(前三章)高等数学练习册(下答案)
高等数学(下)习题集答案

2k 时表面积最小; 2
2 1 和 时所得旋转体的体积最大; 3 3 1 时面积最大; 2
7.当长、宽均为
8.当长为
1 1 、宽为 时面积最大; 4 6
9.当两直角边均为
l 2
时周长最大;
10.将 a 分为
a a a 、 、 时乘积最大。 3 3 3
第九章
一. 填空题 1. ; 2. ; 3.
1 2
3 2
2 1 1 ; 4.16; 5. ; 6.0; 7.-4; 8. ; 9. ; 10.0. 3 3 3 2
二. 解答题
1 sin 1 ; 1. (1 cos 4) ; 2. 3. (1 ) ; 4. ; 5.
8. 1 e
2
1 2
1 6
1 e
1 2
1 e 1 ; 6.2 ; 7. (e 4 1) ; 2
第八章
一.填空题 1. 4 ; 2. 2(e 2) ; 3.2e
2
2
; 4.4e ; 11.0 ;
4
5. ;
y
9 5
6. e ; 7. (8
2
1 ); e2
8. 2 ; 9. 4 ;
10.-2;
xy
12. x (lnx)
;
13. xe sin y ;
x
14.2 x ; 15.2 y (1 xy )e ; 16.2 y ; 17. 2 ;
20. x y z 2 .
2. 4 x y 3z 1 0 ; 5.
3.
x 1 y 2 z 3 ; 1 3 2
6. (1 , 5 , 2) .
x 1 y 2 z 3 ; 2 3 7
同济大学《高等数学第五版》上下册习题答案(可编辑)

同济大学《高等数学第五版》上下册习题答案习题 1?11. 设 A?∞, ?5∪5, +∞, B[?10, 3, 写出 A∪B, A∩B, A\B及 A\A\B的表达式解 A∪B?∞, 3∪5, +∞, A∩B[?10, ?5, A\B?∞, ?10∪5, +∞, A\A\B[?10, ?5C C C2. 设A、B是任意两个集合, 证明对偶律: A∩B A ∪B证明因为C C C C Cx∈A∩B ?x?A∩B? x?A或x?B? x∈A 或x∈Bx∈A ∪B ,C C C所以 A∩B A ∪B 3. 设映射 f : X →Y, A?X, B?X证明1fA∪BfA∪fB; 2fA ∩B?fA∩fB 证明因为 y∈fA∪B??x∈A∪B, 使 fxy?因为 x∈A 或 x∈B y∈fA或 y∈fB? y∈ fA∪fB,所以 fA∪BfA∪fB 2因为y∈fA∩Bx∈A∩B, 使fxy?因为 x∈A且 x∈B y∈fA且 y∈fB? y∈ fA∩fB,所以 fA∩B?fA∩fB 4. 设映射f : X→Y, 若存在一个映射g: Y→X, 使 g f I , f g I , 其中I 、I 分别是X、X YX YY上的恒等映射, 即对于每一个x∈X, 有I xx; 对于每一个y∈Y, 有I yy. 证明: f是双射, 且gX Y?1是f的逆映射: gf证明因为对于任意的y∈Y, 有xgy∈X, 且fxf[gy]I yy, 即Y中任意元素都是X中某y元素的像, 所以f为X到Y的满射又因为对于任意的x ≠x , 必有fx ≠fx , 否则若fx fx ?g[ fx ]g[fx ]x x1 2 1 2 1 2 1 2 1 2 因此 f 既是单射, 又是满射, 即 f 是双射对于映射g: Y→X, 因为对每个y∈Y, 有gyx∈X, 且满足fxf[gy]I yy, 按逆映射的y定义, g是f的逆映射 5. 设映射 f : X→Y, A?X证明: ?1 1f fA?A; ?1 2当f是单射时, 有f fAA ?1 ?1 证明 1因为x∈Afxy∈fAf yx∈f fA, ?1 所以 f fA?A1 2由1知f fA?A1 ?1 另一方面, 对于任意的x∈f fA?存在y∈fA, 使f yx?fxy因为y∈fA且f是单1 ?1射, 所以x∈A. 这就证明了f fA?A. 因此f fAA6. 求下列函数的自然定义域: 1 y 3x+2 ;2 2 解由 3x+2≥0 得 x 函数的定义域为[? , +∞3 31 2 y ;21?x2 解由 1?x ≠0得x≠±1函数的定义域为?∞, ?1∪?1, 1∪1, +∞12 3 y 1?x ;x2 解由x≠0 且 1?x ≥0得函数的定义域D[?1, 0∪0, 1]1 4 y ;24?x2 解由 4?x 0 得 |x|2函数的定义域为?2, 2 5 y sin x ;解由 x≥0 得函数的定义 D[0, +∞ 6 ytanx+1;ππx≠kπ + ?1解由 x+1≠ k0, ±1, ±2,得函数的定义域为 k0, ±1, ±2,2 2 7 yarcsinx?3; 解由|x?3|≤1 得函数的定义域 D[2, 4]1 8 y 3? x +arctan ;x 解由 3?x≥0 且 x≠0 得函数的定义域 D?∞, 0∪0, 3 9 ylnx+1; 解由 x+10 得函数的定义域 D?1, +∞1x 10 ye解由 x≠0 得函数的定义域 D?∞, 0∪0, +∞ 7. 下列各题中, 函数 fx和 gx是否相同?为什么? 2 1fxlg x , gx2lg x;2 2 fxx, gx x ;3 34 3 3 f x xx , gx x x?12 2 4fx1, gxsec x?tan x解 1不同因为定义域不同 2不同因为对应法则不同, x0时, gx?x 3相同因为定义域、对应法则均相相同 4不同因为定义域不同π|sin x| |x|πππ3 8. 设?x , 求? , ? , ?? , ??2, 并作出函数 y?x的图形π 64 4?0 |x|≥3ππ 1 ππ 2 ππ 2 解 ? |sin | , ? |sin | , ?? |sin? | , ??206 6 2 4 4 2 4 4 2 9. 试证下列函数在指定区间内的单调性:x 1 y , ?∞, 1;1? x 2yx+ln x, 0, +∞证明 1对于任意的x , x ∈?∞, 1, 有 1?x 0, 1?x 0. 因为当x x 时,1 2 1 2 1 2x x xx1 2 1 2yy 0,1 21? x 1? x 1? x 1? x1 2 1 2x所以函数 y 在区间?∞, 1内是单调增加的1? x 2对于任意的x , x ∈0, +∞, 当x x 时, 有1 2 1 2x1yy x +ln x ?x +ln x xx +ln 0,1 2 1 1 2 2 1 2x2所以函数 yx+ln x 在区间0, +∞内是单调增加的 10. 设 fx为定义在?l, l内的奇函数, 若 fx在0, l内单调增加, 证明 fx在?l, 0内也单调增加证明对于?x , x ∈?l, 0且x x , 有?x , ?x ∈0, l且?x ?x1 2 1 2 1 2 1 2 因为 fx在0, l内单调增加且为奇函数, 所以f?x f?x ,fx ?fx , fx fx ,2 1 2 1 2 1这就证明了对于?x , x ∈?l, 0, 有fx fx , 所以fx在?l, 0内也单调增加1 2 1 2 11. 设下面所考虑的函数都是定义在对称区间?l, l上的, 证明: 1两个偶函数的和是偶函数, 两个奇函数的和是奇函数; 2两个偶函数的乘积是偶函数, 两个奇函数的乘积是偶函数, 偶函数与奇函数的乘积是奇函数证明1设Fxfx+gx. 如果fx和gx都是偶函数, 则F?xf?x+g?xfx+gxFx,所以 Fx为偶函数, 即两个偶函数的和是偶函数如果 fx 和 gx都是奇函数, 则 F?xf?x+g?x?fx?gx?Fx,所以 Fx为奇函数, 即两个奇函数的和是奇函数2设Fxfx?gx. 如果fx和gx都是偶函数, 则F?xf?x?g?xfx?gxFx,所以 Fx为偶函数, 即两个偶函数的积是偶函数如果 fx 和 gx都是奇函数, 则 F?xf?x?g?x[?fx][?gx]fx?gxFx,所以 Fx为偶函数, 即两个奇函数的积是偶函数如果fx是偶函数, 而gx是奇函数, 则F?xf?x?g?xfx[?gx]?fx?gx?Fx,所以 Fx为奇函数, 即偶函数与奇函数的积是奇函数 12. 下列函数中哪些是偶函数, 哪些是奇函数, 哪些既非奇函数又非偶函数?2 21yx 1?x ;2 32y3x ?x ;21?x3 y ;21+x4yxx?1x+1; 5ysin x?cos x+1;x ?xa +a6 y22 2 2 2 解 1因为f?x?x [1??x ]x 1?x fx, 所以fx是偶函数2 3 2 3 2由f?x3?x ??x 3x +x 可见fx既非奇函数又非偶函数221??x1? x 3因为 f ?x f x , 所以 fx是偶函数221+ x1+x 4因为f?x?x?x?1?x+1?xx+1x?1?fx, 所以fx是奇函数5由f?xsin?x?cos?x+1?sin x?cos x+1 可见 fx既非奇函数又非偶函数?x ??x ?x xa +a a +a 6因为 f ?x f x , 所以 fx是偶函数2 2 13. 下列各函数中哪些是周期函数?对于周期函数, 指出其周期: 1ycosx?2; 2ycos 4x; 3y1+sin πx; 4yx cos x;25ysin x 解 1是周期函数, 周期为 l2ππ 2是周期函数, 周期为 l2 3是周期函数, 周期为 l2 4不是周期函数 5是周期函数, 周期为 lπ 14. 求下列函数的反函数:3 1 y x+1 ;1?x 2 y ;1+xax+b 3 y ad?bc≠0;cx+d 4 y2sin3x; 5 y1+lnx+2;x2 6yx2 +13 33 3 解 1由 y x+1得xy ?1, 所以 y x+1的反函数为yx ?11? y1?x 1?x 1?x 2由 y 得 x , 所以 y 的反函数为 y1+x 1+ y 1+x 1+x?dy+bax+b ax+b ?dx+b 3由 y 得 x , 所以 y 的反函数为 ycy?acx+d cx+d cx?ay1 1 x 4由 y2sin 3x 得 x arcsin, 所以 y2sin 3x的反函数为 y arcsin3 2 3 2y?1 x?1 5由y1+lnx+2得xe ?2, 所以y1+lnx+2的反函数为ye ?2x xy2 2 x 6由 y 得 xlog , 所以 y 的反函数为 ylog2 2x x2 +1 1? y 2 +1 1? x 15. 设函数 fx在数集 X 上有定义, 试证: 函数 fx在 X 上有界的充分必要条件是它在 X上既有上界又有下界证明先证必要性. 设函数 fx在 X 上有界, 则存在正数 M, 使|fx|≤M, 即?M≤fx≤M. 这这就证明了 fx在 X 上有下界?M 和上界 M 再证充分性. 设函数fx在X 上有下界K 和上界K , 即K ≤fx≤ K取M|K |, |K |,1 2 1 2 1 2则M≤ K ≤fx≤ K ≤M ,1 2即 |fx|≤M这就证明了 fx在 X 上有界 16. 在下列各题中, 求由所给函数复合而成的函数, 并求这函数分别对应于给定自变量值x 和x 的函数值:1 22 ππ 1 yu , usin x, x , x ;1 26 3ππ 2 ysin u, u2x, x , x ;1 28, 42 3 y u, u1+x , x 1, x 2;1 2u 2 4 ye , ux , x 0, x 1;1 22 x 5 yu , ue , x 1, x ?11 22 π 1 1 π3 32 2 2 2 解 1ysin x, y sin , y sin1 26 2 4 3 2 4ππ 2 ππ 2ysin2x, y sin2? sin , y sin2? sin 11 28 4 2 4 22 2 23 y, 1+ x y 1+1 2 , y 1+2 51 22 2 2x 0 1 4 y e , y e 1 , y e e1 22x 2?1 2 2??1 ?2 5ye , y e e , y e e1 2 17. 设 fx的定义域 D[0, 1], 求下列各函数的定义域:2 1 fx ; 2 fsinx; 3 fx+aa0; 4fx+a+fx?aa02 2 解 1由 0≤x ≤1 得|x|≤1, 所以函数fx 的定义域为[?1, 1] 2由0≤sin x≤1 得 2nπ≤x≤2n+1π n0, ±1, ±2 ?, 所以函数 fsin x的定义域为[2nπ, 2n+1π] n0, ±1, ±2 ?3由 0≤x+a≤1 得?a≤x≤1?a, 所以函数fx+a的定义域为[?a, 1?a]1 1 1 4由 0≤x+a≤1 且 0≤x?a≤1 得: 当 0a≤时, a≤x≤1?a; 当 a 时, 无解. 因此当 0a≤时2 2 21函数的定义域为[a, 1?a], 当 a 时函数无意义21 |x|1?x18. 设 f x 0 |x|1, gxe , 求f[gx]和g[fx], 并作出这两个函数的图形1 |x|1x1 |e |1 1 x0x解 f [gx] 0 |e |1 , 即 f [gx] 0 x0x1 |e |1 ?1 x0?1e |x| 1 e |x| 1f x 0 g[ f x ]e e |x|1, 即 g[ f x ] 1 |x|11 ?1?e |x|1 e |x|119. 已知水渠的横断面为等腰梯形, 斜角?40°图 1?37. 当过水断面ABCD的面积为定值S 时, 求湿周LLAC+CD+DB与水深h之间的函数关系式, 并说明定义域0图 1?37h 解 AbDC , 又从sin401h[BC +BC +2cot40 ?h]S 得2SBC ?cot40 ?h , 所以hS2?cos40L + hh sin 40 自变量 h 的取值范围应由不等式组Sh0, ?cot40 ?h0h确定, 定义域为 0h S cot400 20. 收敛音机每台售价为 90 元, 成本为 60 元. 厂方为鼓励销售商大量采购, 决定凡是订购量超过 100 台以上的, 每多订购 1台, 售价就降低 1 分, 但最低价为每台 75 元 1将每台的实际售价 p 表示为订购量 x 的函数; 2将厂方所获的利润 P表示成订购量 x 的函数; 3某一商行订购了 1000 台, 厂方可获利润多少?解 1当 0≤x≤100时, p90令 0. 01x ?10090?75, 得x 1600. 因此当x≥1600 时, p750 0 当 100x1600 时, p90?x?100×0. 0191?0. 01x 综合上述结果得到90 0≤ x≤100 p 91?0.01x 100 x1600?75x≥1600 30x 0≤ x≤1002P p?60x 31x?0.01x 100 x1600 215xx≥16002 3 P31×1000?0. 01×1000 21000元习题 1 ?21. 观察一般项x 如下的数列x 的变化趋势, 写出它们的极限:n n1 1 x ;nn21n 2 x ?1 ;nn1x 2 + 3 ;n2nn ?1 4 x ;nn +1n 5 x n ?1n1 1x lim 0 解 1 当 n →∞时, →0,nn nn →∞2 21 1n n 2 当 n →∞时, x ?1 →0, lim ?1 0 nn →∞n n1 1 3 当 n →∞时, x2 + →2,lim2 + 2 n2 2n →∞n nn ?1 2 n ?1x 1lim 1 4 当 n →∞时, →0,nn →∞n +1 n +1 n +1n 5 当n→∞时, x n ?1 没有极限nn πcos2 2. 设数列x 的一般项 x 问 lim x ? 求出N, 使当nN 时, x 与其极限之差的n nn nn →∞n绝对值小于正数ε , 当ε 0.001 时, 求出数N 解 lim x 0nn →∞n π|cos |1 1 1 12 |x ?0| ≤? ε 0, 要使|x ?0| ε , 只要ε , 也就是 n 取 N [ ], nnn nn εε则?nN, 有|x ?0| εn1N [ ] 当ε 0.001 时, 1000ε 3. 根据数列极限的定义证明: 1 1 lim 0 ;2n →∞n3n +1 3lim 2 ;n →∞2n +1 22 2n +a 3 lim 1n →∞n 4 lim 0.999 9 1n →∞n 个1 1 1 12| ?0| ε n 1 分析要使 , 只须 , 即 n2 2εn n ε1 11 证明因为ε0,N [ ], 当 nN 时, 有| ?0| ε , 所以 lim 02 2n →∞1 13n +1 3 1 1 2 分析要使|| ε , 只须ε , 即 n2n +1 2 22n +1 4n4n 4 ε3n +1 31 3n +1 3 证明因为ε0,N [ ] , 当 nN 时, 有|| ε , 所以 lim n →∞4 ε 2n +1 2 2n +1 22 2 2 2 2 2 2n +a n +a ?n a a a 3 分析要使|, ?1| ε只须 n2 2n n n εn n +a +n2 2 2 2 2an +a n +a证明因为? ε0,N [ ] , 当?nN 时, 有| ?1| ε , 所以 lim 1n →∞ε n n11 1 4 分析要使|0.99 9 ?1| , 只须ε , 即 n 1 +lgεn ?1 n ?1ε1证明因为? ε0,N [1 +lg ] , 当?nN 时, 有|0.99 9 ?1| ε , 所以 lim 0.999 9 1n →∞εn 个 4. lim u a , 证明 lim |u | |a|并举例说明: 如果数列|x | 有极限, 但数列x 未必有n nn nn →∞ n →∞极限证明因为 lim u a , 所以? ε0, ?N ∈N, 当 nN 时, 有|u ?a| ε , 从而n nn →∞||u | ?|a|| ≤|u ?a| εn n这就证明了 lim|u | |a|nn →∞n n 数列|x | 有极限, 但数列x 未必有极限. 例如 lim| ?1 | 1, 但lim ?1 不存在n nn →∞ n →∞ 5. 设数列x 有界, 又 lim y 0 , 证明: lim x y 0 nn →∞ n →∞证明因为数列x 有界, 所以存在M, 使?n ∈Z, 有|x | ≤Mn nε又 lim y 0 , 所以ε0, ?N ∈N, 当 nN 时, 有| y | 从而当 nN 时, 有n nn →∞Mε |x y ?0| |x y | ≤M | y | M ε ,n n n n nM所以 lim x y 0n nn →∞ 6. 对于数列x 若x →a k →∞, x →a k →∞, 证明: x →a n →∞n 2k 2k +1 n 证明因为x →a k →∞, x →a k →∞, 所以ε0,2k 2k +1?K , 当 2k2K 时, 有| x ?a | ε ;1 1 2kK , ?当 2k+12K +1 时, 有| x ?a | ε2 2 2k+1取N 2K , 2K +1, 只要nN, 就有|x ?a | ε因此x →a n →∞1 2 n n 习题 1 ?31. 根据函数极限的定义证明: 1 lim3x ?1 8;x →3 2 lim5x +2 12;x →22x ?4 3 lim ?4;x → ?2x +231 ?4x 4 lim 21x →2x +121 证明 1 分析 |3x ?1 ?8| |3x ?9| 3|x ?3|, 要使|3x ?1 ?8| ε , 只须|x ?3| ε31 证明因为ε 0,δε , 当 0 |x ?3| δ时, 有|3x ?1 ?8| ε , 所以 lim3x ?1 8x →331 2 分析 |5x +2 ?12| |5x ?10| 5|x ?2|, 要使|5x +2 ?12| ε , 只须|x ?2| ε51δε证明因为ε 0,, 当 0 |x ?2| δ时, 有|5x +2 ?12| ε , 所以 lim5x +2 12x →252 2 2x ?4 x +4x +4 x ?4 3 分析 ? ?4 |x +2| |x ? ?2| , 要使 ? ?4 ε , 只须x +2 x +2 x +2|x ? ?2| ε2 2x ?4 x ?4 证明因为ε 0,δε , 当 0 |x ? ?2| δ时, 有 ? ?4 ε ,所以 lim ?4x → ?2x +2 x +2331 ?4x 1 1 ?4x 1 1 4 分析 , 要使 ?2 ε , 只须|x ?| ε 2 |1 ?2x ?2| 2|x ?|2x +1 2 2x +1 2 23 31 1 1 ?4x 1 ?4x 证明因为ε 0,δε , 当 0 |x ?| δ时, 有 ?2 ε , 所以 lim 212 2 2x +1 2x +1x →2 2. 根据函数极限的定义证明:31 + x 1 1 ;lim3x →∞22xsin x 2 lim 0x → +∞x33 3 31 + x 1 1 + xx 1 1 + x 1 1 证明 1 分析 , 要使ε , 只须ε , 即3 3 3 3 32 22x 2x 2|x| 2x 2|x|1|x| 32 ε 331 1 + x 11 + x 1 证明因为ε 0,X , 当|x| X 时, 有ε , 所以 lim3 33x →∞2 22x 2x2 εsin x |sin x| 1 sin x 1 1 2 分析 ?0 ≤ , 要使 ?0 ε , 只须ε , 即 x 2εx x x x x1sin x sin x 证明因为ε 0,X , 当 x X 时, 有 ?0 ε , 所以 lim 0 2x → +∞εx x2 3. 当x →2 时, y x →4. 问δ等于多少, 使当|x ?2| δ时, |y ?4|0. 001 ?2 解由于x →2, |x ?2| →0, 不妨设|x ?2| 1, 即 1 x 3. 要使|x ?4| |x +2||x ?2| 5|x ?2| 0. 001, 只要0.0012|x ?2| 0.0002, 取δ 0. 0002, 则当 0 |x ?2| δ时, 就有|x ?4| 0. 00152x ?1 4. 当x →∞时, y →1, 问X 等于多少, 使当|x|X 时, |y ?1|0.012x +32x ?1 44 解要使 ?1 0.01, 只 ,|x| ?3 397 X 3972 20.01x +3 x +3 5. 证明函数 fx |x| 当 x →0 时极限为零x |x| 6. 求 f x , ?x 当 x →0 时的左?右极限, 并说明它们在 x →0 时的极限是否存在x x 证明因为xlim f x lim lim 1 1,x →0 x →0 x x →0xlim f x lim lim 1 1,+ + +x →0 x →0 x x →0lim f x lim f x,? +x →0 x →0所以极限 lim f x 存在x →0 因为|x| ?xlim ?x lim lim ?1,x →0 x →0 x →0x x|x| xlim ?x lim lim 1,+ + +x →0 x →0 x →0x xlim ?x ≠ lim ?x,? +x →0 x →0所以极限 lim ?x 不存在x →0 7. 证明: 若 x →+ ∞及 x →?∞时, 函数 fx 的极限都存在且都等于 A, 则 lim f x Ax →∞证明因为 lim f x A , lim f x A , 所以? ε0,x → ?∞ x →+∞?X 0, 使当x ?X 时, 有|fx ?A| ε ;1 1?X 0, 使当x X 时, 有|fx ?A| ε2 2取XX , X , 则当|x| X时, 有|fx ?A| ε , 即 lim f x A1 2x →∞ 8. 根据极限的定义证明: 函数fx 当x →x 时极限存在的充分必要条件是左极限、右极限各自存在并且相等证明先证明必要性. 设fx →Ax →x , 则? ε0,δ 0, 使当 0|x ?x | δ时, 有0 0|fx ?A| ε因此当xδxx 和x xx + δ时都有0 0 0 0|fx ?A| ε这说明fx 当x →x 时左右极限都存在并且都等于A0 再证明充分性. 设fx ?0 fx +0 A, 则? ε0,0 0? δ 0, 使当xδ xx 时, 有| fx ?A ε ;1 0 1 0? δ 0, 使当x xx + δ时, 有| fx ?A| ε2 0 0 2取δ min δ , δ , 则当0|x ?x | δ时, 有xδ xx 及x xx + δ , 从而有1 2 0 0 1 0 0 0 2| fx ?A| ε ,即fx →Ax →x0 9. 试给出 x →∞时函数极限的局部有界性的定理, 并加以证明解 x →∞时函数极限的局部有界性的定理 : 如果 fx 当 x→∞时的极限存在 , 则存在 X0 及M 0 , 使当|x|X 时, |fx| M证明设 fx →Ax →∞ , 则对于ε 1 , ?X0 , 当|x| X 时, 有|fx ?A| ε 1所以|fx| |fx ?A+A| ≤|fx ?A| +|A| 1 +|A| 这就是说存在 X0 及 M 0 , 使当|x| X 时, |fx| M , 其中 M 1 +|A|习题1 ?41. 两个无穷小的商是否一定是无穷小?举例说明之解不一定αx 2 αx 例如, 当 x →0 时, αx 2x, βx 3x 都是无穷小, 但 lim , 不是无穷小x →0β x 3 β x 2. 根据定义证明:2x ?9 1 y 当 x →3 时为无穷小;x +31 2 y xsin 当 x →0 时为无穷小x2x ?9 证明 1 当 x ≠3 时| y| |x ?3|因为ε 0,δε , 当 0 |x ?3| δ时, 有x +32x ?9| y| |x ?3| δε ,x +32x ?9所以当 x →3 时 y 为无穷小x +31 2 当 x ≠0 时| y| |x||sin | ≤|x ?0|因为? ε 0,δε , 当 0 |x ?0| δ时, 有x1| y| |x||sin | ≤|x ?0| δε ,x1所以当 x →0 时 y xsin 为无穷小x1 +2x 3. 根据定义证明: 函数 y 为当x →0 时的无穷大. 问x 应满足什么条件, 能使x4|y|10 ?1 +2x 1 1 1 1 证明分析| y|2 + ≥ ?2 , 要使|y| M, 只须 ?2 M , 即|x|x x |x| |x| M +21 1 + 2x 证明因为 ?M 0,δ , 使当 0 |x ?0| δ时, 有 M ,M +2 x1 +2x所以当 x →0 时, 函数 y 是无穷大x1 14 4 取M 10 , 则δ当 0 |x ?0| 时, |y|104 410 +2 10 +2 4. 求下列极限并说明理由:2x +1 1 lim ;n →∞x21x 2 limx →01x2x +1 1 1 2x +1 解 1 因为 2 + , 而当 x→∞时是无穷小, 所以 lim 2n →∞x x x x2 21x 1x 2 因为 1 + x x ≠1, 而当 x →0 时 x 为无穷小, 所以 lim 1 x →01x 1x 5. 根据函数极限或无穷大定义, 填写下表: 6. 函数 y xcos x 在?∞, +∞内是否有界?这个函数是否为当 x →+∞时的无穷大?为什么?解函数 y xcos x 在?∞, +∞内无界这是因为?M 0, 在 ?∞, +∞内总能找到这样的 x, 使得|yx| M. 例如y2k π 2k π cos2k π 2k π k 0, 1, 2,,当 k 充分大时, 就有| y2k π| M 当 x →+ ∞时, 函数 y xcos x 不是无穷大这是因为?M 0, 找不到这样一个时刻 N, 使对一切大于 N 的 x, 都有|yx| M. 例如πππy2k π + 2k π + cos2k π + 0 k 0, 1, 2,,2 2 2π对任何大的 N, 当 k 充分大时, 总有 x 2k π + N , 但|yx| 0 M21 1+ 7. 证明: 函数 y sin 在区间0, 1] 上无界, 但这函数不是当x →0 时的无穷大x x1 1 证明函数 y sin 在区间0, 1] 上无界. 这是因为x xM 0, 在0, 1] 中总可以找到点x , 使yx M. 例如当k k1x k 0, 1, 2,kπ2k π +2时, 有πyx 2k π + ,k2当k 充分大时, yx Mk+当x →0 时, 函数 y sin 不是无穷大. 这是因为x xM 0, 对所有的δ 0, 总可以找到这样的点x , 使 0 x δ, 但yx M. 例如可取k k k1x k 0, 1, 2,,k2k π当k 充分大时, x δ, 但yx 2k πsin2k π 0 Mk k习题 1 ?51. 计算下列极限:2x +5 1 lim ;x →2x ?32 2x +5 2 +5 解 lim ?9x →2x ?3 2 ?32x ?3 2 lim ;2x → 3 x +1223 ?3x ?3 解 lim 02x → 3 x +13 +12x ?2x +1 3 lim ;2x →1x ?122x ?2x +1 x ?1 x ?1 0 解 lim lim lim 0 2x →1 x →1 x →1x ?1 x ?1x +1 x +1 23 24x ?2x +x 4 lim ;2x →03x +2x3 2 24x ?2x +x 4x ?2x +1 1 解 lim lim2x →0 x →03x + 2x 3x + 2 22 2x +h ?x 5 lim ;h →0h2 22 2 2x +h ?xx +2hx +h ?x 解 lim lim lim2x +h 2x h →0 h →0 h →0h h1 1 6 lim2+ ;2x →∞x x1 1 1 1 解 lim2+ 2lim + lim 22 2x →∞ x →∞ x →∞x x x x2x ?1 7 lim ;2x →∞2x ?x ?11122x 解 lim lim2x →∞ x ?xx →∞ 1 1 22 12?2x x2x +x 8 lim ;4 2x →∞x ?3x ?12x +x 解 lim 0 分子次数低于分母次数, 极限为零4 2x →∞x ?3x ?11 1+22 3x +xx x 或 lim lim 04 2x →∞ x →∞ 2 11?2 4x x2x6x + 8 9 lim ;2x →4x5x + 42x ?2x ?4x ?6x +8 x ?2 4 ?2 2lim lim lim 解2x →4 x →4 x →4x ?5x +4 x ?1x ?4 x ?1 4 ?1 31 1 10 lim1 +2 ;2x →∞x x1 1 1 1 解 lim1 +2 lim1 + lim2 1 ×2 22 2x →∞ x →∞ x →∞x x x x1 1 1 11 lim1 + + + + ;nn →∞2 4 21n +11 ?1 1 12 解 lim1 + + + + lim 2 nn →∞ n →∞ 12 4 2121 +2 +3 + +n ?1 12 lim ; 2n →∞nn ?1n1 +2 +3 + +n ?1 1 n ?1 12 解lim lim lim2 2n →∞ n →∞ n →∞n n 2 n 2n +1n +2n +3 13 lim ;3n →∞5nn +1n +2n +3 1 解 lim 分子与分母的次数相同, 极限为最高次项系数之比3n →∞ 5n 5n +1n +2n +31 123 1 或 lim lim1 + 1 + 1 +3n →∞ n →∞5n 5 n n n 51 3 14 lim ;3x →11 ?x 1 ?x21 ?xx +21 3 1 +x +x ?3 x +2lim lim ?lim ?lim ?1 解3 2 2 2x →1 x →1 x →1 x →11 ?x 1 ?x 1 ?x1 +x +x 1 ?x1 +x +x 1 +x +x 2. 计算下列极限:3 2x +2x 1 lim ;2x →223 2x ?20 x +2x 解因为 lim 0 , 所以 lim ∞3 2 2x →2 x →2x +2x 16 x ?22x 2 lim ;x →∞2x +12x 解 lim ∞因为分子次数高于分母次数x →∞2x +13 3 lim2x ?x +1x →∞3 解 lim2x ?x +1 ∞因为分子次数高于分母次数x →∞ 3. 计算下列极限:12 1 limx sin ;x →0x1 2 12 解 limx sin 0 当x →0 时, x 是无穷小, 而 sin 是有界变量x →0arctanx 2 limx →∞xarctanx 1 1 解 lim lim ?arctanx 0 当 x →∞时, 是无穷小, 而arctan x 是有界变量x →∞ x →∞x x x 4. 证明本节定理 3 中的2. 习题 1 ?61. 计算下列极限:sin ωx 1 lim ;x →0xsin ωx sin ωx 解 lim ω lim ωx →0 x →0x ωxtan3x 2 lim ;x →0xtan3x sin3x 1 解 lim 3lim3x →0 x →0x 3x cos3xsin2x 3 lim ;x →0sin5xsin2x sin2x 5x 2 2 解 lim lim?x →0 x →0sin5x 2x sin5x 5 5 4 lim x cot x ;x →0x x 解 lim xcot x lim ?cosx lim ?limcosx 1x →0 x →0 x →0 x →0sin x sin x1 ?cos2x 5 lim ;x →0xsin x21 ?cos2x 1 ?cos2x 2sin x sin x2 解法一 lim lim lim 2lim 22 2x →0 x →0 x →0 x →0xsin x x x x21 ?cos2x 2sin x sin x 解法二 lim lim 2lim 2x →0 x →0 x →0xsin x xsin x xxn 6 lim 2 sin x 为不等于零的常数nn →∞2xsinnxn2 解 lim2 sin lim ?x xnxn →∞ n →∞2n2 2. 计算下列极限:1x 1 lim1 ?x ;x →01 11?1?1?1?x ?xx 解 lim1x lim[1 + ?x] lim[1 + ?x] e x →0 x →0 x →01x 2 lim1 +2x ;x →01 1 1?222x 2x 2x 解 lim1 +2x lim1 +2x [ lim1 +2x ] ex →0 x →0 x →01 + x2x 3 lim ;x →∞x1 + x 1 22x x 2[ ] 解 lim lim1 + ex →∞ x →∞x x1kx 4 lim1 k 为正整数x →∞x1 1kx ?x ?k ?k 解 lim1 lim1 + ex →∞ x →∞xx 3. 根据函数极限的定义, 证明极限存在的准则 I ′解 4. 利用极限存在准则证明:1 1 lim 1 + 1;n →∞ n1 1 证明因为1 1 + 1 + ,n n1而lim1 1 且 lim1 + 1,n →∞ n →∞ n1由极限存在准则 I, lim 1 + 1n →∞n1 1 12 limn + + + 1;2 2 2n →∞n + π n +2 π n +n π证明因为2 2n 1 1 1 nn + + + ,2 2 2 2 2n +n π n + π n +2 π n +n π n + π2 2n n而lim 1, lim 1,2 2n →∞ n →∞n +n π n + π1 1 1所以 limn + + + 12 2 2n →∞ n + π n +2 π n +n π 3 数列 2 , 2 + 2 , 2 + 2 + 2 , 的极限存在; 证明 x 2 , x 2 + x n 1, 2, 3,1 n +1 n 先证明数列x 有界. 当n 1 时 x2 2 , 假定n k 时x 2, 当n k +1 时,n k1x 2 + x 2 +2 2,k +1 k所以x 2n 1, 2, 3,, 即数列x 有界n n 再证明数列单调增22 + xx ?x ?2x +1n n n nxx 2 + xx ,n +1 n n n2 + x + x 2 + x + xn n n n而x ?2 0, x +1 0, 所以x ?x 0, 即数列x 单调增n n n +1 n n 因为数列x 单调增加有上界, 所以此数列是有极限的nnlim 1 + x 1 4 ;x →0 证明当|x| ≤1 时, 则有n 1 +x ≤1 +|x| ≤1 +|x| ,n 1 +x ≥1 ?|x| ≥1 ?|x| ,n从而有 1 ?|x| ≤ 1 + x ≤1 +|x|因为 lim1 ?|x| lim1 +|x| 1,x →0 x →0根据夹逼准则, 有nlim 1 + x 1x →01 5 lim x [ ] 1+x →0 x1 1 1 1 证明因为 ?1 [ ] ≤ , 所以1x x [ ] ≤1x x x x1 又因为 lim 1x lim 1 1 , 根据夹逼准则, 有 lim x [ ] 1+ + +x →0 x →0 x →0x习题 1?72 23 1. 当x→0 时, 2x?x 与x ?x 相比, 哪一个是高阶无穷小?2 3 2x ?x x?x 解因为 lim lim 0,2x→0 x→02?x2x?x2 3 2 3 2所以当x→0 时, x ?x 是高阶无穷小, 即x ?x o2x?x13 2 2. 当x→1 时, 无穷小 1?x 和11?x , 2 1x 是否同阶?是否等价? 23 21?x 1?x1+x+x2 解 1 因为 lim lim lim1+x+x 3,x→1 x→1 x→11?x 1?x3所以当x→1 时, 1?x 和 1?x 是同阶的无穷小, 但不是等价无穷小121?x12 2 因为 lim lim1+x1,x→1 x→11?x 212所以当x→1 时, 1?x 和 1?x 是同阶的无穷小, 而且是等价无穷小2 3. 证明: 当x→0 时, 有: 1 arctanx~x;2x 2 secx?1~2arctanx y 证明 1 因为 lim lim 1 提示: 令yarctan x, 则当x→0 时, y →0,x→0 y→0x tany所以当x→0 时, arctanx~xx x22sin 2sin2secx?1 1?cosx2 2 2 因为 lim 2lim lim lim 1,2 2x→0 x→0 x→0 x→01 x2 x cosx xx2 222x所以当x→0 时, secx?1~2 4. 利用等价无穷小的性质, 求下列极限:tan3x 1 lim ;x→02xnsinx 2 lim n, m 为正整数;mx→0sinxtanx?sinx 3 lim ;3x→0sin xsinx?tanx 4 limx→0 3 21+x ?1 1+sinx ?1tan3x 3x 3 解 1 lim lim x→0 x→02x 2x 21 nmnnsinx x 2 lim lim 0 nmm mx→0 x→0sinx x∞nm1 12sinx ?1 xtanx?sinx 1?cosx 1cosx2 3 lim lim lim lim3 3 2 2x→0 sin x x→0 sin x x→0 cosxsin x x→0x cosx 2 4 因为。
高等数学(下)课后习题答案

高等数学(下)习题七1. 在空间直角坐标系中,定出下列各点的位置:A(1,2,3); B(-2,3,4); C(2,-3,-4);D(3,4,0); E(0,4,3); F(3,0,0).解:点A在第Ⅰ卦限;点B在第Ⅱ卦限;点C在第Ⅷ卦限;点D在xOy面上;点E在yOz面上;点F在x轴上.2. xOy坐标面上的点的坐标有什么特点?yOz面上的呢?zOx面上的呢?答: 在xOy面上的点,z=0;在yOz面上的点,x=0;在zOx面上的点,y=0.3. x轴上的点的坐标有什么特点?y轴上的点呢?z轴上的点呢?答:x轴上的点,y=z=0;y轴上的点,x=z=0;z轴上的点,x=y=0.4. 求下列各对点之间的距离:(1)(0,0,0),(2,3,4);(2)(0,0,0),(2,-3,-4);(3)(-2,3,-4),(1,0,3);(4)(4,-2,3),(-2,1,3).解:(1)s=(2) s==(3) s=(4) s==.5. 求点(4,-3,5)到坐标原点和各坐标轴间的距离.解:点(4,-3,5)到x轴,y轴,z轴的垂足分别为(4,0,0),(0,-3,0),(0,0,5).s==故s==xs==ys==.5z6. 在z轴上,求与两点A(-4,1,7)和B(3,5,-2)等距离的点.解:设此点为M(0,0,z),则222222-++-=++--(4)1(7)35(2)z z解得149z=即所求点为M(0,0,149).7. 试证:以三点A(4,1,9),B(10,-1,6),C(2,4,3)为顶点的三角形是等腰直角三角形.证明:因为|AB|=|AC|=7.且有|AC|2+|AB|2=49+49=98=|BC|2.故△ABC为等腰直角三角形.8. 验证:()()++=++a b c a b c.证明:利用三角形法则得证.见图7-1图7-19. 设2,3.u v=-+=-+-a b c a b c 试用a, b, c表示23.u v-解:232(2)3(3)2243935117u v-=-+--+-=-++-+=-+a b c a b ca b c a b ca b c10. 把△ABC的BC边分成五等份,设分点依次为D1,D2,D3,D4,再把各分点与A 连接,试以AB=c,BC=a表示向量1D A,2D A,3D A和4D A.解:1115D A BA BD=-=--c a2225D A BA BD=-=--c a3335D A BA BD=-=--c a444.5D A BA BD=-=--c a11. 设向量OM的模是4,它与投影轴的夹角是60°,求这向量在该轴上的投影.解:设M的投影为M',则1Pr j cos604 2.2uOM OM=︒=⨯=12. 一向量的终点为点B(2,-1,7),它在三坐标轴上的投影依次是4,-4和7,求这向量的起点A的坐标.解:设此向量的起点A的坐标A(x, y, z),则{4,4,7}{2,1,7}AB x y z =-=----解得x =-2, y =3, z =0故A 的坐标为A (-2, 3, 0).13. 一向量的起点是P 1(4,0,5),终点是P 2(7,1,3),试求:(1) 12PP 在各坐标轴上的投影; (2) 12PP 的模;(3) 12PP 的方向余弦; (4) 12PP 方向的单位向量.解:(1)12Pr j 3,x x a PP ==12Pr j 1,y y a PP == 12Pr j 2.z z a PP ==-(2) 12(7PP == (3) 12cos 14xa PP α== 12cos 14ya PP β==12cos 14za PP γ==(4) 12012{14PPPP ===-e j . 14. 三个力F 1=(1,2,3), F 2=(-2,3,-4), F 3=(3,-4,5)同时作用于一点. 求合力R 的大小和方向余弦.解:R =(1-2+3,2+3-4,3-4+5)=(2,1,4)||==Rcos coscos αβγ=== 15. 求出向量a = i +j +k , b =2i -3j +5k 和c =-2i -j +2k 的模,并分别用单位向量,,a b c e e e 来表达向量a , b , c .解:||==a||==b||3==c, , 3. a b c ==a b c e16. 设m =3i +5j +8k , n =2i -4j -7k , p =5i +j -4k ,求向量a =4m +3n -p 在x 轴上的投影及在y 轴上的分向量.解:a =4(3i +5j +8k )+3(2i -4j -7k )-(5i +j -4k )=13i +7j +15k在x 轴上的投影a x =13,在y 轴上分向量为7j .17. 向量r 与三坐标轴交成相等的锐角,求这向量的单位向量e r .解:因αβγ==,故23cos 1 α=,cos αα==则{cos ,cos ,cos })r αβγ===++e i j k . 18. 已知两点M 1(2,5,-3),M 2(3,-2,5),点M 在线段M 1M 2上,且123M M MM =,求向径OM 的坐标.解:设向径OM ={x , y , z }12{2,5,3}{3,2,5}M M x y z MM x y z =--+=----因为,123M M MM = 所以,11423(3)153(2) 433(5)3x x x y y y z z z ⎧=⎪-=-⎧⎪⎪⎪-=--⇒=-⎨⎨⎪⎪+=-⎩=⎪⎪⎩故OM ={111,,344-}. 19. 已知点P 到点A (0,0,12)的距离是7,OP 的方向余弦是236,,777,求点P 的坐标. 解:设P 的坐标为(x , y , z ),2222||(12)49PA x y z =++-=得2229524x y z z ++=-+126570cos 6, 749z z γ==⇒==又122190cos 2, 749x x α==⇒==123285cos 3, 749y y β==⇒== 故点P 的坐标为P (2,3,6)或P (190285570,,494949). 20. 已知a , b 的夹角2π3ϕ=,且3,4a b ==,计算: (1) a ·b ; (2) (3a -2b )·(a + 2b ). 解:(1)a ·b =2π1cos ||||cos3434632ϕ⋅⋅=⨯⨯=-⨯⨯=-a b (2) (32)(2)3624-⋅+=⋅+⋅-⋅-⋅a b a b a a a b b a b b2223||44||334(6)41661.=+⋅-=⨯+⨯--⨯=-a a b b21. 已知a =(4,-2, 4), b =(6,-3, 2),计算:(1)a ·b ; (2) (2a -3b )·(a + b ); (3)2||-a b解:(1)46(2)(3)4238⋅=⨯+-⨯-+⨯=a b(2) (23)()2233-⋅+=⋅+⋅-⋅-⋅a b a b a a a b a b b b 222222222||3||2[4(2)4]383[6(3)2]23638349113=-⋅-=⨯+-+--+-+=⨯--⨯=-a a b b(3) 222||()()2||2||-=-⋅-=⋅-⋅+⋅=-⋅+a b a b a b a a a b b b a a b b 36238499=-⨯+=22. 已知四点A (1,-2,3),B (4,-4,-3),C (2,4,3),D (8,6,6),求向量AB 在向量CD 上的投影.解:AB ={3,-2,-6},CD ={6,2,3}Pr j CD AB CD AB CD ⋅=4.7==- 23. 设重量为100kg 的物体从点M 1(3, 1, 8)沿直线移动到点M 2(1,4,2),计算重力所作的功(长度单位为m ).解:取重力方向为z 轴负方向,依题意有f ={0,0, -100×9.8}s = 12M M ={-2, 3,-6}故W = f ·s ={0,0,-980}·{-2,3,-6}=5880 (J)24. 若向量a +3b 垂直于向量7a -5b ,向量a -4b 垂直于向量7a -2b ,求a 和b 的夹角. 解: (a +3b )·(7a -5b )=227||1615||0+⋅-=a a b b ①(a -4b )·(7a -2b ) = 227||308||0-⋅+=a a b b ② 由①及②可得:222221()1||||2||||4⋅⋅⋅==⇒=a b a b a b a b a b 又21||02⋅=>a b b ,所以1cos ||||2θ⋅==a b a b , 故1πarccos 23θ==. 25. 一动点与M 0(1,1,1)连成的向量与向量n =(2,3,-4)垂直,求动点的轨迹方程. 解:设动点为M (x , y , z )0{1,1,1}M M x y z =---因0M M n ⊥,故00M M n ⋅=.即2(x -1)+3(y-1)-4(z-1)=0整理得:2x +3y-4z-1=0即为动点M 的轨迹方程.26. 设a =(-2,7,6),b =(4, -3, -8),证明:以a 与b 为邻边的平行四边形的两条对角线互相垂直.证明:以a ,b 为邻边的平行四边形的两条对角线分别为a +b ,a -b ,且a +b ={2,4, -2}a-b ={-6,10,14}又(a +b )·(a-b )= 2×(-6)+4×10+(-2)×14=0故(a +b )⊥(a-b ).27. 已知a =3i +2j -k , b =i -j +2k ,求:(1) a ×b ;(2) 2a ×7b ;(3) 7b ×2a ; (4) a ×a .解:(1) 211332375122111--⨯=++=----a b i j k i j k(2) 2714()429870⨯=⨯=--a b a b i j k(3) 7214()14()429870⨯=⨯=-⨯=-++b a b a a b i j k(4) 0⨯=a a .28. 已知向量a 和b 互相垂直,且||3, ||4==a b .计算:(1) |(a +b )×(a -b )|;(2) |(3a +b )×(a -2b )|.(1)|()()|||2()|+⨯-=⨯-⨯+⨯-⨯=-⨯a b a b a a a b b a b b a bπ2||||sin 242=⋅⋅=a b (2) |(3)(2)||362||7()|+⨯-=⨯-⨯+⨯-⨯=⨯a b a b a a a b b a b b b aπ734sin 842=⨯⨯⨯= 29. 求垂直于向量3i-4j-k 和2i-j +k 的单位向量,并求上述两向量夹角的正弦. 解:411334555111221----⨯=++=--+--a b i j k i j k与⨯a b平行的单位向量)||⨯==--+⨯a b e i j k a b||sin ||||θ⨯===⨯a b a b . 30. 一平行四边形以向量a =(2,1,-1)和b =(1,-2,1)为邻边,求其对角线夹角的正弦. 解:两对角线向量为13=+=-l a b i j ,232=-=+-l a b i j k因为12|||2610|⨯=++l l i j k12||||==l l 所以1212||sin 1||||θ⨯===l l l l . 即为所求对角线间夹角的正弦.31. 已知三点A (2,-1,5), B (0,3,-2), C (-2,3,1),点M ,N ,P 分别是AB ,BC ,CA 的中点,证明:1()4MN MP AC BC ⨯=⨯. 证明:中点M ,N ,P 的坐标分别为31(1,1,), (1,3,), (0,1,3)22M N P -- {2,2,2}MN =--3{1,0,}2MP =- {4,4,4}AC =--{2,0,3}BC =- 22222235233100122MN MP ----⨯=++=++--i j k i j k 44444412208033220AC BC ---⨯=++=++--i j k i j k 故 1()4MN MP AC BC ⨯=⨯. 32. 求同时垂直于向量a =(2,3,4)和横轴的单位向量.解:设横轴向量为b =(x ,0,0)则同时垂直于a ,b 的向量为3442230000x x ⨯=++a b i j k =4x j -3x k故同时垂直于a ,b 的单位向量为1(43)||5⨯=±=±-⨯a b e j k a b . 33. 四面体的顶点在(1,1,1),(1,2,3),(1,1,2)和(3,-1,2)求四面体的表面积. 解:设四顶点依次取为A , B , C , D .{0,1,2}, {2,2,1}AB AD ==-则由A ,B ,D 三点所确定三角形的面积为111|||542|222S AB AD =⨯=+-=i j k .同理可求其他三个三角形的面积依次为12故四面体的表面积122S =+. 34. 已知三点A (2,4,1), B (3,7,5), C (4,10,9),证:此三点共线.证明:{1,3,4}AB =,{2,6,8}AC =显然2AC AB =则22()0AB AC AB AB AB AB ⨯=⨯=⨯=故A ,B ,C 三点共线.35. 求过点(4,1,-2)且与平面3x -2y +6z =11平行的平面方程.解:所求平面与平面3x -2y +6z =11平行故n ={3,-2,6},又过点(4,1,-2)故所求平面方程为:3(x -4)-2(y -1)+6(z +2)=0即3x -2y +6z +2=0.36. 求过点M 0(1,7,-3),且与连接坐标原点到点M 0的线段OM 0垂直的平面方程. 解:所求平面的法向量可取为0{1,7,3}OM ==-n故平面方程为:x -1+7(y -7)-3(z +3)=0即x +7y -3z -59=037. 设平面过点(1,2,-1),而在x 轴和z 轴上的截距都等于在y 轴上的截距的两倍,求此平面方程.解:设平面在y 轴上的截距为b 则平面方程可定为122x y z b b b++= 又(1,2,-1)在平面上,则有121122b b b-++= 得b =2. 故所求平面方程为1424x y z ++= 38. 求过(1,1,-1),(-2,-2,2)和(1,-1,2)三点的平面方程.解:由平面的三点式方程知1112121213131310x x y y z z x x y y z z x x y y z z ------=--- 代入三已知点,有1112121*********x y z --+----+=---+ 化简得x -3y -2z =0即为所求平面方程.39. 指出下列各平面的特殊位置,并画出其图形:(1) y =0; (2) 3x -1=0;(3) 2x -3y -6=0; (4) x –y =0;(5) 2x -3y +4z =0.解:(1) y =0表示xOz 坐标面(如图7-2)(2) 3x -1=0表示垂直于x 轴的平面.(如图7-3)图7-2 图7-3(3) 2x-3y-6=0表示平行于z轴且在x轴及y轴上的截距分别为x=3和y =-2的平面.(如图7-4)(4) x–y=0表示过z轴的平面(如图7-5)(5) 2x-3y+4z=0表示过原点的平面(如图7-6).图7-4 图7-5 图7-6 40. 通过两点(1,1,1,)和(2,2,2)作垂直于平面x+y-z=0的平面. 解:设平面方程为Ax+By+Cz+D=0则其法向量为n={A,B,C}已知平面法向量为n1={1,1,-1}过已知两点的向量l={1,1,1}由题知n·n1=0, n·l=0即0,.A B CC A BA B C+-=⎧⇒==-⎨++=⎩所求平面方程变为Ax-Ay+D=0又点(1,1,1)在平面上,所以有D=0故平面方程为x-y=0.41. 决定参数k的值,使平面x+ky-2z=9适合下列条件:(1)经过点(5,-4,6);(2)与平面2x-3y+z=0成π4的角. 解:(1)因平面过点(5,-4,6)故有 5-4k-2×6=9得k=-4.(2)两平面的法向量分别为n1={1,k,-2} n2={2,-3,1}且122123π2cos cos||||42514kkθ⋅-====+⋅n nn n解得2k =±42. 确定下列方程中的l 和m :(1) 平面2x +ly +3z -5=0和平面mx -6y -z +2=0平行; (2) 平面3x -5y +lz -3=0和平面x +3y +2z +5=0垂直. 解:(1)n 1={2,l ,3}, n 2={m ,-6,-1}12232,18613l m l m ⇒==⇒=-=--n n (2) n 1={3, -5, l }, n 2={1,3,2}12315320 6.l l ⊥⇒⨯-⨯+⨯=⇒=n n43. 通过点(1,-1,1)作垂直于两平面x -y +z -1=0和2x +y +z +1=0的平面.解:设所求平面方程为Ax +By +Cz +D =0 其法向量n ={A ,B ,C }n 1={1,-1,1}, n 2={2,1,1}12203203A C A B C A B C CB ⎧=-⎪⊥⇒-+=⎪⇒⎨⊥⇒++=⎪=⎪⎩n n n n 又(1,-1,1)在所求平面上,故A -B +C +D =0,得D =0故所求平面方程为2033CCx y Cz -++= 即2x -y -3z =044. 求平行于平面3x -y +7z =5,且垂直于向量i -j +2k 的单位向量. 解:n 1={3,-1,7}, n 2={1,-1,2}.12,⊥⊥n n n n故1217733152122111--=⨯=++=+---n n n i j k i j k则2).n =+-e i j k 45. 求通过下列两已知点的直线方程: (1) (1,-2,1), (3,1,-1); (2) (3,-1,0),(1,0,-3). 解:(1)两点所确立的一个向量为s ={3-1,1+2,-1-1}={2,3,-2}故直线的标准方程为:121232x y z -+-==- 或 311232x y z --+==- (2)直线方向向量可取为s ={1-3,0+1,-3-0}={-2,1,-3}故直线的标准方程为:31213x y z -+==-- 或 13213x y z -+==-- 46. 求直线234035210x y z x y z +--=⎧⎨-++=⎩的标准式方程和参数方程.解:所给直线的方向向量为12311223719522335--=⨯=++=----s n n i j k i j k另取x 0=0代入直线一般方程可解得y 0=7,z 0=17于是直线过点(0,7,17),因此直线的标准方程为:7171719x y z --==-- 且直线的参数方程为:771719x t y t z t =⎧⎪=-⎨⎪=-⎩47. 求下列直线与平面的交点:(1)11126x y z-+==-, 2x +3y +z -1=0; (2) 213232x y z +--==, x +2y -2z +6=0. 解:(1)直线参数方程为1126x ty t z t =+⎧⎪=--⎨⎪=⎩代入平面方程得t =1 故交点为(2,-3,6).(2) 直线参数方程为221332x t y t z t =-+⎧⎪=+⎨⎪=+⎩代入平面方程解得t =0. 故交点为(-2,1,3). 48. 求下列直线的夹角:(1)533903210x y z x y z -+-=⎧⎨-+-=⎩ 和 2223038180x y z x y z +-+=⎧⎨++-=⎩;(2)2314123x y z ---==- 和 38121y z x --⎧=⎪--⎨⎪=⎩解:(1)两直线的方向向量分别为:s 1={5, -3,3}×{3, -2,1}=533321ij k--={3,4, -1}s 2={2,2, -1}×{3,8,1}=221381i j k-={10, -5,10}由s 1·s 2=3×10+4×(-5)+( -1) ×10=0知s 1⊥s 2 从而两直线垂直,夹角为π2. (2) 直线2314123x y z ---==-的方向向量为s 1={4, -12,3},直线38121y z x --⎧=⎪--⎨⎪=⎩的方程可变为22010y z x -+=⎧⎨-=⎩,可求得其方向向量s 2={0,2, -1}×{1,0,0}={0, -1, -2},于是1212cos 0.2064785θθ⋅==≈⋅'≈︒s s s s 49. 求满足下列各组条件的直线方程:(1)经过点(2,-3,4),且与平面3x -y +2z -4=0垂直; (2)过点(0,2,4),且与两平面x +2z =1和y -3z =2平行; (3)过点(-1,2,1),且与直线31213x y z --==-平行. 解:(1)可取直线的方向向量为s ={3,-1,2}故过点(2,-3,4)的直线方程为234312x y z -+-==- (2)所求直线平行两已知平面,且两平面的法向量n 1与n 2不平行,故所求直线平行于两平面的交线,于是直线方向向量12102{2,3,1}013=⨯==--i j ks n n故过点(0,2,4)的直线方程为24231x y z --==- (3)所求直线与已知直线平行,故其方向向量可取为 s ={2,-1,3}故过点(-1,2,1)的直线方程为121213x y z +--==-. 50. 试定出下列各题中直线与平面间的位置关系:(1)34273x y z++==--和4x -2y -2z =3; (2)327x y z ==-和3x -2y +7z =8;(3)223314x y z -+-==-和x +y +z =3. 解:平行而不包含. 因为直线的方向向量为s ={-2,-7,3}平面的法向量n ={4,-2,-2},所以(2)4(7)(2)3(2)0⋅=-⨯+-⨯-+⨯-=s n于是直线与平面平行.又因为直线上的点M 0(-3,-4,0)代入平面方程有4(3)2(4)2043⨯--⨯--⨯=-≠.故直线不在平面上.(2) 因直线方向向量s 等于平面的法向量,故直线垂直于平面.(3) 直线在平面上,因为3111(4)10⨯+⨯+-⨯=,而直线上的点(2,-2,3)在平面上. 51. 求过点(1,-2,1),且垂直于直线23030x y z x y z -+-=⎧⎨+-+=⎩ 的平面方程.解:直线的方向向量为12123111-=++-i j ki j k , 取平面法向量为{1,2,3},故所求平面方程为1(1)2(2)3(1)0x y z ⨯-+++-=即x +2y +3z =0.52. 求过点(1,-2,3)和两平面2x -3y +z =3, x +3y +2z +1=0的交线的平面方程. 解:设过两平面的交线的平面束方程为233(321)0x y z x y z λ-+-++++= 其中λ为待定常数,又因为所求平面过点(1,-2,3) 故213(2)33(13(2)231)0λ⨯-⨯-+-++⨯-+⨯+= 解得λ=-4.故所求平面方程为2x +15y +7z +7=053. 求点(-1,2,0)在平面x +2y -z +1=0上的投影.解:过点(-1,2,0)作垂直于已知平面的直线,则该直线的方向向量即为已知平面的法向量,即s =n ={1,2,-1}所以垂线的参数方程为122x t y t z t =-+⎧⎪=+⎨⎪=-⎩将其代入平面方程可得(-1+t )+2(2+2t )-(-t )+1=0 得23t =-于是所求点(-1,2,0)到平面的投影就是此平面与垂线的交点522(,,)333- 54. 求点(1,2,1)到平面x +2y +2z -10=0距离.解:过点(1,2,1)作垂直于已知平面的直线,直线的方向向量为s =n ={1,2,2}所以垂线的参数方程为12212x t y t z t =+⎧⎪=+⎨⎪=+⎩将其代入平面方程得13t =. 故垂足为485(,,)333,且与点(1,2,1)的距离为1d == 即为点到平面的距离. 55. 求点(3,-1,2)到直线10240x y z x y z +-+=⎧⎨-+-=⎩的距离.解:过点(3,-1,2)作垂直于已知直线的平面,平面的法向量可取为直线的方向向量即11133211==-=---ij kn s j k 故过已知点的平面方程为y +z =1.联立方程组102401x y z x y z y z +-+=⎧⎪-+-=⎨⎪+=⎩解得131,,.22x y z ==-= 即13(1,,)22-为平面与直线的垂足于是点到直线的距离为2d ==56. 建立以点(1,3,-2)为中心,且通过坐标原点的球面方程. 解:球的半径为22213(2)14.R =++-=设(x ,y ,z )为球面上任一点,则(x -1)2+(y -3)2+(z +2)2=14即x 2+y 2+z 2-2x -6y +4z =0为所求球面方程.57. 一动点离点(2,0,-3)的距离与离点(4,-6,6)的距离之比为3,求此动点的轨迹方程.解:设该动点为M (x ,y ,z ),由题意知222222(2)(0)(3) 3.(4)(6)(6)x y z x y z -+-++=-+++-化简得:8x 2+8y 2+8z 2-68x +108y -114z +779=0 即为动点的轨迹方程.58. 指出下列方程所表示的是什么曲面,并画出其图形:(1)22()()22a a x y -+=; (2)22149x y -+=; (3)22194x z +=; (4)20y z -=; (5)220x y -=; (6)220x y +=. 解:(1)母线平行于z 轴的抛物柱面,如图7-7. (2)母线平行于z 轴的双曲柱面,如图7-8.图7-7 图7-8 (3)母线平行于y 轴的椭圆柱面,如图7-9. (4)母线平行于x 轴的抛物柱面,如图7-10.图7-9 图7-10(5)母线平行于z 轴的两平面,如图7-11. (6)z 轴,如图7-12.图7-11 图7-12 59. 指出下列方程表示怎样的曲面,并作出图形:(1)222149y z x ++=; (2)22369436x y z +-=; (3)222149y z x --=; (4)2221149y z x +-=; (5)22220x y z -+=; (6)22209z x y +-=. 解:(1)半轴分别为1,2,3的椭球面,如图7-13. (2) 顶点在(0,0,-9)的椭圆抛物面,如图7-14.图7-13 图7-14(3) 以x 轴为中心轴的双叶双曲面,如图7-15. (4) 单叶双曲面,如图7-16.图7-15 图7-16(5) 顶点在坐标原点的椭圆锥面,其中心轴是y 轴,如图7-17. (6) 顶点在坐标原点的圆锥面,其中心轴是z 轴,如图7-18.图7-17 图7-1860. 作出下列曲面所围成的立体的图形: (1) x 2+y 2+z 2=a 2与z =0,z =2a(a >0); (2) x +y +z =4,x =0,x =1,y =0,y =2及z =0; (3) z =4-x 2, x =0, y =0, z =0及2x +y =4; (4) z =6-(x 2+y 2),x =0, y =0, z =0及x +y =1. 解:(1)(2)(3)(4)分别如图7-19,7-20,7-21,7-22所示.图7-19 图7-20图7-21 图7-22 61. 求下列曲面和直线的交点:(1) 222181369x y z ++=与342364x y z --+==-; (2) 22211694x y z +-=与2434x y z +==-. 解:(1)直线的参数方程为334624x t y t z t =+⎧⎪=-⎨⎪=-+⎩代入曲面方程解得t =0,t =1. 得交点坐标为(3,4,-2),(6,-2,2). (2) 直线的参数方程为4324x t y tz t =⎧⎪=-⎨⎪=-+⎩代入曲面方程可解得t =1, 得交点坐标为(4,-3,2).62. 设有一圆,它的中心在z 轴上,半径为3,且位于距离xOy 平面5个单位的平面上,试建立这个圆的方程.解:设(x ,y ,z )为圆上任一点,依题意有2295x y z ⎧+=⎨=±⎩ 即为所求圆的方程.63. 建立曲线x 2+y 2=z , z =x +1在xOy 平面上的投影方程. 解:以曲线为准线,母线平行于z 轴的柱面方程为x 2+y 2=x +1即2215()24x y -+=. 故曲线在xOy 平面上的投影方程为2215()240x y z ⎧-+=⎪⎨⎪=⎩64. 求曲线x 2+y 2+z 2=a 2, x 2+y 2=z 2在xOy 面上的投影曲线.解:以曲线为准线,母线平行于z 轴的柱面方程为2222a x y +=故曲线在xOy 面上的投影曲线方程为22220a x y z ⎧+=⎪⎨⎪=⎩65. 试考察曲面22219254x y z -+=在下列各平面上的截痕的形状,并写出其方程. (1) 平面x =2; (2) 平面y =0; (3) 平面y =5; (4) 平面z =2.解:(1)截线方程为2212x ⎧=⎪⎪⎨⎪⎪=⎩ 其形状为x =2平面上的双曲线.(2)截线方程为221940x z y ⎧+=⎪⎨⎪=⎩为xOz 面上的一个椭圆.(3)截线方程为2215y ⎧==⎩为平面y =5上的一个椭圆.(4) 截线方程为2209252x y z ⎧-=⎪⎨⎪=⎩为平面z =2上的两条直线.66. 求单叶双曲面22211645x y z +-=与平面x -2z +3=0的交线在xOy 平面,yOz 平面及xOz 平面上的投影曲线. 解:以32x z +=代入曲面方程得 x 2+20y 2-24x -116=0.故交线在xOy 平面上的投影为2220241160x y x z ⎧+--=⎨=⎩ 以x =2z -3代入曲面方程,得 20y 2+4z 2-60z -35=0.故交线在yOz 平面上的投影为2220460350y z z x ⎧+--=⎨=⎩ 交线在xOz 平面上的投影为230,0.x z y -+=⎧⎨=⎩习题八1. 判断下列平面点集哪些是开集、闭集、区域、有界集、无界集?并分别指出它们的聚点集和边界:(1) {(x ,y )|x ≠0};(2) {(x ,y )|1≤x 2+y 2<4};(3) {(x ,y )|y <x 2};(4) {(x ,y )|(x -1)2+y 2≤1}∪{(x ,y )|(x +1)2+y 2≤1}.解:(1)开集、无界集,聚点集:R 2,边界:{(x ,y )|x =0}. (2)既非开集又非闭集,有界集,聚点集:{(x ,y )|1≤x 2+y 2≤4},边界:{(x ,y )|x 2+y 2=1}∪{(x ,y )| x 2+y 2=4}. (3)开集、区域、无界集,聚点集:{(x ,y )|y ≤x 2},边界:{(x ,y )| y =x 2}.(4)闭集、有界集,聚点集即是其本身,边界:{(x ,y )|(x -1)2+y 2=1}∪{(x ,y )|(x +1)2+y 2=1}. 2. 已知f (x ,y )=x 2+y 2-xy tanxy,试求(,)f tx ty . 解:222(,)()()tan(,).tx f tx ty tx ty tx ty t f x y ty=+-⋅= 3. 已知(,,)w u vf u v w u w+=+,试求(,,).f x y x y xy +-解:f (x +y , x -y , xy ) =(x +y )xy+(xy )x +y +x -y=(x +y )xy +(xy )2x.4. 求下列各函数的定义域:2(1)ln(21);z y x =-+(2)z=+(3)z =(4)u =+(5)z =(6)ln()z y x =-+(7)u =解:2(1){(,)|210}.D x y y x =-+>(2){(,)|0,0}.D x y x y x y =+>->22222(3){(,)|40,10,0}.D x y x y x y x y =-≥-->+≠(4){(,,)|0,0,0}.D x y z x y z =>>> 2(5){(,)|0,0,}.D x y x y x y =≥≥≥ 22(6){(,)|0,0,1}.D x y y x x x y =->≥+< 22222(7){(,,)|0,0}.D x y z x y x y z =+≠+-≥5. 求下列各极限:10y x y →→22001(2)lim;x y x y →→+00x y →→0x y →→00sin (5)lim ;x y xyx →→222222001cos()(6)lim .()e x y x y x y x y +→→-++ 解:(1)原式0ln 2.=(2)原式=+∞. (3)原式=001.4x y →→=-(4)原式=002.x y →→=(5)原式=00sin lim100.x y xyy xy →→⋅=⨯=(6)原式=22222222222()00001()2lim lim 0.()e 2ex y x y x x y y x y x y x y ++→→→→++==+6. 判断下列函数在原点O (0,0)处是否连续:33222222sin(),0,(1)0,0;x y x y z x y x y ⎧++≠⎪=+⎨⎪+=⎩33333333sin(),0,(2)0,0;x y x y z x y x y ⎧++≠⎪=+⎨⎪+=⎩(3) 222222222,0,(2)()0,0;x y x y z x y x y x y ⎧+≠⎪=+-⎨⎪+=⎩解:(1)由于3333333322223333sin()sin()sin()0()x y x y x y x y y x x y x y x y x y++++≤=≤+⋅++++ 又00lim()0x y y x →→+=,且3333000sin()sin lim lim 1x u y x y ux y u →→→+==+, 故0lim 0(0,0)x y z z →→==.故函数在O (0,0)处连续. (2)000sin lim lim1(0,0)0x u y uz z u→→→==≠=故O (0,0)是z 的间断点.(3)若P (x ,y ) 沿直线y =x 趋于(0,0)点,则2222000lim lim 10x x y x x x z x x →→=→⋅==⋅+, 若点P (x ,y ) 沿直线y =-x 趋于(0,0)点,则22222220000()lim lim lim 0()44x x x y x x x x z x x x x →→→=-→-===⋅-++ 故00lim x y z →→不存在.故函数z 在O (0,0)处不连续.7. 指出下列函数在向外间断:(1) f (x ,y )=233x y x y -+;(2) f (x ,y )=2222y xy x +-;(3) f (x ,y )=ln(1-x 2-y 2);(4)f (x ,y )=222e ,0,0,0.x y x y yy -⎧⎪≠⎨⎪=⎩解:(1)因为当y =-x 时,函数无定义,所以函数在直线y =-x 上的所有点处间断,而在其余点处均连续.(2)因为当y 2=2x 时,函数无定义,所以函数在抛物线y 2=2x 上的所有点处间断.而在其余各点处均连续.(3)因为当x 2+y 2=1时,函数无定义,所以函数在圆周x 2+y 2=1上所有点处间断.而在其余各点处均连续.(4)因为点P (x ,y )沿直线y =x 趋于O (0,0)时.1200lim (,)lime x x y x xf x y x-→→=→==∞. 故(0,0)是函数的间断点,而在其余各点处均连续. 8. 求下列函数的偏导数:(1)z =x 2y +2xy;(2)s =22u v uv+;(3)z =x(4)z =lntan x y; (5)z =(1+xy )y; (6)u =z xy;(7)u =arctan(x -y )z; (8)y zu x =.解:(1)223122,.z z x xy x x y y y∂∂=+=-∂∂ (2)u v s v u =+2211,.s v s u u v u v v u∂∂=-=-+∂∂(3)2222212ln(),2z x x x x y x x y ∂==++∂+222.z xy x y y x y ∂==∂+ (4)21122sec csc ,tan z x x x x y y y yy∂=⋅⋅=∂ 222122sec ()csc .tan z x x x x x y y y y yy∂=⋅⋅-=-∂ (5)两边取对数得ln ln(1)z y xy =+故[]221(1)(1)(1).ln(1)1y y y x z y xy xy y xy y xy x xy-∂'=+⋅=+⋅=++∂+[]ln(1)(1)(1)ln(1)1ln(1)(1).1y y y y x z xy yxy xy y xy xy y xy xy xy xy ∂⎡⎤'++=+⋅=++⎢⎥+∂⎣⎦⎡⎤++=+⎢⎥+⎣⎦(6)1ln ln xy xy xy u u uz z y z z x xy z x y z-∂∂∂=⋅⋅=⋅⋅=⋅∂∂∂ (7)11221()().1[()]1()z z z z u z x y z x y x x y x y --∂-=⋅-=∂+-+- 112222()(1)().1[()]1()()ln()()ln().1[()]1()z z z z z zz z u z x y z x y y x y x y u x y x y x y x y z x y x y --∂-⋅--==-∂+-+-∂----==∂+-+-(8)1.yzu y x x z-∂=∂ 2211ln ln .ln ln .y yzzyy z zu x x x x y z zu y y x x x x z z z ∂=⋅=∂∂⎛⎫=⋅=-- ⎪∂⎝⎭9.已知22x y u x y=+,求证:3u u x y u x y ∂∂+=∂∂. 证明: 222223222()2()()u xy x y x y x y xy x x y x y ∂+-+==∂++. 由对称性知 22322()u x y yx y x y ∂+=∂+. 于是 2223()3()u u x y x y x y u x y x y ∂∂++==∂∂+. 10.设11ex y z ⎛⎫+- ⎪⎝⎭=,求证:222z z xy z x y∂∂+=∂∂. 证明: 11112211e e x y x y z x xx ⎛⎫⎛⎫++-- ⎪ ⎪⎝⎭⎝⎭∂⎡⎤⎛⎫=-=- ⎪⎢⎥∂⎝⎭⎣⎦, 由z 关于x ,y 的对称性得1121ex y z y y⎛⎫+- ⎪⎝⎭∂=∂ 故 11111122222211e e 2e 2.x y x y x y z z x y x y z x y x y⎛⎫⎛⎫⎛⎫+++--- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∂∂+⋅=⋅+⋅==∂∂11.设f (x ,y )=x +(yf x (x ,1) .解:1(,)1(x f x y y y =+- 则(,1)101x f x =+=.12.求曲线2244x y z y ⎧+=⎪⎨⎪=⎩在点(2,4,5)处的切线与正向x 轴所成的倾角.解:(2,4,5)1,1,2z z x x x ∂∂==∂∂ 设切线与正向x 轴的倾角为α, 则tan α=1. 故α=π4. 13.求下列函数的二阶偏导数: (1)z =x 4+ y 4-4x 2y 2; (2)z=arctan y x; (3)z =y x ;(4)z =2ex y+.解:(1)2322224812816z z z x xy x y xy x x x y∂∂∂=-=-=-∂∂∂∂ ,, 由x ,y 的对称性知22222128.16.z z y x xy y y x∂∂=-=-∂∂∂ (2)222211zy y xx y x y x ∂⎛⎫=⋅=-- ⎪∂+⎝⎭⎛⎫+ ⎪⎝⎭,2222222222222222222222222222222222222222()022,()()11,12,()()2,()()2.()()z x y y x xyx x y x y z x y x x y y x z xyy x y z x y y y y x x y x y x y z x y x x y x y x x y x y ∂+⋅-⋅=-=∂++∂=⋅=∂+⎛⎫+ ⎪⎝⎭∂=-∂+∂+-⋅-=-=∂∂++∂+-⋅-=-=∂∂++ (3)222ln ,ln ,xx z z y y y y x x∂∂==∂∂ 21222112111,(1),1ln (1ln ),ln (1ln ).x x x x x x x x z z xy x x y y y z y xy y y x y x y y zy x y y y x y y x-------∂∂==-∂∂∂=⋅+=+∂∂∂=+⋅⋅=+∂∂ (4)22e 2,e ,x y x y z zx x y++∂∂=⋅=∂∂ 222222222e 22e 22e (21),e ,2e ,2e .x y x y x y x y x y x y z x x x xz z z x x y x y y x++++++∂=⋅⋅+⋅=+∂∂∂∂===∂∂∂∂∂14.设f (x ,y ,z )=xy 2+yz 2+zx 2,求(0,0,1),(0,1,0),(2,0,1).xx yz zzx f f f -解:2(,,)2x f x y z y zx =+22(,,)2,(0,0,1)2,(,,)2(,,)2,(0,1,0)0,(,,)2(,,)2(,,)0,(2,0,1)0.xx xx y yz yz z zz zzx zzx f x y z z f f x y z xy z f x y z z f f x y z yz x f x y z yf x y z f ===+=-==+===15.设z =x ln(xy ),求32z x y ∂∂∂及32zx y ∂∂∂.解:ln()1ln(),z yx xy xy x xy∂=⋅+=+∂ 232223221,0,11,.z y zx xy x x y z x z x y xy y x y y∂∂===∂∂∂∂∂===-∂∂∂∂16.求下列函数的全微分: (1)22ex y z +=;(2)z =(3)zy u x =; (4)yzu x =.解:(1)∵2222e 2,e 2x y x y z zx y x y++∂∂=⋅=⋅∂∂ ∴222222d 2e d 2e d 2e (d d )x y xy xy z x x y y x x y y +++=+=+(2)∵22223/21()z xy y x y x x y ∂⎛⎫-=⋅=- ⎪+∂+⎝⎭2223/2()z x yx y ∂==∂+ ∴223/2d (d d ).()xz y x x y x y =--+(3)∵11,ln z z z y y z u u y x x x zy x y--∂∂==⋅⋅∂∂ 2ln ln y z ux x y y z∂=⋅⋅⋅∂ ∴211d d ln d ln ln d .z z zy y z y z u y x x x x zy y x x y y z --=+⋅+⋅⋅⋅(4)∵1yz u y x x z-∂=∂ 1ln yz u x x y z∂=⋅⋅∂ln yz u y x x z z 2∂⎛⎫=⋅⋅- ⎪∂⎝⎭∴121d d ln d ln d .y y yz z z y y u x x x x y x x z z z z -⎛⎫=+⋅⋅+⋅⋅- ⎪⎝⎭17. 求下列函数在给定点和自变量增量的条件下的全增量和全微分: (1)222,2,1,0.2,0.1;z x xy y x y x y =-+==-∆=∆=- (2)e ,1,1,0.15,0.1.xy z x y x y ===∆=∆=解:(1)22()()()2()9.688 1.68z x x x x y y y y z ∆=+∆-+∆+∆++∆-=-=d (2)(4) 1.6z x y x x y y =-∆+-+∆=(2)()()0.265ee e(e 1)0.30e.x x y y xy z +∆+∆∆=-=-=d e e e ()0.25e xy xy xy z y x x y y x x y =∆+∆=∆+∆=18.利用全微分代替全增量,近似计算: (1) (1.02)3·(0.97)2;(3)(1.97)1.05.解:(1)设f (x ,y )=x 3·y 2,则223(,)3,(,)2,x y f x y x y f x y x y ==故d f (x ,y )=3x 2y 2d x +2x 3y d y =xy (3xy d x +2x 2d y ) 取x =1,y =1,d x =0.02,d y =-0.03,则(1.02)3·(0.97)2=f (1.02,0.97)≈f (1,1)+d f (1,1)d 0.02d 0.03x y ==-=13×12+1×1[3×1×1×0.02+2×12×(-0.03)]=1.(2)设f (x ,y,则(,)(,)x y f x y f x y ===故d (,)d d )f x y x x y y =+取4,3,d 0.05,d 0.07x y x y ====-,则d0.05d0.07(4.05,2.93)(4,3)d(4,3)0.053(0.07)]15(0.01)54.998xyf f f==-=≈+=⨯+⨯-=+⨯-=(3)设f(x,y)=x y,则d f(x,y)=yx y-1d x+x y ln x d y,取x=2,y=1,d x=-0.03,d y=0.05,则1.05d0.03d0.05(1.97)(1.97,1.05)(2,1)d(2,1)20.0393 2.0393.xyf f f=-==≈+=+=19.矩型一边长a=10cm,另一边长b=24cm,当a边增加4mm,而b边缩小1mm时,求对角线长的变化.解:设矩形对角线长为l,则d d).l l x x y y==+当x=10,y=24,d x=0.4,d y=-0.1时,d0.4240.1)0.062l=⨯-⨯=(cm)故矩形的对角线长约增加0.062cm.20. 1mol理想气体在温度0℃和1个大气压的标准状态下,体积是22.4L,从这标准状态下将温度升高3℃,压强升高0.015个大气压,问体积大约改变多少?解:由PV=RT得V=RTP,且在标准状态下,R=8.20568×10-2,ΔV≈d v=-2d dRT Rp TP P+=d dV RP TP P-+222.48.20568100.01530.0911-⨯=-⨯+⨯≈-故体积改变量大约为0.09.21. 测得一物体的体积V=4.45cm3,其绝对误差限是0.01cm3,质量m=30.80g,其绝对误差限是0.01g,求由公式mvρ=算出密度ρ的绝对误差与相对误差.解:当V=4.45,m=30.80,d v=0.01,d m=0.01时,22130.801d d d0.010.014.45 4.450.01330.0133mv mv vρ==-+-⨯+⨯≈=-当v=4.45, m=30.80时30.806.92134.45ρ=≈d 0.00192160.19216%ρρ≈=.22. 求下列复合函数的偏导数或全导数:(1)22,cos ,sin ,z x y xy x u v y u v =-==求z u ∂∂,z v∂∂; (2) z =arc tanx y ,x =u +v ,y =u -v ,求z u ∂∂,z v∂∂; (3) ln(e e )xyu =+,y =x 3,求d d ux; (4) u =x 2+y 2+z 2,x =e cos tt ,y =e sin tt ,z =e t,求d d ut. 解:(1)222(2)cos (2)sin 3sin cos (cos sin )z z x z y xy y v x xy v u x u y u u v v v v ∂∂∂∂∂=⋅+⋅=-⋅+-∂∂∂∂∂=-223333(2)sin (2)cos 2sin cos (sin cos )(sin cos ).z z x z yxy y u v x xy u v v x v y v u v v v v u v v ∂∂∂∂∂=⋅+⋅=--⋅+-⋅∂∂∂∂∂=-+++ (2)222222211111x z z x z y y x v y u x u y uyx yu v x x y y ∂∂∂∂∂--⎛⎫-=⋅+⋅=⋅+⋅== ⎪∂∂∂∂∂++⎝⎭⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭2222222111(1)11.x z z x z y y v x v y vyx x y y y x ux y u v -∂∂∂∂∂⎛⎫=⋅+⋅=⋅+⋅⋅- ⎪∂∂∂∂∂⎝⎭⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭+==++ (3)33222d d d 11e 3e e 3e e e 3.d d d e e e e e e e ex y x x x y x y x y x yx x u u x u y x x x x x x y x ∂∂++=⋅+⋅=⋅+⋅⋅==∂∂++++ (4)d d d d d d d d u u x u y u z t x t y t z t∂∂∂=⋅+⋅+⋅∂∂∂ 22(e cos e sin )2(e sin e cos )2e 4e t t t t t t x t t y t t z =-+++⋅=.23. 设f 具有一阶连续偏导数,试求下列函数的一阶偏导数: (1)22(,e );xyu f x y =-(2),;x y u f y z ⎛⎫= ⎪⎝⎭(3)().,,u f x xy xyz = 解:(1)12122e 2e .xy xy uf x f y xf y f x∂''''=⋅+⋅⋅=+∂ 1212(2)e 2e .xy xy uf y f x yf x f y∂''''=⋅-+⋅⋅=-+∂ (2)1111u f f x y y∂''=⋅=∂ 121222222211..x u x f f f f y y z y z u y y f f z z z ∂⎛⎫''''-=⋅+⋅=-+ ⎪∂⎝⎭∂⎛⎫''=⋅=-- ⎪∂⎝⎭(3)1231231,uf f y f yz f yf yzf x∂''''''=⋅+⋅+⋅=++∂ 12323330,.uf f x f xz xf xzf yuf xy xyf z∂'''''=⋅+⋅+⋅=+∂∂''=⋅=∂24.设(),,()yz xy xF u u F u x=+=为可导函数,证明: .z z xy z xy x y∂∂+=+∂∂ 证明:2()()()()z y y y xF u F u F u y F u x x x ∂⎛⎫''=+⋅+=+-- ⎪∂⎝⎭1()().z x xF u x F u y x∂''=+⋅=+∂ 故[]()()()()()()().z z F u y xy x y x F u F u y x y x xF u xy yF u xy yF u xy xF u xyz xy '∂∂⎡⎤'+=+++-⎢⎥∂∂⎣⎦''=+-++=++=+ 25. 设22()yz f x y =-,其中f (u )为可导函数,验证:211z z zx x y y y∂∂+=∂∂. 证明:∵2222z yf x xyf x f f ''∂⋅=-=-∂, 222(2)2z f y f y f y f y f f ''∂-⋅⋅-+==∂, ∴22222112211z z yf f y f y zx x y y f yf yf f y y ''∂∂++=-+==⋅=∂∂⋅ 26. 22()z f x y =+,其中f 具有二阶导数,求22222,,.z z zx x y y ∂∂∂∂∂∂∂ 解:2,2,z zxf yf x y∂∂''==∂∂ 222222224,224,z f x xf f x f xzxf y xyf x y∂''''''=+⋅=+∂∂''''=⋅=∂∂由对称性知,22224.z f y f y∂'''=+∂27. 设f 是c 2类函数,求下列函数的二阶偏导数: (1),;x x z f y ⎛⎫= ⎪⎝⎭(2)()22;,z f xy x y =(3)().sin ,cos ,e x y z f x y += 解:(1)1212111,z f f f f x y y∂''''=⋅+⋅=+∂ 2212211121112222221222122222222222222222223211121,1111,,2z f f f f f f f y x y y y yx x z x f f f f f f y y y x y y y y yx z x f f y y y z x x f f y y y ∂⎛⎫''''''''''''''+⋅=+⋅+=+⋅+ ⎪∂⎝⎭∂⎛⎫⎛⎫⎛⎫''''''''''--+=⋅-+⋅=-- ⎪ ⎪ ⎪∂∂⎝⎭⎝⎭⎝⎭∂⎛⎫''-==- ⎪∂⎝⎭∂''=-∂22222342.x x x f f y yy ⎛⎫''''-⋅=+ ⎪⎝⎭,。
高等数学新版教材答案下册

高等数学新版教材答案下册第一章常微分方程1. (1) 首先,将常微分方程化为标准形式:$\frac{{dy}}{{dx}}=a(x)y+b(x)$。
利用常系数非齐次线性微分方程的通解公式$y=Ce^{\int{a(x)dx}}+\int{e^{\int{a(x)dx}}b(x)dx}$,其中$C$为任意常数。
(2) 其次,根据题目条件,求解定解问题。
将初始条件$y(x_0)=y_0$代入通解公式,得到唯一特解。
2. (1) 将高阶常微分方程化为一阶常微分方程组。
设$y_1=y$,$y_2=y'$,$y_3=y''$,...,$y_n=y^{(n-1)}$,则原方程可写成如下形式:$\begin{cases}y_1'=y_2\\y_2'=y_3\\\cdots\\y_{n-1}'=y_n\\y_{n}'=f(x,y_1,y_2,...,y_n)\end{cases}$(2) 求解一阶常微分方程组。
根据一阶常微分方程组的求解方法,得到各个$y_i$的表达式,进而得到原方程的通解。
(3) 根据初始条件,求解定解问题。
第二章无穷级数1. (1) 首先,判断无穷级数的收敛性。
可以使用比较判别法、比值判别法、根值判别法、积分判别法等方法判断无穷级数的收敛性。
(2) 若无穷级数收敛,则可以计算其和。
常用的计算和的方法有部分和求和法、变号级数求和法、绝对收敛级数求和法等。
2. 麦克劳林级数和泰勒级数(1) 首先,根据函数在某一点的各阶导数,寻找函数对应的麦克劳林级数或泰勒级数的形式。
(2) 其次,确定级数展开的区间。
根据函数的定义域或尾项判定法,确定级数的收敛区间。
(3) 最后,计算级数的和。
在收敛区间内,通过计算级数的前几项求和,得到函数的近似值。
第三章重积分1. 二重积分(1) 首先,根据题目给出的要求,写出被积函数的表达式以及积分区域的限制条件。
(2) 其次,选择适当的积分方法,如直角坐标系下的直角坐标系,极坐标系下的二重积分等。
高数习题册及答案

lim2高数下习题册及答案第八章 多元函数的微分法及其应用§1 多元函数概念一、设 f ( x , y ) x 2 y 2 , (x , y ) x 2 y 2, 求: f [ ( x , y ), y 2 ] .答案: f ( (x, y), y 2 ) ( x 2y 2 )2y4x42x 2 y 2 2 y 4二、求下列函数的定义域:x 2(1 y)2 21、 f ( x, y) 1 x 2 y 2{( x, y) | yx 1};2、 z arcsin yx{( x, y) | yx , x 0};三、求下列极限: 1 、 limx 2sin y 2 2( 0)( x , y)( 0,0 ) x 2 、 lim (1 yy )3 x ( e 6)( x, y) ( , 2)xx 2y四、证明极限( x , y ) (0,0 )x42不存在.y证明:当沿着 x 轴趋于( 0,0)时,极限为零,当沿着二者不相等,所以极限不存在y x 趋于( 0,0)时,极限为 1 ,2五、证明函数 f ( x, y)xysin1 ,x2y20,( x, y) ( x, y)(0,0)(0,0)在整个 xoy 面上连续。
证明:当 ( x, y)(0,0) 时, f ( x, y)为初等函数,连续 。
当( x, y) (0,0) 时,l i m xy s i n1 0 f (0,0) ,所以函数在( 0,0)也连续。
所以函数 ( x , y) ( 0,0 ) x2 y2在整个 xoy 面上连续。
六、设 z x y 2 f ( x y ) 且当 y=0 时 z x 2,求 f(x) 及 z 的表达式 .解: f(x)= x2x,z x 22 y 2 2xy y§2偏导数1221、设 z= xyy xe xy,验证 yx z y zx y yxy z y 证明: z xy e x y e x , z x y x e x, xz y z x y xy xy xe x xy z2、求空间曲线 zx 2:yy21 在点( 23 ,1 2 2,1)处切线与 y 轴正向夹角 ( ) 43、设f ( x,y )zxy ( y 1) 2arcsin x y,求f x ( x ,1)( 1)4、设 u x y, 求 u, u,u xyz解:u xzz xy,u yyzz x yy2 ln xzu 1 x yz y ln x5、设 ux2y2z 2,证明 :uu x 2y2 2u2 z2u6、判断下面的函数在 (0,0) 处是否连续?是否可导(偏导)?说明理由f ( x, y)1 2x sin 22, x xy0,x2y 2y2lim f ( x, y) 0f ( 0,0)连续;f x (0,0) l i m s i n 1不存在, f y ( 0,0)lim0 0xx 0 x 2yy 0 y7、设函数 f(x,y) 在点( a,b )处的偏导数存在,求lim f ( a x, b ) f (a x,b) (2f x (a,b))1、单选题x 0 x§3全微分(1) )二元函数 f(x,y) 在点 (x,y)处连续是它在该点处偏导数存在的(A) 必要条件而非充分条件 (B )充分条件而非必要条件(C )充分必要条件 ( D )既非充分又非必要条件 (2) 对于二元函数 f(x,y) ,下列有关偏导数与全微分关系中正确的是 (A) 偏导数不连续,则全微分必不存在 ( B )偏导数连续,则全微分必存在 (C ) 全微分存在,则偏导数必连续 (D )全微分存在,而偏导数不一定存在2、求下列函数的全微分:y 1)z e xydz e x (ydxx 21dy)x2)z sin(xy 2 ) 解:dz cos(xy2 ) ( y 2 dx 2xydy)y3)u x z解:duyyx z1dxzy1x zzln xdyyyx zz2ln xdz3、设z y cos( x 2 y) ,求dz(0, )4解:dz y sin( x 2 y) dx (cos( x 2 y) 2 y sin( x 2 y) )dydz | (0, ) =4dx dy 4 24、设 f ( x, y, z)zx 2 y 2求:df(1,2,1)1( 2dx254dy 5dz)5、讨论函数 f ( x, y)( x2y 2 ) s in,1x 2 y2, ( x, y)( x, y)(0,0)在(0,0)点处(0,0)的连续性、偏导数、可微性解:lim ( x2y 2 )sin 10 f (0,0) 所以f ( x, y) 在(0,0)点处连续。
高等数学教材答案下册

高等数学教材答案下册第一章:极限与连续1.1 极限的概念与性质1.1.1 问题一解答:设函数f(x)=3x^2-2x+1,当x→2时,求极限lim(x→2)f(x)。
解:要求极限lim(x→2)f(x),可以先将函数f(x)代入,得:lim(x→2)f(x) = lim(x→2)(3x^2-2x+1)= 3(2^2) - 2(2) + 1= 12-4+1= 9所以,极限lim(x→2)f(x)的结果为9。
1.1.2 问题二解答:已知函数f(x)=sin(x),求极限lim(x→0)f(x)/x。
解:要求极限lim(x→0)f(x)/x,可以先将函数f(x)代入,得:lim(x→0)f(x)/x = lim(x→0)(sin(x)/x)由极限lim(x→0)(sin(x)/x)=1的性质,可以知道:lim(x→0)f(x)/x = 1所以,极限lim(x→0)f(x)/x的结果为1。
1.2 无穷小与无穷大1.2.1 问题一解答:已知函数f(x)=x-1,当x→∞时,求极限lim(x→∞)f(x)。
解:要求极限lim(x→∞)f(x),可以先将函数f(x)代入,得:lim(x→∞)f(x) = lim(x→∞)(x-1)由极限lim(x→∞)(x-1)=∞的性质,可以知道:lim(x→∞)f(x) = ∞所以,极限lim(x→∞)f(x)的结果为∞。
1.2.2 问题二解答:已知函数f(x)=1/x,当x→0时,求极限lim(x→0)f(x)。
解:要求极限lim(x→0)f(x),可以先将函数f(x)代入,得:lim(x→0)f(x) = lim(x→0)(1/x)由极限lim(x→0)(1/x)=∞的性质,可以知道:lim(x→0)f(x) = ∞所以,极限lim(x→0)f(x)的结果为∞。
第二章:导数与微分2.1 导数的概念与计算方法2.1.1 问题一解答:已知函数f(x)=3x^2+2x-1,求函数f(x)在x=1处的导数f'(1)。
高等数学下iCourse教材答案
高等数学下iCourse教材答案为了方便广大学生更好地学习高等数学,我们为大家准备了iCourse教材的答案。
以下是对iCourse高等数学下部分章节的习题答案,希望对学生们的学习有所帮助。
第一章:极限与连续1. 习题1.1:(1) f(x) = 2x - 3,f(4) = 5(2) g(x) = x^2 + 3x, g(-2) = 2(3) h(x) = 3/x, h(5) = 3/5...2. 习题1.2:(1) 设f(x) = 3x - 2,则f(2) = 4(2) 设g(x) = x^2 - 5,则g(-3) = 4(3) 设h(x) = 4/x^2,则h(2) = 1/4...第二章:导数与微分1. 习题2.1:(1) 设f(x) = 3x^2 + 2x,求f'(2)(2) 设g(x) = 2x^3 - 5x^2 + 3x,求g'(1)(3) 设h(x) = x^4 - 2/x,求h'(3)...2. 习题2.2:(1) 设f(x) = sin(x) + cos(x),求f'(π/4)(2) 设g(x) = ln(x) + e^x,求g'(2)(3) 设h(x) = x^2 * e^x,求h'(1)...第三章:数列与级数1. 习题3.1:(1) 设a1 = 1,an+1 = 2an + 1,求a3(2) 设b1 = 3,bn+1 = (2n+1)bn,求b4(3) 设c1 = 4,cn+1 = 3cn - 1,求c2 ...2. 习题3.2:(1) 设a1 = 2,an+1 = an + 1/n,求a5(2) 设b1 = 1,bn+1 = (n+1)bn,求b3(3) 设c1 = -1,cn+1 = cn^2,求c2...以上是iCourse高等数学下部分章节的部分习题和答案,希望能够对同学们的学习有所帮助。
学习高等数学需要不断练习,理解各个概念和定理,并能够熟练运用到解题过程中。
高等数学练习册(1-5章)带答案
高等数学习题册(上册)目录习题1-1 函数 (1)习题1-2 常用的经济函数 (5)习题2-1 极限 (9)习题2-2 无穷小与无穷大,极限运算法则 (13)习题2-3 极限存在准则,两个重要极限及无穷小的比较 (17)习题2-4 函数的连续性 (21)习题2-5 闭区间上连续函数的性质 (25)第二章综合题 (29)第二章自测题 (36)习题3-1 导数概念 (40)习题3-2 求导法则与基本初等函数求导公式(一) (44)习题3-2 求导法则与基本初等函数求导公式(二) (48)习题3-3 高阶导数 (52)习题3-4 隐函数及由参数方程所确定的函数的导数 (56)习题3-5 函数的微分 (60)习题3-6 边际与弹性 (64)第三章综合题 (68)第三章自测题 (74)习题4-1 中值定理 (78)习题4-2 洛必达法则 (82)习题4-3 导数的应用(一) (86)习题4-3 导数的应用(二) (90)习题4-4 函数的最大值和最小值及其在经济中的应用 (94)习题4-5 泰勒公式 (98)第四章综合题 (100)第四章自测题 (104)习题5-1 不定积分的概念、性质 (108)习题5-2 换元积分法(一) (112)习题5-2 换元积分法(二) (116)习题5-3 分部积分法 (120)习题5-4 有理函数的积分 (122)第五章综合题 (124)第五章自测题 (128)微积分(上)模拟试卷一 (134)微积分(上)模拟试卷二 (138)参考答案 (142)习题1-1 函数1. 填空题:(1)()x y 32log log =的定义域 。
(2)523arcsin3xx y -+-=的定义域 。
(3)xxy +-=11的反函数 。
(4)已知31122++=⎪⎭⎫ ⎝⎛+xx x x f ,则=)(x f 。
2. 设⎪⎪⎩⎪⎪⎨⎧≥<=3x , 0 3 , sin )(ππϕx x x ,求()2,6-⎪⎭⎫⎝⎛ϕπϕ,并作出函数()x ϕη=的图形。
高等数学习题册参考答案
《高等数学》习题册参考答案说明 本参考答案与现在的习题册中的题目有个别的不同,使用时请认真比对,以防弄错.第一册参考答案第一章 §1.11.⎪⎪⎩⎪⎪⎨⎧+≤≤--<≤<≤+=--. ),(2, , ,0 , 211010101T t T T t a v T t v t at v v a va vv a v v 图形为:2.B.3.)]()([)]()([)(2121x f x f x f x f x f --+-+=, 其中)]()([)(21x f x f x F -+=为偶函数,而)]()([)(21x f x f x G --=为奇函数. 4.⎪⎪⎩⎪⎪⎨⎧=<≤-<≤-<≤=.6 ,0,64 ,)4(,42 ,)2(,20 ,)(222x x x x x x x x f 5.⎩⎨⎧.)]([,)2()]([,)1(单调减单调性相反,则单调增;单调性相同,则x g f g f x g f g f6.无界.7.(1)否,定义域不同;(2)否,对应法则不同;(3)否,定义域不同.§1.21.(1))1 ,0()0 ,1(⋃-=D ;(2)} , ,{2Z ∈+≠=k k k x x D πππ;(3))1 ,0(=D . 2.1 ,4-==b a . 3.⎪⎩⎪⎨⎧>-=<=,0 ,1,0 ,0 ,0 ,1 )]([x x x x g f ⎪⎪⎩⎪⎪⎨⎧>=<=-.1 ,,1 ,1 ,1 , )]([1x e x x e x f g4.(1)]2 ,0[,)1arcsin(2=-=D x y ; (2)Y ∞=+=+=022),( , )(tan log 1k a k k Dx y πππ. 5.(1)xx x f f 1)]([-=; (2)xx f f 1)(1][=. 6.+∞<<=-h r V rh hr 2 ,23122π.7.(1)a x =)(ϕ; (2)h x x +=2)(ϕ; (3)ha a h x x )1()(-=ϕ.§1.91.1-=e a .2.(1)1=x 和2=x 都是无穷间断点(属第Ⅱ类);(2)1 ,0==x x 和1-=x 是间断点,其中:1是可去间断点(极限为21)(属第Ⅰ类); 0是跳跃间断点(左极限1-,右极限1)(属第Ⅰ类);-1 是无穷间断点(属第Ⅱ类); (3)0=x 为无穷间断点(属第Ⅱ类),1=x 为跳跃间断点(属第Ⅰ类)(注意:+∞==∞+-→-ee xx x 11lim ,而0lim 11==∞--→+e e xx x );(4))( 2Z ∈+=k k x ππ为无穷间断点(属第Ⅱ类); (5)⎩⎨⎧=≠=+=∞→,0 ,0,0 ,1lim )(12x x nx nx x f xn ∴ 0=x 为无穷间断点(属第Ⅱ类); (6)∵ )(lim , 0)(lim 11+∞==+-→→x f x f x x , ∴ 1=x 为第Ⅱ类间断点,(注意:这类间断点既不叫无穷间断点,也不叫跳跃间断点,不要乱叫); ∵ 1)(lim , 0)(lim -→→==+-e x f x f x x , ∴ 0=x 为跳跃间断点(属第Ⅰ类).3.(1)1 ,0≠=b a ; (2)1 ,≠=a e b .4.(1)21)0(=f ; (2)0)0(=f .5.证:由)()0()0(22x f f x f +=+,得0)0(=f ,于是,再由0)0()(lim )]()()([lim )]()([lim 0==∆=-∆+=-∆+→∆→∆→∆f x f x f x f x f x f x x f x x x ,∴ )(x f 在x 点连续.§1.101.)(x f 在),(+∞-∞内连续,则0≥a ;又0)(lim =-∞→x f x ,则0<b ,故选D.2.) ,2()2 ,3()3 ,(∞+⋃-⋃--∞; 210)0()(lim ==→f x f x (0是连续点), 5858213)2)(3()3()3(3322limlim)(lim -====----→-++-+-→-→x x x x x x x x x x x f (-3是可去间断点), ∞==-++-+→→)2)(3()3()3(222lim )(lim x x x x x x x x f (2是无穷间断点).3.(1)a1; (2)0; (3)2e (提示:原极限x e x xe x x x x x e e )ln(lim)ln(00lim ++→→==,而=+→110 )ln(lim 加分子减x e x x x 2)1(lim )]1(1ln[lim 00==-+-++→→拆分分子等价无穷小代换x e x x e x x x x x ); (4)21-e(提示:原极限xxx e 2sin cos ln 0lim→=,而21cos 11cos 11cos 0cos 1)]1(cos 1ln[0sin cos ln 0lim lim lim lim222-====+-→--→--+→→x x xx x x x x xxx ); 注意:(3)和(4)都用到了等价无穷小代换:□0→时,ln (1+□)~□. (5)1; (6)不存在(左极限2-,右极限2).4.(1)0=a ,e b =; (2)a 任意,1=b .§1.111.令)sin ()(b x a x x f +-=,则)(x f 在] ,0[b a +上连续,且0)0(<-=b f ,=+)(b a f 0)]sin(1[)sin(≥+-=-+-+b a a b b a a b a .若0)(=+b a f ,则b a +就是一个正根;若0)(>+b a f ,则由零点定理,)(x f 在) ,0(b a +内有一正根.总之,)(x f 在],0[b a +内有一正根.2.作辅助函数x x f x F -=)()(,则)(x F 在] ,[b a 上连续,且0)()(<-=a a f a F ,)(b F0)(>-=b b f ,由零点定理,) ,(b a ∈∃ξ,使得0)(=ξF ,即ξξ=)(f .3.由题设:)(x f 在] ,[1n x x 上连续,设m M 、分别为)(x f 在] ,[1n x x 上的最大值和最小值,则M x f x f x f c m n n≤+++=≤)]()()([211Λ,于是,由介值定理可知:) ,() ,(1b a x x n ⊂∈∃ξ,使得c f =)(ξ,即)]()()([)(211n nx f x f x f f +++=Λξ. 4.令)()()(a x f x f x F +-=,则)(x F 在] ,0[a 上连续.若)()0()0(a f a f f =+=,则取 00=x ,命题成立;设)()0(a f f ≠,则由)()0()0(a f f F -=,而)2()()(a f a f a F -= )]()0([)0()(a f f f a f --=-=,所以,)0(F 与)(a F 异号,于是,由零点定理可知:) ,0(a ∈∃ξ,使得0)(=ξF ,即)()(a f f +=ξξ,命题成立.第一章 总复习题1.⎪⎩⎪⎨⎧>≤=+.0,1 ,0 ,)]([211x x x f x ϕ 2.22sin 2x. 3.) ,(∞+e .4.证:∵A x f x x =→)(lim 0,∴对于事先给定的无论多么小的正数ε,都存在正数δ,只要δ<-<00x x ,就必有ε<-A x f )(成立①(这就是函数极限的“δε-定义”); 又∵)( lim 00x x x x n n n ≠=∞→,∴对①中的正数δ(因这样的正数是任意的),必存在自然数N ,只要N n >,就必有δ<-0x x n 成立(这就是数列极限的“N -ε定义”).但对任何n ,0x x n ≠,所以这时也就有δ<-<00x x n 成立②.把①②两步结合起来就是(从②推回到①):对于事先给定的无论多么小的正数ε,(由①,0>∃δ,从而由②)必存在自然数N ,只要N n >,(①②同时成立)就必有 ε<-A x f n )( 成立. 故由极限的定义可知:A x f n n =∞→)(lim .附注:本题是函数极限与数列极限相结合的题目,抽象且有点难,但提供了一个重要的求极限的方法,即数列极限可作为函数极限的特殊情况来处理,比如下面:∵a xa x x e x a x a x x x x ln ln lim 1lim 1lim0ln 00==-=-→→→(用到了□→0时,e □-1~□), ∴a xa naa n x x nn nn ln 1lim 11lim)1(lim 01=-=-=-+→∞→∞→. 5.(1)23-; (2)2011 ,20111; (3)5,531. 6.提示:因)(x f 在],[b a 上连续,而 )(m ax )(m in ],[2)()(2],[x f M m x f b a x d f c f kb a x ∈+∈=≤=≤=,对)(x f 在],[b a 上用介值定理.7.(1)21(提示:每个括号通分,分子因式分解,并与分母约分,再整理得n n 21+); (2)a-11(提示:给极限式子乘)1(a -,打开括号得)1(4na -,并利用一个重要结果)1( 0lim <=∞→q q n n );(3)ab--11(提示:分子、分母都利用等比数列前n 项和公式:1减公比分之首项减去末项乘公比,再利用(2)中的重要结果);(4)21(提示:有理化,分子、分母再同除以n 或利用重要结果:当0 ,000≠≠b a 时,⎪⎩⎪⎨⎧>>∞>=<<==++++++++∞→----∞→.0 ,,0 ,,0 ,0 lim lim 00002211022110m k m k m k n b na b n b n b n b a n a n a n a b a mkn m m m m n k k kn ΛΛ ); (5)t (提示:利用重要极限);(6)2-(提示:分母就是x 2sin -~2x -,再拆分);(7)2b a +(提示:有理化,再利用(4)中重要结果); (8)4(提示:分子减1加1并拆分,再利用等价无穷小代换:□→0时,cos 1-□~21□2); (9)e (提示:原极限e e e x x x x x x ==→+→=22220tan )1ln(0lim lim 等价无穷小代换); (10)2)1(+n n (提示:分子因式分解,先分出个因式)1(-x 并与分母约简,再分出个因式)1(-x 仍可与分母约简,聪明的人一下子就可分出因式2)1(-x ); (11)π2(提示:令x t -=1,则原极限]2 cos sin [lim 20t t t t ππ→=,再利用重要极限). 8.提示:把根号进行放缩得不等式:n n n n n n n n n A nA a a a A ⋅=<+++<Λ21,并注意:1lim=∞→nn n (会推证吗?),再用夹逼定理(或叫夹挤准则,俗称“两头夹”).第二章 §2.61.(1))cos(21sin )cos(2xy x x xy y --; (2))1(2xy e e e e y xyy xxy +-+; (3)y x y x -+; (4)22ln ln xx xy y y xy --(两端取对数);(5)]111[ln )1(x x x x x x ++++(两端取对数或利用一个重要公式:若)()]([x g x f y =,则])()(ln )([)]([)()()(x f x f x g x g x f x g x f y '⋅+'⋅=');(6)])1)(1(2)2()1(2[111222x x x x x x x x x x x x x ++++-+--+++-(利用对数求导法). 2.(1)3222)1(])1()1[(--+--y x x y y ; (2)])1()1(213[2322422+-++y y x y y x . 3.])(arctan )()(arctan )([2222x y x y f y x f y x x y '-+'++-(提示:令xyv v u == ,arctan 而,则原方程变为 y x u f =)(,两端对x 求导得 y x y u f x y x y v '+=⋅⋅'⋅-⋅'+22111)(,再解出y ').4.提示:求出一、二、三阶导数,代入左端化简.5.切线方程:)1(152-=-x y ; 法线方程:)1(125--=-x y . 6.(1)2t; (2)23-. 7.(1)21)1(cos ----t a ; (2)1)]([-'t f .8.)2)(1(1e e t t-+(提示:第二个方程两端对t 求导,得0d d =+t y e e y t ,解出y t e e t y -=d dee e e e e t t t t 22-=--=,并代入 t x t y x y d d d d d d = 之中再约简).9.在时刻t ,甲船所走路程t t s 40)(1=,乙船所走路程t t s 30)(2=,两船间的距离为 t t t t d 50)30()40()(22=+=,两船间的距离增加的速度为50)(='t d .10.设y OP x ON == ,,则由木杆匀速前移知:c tx=d d (为常数), 由题图知:OA MN y x y =-,即 x MN OA OA y -=,从而 txMN OA OA t y d d d d -=. 可见tyd d 为常量,即P 点前移的速度是匀速的.§2.71.(1)增量为-0.09,微分为-0.1;(2)增量为-0.0099,微分为-0.01.评注:①结果表明:x ∆愈小,则y y d 与∆愈接近,这就是微分的数量特征;②微分的几何特征是“以直代曲”.2.(1)C x x ++3; (2)C x +-2cos 21; (3)C e x +--; (4)C x +2arctan 21. 3.(1)x d 2; (2)x a d ; (3)x d 42; (4)x d .4.(1)x x x d 13)]13ln(2sin[3++; (2)t t t t e t t d )52(2)23(332)52ln(323+--⋅+-;(3)x x x x d )21(sec )21tan(8222++. 5.150110+. 第二章 总复习题1.A 、E .2.)(x f 在0=x 处可导必连续.由连续有:)0()2sin (lim lim 0f x b e x ax x =+=+-→→,求极限得:1=b ;由可导有:⎪⎩⎪⎨⎧=='=--=''='--+→+→-+-+-,2lim )0(,01lim )0( , )0()0(01)2sin 1(00x x x ax x f a x e f f f 而 所以,2=a . 3.由)0(f '存在,则)0()0(+-''f f 、存在且相等. 而x f x f x x f x f x f )0()(00)0()(0lim lim )0(-→--→+++==', )0(lim lim lim )0()0()(0)0()(0)0()(0+-→----→--→-'-=-==='++-f f xf x f x x f x f x x f x f x , 要使)0()0(+-'='f f ,只有0)0()0()0(='='='+-f f f . 4.(1)222211))((x a x ax axa +++-+; (2)]ln [ln 12xx x x x x x x ++(提示:===xx x x xexy lnxexx e ln ln ⋅,再利用指数复合函数求导;或者利用取对数求导法);(3)⎪⎩⎪⎨⎧≥<=--,1 ,,1 ,)(11x e x e x f x x 则 1<x 时,x e x f --='1)(; 1>x 时,1)(-='x e x f ;1=x 时,)1(lim 11lim )1(11111111+--→--→-'==≠-=='-+--f f x e x x e x x x ,则在1=x 处不可导.(4)4 ,1--; (5)tet t t t t t t t 22222)2sin cos 2()2cos 2(sin 4 , 2sin cos 22sin sin 2-+-+; (6)])6(1)5(1[!100101101+-+x x (提示:分母因式分解,并拆分,再求导). 5.1)0(=g ,11)sin 1(lim 0)0()(lim)0(1200=-++=--='→→xx x x g x g g x x x , 0≠x 时,x x x x x x x g 1112cos sin 21)sin 1()(-+='++='. 6.)0(lim 1lim )0( ,0)0(00)11(000)1ln(0+----+→--+→-'===='=+-f f f x x x x x x x , 所以,函数)(x f 在点0=x 处可导,且1)0(='f ,从而必在0=x 处连续.评注:2、3、4(3)、5、6都涉及函数在一点处的导数,特别是分段函数在分界点处的导数,导数的定义以及左右导数的概念起到关键的作用,务必要高度注意.7.(1)由xy y f x f y x f 2)()()(++=+,得0)0(=f .当0≠y 时,x y y f y x f y x f 2)()()(+=-+. 由已知并由导数定义,得 y y f y y f y f y f k )(0)0()(0lim lim )0(→-→=='=, k x x f y x f y x f y +=='-+→2lim )()()(0.故对一切) ,(∞+-∞∈x ,)(x f 皆可导,且 k x x f +='2)(.(2)由k x x f +='2)(,知C kx x x f ++=2)(,再由0)0(=f ,得kx x x f +=2)(.第三章 §3.31.)0( !2)(32之间与介于x x e x x x f ξξ++=. 2.) 1( )1()1(])1()()(1[)(1212之间与介于x x x x x x f n n n n-+-++++++++-=+++ξξΛ.3.2)1(2)1(76)(-+-+=x x x f .4.(1)61-(提示:分母的x sin ~x ,从而只需把分子的x sin 展开到3x 阶); (2)121-(提示:把分子的x cos 和22xe-都展开到4x 阶).§3.41.(1)) ,0(21∈x 单减,),(21+∞∈x 单增;(2)),(4 3a x -∞∈单增,),(4 3+∞∈a x 单减. 2.(1)证①:利用拉格朗日中值定理.令xe xf =)(,则x x e x f e e f x f x >⋅=-'=-=-ξξ)0)(()0()(0.证②:利用单调性.令1)(--=x e x f x ,则1)(-='xe xf .当0<x 时,0)(<'x f ,从而)(x f 单调减;而当0>x 时,0)(>'x f ,从而)(x f 单调增.故对一切0≠x ,0)0()(=>f x f ,即要证的不等式成立.评注:①虽抽象,但更简洁;②虽通俗,但稍显麻烦.(2)令)1sec 2(sin )( ,2sec cos )( ,2tan sin )(22-=''-+='-+=x x x f x x x f x x x x f .当20π<<x 时,)(0)(x f x f '⇒>''单调增0)0()(='>'⇒f x f )(x f ⇒单调增, 故当20π<<x 时,0)0()(=>f x f ,即要证的不等式成立(好好体会推理过程). 评注:本题与(1)和下面的(3)的不同之处在于:需两次利用单调性.(3)参考上题方法或用泰勒公式:①利用单调性方法:令331tan )(x x x x f --=,则 ))(tan (tan tan 1sec )(2222x x x x x x x x x f -+=-=--=', 当20π<<x 时,0)(>'x f ,所以,)(x f 单调增,故当20π<<x 时,0)0()(=>f x f . ②利用泰勒公式:令x x f tan )(=,则x x f 2sec )(=',x x x x f tan sec sec 2)(='', )1tan 4tan 3(2)sec sec tan 3(2)(24222++=+='''x x x x x x f ,x x x x x x x x f23223)4(sec )tan 2tan 3(8)sec tan 8sec tan 12(2)(+=+=(很麻烦),,之间与介于其中) 0 ( )( !4)(!3)0(!2)0()0()0()(tan 43314)4(32x x R x x x f x f x f x f f x f x ξξ++=+'''+''+'+== 当20π<<x 时,0)(4!4)(4)4(>=x x R f ξ,故 331tan x x x +> 成立. 评注:对本题而言,①似乎简单一些,但对②而言,得到泰勒公式(实际上是麦克劳林公式)后,其结果却更显而易见.擅长泰勒公式(或麦克劳林公式)的同学建议用②,其它几个题目也有类似的情况.总之,此类方法要好好掌握.(4)参考(1)题方法或用泰勒公式:4)1(14132432)1ln(x x x x x ξ+⋅-+-=+,而 0)(4)1(14134>⋅=+x x R ξ(ξ介于0与x 之间),故 3232)1ln(x x x x +-<+. 3.原不等式化为a a x a x a ln )ln(<++,设x xx f ln )(=,则2ln 1)(xx x f -='.所以,当e x >时, 0)(<'x f ,从而)(x f 单调减,故aax a x a ln )ln(<++,即原不等式成立. 评注:把要证的不等式先等价转化再利用单调性的方法会大大简化.4.不一定,例如,x x x f sin )(+=在) ,(∞+-∞内单增,但x x f cos 1)(+='在) ,(∞+-∞内不单调.5.) ,(512-∞∈x 单增,),(512+∞∈x 单减;10205205241m ax 512)(===f f ,无极小. 6.函数)(x f y =处处连续,322232a x x y -⋅=',有一个驻点0=x 和两个不可导点a x ±=;0)(=±a f 为极小值,也是最小值;34)0(a f = 为极大值,但无最大值.7.在]1 ,0[上函数单减,故4)0(π=f 最大,0)1(=f 最小. 8.令x bx x a x f ++=2ln )(,则应有 012)1(=++='b a f ,014)2(2=++='b f a , 求得 32-=a ,61-=b ;而)1(f 极小,)2(f 极大. 9.提示:因函数处处可导,而可导的极值点必为驻点. 但 c bx ax x f ++='23)(2 当0)3(434)2(22<-=⋅⋅-≡∆ac b c a b ,即 032<-ac b 时无零点.§3.51.)1 ,0(∈x 时,凸;) ,1(∞+∈x 时,凹;拐点)7 ,1(-.2.82±=k ,各有两个拐点) ,1(22±±. 3.3 ,0 ,1-===c b a .4.tt y 1143)1(2⋅-='',0=''y 的点 1±=t ,y '' 不存在的点 0=t ;有三个拐点:)2 ,1(11-↔-=t ,)0 ,0(02↔=t ,)4 ,1(13↔=t .§3.61.其图形如下所示:2.点) ,(22ln 22-处曲率半径有最小值233. 4.(1)铅锤渐近线两条:2=x 和3 -=x ;水平渐近线一条:1=y ;(2)铅锤渐近线:ex 1-=;斜渐近线:x y =.第四章 §4.11.(1)x e x 2cos 233+--; (2)C x x x +--33222 ,22; (3)C x x ++441221; (4)1ln +=x y .2.(1)C x x x x ++++22123232;(2)C x x ++-4147474;(3)C x x x ++-arctan 331; (4)C x +7272ln 121; (5)C x x +-arcsin 2arctan 3; (6)C e xxe ++1)5ln(1)5(; (7)C x +-cot 21;(8)C x x +-sec tan ;(9)C x x ++cos sin ;(10)C x x +-cot tan . §4.21.(1)C x x ++++])1[ln(411441; (2)C b ax nn n a n++++1)(2)1(2;(3)C x +)arcsin(tan ; (4)C x x +-ln 1; (5)C x+-10ln 1arccos 22110;(6)C x +2)(arctan; (7)C x+2sin 2212arctan ; (8)C x xe e ++1ln . 2.(1)C x x ++21; (2)C x x+--32arccos 39; (3)C xx +-442;(4)C x x x +++-)21ln()2()2(32323433132; (5)C x x x x +---)1(4arcsin 2222122; (6)提示:令 sin t x =(只需 20π<<t 即可),则 原式]d [d d cos sin )sin (cos d 21cos sin cos sin sin cos 21cos sin cos ⎰⎰⎰⎰++++-+++===t t t t tt tt t t tt tt t t (很巧妙)C x x x Ct t t t +-+++++==]1ln [arcsin ]cos sin ln [22121回代把.第五章 §5.11.提示:把区间n ]1 ,0[等份,每份长都是n1,每个小区间),,2,1( ],[1n i n in i Λ=-都取右端点,则a a a n a a an a a ax a nn n n n n n n ni ninn x ln 1)ln (]1[lim )1(])(1[limlimd 11111111-=--=--==∞→∞→=∞→∑⎰. 附注:其中①利用了分解式 )1)(1(112-++++-=-n n b b b b b Λ(上式中n ab 1=);②利用了等价无穷小代换:□→0时,1-a □~-□ln a .2.(1)极限中的和式相当于:把区间n ]1 ,0[等份,每份长都是n1,每个小区间 ],[1n in i - ),,2,1( n i Λ=都取右端点,函数x x f +=1)(在所取点处的值再乘以小区间的长度并把它们加起来的结果(这种和有个名称,叫“积分和”),于是,按定义:原极限=⎰+1d 1x x ;(2)同理,极限中的和式是函数x x f πsin )(=在区间]1 ,0[上的积分和,于是,按定义: 原极限=⎰1d sin x x π.另外,该极限式子又可变为 ∑=∞→ni n ni n11sinlimπππ,暂不管π1,而这极限中的和式是函数 x x f sin )(= 在区间] ,0[π上的积分和,所以,仍按定义:又有 原极限⎰=ππ 01d sin x x .(同一式子导致两种不同的表示说明:“会看看门道”的道理)3.(1)不可积,无界;(2)可积,连续.4.(1)⎰πd sin x x ; (2)⎰-112d x x .§5.21.(1)2110 152d 2≤≤⎰+x xx (提示:在]1 ,0[上,211522≤≤+x x ,再利用定积分的估值不等式性质); (2)412222d 2---≤≤-⎰e x e e xx(提示:在]2 ,0[上,2241e e e x x ≤≤--,再利用定积分的估值不等式性质,注意:下限大,而上限小).2.(1)反证法:若存在一点] ,[0b a x ∈,使0)(0≠x f ,则由题设可知,必有0)(0>x f ,又因)(x f 连续,从而存在0x 的一个邻域) ,(00δδ+-x x ,在这邻域内0)(>x f .于是,就有0d )(00>⎰+-δδx x x x f ;但另一方面,又由题设可知0d )(d )( 00=≤⎰⎰+-bax x x x f x x f δδ,矛盾. 故对一切] ,[b a x ∈,都有0)(=x f ,即在] ,[b a 上,0)(≡x f .(2)证:由题设可知:存在一点] ,[0b a x ∈,使0)(0>x f ,从而存在0x 的一个邻域) ,(00δδ+-x x ,在这邻域内0)(>x f .于是,就有0d )(00 >⎰+-δδx x x x f ,故0d )(d )(00 >≥⎰⎰+-δδx x bax x f x x f .(3)这是(1)的直接推论. 3.提示:①先对定积分用“积分中值定理”再取极限.②也可以“两头夹”:01sin d sin 01sin sin 01−−→−≤≤⇒≤≤∞→⎰n n n nnx x x .§5.31.(1)0; (2)⎰-xt t e 0 d 2; (3))0()(f x f -; (4)0 ,0 ,0 ,2x xe -; (5)x e ycos --.2.(1)81221213x x x x ++-; (2)x x x x cos )sin cos()sin ()cos cos(22⋅--⋅ππ.3.(1)2(连续用两次洛必达法则,还可先把分母等价无穷小代换后再用洛必达法则);(2)提示:0→x 时,2sin x ~2x ,12-x e ~x 21,x arctan ~x ,所以,原极限=01)1ln(lim 22lim d lim2201)1ln(0221 01)1ln(022002=++⋅→++→++→==⎰x x xx x tx x x x x t t x 约简型洛; (3)原极限21lim 2]1d [lim 2d 2lim202222200 02 0=⋅⋅→→→=⎰=⎰=xx x x t x xx x t x e e xte xe et e 型洛约简型洛; 注意:在极限的运算过程中,极限为1的变量式子21xe 直接“抹掉了”(想想合法吗 ?).(4)原极限)(lim 1)(d )(1 0a f a x f x t t f ax xa=⎰⋅+⋅→=型洛.4.(1)原式4d sin 42 0==⎰πx x ; (2)原式1d )1(210 =-=⎰x x ;(3)原式⎰-++=+=0141121d )3(2πx x x ; (4)原式3821 2211 0d d )1(=++=⎰⎰x x x x . 5.当)1 ,0[∈x 时,231 02d )(x t t x x==Φ⎰; 当]2 ,1[∈x 时,=+=Φ⎰⎰xt t t t x 11 02d d )(61221-x (这一步是关键). 故 ⎪⎩⎪⎨⎧≤≤-≤≤=Φ,21,,10 , )(61221331x x x x x 显然,)(x Φ在]2 ,0[内连续(显然吗?).6.当)0 ,(-∞∈x 时,0d 0 d )()(00 =-==Φ⎰⎰xx t t t f x ;当] ,0[π∈x 时,=Φ)(x )cos 1(d sin 2121x t t x-=⎰; 当) ,(∞+∈πx 时,⎰⎰⎰+==Φxx t t t t t f x 0 210 d 0d sin d )()(ππ1=.故 ⎪⎩⎪⎨⎧>≤≤-<=Φ. , 1 , 0 , )cos 1(,0 , 0 )(21ππx x x x x 7.先用一次洛必达法则得 xb xa x x cos lim120-=+→,因分子极限为0,所以分母极限也一定是0(想想为什么?),从而 1=b ;这时分母 x cos 1-~221x ,再一次取极限得 4=a . 8.提示:当) ,(b a x ∈时,2)(d )())(()(a x tt f a x x f xax F ---⎰=',只需证分子 0≤ 即可.于是,若令⎰--=x at t f x f a x x g d )()()()(,则)()()()()()()(x f a x x f x f a x x f x g '-=-'-+=',因在),(b a 内0)(≤'x f ,所以,在),(b a 内0)(≤'x g ,从而在),(b a 内0)()(=<a g x g .§5.71.(1)22ωω+p (连续两次分部积分,并注意会出现循环现象,再移项求解); (2)2π. 2.1>k 收敛;1≤k 发散; 当1>k 时,11)2(ln 1112)(ln 1112)(ln 1d --⋅=⋅=-∞+-∞+⎰k k kk x k x x x ,而函数 )0( )()2(ln 1>=x x f xx 当 2ln ln 1-=x 时取得它在) ,0(∞+内的最小值=m in f 12ln ln 1)2ln (ln +-,所以,当2ln ln 11-=-=k x ,即 2ln ln 11-=k 时广义积分的值最小.3.左c x cx c x e 22)1(lim =+=-∞→, 右⎰⎰∞-∞-∞--==ct ctct t e te e t 221221 221d )(dc c c tc c e e e 241224122)(-=-=∞-, 应有 1412=-c ,所以 25=c . 第五章 总复习题1.(1)A ; (2)C ;(3)提示:0=M 是奇函数在对称区间上的积分;P 的第一部分积分为0,第二部分积分为负,所以,0<P ;而N 的第一部分积分为0,第二部分积分为正(很容易算出,等于几呢?),所以,0>N ,故选D ;(4)提示:⎰⎰-=x xt t f t t t f xx F 02 02d )(d )()(,则⎰='xt t f x x F 0d )(2)(,而极限10 0 00d )(2lim d )(2lim )(lim -→→→⎰⎰=='k xx k x x k x x t t f x t t f x x x F 2000)1()(2lim-→-=k x x k x f 型洛0)0()(lim0 3 ≠'=→==f x x f x k 时当才会存在,故选C ;(5)提示:如图所示,由题设可知:)(x f 的图形在x 轴的上方单调下降且是凹的,2S 是下边小矩形的面积,最小;3S 是梯形的面积,最大;而1S 是阴影的面积,介于其间,故选B ;(6)提示:利用周期函数的积分性质:若)()(t f T t f =+,则对任意的常数a ,积分⎰⎰=+TTa at t f t t f 0 d )(d )( 与a 无关,现在t e t f t sin )(sin = 的 π2=T ,可知:⎰⎰⎰⎰+===πππππ2 sin 0sin 2 0sin 2 0d sin d sin d sin d )()(t te t t et t et t f x F t tt,对第二个积分令 π+=u t 换元而化为 ⎰⎰-=--ππsin 0sin d sin d )sin (t etu u e t u , 故可知:0d sin ]1[)( 0sin sin >-=⎰πt t ee x F tt 为正常数,故选A ;(7)提示:先通过换元把被积函数符号)(22t x f -中的x “拿出来”,再求导.=⎰=⎰-=-⋅---换凑22)()(d )( d )( 21 02222 0 22t x u xxtx t x f t t xf t⎰⎰=-=2221021d )(d )(x x u u f u u f ,故选A. (评注:本题的关键是换元)2.(1)0; (2)a 2sec ; (3)0; (4)0; (5)0;(6)x x f 3sin )3(cos 3-; (7)2sin x ; (8)8π; (9)3ln ; (10)π1231+. 3.(1)证①:⎰⎰⎰⎰--=-11 0d )(d )()1(d )(d )(λλλλλλx x f x x f x x f x x f (积分中值定理))10( 0)]()()[1()1)(()()1(≤≤≤≤≥--=--⋅-=ηλξηξλλληλλξλf f f f .证②:⎰⎰⎰⎰--=-11 0d )(d )()1(d )(d )(λλλλλλx x f x x f x x f x x f0)()1()()1(=---≥λλλλλλf f .评注:两种证法仅是考虑问题出发点不同:①的核心是积分中值定理与单调性的结合;②的核心是积分的不等式性质与单调性的结合.(2)提示:分部积分,得原式⎰⎰----+=⋅-=πππππππππ 0)( 0sin 0d sin )( d )(x x f x x x xf xx x x2)( d sin )( d d sin )( 00 sin 0=-+=-+=⎰⎰⎰-πππππππππππf x x f x x x f xx ;评注:本题的特点是含有“积不出”的积分 ⎰-xt tt 0 sin d π,但并不影响要求的定积分. (3))32ln(23++-(提示:令xet 21--=,则原积分⎰-=231d 22t t t ,再拆分); (4))()](2)([42222t f t f t t f ''+'(特点是参数方程,但含有变限积分);(5)令xt u =,则u t xd d 1=,xu t 010↔,⎰=x x u u f x 01d )()(ϕ,由A xx f x =→)(0lim及)(x f连续知:0)0(=f ,A f =')0(;由 ===→⎰→→=)0(limlim)(lim 1)(0d )(00 0f x x f x xt t f x x x型洛ϕ0)0(d )0(1==⎰ϕt f ,知)(x ϕ在点0=x 处连续;==='→--→xx x x x x )(00)0()(0lim lim )0(ϕϕϕϕ 22)(0d )(0lim lim 02 0 Ax x f x x tt f x x=→⎰→=型洛; 0≠x 时,20 d )()()(x tt f x f x x x ⎰-='ϕ,且因)0(][lim lim)(lim 22d )()(0d )()(02 0 2ϕϕ'==-=⎰-⎰='→-→→=A A x tt f x x f x x t t f x f x x x A x xx拆分,故可知)(x ϕ'在点0=x 处连续,从而处处连续.评注:本题是属于对变限积分所定义的函数的可导性的研究的题目.核心是导数的定义.(6)π2(提示:先放缩分母得不等式 ∑∑∑===+<+<ni n n i i n i ni n ni n n i 1111111sinsin sin πππ, 而左端的极限(利用定积分)πππππ2111 0 111111d sin sin lim ]sin [lim sin lim ===⋅=∑∑⎰∑==∞→+∞→=+∞→n i n i n n n n n n ni n n x x n i n i n i , 右端的极限(利用定积分)πππ21 0 11d sin sin lim ==⎰∑=∞→x x n i ni nn ,再利用夹逼定理); 评注:本题是利用夹逼准则和定积分相结合的方法而求和式极限的题目,加大了难度. (7)首先,因分子极限为0,所以,分母极限也一定是0,于是得0=b ;由洛必达法则得 20)1ln(0cos limcos lim 3x x a xa c x x x x --=→+→=分母等价无穷小代换,可知 1=a ;进而知21=c ; (8)原式⎰⎰--+=23 1)1(1121 )1(1d d x x x x x x ,第一个积分令2x x t -=,则012121t x ↔, )411(221t x -+=,所以,221)2(110214121 21)1(1)d(2d d 22π===⎰⎰⎰----t t x t tx x ;而对第二个积分令x x t -=2,则2323tx ↔,)411(221t x ++=,所以, ⎰⎰+-=23412231)1(1d d 2t x t x x 2320223)2(11))2(12ln()d(2t t t t ++==⎰+)32ln(+=, 故原式)32ln(2++=π.评注:本题中所作的两个换元虽有相似,但却本质不同,因此,相当于两个不同的积分. (9)提示:⎰∑⎰⎰∑--=-=-+-=-=nn n k n nnk n x x f n f x x f k f x x f k f a 1111111d )()(]d )()([d )()()](d )([ 11n f x x f a nn n --=⎰--,因)(x f 单调减,则)1(d )()( 1-≤≤⎰-n f x x f n f n n ,从而 0)](d )([1 ≥-⎰-n f x x f nn ,所以 1-≤n n a a ,即n a 单调减;另一方面,对一切n ,)(]d )()([d )()(11111n f x x f k f x x f k f a n k k knnk n +-=-=∑⎰⎰∑-=+=0)()()]()([11>=+-≥∑-=n f n f k f k f n k ,即n a 有下界. 综上:n a 单调递减有下界,故由单调有界准则(或原理)可知:A a n n =∞→lim 存在. 评注:上述分析推到过程中,积分的不等式性质起到关键作用. (10)] )( )([ )( )(22222222d 1d 21 12d 1d 2⎰⎰⎰=⎰+++=++=a auuu a auuu a a uuu a u x axxx a u f u f u f x f 令 而上式右端第二个积分⎰=⎰-⋅++=1d )d ()( )(2222222a t a a t ta u a au u ua t t f u f ta 令⎰⎰+=+=au u u a a t t t a u f t f 1d 1 d )( )(22(恰与第一个积分相等). ∴ ⎰+a x x x ax f 1 d 2 )(22⎰+=a u uu a u f 1 d )(2⎰+=a x x x a x f 1d )(2. 评注:通过两次不同的换元才最终达到目的是本题的特点.第六章 §6.51.由虎克定律:kx x F =)((x 为弹簧伸长厘米数),由5=x 时,100=F ,即k 5100=,得 20=k ,于是,x x F 20)(=,故 2250d 20d )(150 15===⎰⎰x x x x F W (克厘米).2.如图所示,沙堆母线AB 的方程为 1=+hyr x ,即)1(h yr x -=.沙的比重2000=ρ公斤/米3.对应于薄层]d ,[y y y +,则y yr y x y V y W h y d )1( d d d 222-===πρρπρ,故 22350022 d )1( h r y yr W hh y ππρ=-=⎰. 3.(1)660d )8(10 ,d )8(10d 6=+=+=⎰x x F x x F (吨);(2)设应升h 米,则 )11(60d )8(10 2 ,d )8(10d 60 +=++=++=⎰h x h x F x h x F ,于是,应有 )11(606602+=⋅h ,故 11=h (米).4.(1)AB 的线密度为l M,)(d )( 0 2a l a kmM x a x l kmM F l +=+=⎰(k 为引力常数); (2)引力分解为两个分力,由对称性,x x a l kmMF F x d )(d ,022+==,x x a l kmMax x a l kmM F y d )(cos d )(d 232222+=⋅+=ϕ, 222 2 232242d )(la a kmMx x a l kmMa F l l y +=+=⎰-. §6.61.232211d 2 e x x xe y -==⎰-. 2.12d )23( 3231=+=⎰t t t v (m/s ).3.mT T I t t i 21 021d )(I ==⎰. 第六章 总复习题1.23+-=x y ; )3 ,( , )1 ,(2921-; 31613 22123d ])[(=--=⎰-y y y A . 2.) , 2(4πa ;⎰⎰+2 42214 0221d )cos 2( d )sin 2( πππθθθθa a ; 22)1(a -π. 3.4ln 141+-=x y (提示:曲线]6 ,2[ ln ∈=t x y 在处的切线 方程为)(ln 1t x t y t -=-,即1ln 1-+=t x y t.题设中所指的 面积为⎰--+=-=62 8d ln )2ln 2(2)(x x t S S t S t曲边梯形梯形6ln 62ln 2ln 416-++=t t. 令0)(4162=+-='ttt S ,求得唯一驻点为]6 ,2[4∈=t ,从而曲线上的点为)4ln ,4().4.)32ln(6++(提示:抛物线221x y =与圆322=+y x 的右交点为)1 ,2(A ,如图:由对称性,所求的弧长为⎰⎰⎰+='+==2220 2 d 12d 12d 2x x x y s l OA).5.222342 , ab ab ππ(提示:椭圆绕直线b y =旋转所得的 立体与把椭圆向上平移b 个单位再绕x 轴旋转所得的立体一样大小.如图所示:所求的体积为⎰--=aax y y V 2221d ])()[(π⎰-----+=aaa x a x xb b b b 22d ])1()1[(2222π⎰⎰-⋅⋅=-=-aabaa a x x x a xb 022 2d 42d 14222ππ 2 8 222412ab a a b πππ=⋅⋅=). 6.0 , 2 , 35==-=c b a (提示:因抛物线过原点,∴0=c .如图:由题意,得图中阴影的面积为231 0294d )(ba x bx ax +=+=⎰ ①;此阴影绕x 轴旋转所得的立体的体积为)(d )(23121251122b ab a x bx ax V ++=+=⎰ππ.由①得)(2394a b -=,并代入V 的表达式而转化为求)(a V 的最小值问题,令0)(='a V ,可得唯一驻点35-=a ,从而2=b ). 7.提示:与曲线221-+=x x y 关于点)2 ,(p p 对称的曲线方程,是从21211-+=x x y 以及p x x =+)(121 和p y y 2)( 121=+中消去1y 和1x 而得到的,即 224)14(222++-++-=p p x p x y .设1y 与2y 的交点横坐标为)( βαβα<、,则所围面积为33112)(d )()(αββα-=-=⎰x y y p S .令21y y 、右端相等,得022222=--+-p p px x ,解之得βα、,并令判别式大于0解得 21<<-p ,23231])12(9[)(--=p p S ,21=p 时,)(p S 取最大值9.8.如图所示,设球的比重1≡ρ,半径为r ,则对应于 薄层]d ,[x x x +上的体积微元V d 上的功的微元为,d ])([1d d d 222x r x r gx x g x y x g V W --=⋅⋅⋅=⋅⋅=ππρ∴=-=⎰r x x rx x g W 2 02d )2(π)s /m 8.9( 2434=g g r π. 9.如图所示,水深x 处宽为x d 的面积微元x y A d 2d =上所受的压力微元为 x x gxA gx F d 2d d 22ρρ==,∴ ===⎰g x x x g F ρρ5162 0d 2N 31360; 设压力加倍时闸门下降m h , 则⎰+=2d )(22x x h x g F ρh g F ρ38+=,即 51638=h ,∴ =h m 2.1.其中ρ为水的比重. 定积分应用总评住:对所有专业而言,面积、体积和弧长应是最基本的;力学、物理方面的应用因专业而异;限于篇幅,未涉及经济和其它方面的应用.第二册参考答案第一章 §1.31.(1)B ;(2)C ;(3)C ;(4)A .2.(1)证:∵a x n n =∞→lim ,∴对于事先给定的无论多么小的正数ε(简记为0>∀ε),都存在自然数N (记为N ∃),只要N n >,就必有不等式ε<-a x n 成立,从而对任一自然数k ,当N k n >+(即k N n ->)时,不等式ε<-+a x k n 仍成立,故由数列极限的定义可知:a x k n n =+∞→lim .(2)证:∵a a n n =∞→lim ,∴N n N >∃>∀ , , 0ε时,ε<-a a n ,这时也必有ε<-≤-a a a a n n ,故a a n n =∞→lim .反例:n n a )1(-=,则1)1(lim lim =-=∞→∞→n n n n a 存在,但nn n n a )1(lim lim -=∞→∞→不存在(即n n a )1(-=发散).(3)证:∵0lim =∞→n n x ,∴N n N >∃>∀ , , 0ε时,ε<-0n x ε<-⇔0n x 成立,故0lim =∞→n n x .(4)证:∵)2( 112)12(232231232223222>=<==--+-+-+n nn n nn n n n nn ,∴][ , 01εε=∃>∀N (取整)只要N n > (从而ε1>n ),必有ε<><--+)2( 12312322n n n nn 成立,故2312322lim =-+∞→n n n n . 3.证:∵数列}{n x 有界,∴0>∃M ,使得对一切N ∈n ,都有M x n ≤成立①;又∵0lim =∞→n n y ,∴N n N >∃>∀ , ,0ε时,Mn n y y ε<=-0②. 于是,0>∀ε,对②中的N ,当N n >时,①②同时成立,所以这时εε=⋅<⋅<=-M n n n n n n M y x y x y x 0,故 0lim =∞→n n n y x .§1.41.(1)分析:因为22)2)(2(42-+=-+=-x x x x x ,而2→x ,所以可设31<<x ,于是,252242-<-+=-x x x x ,对于给定的0>ε,为了ε<-42x ,则只要δε=<-52x 即可,于是有如下的证明: 证:对于事先给定的无论多么小的正数ε,取5εδ=,只要δ<-<20x ,就必有 ε<-42x 成立,所以,4lim 22=→x x .(2)分析:因为)4)(2(2)106(2--=-+-x x x x ,而2→x ,所以可设31<<x ,于是,234)2(2)106(2-<--=-+-x x x x x ,对0>∀ε,为了ε<-+-2)106(2x x ,只要δε=<-32x 即可,从而证明如下:证:0>∀ε,03>=∃εδ,只要δ<-<20x ,就必有ε<-+-2)106(2x x成立,故 2)106(lim 22=+-→x x x .评注:以上的证法就是函数极限的“δε-论证法”,虽然抽象,但很严密,望认真体会.2.(1)证:∵21211212222x xxx x ≤=-++-,∴0>∀ε,取2εδ=,只要δ<-<00x ,就必有ε<≤=-++-21211212222x xxx x 成立,故 1lim 22110=+-→x x x . (2)证:∵34312221++-=-x x x ,∴0>∀ε,取34-=εX (10<<ε),则当X x >时,必有ε<=-++-34312221x x x 成立,故 1lim 3122=+-∞→x x x . 当01.0=ε时,397=X .评注:(2)的证法就是函数∞→x x f )(当时极限的“X -ε论证法”,望认真体会.3.(1)1)00( ,1)00(=+-=-f f ,所以,)(lim 0x f x →不存在;(2)0)00( ,1)00(=+=-f f ,所以,)(lim 0x f x →不存在; 而 1)(lim 1=→x f x .4.⎪⎩⎪⎨⎧>-><-=. 0 ,1, 0 ,1 ,0 ,1)(为无理数且为有理数且x x x x x x f。
高等数学练习册答案(下)
第7章 微分方程§7.5 可降阶的高阶微分方程一、填空题答:1. 2121ln arctan C x C x x x y +++-= 2.22121C x x e C y x +--= 3.121C xy C e =+二、求微分方程xy ''+y '=0的通解;y =C 1ln x +C 2 .三、求微分方程y 3 y ''+1=0满足初始条件y |x =1=1, y '|x =1=0的特解: 22x x y -=.§7.6 高阶线性微分方程一、判断题1.设y 1(x),y 2(x),y 3(x)是某个二阶齐次线性微分方程的三个解,且y 1(x),y 2(x),y 3(x).线性无关, 则微分方程的通解为:)()1()()(3212211x y c c x y c x y c y --++= ( √ ) 2.设y 1(x),y 2(x) 是某个二阶齐次线性微分方程的二个特解,则1122()()y c y x c y x =+ (c 1 ,c 2是任意常数)是该方程的通解。
( ╳ ) 3.y=c 1x 2+c 2x 2lnx (c 1 ,c 2是任意常数)是方程2340x y xy y '''-+=的通解。
( √ ) 二、选择题答:1.C 2.C 3.C 4.B§7.7 常系数齐次线性微分方程一、判断题 1.方程y y ''-=的解12,x xy e y e -==线性无关。
( √ ) 2.二阶常系数齐次线性微分方程任意两个解都线性无关。
( ╳ ) 3.二阶常系数齐次线性微分方程50y y y '''++=无解。
( ╳ ) 二、填空题1、y =C 1e x+C 2e-2x2、 t t e C e C x 252251t +=, 3、 y =e -3x (C 1cos2x +C 2sin2x ).4、 y =C 1+C 2x +C 3e x +C 4xe x5、y =e 2x sin3x三、选择题答:1.B 2.B 3.A 4.C 5.B四、求下列微分方程(1)求微分方程y ''-4y '=0的通解; y =C 1+C 2e 4x .(2)求微分方程y ''-4y '+5y =0的通解; y =e 2x (C 1cos x +C 2sin x ). (3)求微分方程y (4)-2y '''+y ''=0的通解; y =C 1+C 2x +C 3e x +C 4xe x .(4)求微分方程4y ''+4y '+y =0, 满足所给初始条件y |x =0=2, y '|x =0=0的特解; )2(21x e y x+=-.§7.8 常系数非齐次线性微分方程一、填空题 答:1、x x xe e C e C y ++=-2211,2、x xe x C x C e y x x 2cos 41)2sin 2cos (21-+=.3、x x x y 2sin 31sin 31cos +-+-= 4、x xx y cos 2sin 21+=二、选择题答:1.D 2.B 3.A 4.C 5.D 6.D三、求微分方程y ''+3y '+2y =3xe -x 的通解; 原方程的通解为)323(2221x x e e C e C y x x x -++=---四、 求微分方程y ''-3y '+2y =5,满足已给初始条件 y |x =0=1, y '|x =0=2的特解; 原方程的通解为25221++=x x e C e C y . 特解为2527521++-=x x e e y .第12章 无穷级数§12.1 常数项级数的概念与性质一、判断题答:1. √2. √ 3. ×4. ×5. √ 6. √二、填空题答:1. 1/2、3/8 、5/16 2. [(-1)^(n-1)]*[(n+1)/n] 3. [x^(n/2)]*(1/2*n!) 4. 0三、选择题答:1.C 2.A 3.C 4.C四、判定下列级数的收敛性(1) )12)(12(1 751531311⋅⋅⋅++-+⋅⋅⋅+⋅+⋅+⋅n n ;级数收敛.(2) 6sin 63sin 62sin 6sin ⋅⋅⋅+⋅⋅⋅+++ππππn .该级数发散.(3) 31 3131313⋅⋅⋅++⋅⋅⋅+++n ; 级数发散.§12.2 常数项级数的审敛法一、判断题答:1. √ 2. × 3. √4.√ 5√6. ×7. √8. √9.√二、填空题答:1.P>1 2. {}n s 有界 3. 绝对收敛 4. 收敛5.1lim 0n n n u u u +=⎧⎨>⎩三、选择题答:1. D 2.C 3.D 4.A 5.C四、用比较审敛法或极限形式的比较审敛法判定下列级数的收敛性: (1) )12(1 51311⋅⋅⋅+-+⋅⋅⋅+++n ; 级数发散. (4) 2sin 2sin 2sin 2sin32⋅⋅⋅++⋅⋅⋅+++nππππ;级数收敛.五、用比值审敛法判定下列级数的收敛性:(1) 23 2332232133322⋅⋅⋅+⋅+⋅⋅⋅+⋅+⋅+⋅n nn ; 级数发散.(2)∑∞=⋅1!2n n nnn ; 级数收敛.六、用根值审敛法判定下列级数的收敛性: (1)∑∞=+1)12(n n n n ; 级数收敛 (2)∑∞=1)(n n na b , 其中a n →a (n →∞), a n, b , a 均为正数.当b <a 时级数收敛, 当b >a 时级数发散.七、判定下列级数是否收敛?如果是收敛的, 是绝对收敛还是 条件收敛? (1) 4131211⋅⋅⋅+-+-; 此级数是收敛的.条件收敛的. (2)∑∞=---1113)1(n n n n ;解∑∑∞=-∞=--=-111113|3)1(|n n n n n n n .级数收敛, 并且绝对收敛.§12.3 幂级数一、判断题答:1. √ 2. √ 3. √ 4. √ 5. ×二、填空题答:1.[-1/2、1/2] 2. [-1,5) 3. (-1,1) , 11ln 21xx+- 4. 绝对收敛 三、选择题 答:1.D 2.B3D四、求下列幂级数的收敛域: (1)x +2x 2+3x 3+ ⋅ ⋅ ⋅ +nx n + ⋅ ⋅ ⋅; 收敛域为(-1, 1).(2)∑∞=++-11212)1(n n nn x ; 收敛域为[-1, 1].五、利用逐项求导或逐项积分, 求下列级数的和函数: (1)∑∞=-11n n nx ;()S x 21(11)(1)x x =-<<- .(2)⋅⋅⋅+-+⋅⋅⋅+++- 12 531253n x x x x n . ()S x 11ln (11)21xx x+=-<<-.提示: 由)0()()(0S x S dx x S x-='⎰得⎰'+=xdx x S S x S 0)()0()(.§12.4 函数展开成幂级数一、判断题答:1. √2. × 3. ×二、填空题 1. 答:1.11ln 2(1)2nn nn x n ∞-=+-∑ ,(-2,2 ] 2. 1111()(4)23n n n n x ∞++=-+∑ ,(-6,-2) 3.)( ])3()!12(3)3()!2(1[)1(211202+∞<<-∞++++-+∞=∑x x n x n n n n n ππ 三、选择题答:1.B 2.C 3.C四、将下列函数展开成x 的幂级数, 并求展开式成立的区间:(1)2sh x x e e x --=; 210sh (21)!n n x x n -∞==-∑, x ∈(-∞, +∞).(2)sin 2x ; 212212s i n (1)(2)!n n nn x x n -∞=⋅=-∑x ∈(-∞, +∞).五、将函数xx f 1)(=展开成(x -3)的幂级数. ∑=<<--=nn n n x x x 0)60( )33()1(311.§12.5 函数的幂级数展开式的应用一、填空题1.利用x arctan 的麦克劳林展开式计算dx xxI ⎰=5.00arctan 时要使误差不超过0.001,则计算I 的近似值时,应取级数的前 项和作为近似值。