中:Cp ─── 当量轴向载荷, kN M ───倾覆力矩,kN·m Fa ───轴向力,kN Fr ───径向力,kN ③安全系数 fs = Co / Cp fs值可按下表选取 三排柱式回转支承的选型计算 ①计算额定静容量 Co= 0.534×D O×do0.75 式中:C O───额定静容量, kN D O─── 滚道中心直径, mm do ─── 上排滚柱直径, mm ②根据组合后的外载荷,计算当量轴向载荷 Cp = Fa + 4500M/D O 式中:C p─── 当量轴向载荷, kN

回转支承选型计算

回转支承选型计算: 一、单排球式回转支承的选型计算 1、计算额定静容量 C0 = f ·D·d 式中:Co ——额定静容量,kN f ——静容量系数,0.108 kN / mm2 D ——滚道中心直径,mm d ——钢球公称直径,mm 2、根据组合后的外载荷,计算当量轴向载荷 式中:Cp ——当量轴向载荷,kN M ——总倾覆力矩,kN·m Fa ——总轴向力,kN Fr ——总倾覆力矩作用平面的总径向力,kN 3、计算安全系数 fs = Co / Cp fs值可按下表选取。 二、三排柱式回转支承的选型计算 1、计算额定静容量 C0 = f ·D·d 式中:Co ——额定静容量,kN

f ——静容量系数,0.172 kN / mm2 D ——滚道中心直径,mm d ——上排滚柱直径,mm 2、根据组合后的外载荷,计算当量轴向载荷 式中:Cp ——当量轴向载荷,kN M ——总倾覆力矩,kN·m Fa ——总轴向力,kN 3、计算安全系数 fs = Co / Cp fs值可按下表选取。 回转支承安全系数fs 工作类型工作特性机械举例fs 堆取料机,汽车起重机,非港 1.00~1.15 轻型不经常满负荷,回转平稳冲击小 口用轮式起重机 塔式起重机,船用起重机,履 1.15~1.30 中型不经常满负荷,回转较快,有冲击 带起重机 抓斗起重机,港口起重机,单 1.30~1.45 重型经常满负荷,回转快冲击大 斗挖掘机,集装箱起重机 斗轮式挖掘机,隧道掘进机, 1.45~1.70 特重型满负荷,冲击大或工作场所条件恶劣 冶金起重机,海上作业平台起

回转支承产品标准对合理选型的影响 《建筑机械》2002年第三期 现行的单排球式回转支承有两个行业标准JJ36.1-91《建筑机械用回转支承》和JB/T2300-99《回转支承》,也就是在以前的建设部标准JJ36-86和机械部标准JB2300-84的基础上重新修订的。在JJ36.1的基本参数系列表中列出了145种基本参数的145种型号单排球式回转支承,在JB/T2300中列出了120种基本参数的220种型号单排球式回转支承。目前我国除引进主机外,绝大多数主机都是按现行的两个标准规定的参数选择回转支承型号。由于JB2300-84较JJ36-86颁布实施得早,其覆盖面要略大于JJ36-86,两个标准都为回转支承标准化生产做出了贡献。随着各主机待业和回转支承行业的飞速发展,国外机型的大量引进,标准中的问题也显现出来,甚至阻碍了各主机行业和回转支承行业的发展,应引起我们高度重视。 单排球式回转支承的滚道中心直径(D0)和钢球直径(d0)是它的两个主参数,它们不但决定了回转支承的承载能力和使用寿命,也是其它参数设计的依据,因此两者的匹配合理与否不仅是回转支承设计水平的反映,将直接影响主机选用的科学性、经济性和结构的合理性。通常我们用D0/d0的比值来分析主参数匹配的合理性,在D0=500~2500范围内,JJ36.1中 D0/d0=31.25~41.67;JB/T2300中,D0/d0=16.67~62.5。德国ROTHEERDE 公司标准系列单排球式回转支承D0/d0=30~56。那么该比值在什么范围内科学合理呢?通过计算和比较我们不难找到答案。 当回转支承的D0和d0值确定以后,它的额定静容量和额定动容量也随之可计算出来,并可作出其静载和动载曲线,显然当静载曲线和动载曲线靠得很近时,在满足静载荷要求的同时又满足了动载荷(即寿命)的要求。如果两条承载能力曲线离得较远,只能按承载能力较低的一条曲线选用,势必造成另一种能力的浪费。从JB/T2300附录B承载能力曲线中不难看出30·900、30·1000、30·1120、35·1250、35·1400、45·1400、45·1600、45·1800、60·2000、60·2240、60·2500的动、静载曲线靠得较近,主参数匹配合理,它们的比值为30~41.67。同时也可看出,D0/d0比值过小,动载曲线远高于静载曲线(例30·500比值为16.67),比值过大动载曲线远低于静载曲线(例40·2500比值为62.5),在此附录中共有图B1~图B48共48幅曲线图覆盖220种型号,除上述11种主参数匹配代表的55种型号外,其余165种型号(占75%)的主参数匹配不合理。通过以上分析得道的答案是:D0/d0=30~40

回转支承选型计算

回转支承选型计算 转支承受载情况 回转支承在使用过程中,一般要承受轴向力Fa 、径向力Fr 以及倾覆力矩M 的共同作用,对不同的应用场合,由于主机的工作方式及结构形式不同,上述三种荷载的作用组合情况将有所变化,有时可能是两种载荷的共同作用,有时也有可能仅仅是一个载荷的单独作用。 通常,回转支承的安装方式有以下两种形式—座式安装和悬挂式安装。两种安装形式支承承受的载荷示意如下: 二、回转支承选型所需的技术参数 ?回转支承承受的载荷 ?每种载荷及其所占有作业时间的百分比 ?在每种载荷作用下回转支承的转速或转数

?作用在齿轮上的圆周力 ?回转支承的尺寸 ?其他的运转条件 主机厂家可根据产品样本所提供的信息,利用静承载能力曲线图,按回转支承选型计算方法初步选择回转支承,然后,与我公司技术部共同确认。也可向我公司提供会和转支承相关信息,由我公司进行设计选型。 回转支承编号方法(点击进入) ?01系列回转支承承载能力曲线(点击进入) 02系列回转支承承载能力曲线(点击进入) 11系列回转支承承载能力曲线(点击进入) 13系列回转支承承载能力曲线(点击进入) 每一型号回转支承都对应一个承载力曲线图,曲线图可帮助用户初步的选择回转支承。 曲线图中有二种类型曲线,一类为静止承载曲线( 1 线),表示回转支承保持静止状态时所能承受的最大负荷。另一类为回转支承螺栓极限负荷曲线(8.8 、10.9 ),它是在螺栓夹持长度为螺栓工称直径 5 倍,预紧力为螺栓材料屈服极限70% 是确定的。 ?回转支承选型计算方法 ?静态选型 1 )选型计算流程图

2 )静态参照载荷Fa' 和M' 的计算方法: ?单排四点接触球式: 单排四点接触球式回转支承的选型计算分别按承载角45 °和60 °两种情况进行。 I、a=45° II、a=60° Fa'=(1.225*Fa+2.676*Fr)*fs Fa'=(Fa+5.046*Fr)*fs M'=1.225*M*fs M'=M*fs 然后在曲线图上找出以上二点,其中一点在曲线以下即可。 ?单排交叉滚柱式 Fa'=(Fa+2.05Fr)*fs

回转支承选型原则

回转支承选型原则 (万达回转支承研发所,徐州,20100525) (1)结构型式的选择 常用回转支承的结构型式有四种:单排球式、交叉滚柱式、双排球式、三排柱式。 根据我们的经验和计算,有以下结论: 相同外形尺寸的回转支承, 单排球式的承载能力高于交叉滚柱式和双排球式。 在倾覆力矩160吨米载荷以下,选用单排球式回转支承其性价比高于三排柱式回转支承,为首选形式。当倾覆力矩高于160吨米时应该优先考虑选用三排柱式回转支承。 (2)单排球式回转支承系列的选择 在国内,目前单排球式回转支承有3个系列的尺寸规格:HS系列,Q系列和01系列。对于新用户一般不知如何选择那个系列,我们认为每种系列各有优点,分析如下: 3个系列的参数比较(以滚道中心直径1250外齿式为例) 公司主要回转支承产品的类型和规格 回转支承的主要型式是交叉滚柱式,八十年代后开始生产单排球式回转支承,交叉滚柱式回转支承逐渐被取代,为了保持主机的安装尺寸不受影响,设计了外形及安装尺寸与原来交叉滚柱式回转支承完全相同但内部结构改为单排球式的HS系列单排球式回转支承。其特点是外形尺寸大,例如:HSN1250.40的重量是470Kg, 而相同承载能力的QNA1250.40的重量是388 Kg, 所以HS系列回转支承占用较多的资源,制造成本比相同的承载能力的Q系列和01系列回转支承高10%以上,同国外相同承载能力的回转支承相比差得更远。 因此,从节约成本和资源出发,HS系列应该尽可能不用。考虑到改变回转支承后会改变主机的相关尺寸,因此这个过程会比较痛苦,但是新的设计不应该再选用HS系列。 ②. 01系列单排球式回转支承是1984年原机械部推出的以轴承编号为基准的回转支承系列。其安装螺栓孔数量多,比较合理,但是滚道参数存在不合理匹配,例如011.45.1400与 011.35.1400回转支承,其外形尺寸和安装尺寸完全相同,其制造成本基本相同,但是011.45.1400使用的是直径45mm钢球,而011.35.1400使用的是直径35mm钢球,后者的承载能力降低了22%。所以在选用01系列单排球式回转支承应注意选择较大钢球的规格。

回转支承承载能力

影响回转支承承载能力的四个参数 回转支承的失效形式有两种,一是滚道损坏,二是断齿,而滚道损坏占的比例达98%以上,因此我们说,滚道质量是回转支承质量的核心问题,影响回转支承滚道质量的因素较多,其中滚道淬火硬度、淬硬层深度、滚道曲率半径和接触角无疑是最重要的四个影响因素,它们以不同的方式影响着滚道质量,并决定了回转支承的承载能力和使用寿命。 ?滚道硬度 回转支承滚道淬火硬度对其额定静容量影响较大,如以HRC55时额定静容量为标准1,则滚道硬度与额定静容量有下列对应关系: 标准规定的最低硬度为HRC55,通常实际平均淬火硬度在HRC57左右,因此绝大多数回转支承实际承载能力均高于按HRC55计算的理论值。从上表也可看出当硬度低于HRC53时,即使留有1.2的安全系数,使用也不安全了,特别当硬度只有HRC50时,1.7倍的安全系数也形同虚设,非常危险。硬度不够极易造成回转支承失效,从滚道表面点蚀开始到坍塌结束。 ?滚道淬硬层深度 滚道淬硬层深度目前尚无无损检测的方法,主要靠工艺和装备来保证,必要的淬硬层深度是回转支承滚道不产生剥落的保证。当回转支承受外负荷作用时,钢球与滚道的点接触就变成了面接触,是一个长半轴为a,短半轴为b的椭圆面,滚道除受压应力外,还受到剪切应力作用,最大剪切应力发生在表面下0.47a深处,因此滚道淬硬层深度须大于0.47a(一般取0.6a),这也是标准中根据钢球直径大小,而不是根据回转支承直径大小来规定淬硬层深度的原因,同时给出了具体最小保证值。深度不够又会对回转支承的承载能力产生什么样的影响呢?它定量化的描述是:额定静容量CO与淬硬层深度H0.908成正比,由此可计算出,将要求为4mm的淬硬层深度只淬到2.5mm,那么CO将由1降至0.65,由此而产生的回转支承失效形式为滚道剥落,即使采取焊补措施也无济于事。 ?滚道曲率半径 这里的滚道曲率半径是指滚道在垂直剖面内的曲率半径,它与钢球半径的比值t(一般为1.04~1.08)的大小也显著影响着回转支承的额定静容量和动容量(寿命Lh),设t=1.04时为额定静容量和寿命均为1,则有下列对比关系:

驱动电机的选型与计算

驱动电动机的选型与计算 1、计算折算在电动机轴上的负荷惯量 (1)计算滚珠丝杠的转动惯量r J 。 已知滚珠丝杠的密度-33=7.810kg/cm ρ?,则由式(2-63)得 ()34 1344422 0.78100.7810 2.510 3.236 2.512.53.63n r j j j J D L kg cm kg cm -=-=?=???+????=?∑ (2)计算折算到丝杠轴上的移动部件的转动惯量L J 已知机床纵向进给系统执行部件的总质量m=81.63kg ;丝杠轴每转一圈,机床执行部件在轴向移动的距离L=0.6cm ,则由式(2-65)得 22 220.6m 81.630.7522 3.14L L J kg cm kg cm π????==??=? ? ?????? (3)计算各齿轮的转动惯量。 ()34 1344422 0.78100.7810 2.510 3.236 2.512.53.63n r j j j J D L kg cm kg cm -=-=?=???+????=?∑ (4)由式(2-66)计算加在电动机轴上总负载转动惯量d J 。 123422111()()d Z Z Z Z r L J J J J J J J i i =+++++ ()()2110.4 1.50.4 2.6 3.630.751.96 6.25kg cm ??=+?++?++????? 22.5kg cm =? 2、计算折算到电动机轴上的负载力矩 (1)计算折算到电动机轴上的切削负载力矩c T 。 已知在切削状态下的轴向负载力max 2340.34a a F F N ==。丝杠每转一圈机床执行部件轴向移动距离L=6mm=0.006m ,进给传动系统的传动比i=2.5,进给传动系统的总效率η=0.85,则由式(2-54)得 2340.340.006 1.0522 3.140.85 2.5 n c F L T N m N m i πη?==?=????

步进电机选型的计算示例

步进电机选型的计算示例 一、必要脉冲数和驱动脉冲数速度计算的示例 下面给出的是一个3相步进电机必要脉冲数和驱动脉冲速度的计算示例。这是一个实际应用例子,可以更好的理解电机选型的计算方法。 1.1 驱动滚轴丝杆 如下图,3相步进电机(1.2°/步)驱动物体运动1秒钟,则必要脉冲数和驱动脉冲速度的计算方法如下: 必要脉冲数= 100 10 × 360° 1.2° =3000[脉冲] 如果采用自启动方式驱动1秒钟,则驱动脉冲速度应该这样计算: 3000[Pulse]/1[sec]=3[kHz] 但是,自启动速度不可能是5kHz,应该采用加/减速运行方式来驱动。如果加/减速时间设置为定位时间的25%,启动脉冲速度为500[Hz],则计算方法如下: 驱动脉冲速度[Hz]=3000[脉冲]-500[Hz]×0.25[秒] 1[秒]-0.25[秒] =3.8 [kHz] 如图所示: 1.2驱动传动带 如下图,3相步进电机(1.2°/步)驱动物体运动1秒钟。驱动轮的周长即旋转一圈移动的距离大约为50[mm]。 因此,所需要的必要脉冲数为: 必要脉冲数= 1100 50 × 360° 1.2° =6600 [脉冲]

所需参数同上例驱动滚轴丝杆,采用加/减速运行模式,则驱动脉冲速度为: 驱动脉冲速度[Hz]=6600[脉冲]-500[Hz]×0.25[秒] 1[秒]-0.25[秒] =8.7 [kHz] 如图所示: 二、负载力矩的计算示例(T L) 下面给出的是一个3相步进电机负载力矩的计算示例。这是一个实际应用例子,其中的数字公式有助于更好的理解电机选型的应用。 2.1滚轴丝杆驱动水平负载 如下图,滚轴丝杆驱动水平负载,效率为90%,负载重量为40千克,则负载力矩的计算方法如下: T L=m·P B 2πη × 1 i [kgf·cm] T L=40[kg]×1[cm] 2π×0.9 × 1 1 =7.07 [kgf·cm] 2.2传送带驱动水平负载 传送带驱动水平负载,效率为90%,驱动轮直径16毫米,负载重量是9千克,则负载力矩的计算方法如下:

回转支承标准作业规范

回转支承标准作业规程 回转支承装配标准化作业规程的目标: (1)通过标准化的装配作业规程,规范装回转支承装配操作行为,做到标准、统一、规范。 (2)通过标准化的装配作业规程,提高装配生产效率。 (3)通过标准化的装配作业规程,提高产品装配质量,保证出厂产品100%合格。 一、安装前准备: 1、拆开包装并对照所附合格证及回转支承上标牌,确认与所选型号一致 2、仔细检查外观情况,确认回转支承在运输过程中未受到较大损伤,如严重锈蚀、变形等,确认有无软带 标记和齿轮跳动最大位置标记(齿轮淬火回转支承齿跳最大处的齿沟内已用绿漆标识) 3、回转支承的安装基准面和零件的安装面必须清理干净。去除油污、毛刺、油漆以及其它异物,并根据不同的使用条件填充润滑脂。 4、安装回转支承时禁止使用弹簧垫圈 二、安装: 1、将回转支承水平放置于安装面上 2、滚道润滑::为确保润滑的充分,在初次使用前应再加注一次图纸或产品使用说明书规定的润滑脂。特别注意所有的油嘴一个一个地注入润滑脂,最好边转动回转支承边注油,直到看见润滑脂从密封圈挤出为止。 3、齿轮润滑:在齿轮润滑时,齿面应清洁。建议用干净的刷子把润滑脂刷在齿轮上。 4、回转支承放置于水平面安装时,请用塞尺检查零件安装面的平稳度。如有间隙应重新进行机械加工。如果不能进行加工应采用局部垫铜皮,消除间隙,防止螺栓拧紧后,回转支承变形影响回转支承的性能。回转支承安装后禁止在支座上进行焊接作业。 5、在安装螺栓预紧前,进行大小齿轮啮合调整,尤其是齿轮淬火产品,应保证回转支承跳动最大点(标绿漆处)与小齿轮啮合符合要气。 6、安装螺栓应有足够的预紧力,其预紧力在螺栓上产生的预紧力应在螺栓屈服点的0.6-0.7倍之间,预紧力不要超过屈服强度的85%,

步进电机的选型及计算方法

步进电机选型的计算方法 步进电机选型表中有部分参数需要计算来得到。但是实际计算中许多情况我们都无法得到确切的机械参数,因此,这里只给出比较简单的计算方法。 一、驱动模式的选择 驱动模式是指如何将传送装置的运动转换为步进电机的旋转。 下图所示的驱动模式包括了电机的加/减速时间,驱动和定位时间,电机的选型基于模式图。 ●必要脉冲数的计算 必要脉冲数是指传动装置将物体从起始位置传送到目标位置所需要提供给步进电机的脉冲数。必要脉冲数按下面公式计算: 必要脉冲数= 物体移动的距离 距离电机旋转一周移动的距离 × 360 o 步进角 ●驱动脉冲速度的计算 驱动脉冲速度是指在设定的定位时间中电机旋转过一定角度所需要的脉冲数。 驱动脉冲数可以根据必要脉冲数、定位时间和加/减速时间计算得出。 (1)自启动运行方式 自启动运行方式是指在驱动电机旋转和停止时不经过加速、减速阶段,而直接以驱动脉冲速度启动和停止的运行方式。 自启动运行方式通常在转速较低的时候使用。同时,因为在启动/停止时存在一个突然的速度变化,所以这种方式需要较大的加/减速力矩。 自启动运行方式的驱动脉冲速度计算方法如下: 驱动脉冲速度[Hz]= 必要脉冲数[脉冲] 定位时间[秒] (2)加/减速运行方式

加//减速运行方式是指电机首先以一个较低的速度启动,经过一个加速过程后达到正常的驱动脉冲速度,运行一段时间之后再经过一个减速过程后电机停止的运行方式。其定位时间包括加速时间、减速时间和以驱动脉冲速度运行的时间。 加/减速时间需要根据传送距离、速度和定位时间来计算。在加/减速运行方式中,因为速度变化较小,所以需要的力矩要比自启动方式下的力矩小。加/减速运行方式下的驱动脉冲速度计算方法如下: 驱动脉冲速度[Hz]= 必要脉冲数-启动脉冲数[Hz]×加/减速时间[秒] 定位时间[秒]-加/减速时间[秒] 二、电机力矩的简单计算示例 必要的电机力矩=(负载力矩+加/减速力矩)×安全系数 ●负载力矩的计算(TL) 负载力矩是指传送装置上与负载接触部分所受到的摩擦力矩。步进电机驱动过程中始终需要此力矩。负载力矩根据传动装置和物体的重量的不同而不同。许多情况下我们无法得到精确的系统参数,所以下面只给出了简单的计算方法。 负载力矩可以根据下面的图表和公式来计算。 (1)滚轴丝杆驱动 ※负载力矩的计算公式: TL=[ F·PB 2πη + μ0F0PB 2π ]× 1 i [kgf·cm] ※负载力矩的估算公式: TL=m·PB 2πη × 1 i [kgf·cm] (水平方向) TL=m·PB × 1 ×2 [kgf·cm] (垂直方向)

电动汽车驱动电机的设计与选型

电动汽车驱动电机的设计与选型 全世界的汽车保有量和使用量的逐日增大,世界能源问题越来越突出,电动汽车方向逐渐出现并在汽车领域占有了一个非常重要的位置。早在20世纪50年代初,美国人罗伯特就发明了一种将电动机、传动系统和制动系统融为一体的轮毂装置。该轮毂于1968年被通用电气公司应用在大型的 矿用自卸车上。 相对与传动汽车、单电机集中驱动的汽车,轮毂电机式电动汽车具有以下优点:动力控制通过电子线控技术实现对各电动轮进行无级变速控制,以及各电动轮之间的差速要求,省略了传统汽车所需的波箱、离合器、变速器、传动轴等;在电机所安装的位置同时可见,整车的结构变得简洁、紧凑,车身高降低,可利用空间大,传动效率高。容易实现各电动轮的电气制动、机电复合制动和制动能量回馈。底盘结构大为简化,使整车总布置和车身造型设计的自由度增加。若能将底盘承载功能与车身功能分离,则可实现相同底盘不同车身造型的产品多样化和系列化,从而缩短新车型的开发周期,降低开发成本。若在采用轮毂电机驱动系统的四轮电动汽车上导入线控四轮转向技术(4WS),实现车辆转向行驶高性能化,可有效减小转向半径,甚至实现零转向半径,大大增加了转向灵便性。(说起来很轻松,但是如果真正实现起来,

上面那段话恐怕十年之内都没办法产业化,比如机电复合制动,比如制动能量回馈,原理不难,难的是在技术、成本、产业、供应商等等条件都成熟起来之后......)1.电动汽车基本参数参数确定1.1 该电动汽车基本参数要求,如下表:1.2 动力性指标如下: 最大车速X;在车速=60km/h时爬坡度5%(3度);在车速=40km/h时爬坡度12% (6.8度);原地起步至100km/h 的加速时间;最大爬坡度(16度);0到75km/h加速时间;具备2~3倍过载能力。2.电机参数设计一般来说,电动汽车整车动力性能指标中最高车速对应的是持续工作区,即电动机的额定功率;而最大爬坡度和全力加速时间对应的是短时工作区(1~5min),即电动机的峰值功率。2.1 以最高车速确定电机额定功率根据虽高车速计算电机功率时,不考虑加速阻力和坡道阻力,电机功率应满足:式中:电机输出功率,kw; 传动系效率,取0.9;最大车重,取1400kg;滚动摩擦系数,取0.014;风阻系数,取0.33;迎风面积,取2.50㎡;最高车速,取100km/h。根据(1)(2)式,可以计算出满足最高车速时,电机输出额定功率为21.023kw[3]。2.2 根据要求车速的爬坡度计算 根据公式(4),其中在车速=60km/h时爬坡度5%可得:根据公式(4),其中在车速=40km/h时爬坡度12%可得:

回转支承选型计算方法

回转支承选型计算方法 万达回转支承技术科 1静态选型: 静态参照载荷Fa’和M’的计算方法 ●单排四点接触球式 单排四点接触球式回转支承的选型计算分别按承载角45°和60°两种情况进行。 I、a=45°Ⅱ、a=60° Fa’=(1.225·Fa+2.676·Fr)·fs Fa’=(Fa+5.046·Fr)·fs M’=1.225·M·fs M’=M·fS 然后在曲线图上找出以上两点,其中一点在曲线以下即可。 ●单排交叉滚柱式 Fa’=(Fa+2.05·Fr)·fs M’=M·fs ●双排异径球式 对于双排异径球式回转支承选型计算,当Fr≤10%Fa时,Fr忽略不计。当Fr>10%Fa时,必须考虑滚道内压力角的变化,其计算请与我们联系。 Fa’=Fa·fs M’=M·fs ●三排滚柱式 三排滚柱式回转支承选型时,仅对轴向滚道负荷和倾覆力矩的作用进行计算。 Fa’=Fa·fs M’=M·fs 2动态选型: 对于连续运转、高速回转和其它对回转支承的寿命有具体要求的应用场合,请与我公司技术部联系。 3螺栓承载能力验算: 1)把回转支承所承受的最大载荷(没有乘静态安全系数fs)作为选择螺栓的载荷; 2)查对载荷是否落在所需等级螺栓极限负荷曲线以下;

3)若螺栓承载能力不够,可重新选择回转支承,或与我公司技术部联系。 表1 应用场合 fs fL 原则上,必须以作用在支承上的最大载荷做为静态计算值,这个载荷必须包括附加载荷和试验载荷。 没有被列入表中的应用场合,可以参照表中与其相类似的工作条件和应用,选取静安全系数fL 。 *)上回转式塔机 M=空载时的反向倾覆力矩 M=幅度最大时的倾覆力矩 **)对于静安全系数fs 取1.45的应用场 合,因平均负载较高和繁重的工作场合,应优先选择多排滚道式回转支承。 浮式起重机(货物负载) 汽车起重机(货物负载) 船用甲板起重机(抓斗) 焊接设备 工作台(连续运转) 1.10 1.0 塔式起重机 上回转* Mf≤0.5M 1.25 1.0 0.5M≤Mf≥0.8M 1.15 Mf≥0.8M 1.25 下回转 1.0 回转式起重机(货物负载) 造船厂起重机 装船机/卸船机 1.15 冶金起重机 1.45** 1.5 汽车起重机(抓斗式或处理繁重工作) 回转式起重机(抓斗或吸盘) 桥式起重机(抓斗或吸盘) 浮式起重机(抓斗或吸盘) 1.7 斗轮挖掘机 堆取料机 悬臂输送机 2.15 近海起重机 根据特殊的标准 铁路起重机 甲板起重机(货物负载) 1.00 在这些应用场合,工作条件变化相当大,比如对于不经常回转的情况下使用的回转支承,只要求静态校核。对于连续回转和间歇式情况下使用的回转支承,将需要进行动态寿命计算。 堆料机 输送车 1.10 绳索式挖掘机/索斗 1.25 小于等于1.5m3液压挖掘机 1.45 大于1.5m3液压挖掘机 根据特殊的标准 钢包回转台 1.75 注:f L 为动态安全系数,它必须结合动态承载曲线使用(动态承载曲线不包含在此样本中)。它来源于经验和试验,是基于最大工作载荷情况下的一个参考值、若需根据寿命选择回转支承时,请与我公司技术部门联系。

关于电动车电机及电池选型计算

关于电动车电机及电池 选型计算 内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)

CV11改装成四轮轮边驱动电动车 1、参考纯电动车的设计目标,本课题提出了其基本性能要求和指标如下: 1)最高速度≥45Km/h; 2)最大爬坡度≥20%(5Km/h); 3)30Km/h匀速行驶下的续驶里程≥120Km; 4)0—30Km/h加速时间≤10S。 2、关于CV11整车参数 3、轮边电机选型计算 3.1电机功率 根据车辆的功率平衡方程式,有: 因为最高车速为45Km/h,传动系效率为0.95,质量为1485Kg,滚动阻力系数为0.015,风阻系数为0.315,迎风面积为2.15㎡。 因此计算得出电机在最高车速下的驱动功率为3.7255Kw,因此每个电机最大功率为1.0349Kw。 3.1.2根据爬坡性能确定的最大功率

其中爬坡速度为5Km/h,传动系效率为0.95,质量为1485Kg,滚动阻力系数为0.015,爬坡度为20%。 考虑到坡度不大的情况下,cosα=1,sinα=tanα。 因此计算得出电机在以5Km/h,20%爬坡时的驱动功率为4.5744Kw,因此每个电机最大功率为1.2707Kw。 汽车起步加速过程可以按下式来表示: 其中x为拟合系数,一般取0.5左右;tm为起步加速过程的时间(s);Vm为起步加速过程的末车速(Km/h)。 整车在加速过程的末时刻,动力源输出最大功率,此时速度为30Km/h,旋转质量换算系数为1.1,加速时间为10S,,拟合系数x取0.5。 因此计算得出电机要满足从0—30Km/h加速时间为10S需要的最大功率为23.4167Kw,因此每个电机最大功率为6.5046Kw。 综上所诉,电机的最大驱动功率应满足: 则有:最大功率为6.5Kw,取过载系数为2,因此额定功率为3.25Kw。 3.2电机最高转速 电机转速及转矩公式如下: 其中最大车速为45Km/h,轮胎滚动半径为0.3083m。 3.3电机最大转矩 3.4电机的基数、额定转矩 电机符合基速以下恒转矩,基速以上恒功率,因此在基速时,电机有最大功率和最大转矩。根据以下公式: 经过计算,取额定转速为250rpm,额定转矩为124Nm。

相关文档
最新文档