正方形证明题
八年级数学 矩形、菱形、正方形 证明解答题专题练习(详细答案)

矩形、菱形、正方形(解答题)1.如图,在平行四边形ABCD中,BC=2AB=4,点E、F分别是BC、AD的中点.(1)求证:△ABE≌△CDF;(2)当四边形AECF为菱形时,求出该菱形的面积.2.如图,四边形ABCD是菱形,CE⊥AB交AB的延长线于点E,CF⊥AD交AD 的延长线于点F,求证:DF=BE.3.如图,将一张直角三角形ABC纸片沿斜边AB上的中线CD剪开,得到△ACD,再将△ACD沿DB方向平移到△A′C′D′的位置,若平移开始后点D′未到达点B时,A′C′交CD于E,D′C′交CB于点F,连接EF,当四边形EDD′F为菱形时,试探究△A′DE的形状,并判断△A′DE与△EFC′是否全等?请说明理由.4.已知:如图,在菱形ABCD中,点E、F分别为边CD、AD的中点,连接AE,CF,求证:△ADE≌△CDF.5.如图,在菱形ABCD中,对角线AC、BD相交于点O,过点D作对角线BD的垂线交BA的延长线于点E.(1)证明:四边形ACDE是平行四边形;(2)若AC=8,BD=6,求△ADE的周长.6.如图,把△EFP放置在菱形ABCD中,使得顶点E,F,P分别在线段AB,AD,AC上,已知EP=FP=6,EF=6,∠BAD=60°,且AB>6.(1)求∠EPF的大小;(2)若AP=10,求AE+AF的值;(3)若△EFP的三个顶点E、F、P分别在线段AB、AD、AC上运动,请直接写出AP长的最大值和最小值.7.如图,在△ABC中,∠ACB=90°,D,E分别为AC,AB的中点,BF∥CE交DE 的延长线于点F.(1)求证:四边形ECBF是平行四边形;(2)当∠A=30°时,求证:四边形ECBF是菱形.8.如图,AE∥BF,AC平分∠BAE,且交BF于点C,BD平分∠ABF,且交AE于点D,AC与BD相交于点O,连接CD(1)求∠AOD的度数;(2)求证:四边形ABCD是菱形.9.如图,△ABC≌△ABD,点E在边AB上,CE∥BD,连接DE.求证:(1)∠CEB=∠CBE;(2)四边形BCED是菱形.10.如图,在Rt△ABC中,∠B=90°,点E是AC的中点,AC=2AB,∠BAC的平分线AD交BC于点D,作AF∥BC,连接DE并延长交AF于点F,连接FC.求证:四边形ADCF是菱形.11.如图,在四边形ABCF中,∠ACB=90°,点E是AB边的中点,点F恰是点E 关于AC所在直线的对称点.(1)证明:四边形CFAE为菱形;(2)连接EF交AC于点O,若BC=10,求线段OF的长.12.如图,在平行四边形ABCD中,以点A为圆心,AB长为半径画弧交AD于点F,再分别以点B、F为圆心,大于长为半径画弧,两弧交于一点P,连接AP并延长交BC于点E,连接EF.(1)四边形ABEF是;(选填矩形、菱形、正方形、无法确定)(直接填写结果)(2)AE,BF相交于点O,若四边形ABEF的周长为40,BF=10,则AE的长为,∠ABC=°.(直接填写结果)13.如图,AC是矩形ABCD的对角线,过AC的中点O作EF⊥AC,交BC于点E,交AD于点F,连接AE,CF.(1)求证:四边形AECF是菱形;(2)若AB=,∠DCF=30°,求四边形AECF的面积.(结果保留根号)14.如图,已知BD是矩形ABCD的对角线.(1)用直尺和圆规作线段BD的垂直平分线,分别交AD、BC于E、F(保留作图痕迹,不写作法和证明).(2)连结BE,DF,问四边形BEDF是什么四边形?请说明理由.15.如图,AC为矩形ABCD的对角线,将边AB沿AE折叠,使点B落在AC上的点M处,将边CD沿CF折叠,使点D落在AC上的点N处.(1)求证:四边形AECF是平行四边形;(2)若AB=6,AC=10,求四边形AECF的面积.16.如图,矩形ABCD中,延长AB至E,延长CD至F,BE=DF,连接EF,与BC、AD分别相交于P、Q两点.(1)求证:CP=AQ;(2)若BP=1,PQ=2,∠AEF=45°,求矩形ABCD的面积.17.如图,矩形ABCD的对角线AC,BD相交于点O,若AB=AO,求∠ABD的度数.18.已知:如图,在矩形ABCD中,点E在边AB上,点F在边BC上,且BE=CF,EF⊥DF,求证:BF=CD.19.如图,矩形ABCD中,AB=4,AD=3,M是边CD上一点,将△ADM沿直线AM对折,得到△ANM.(1)当AN平分∠MAB时,求DM的长;(2)连接BN,当DM=1时,求△ABN的面积;(3)当射线BN交线段CD于点F时,求DF的最大值.20.如图,菱形ABCD的对角线AC,BD相交于点O,且DE∥AC,AE∥BD.求证:四边形AODE是矩形.21.如图,将平行四边形ABCD的边AB延长到点E,使BE=AB,连接DE,交边BC于点F.(1)求证:△BEF≌△CDF;(2)连接BD、CE,若∠BFD=2∠A,求证:四边形BECD是矩形.22.阅读下面材料:在数学课上,老师请同学思考如下问题:如图1,我们把一个四边形ABCD的四边中点E,F,G,H依次连接起来得到的四边形EFGH是平行四边形吗?小敏在思考问题是,有如下思路:连接AC.结合小敏的思路作答(1)若只改变图1中四边形ABCD的形状(如图2),则四边形EFGH还是平行四边形吗?说明理由;参考小敏思考问题方法解决一下问题:(2)如图2,在(1)的条件下,若连接AC,BD.①当AC与BD满足什么条件时,四边形EFGH是菱形,写出结论并证明;②当AC与BD满足什么条件时,四边形EFGH是矩形,直接写出结论.23.如图,点P在矩形ABCD的对角线AC上,且不与点A,C重合,过点P分别作边AB,AD的平行线,交两组对边于点E,F和G,H.(1)求证:△PHC≌△CFP;(2)证明四边形PEDH和四边形PFBG都是矩形,并直接写出它们面积之间的关系.24.已知,如图,正方形ABCD中,E为BC边上一点,F为BA延长线上一点,且CE=AF.连接DE、DF.求证:DE=DF.25.如图,在正方形ABCD中,点E(与点B、C不重合)是BC边上一点,将线段EA绕点E顺时针旋转90°到EF,过点F作BC的垂线交BC的延长线于点G,连接CF.(1)求证:△ABE≌△EGF;=2S△ECF,求BE.(2)若AB=2,S△ABE26.已知:如图,在正方形ABCD中,点E在边CD上,AQ⊥BE于点Q,DP⊥AQ 于点P.(1)求证:AP=BQ;(2)在不添加任何辅助线的情况下,请直接写出图中四对线段,使每对中较长线段与较短线段长度的差等于PQ的长.27.在平面直角坐标系中,点O为原点,点A的坐标为(﹣6,0).如图1,正方形OBCD的顶点B在x轴的负半轴上,点C在第二象限.现将正方形OBCD绕点O顺时针旋转角α得到正方形OEFG.(1)如图2,若α=60°,OE=OA,求直线EF的函数表达式.(2)若α为锐角,tanα=,当AE取得最小值时,求正方形OEFG的面积.(3)当正方形OEFG的顶点F落在y轴上时,直线AE与直线FG相交于点P,△OEP的其中两边之比能否为:1?若能,求点P的坐标;若不能,试说明理由28.如图,正方形ABCD的对角线AC,BD相交于点O,延长CB至点F,使CF=CA,连接AF,∠ACF的平分线分别交AF,AB,BD于点E,N,M,连接EO.(1)已知EO=,求正方形ABCD的边长;(2)猜想线段EM与CN的数量关系并加以证明.29.如图,四边形ABCD是正方形,点E是BC的中点,∠AEF=90°,EF交正方形外角的平分线CF于F.求证:AE=EF.30.如图,在正方形ABCD中,E是边AB的中点,F是边BC的中点,连结CE、DF.求证:CE=DF.答案与解析1.(2016•安顺)如图,在平行四边形ABCD中,BC=2AB=4,点E、F分别是BC、AD的中点.(1)求证:△ABE≌△CDF;(2)当四边形AECF为菱形时,求出该菱形的面积.【分析】第(1)问要证明三角形全等,由平行四边形的性质,很容易用SAS证全等.第(2)要求菱形的面积,在第(1)问的基础上很快知道△ABE为等边三角形.这样菱形的高就可求了,用面积公式可求得.【解答】(1)证明:∵在▱ABCD中,AB=CD,∴BC=AD,∠ABC=∠CDA.又∵BE=EC=BC,AF=DF=AD,∴BE=DF.∴△ABE≌△CDF.(2)解:∵四边形AECF为菱形,∴AE=EC.又∵点E是边BC的中点,∴BE=EC,即BE=AE.又BC=2AB=4,∴AB=BC=BE,∴AB=BE=AE,即△ABE为等边三角形,▱ABCD的BC边上的高为2×sin60°=,∴菱形AECF的面积为2.【点评】考查了全等三角形,四边形的知识以及逻辑推理能力.(1)用SAS证全等;(2)若四边形AECF为菱形,则AE=EC=BE=AB,所以△ABE为等边三角形.2.(2016•广安)如图,四边形ABCD是菱形,CE⊥AB交AB的延长线于点E,CF⊥AD交AD的延长线于点F,求证:DF=BE.【分析】连接AC,根据菱形的性质可得AC平分∠DAE,CD=BC,再根据角平分线的性质可得CE=FC,然后利用HL证明Rt△CDF≌Rt△CBE,即可得出DF=BE.【解答】证明:连接AC,∵四边形ABCD是菱形,∴AC平分∠DAE,CD=BC,∵CE⊥AB,CF⊥AD,∴CE=FC,∠CFD=∠CEB=90°.在Rt△CDF与Rt△CBE中,,∴Rt△CDF≌Rt△CBE(HL),∴DF=BE.【点评】此题考查了菱形的性质,角平分线的性质,关键是掌握菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;角平分线的性质:角的平分线上的点到角的两边的距离相等.同时考查了全等三角形的判定与性质.3.(2016•荆州)如图,将一张直角三角形ABC纸片沿斜边AB上的中线CD剪开,得到△ACD,再将△ACD沿DB方向平移到△A′C′D′的位置,若平移开始后点D′未到达点B时,A′C′交CD于E,D′C′交CB于点F,连接EF,当四边形EDD′F为菱形时,试探究△A′DE的形状,并判断△A′DE与△EFC′是否全等?请说明理由.【分析】当四边形EDD′F为菱形时,△A′DE是等腰三角形,△A′DE≌△EFC′.先证明CD=DA=DB,得到∠DAC=∠DCA,由AC∥A′C′即可得到∠DA′E=∠DEA′由此即可判断△DA′E的形状.由EF∥AB推出∠CEF=∠EA′D,∠EFC=∠A′D′C=∠A′DE,再根据A′D=DE=EF即可证明.【解答】解:当四边形EDD′F为菱形时,△A′DE是等腰三角形,△A′DE≌△EFC′.理由:∵△BCA是直角三角形,∠ACB=90°,AD=DB,∴CD=DA=DB,∴∠DAC=∠DCA,∵A′C′∥AC,∴∠DA′E=∠A,∠DEA′=∠DCA,∴∠DA′E=∠DEA′,∴DA′=DE,∴△A′DE是等腰三角形.∵四边形DEFD′是菱形,∴EF=DE=DA′,EF∥DD′,∴∠C′EF=∠DA′E,∠EFC′=∠C′D′A′,∵CD∥C′D′,∴∠A′DE=∠A′D′C′=∠EFC′,在△A′DE和△EFC′中,,∴△A′DE≌△EFC′.【点评】本题考查平移、菱形的性质、全等三角形的判定和性质、直角三角形斜边中线定理等知识,解题的关键是灵活运用这些知识解决问题,属于中考常考题型.4.(2016•淮安)已知:如图,在菱形ABCD中,点E、F分别为边CD、AD的中点,连接AE,CF,求证:△ADE≌△CDF.【分析】由菱形的性质得出AD=CD,由中点的定义证出DE=DF,由SAS证明△ADE ≌△CDF即可.【解答】证明:∵四边形ABCD是菱形,∴AD=CD,∵点E、F分别为边CD、AD的中点,∴AD=2DF,CD=2DE,∴DE=DF,在△ADE和△CDF中,,∴△ADE≌△CDF(SAS).【点评】此题主要考查了全等三角形的判定、菱形的性质;熟练掌握菱形的性质,证明三角形全等是解决问题的关键.5.(2016•苏州)如图,在菱形ABCD中,对角线AC、BD相交于点O,过点D 作对角线BD的垂线交BA的延长线于点E.(1)证明:四边形ACDE是平行四边形;(2)若AC=8,BD=6,求△ADE的周长.【分析】(1)根据平行四边形的判定证明即可;(2)利用平行四边形的性质得出平行四边形的周长即可.【解答】(1)证明:∵四边形ABCD是菱形,∴AB∥CD,AC⊥BD,∴AE∥CD,∠AOB=90°,∵DE⊥BD,即∠EDB=90°,∴∠AOB=∠EDB,∴DE∥AC,∴四边形ACDE是平行四边形;(2)解:∵四边形ABCD是菱形,AC=8,BD=6,∴AO=4,DO=3,AD=CD=5,∵四边形ACDE是平行四边形,∴AE=CD=5,DE=AC=8,∴△ADE的周长为AD+AE+DE=5+5+8=18.【点评】此题考查平行四边形的性质和判定问题,关键是根据平行四边形的判定解答即可.6.(2016•枣庄)如图,把△EFP放置在菱形ABCD中,使得顶点E,F,P分别在线段AB,AD,AC上,已知EP=FP=6,EF=6,∠BAD=60°,且AB>6.(1)求∠EPF的大小;(2)若AP=10,求AE+AF的值;(3)若△EFP的三个顶点E、F、P分别在线段AB、AD、AC上运动,请直接写出AP长的最大值和最小值.【分析】(1)根据锐角三角函数求出∠FPG,最后求出∠EPF.(2)先判断出Rt△PME≌Rt△PNF,再根据锐角三角函数求解即可,(3)根据运动情况及菱形的性质判断求出AP最大和最小值.【解答】解:(1)过点P作PG⊥EF于点G,如图1所示.∵PE=PF=6,EF=6,∴FG=EG=3,∠FPG=∠EPG=∠EPF.在Rt△FPG中,sin∠FPG===,∴∠FPG=60°,∴∠EPF=120°.(2)过点P作PM⊥AB于点M,作PN⊥AD于点N,如图2所示.∵AC为菱形ABCD的对角线,∴∠DAC=∠BAC,AM=AN,PM=PN.在Rt△PME和Rt△PNF中,PM=PN,PE=PF,∴Rt△PME≌Rt△PNF,∴ME=NF.又AP=10,∠PAM=∠DAB=30°,∴AM=AN=APcos30°=10×=5,∴AE+AF=(AM+ME)+(AN﹣NF)=AM+AN=10.(3)如图,当△EFP的三个顶点分别在AB,AD,AC上运动,点P在P′,P之间运动,∴P′O=PO=3,AO=9,∴AP的最大值为12,AP的最小值为6,【点评】此题是菱形的性质题,主要考查了菱形的性质,锐角三角函数,特殊角的三角函数,解本题的关键是作出辅助线.7.(2016•三明)如图,在△ABC中,∠ACB=90°,D,E分别为AC,AB的中点,BF∥CE交DE的延长线于点F.(1)求证:四边形ECBF是平行四边形;(2)当∠A=30°时,求证:四边形ECBF是菱形.【分析】(1)利用平行四边形的判定证明即可;(2)利用菱形的判定证明即可.【解答】证明:(1)∵D,E分别为边AC,AB的中点,∴DE∥BC,即EF∥BC.又∵BF∥CE,∴四边形ECBF是平行四边形.(2)∵∠ACB=90°,∠A=30°,E为AB的中点,∴CB=AB,CE=AB.∴CB=CE.又由(1)知,四边形ECBF是平行四边形,∴四边形ECBF是菱形.【点评】此题主要考查了平行四边形的判定以及菱形的判定与性质,利用平行四边形的判定以及菱形的判定是解题关键.8.(2016•抚顺)如图,AE∥BF,AC平分∠BAE,且交BF于点C,BD平分∠ABF,且交AE于点D,AC与BD相交于点O,连接CD(1)求∠AOD的度数;(2)求证:四边形ABCD是菱形.【分析】(1)首先根据角平分线的性质得到∠DAC=∠BAC,∠ABD=∠DBC,然后根据平行线的性质得到∠DAB+∠CBA=180°,从而得到∠BAC+∠ABD=(∠DAB+∠ABC)=×180°=90°,得到答案∠AOD=90°;(2)根据平行线的性质得出∠ADB=∠DBC,∠DAC=∠BCA,根据角平分线定义得出∠DAC=∠BAC,∠ABD=∠DBC,求出∠BAC=∠ACB,∠ABD=∠ADB,根据等腰三角形的判定得出AB=BC=AD,根据平行四边形的判定得出四边形ABCD是平行四边形,即可得出答案.【解答】解:(1)∵AC、BD分别是∠BAD、∠ABC的平分线,∴∠DAC=∠BAC,∠ABD=∠DBC,∵AE∥BF,∴∠DAB+∠CBA,=180°,∴∠BAC+∠ABD=(∠DAB+∠ABC)=×180°=90°,∴∠AOD=90°;(2)证明:∵AE∥BF,∴∠ADB=∠DBC,∠DAC=∠BCA,∵AC、BD分别是∠BAD、∠ABC的平分线,∴∠DAC=∠BAC,∠ABD=∠DBC,∴∠BAC=∠ACB,∠ABD=∠ADB,∴AB=BC,AB=AD∴AD=BC,∵AD∥BC,∴四边形ABCD是平行四边形,∵AD=AB,∴四边形ABCD是菱形.【点评】本题考查了等腰三角形的性质,平行四边形的判定,菱形的判定的应用,能得出四边形ABCD是平行四边形是解此题的关键.9.(2016•沈阳)如图,△ABC≌△ABD,点E在边AB上,CE∥BD,连接DE.求证:(1)∠CEB=∠CBE;(2)四边形BCED是菱形.【分析】(1)欲证明∠CEB=∠CBE,只要证明∠CEB=∠ABD,∠CBE=∠ABD即可.(2)先证明四边形CEDB是平行四边形,再根据BC=BD即可判定.【解答】证明;(1)∵△ABC≌△ABD,∴∠ABC=∠ABD,∵CE∥BD,∴∠CEB=∠DBE,∴∠CEB=∠CBE.(2))∵△ABC≌△ABD,∴BC=BD,∵∠CEB=∠CBE,∴CE=CB,∵CE∥BD,∴四边形CEDB是平行四边形,∵BC=BD,∴四边形CEDB是菱形.【点评】本题考查全等三角形的性质、菱形的判定、平行四边形的判定等知识,熟练掌握全等三角形的性质是解题的关键,记住平行四边形、菱形的判定方法,属于中考常考题型.10.(2016•聊城)如图,在Rt△ABC中,∠B=90°,点E是AC的中点,AC=2AB,∠BAC的平分线AD交BC于点D,作AF∥BC,连接DE并延长交AF于点F,连接FC.求证:四边形ADCF是菱形.【分析】先证明△AEF≌△CED,推出四边形ADCF是平行四边形,再证明△AED ≌△ABD,推出DF⊥AC,由此即可证明.【解答】证明:∵AF∥CD,∴∠AFE=∠CDE,在△AFE和△CDE中,,∴△AEF≌△CED.∵AF∥CD,∴四边形ADCF是平行四边形.由题意知,AE=AB,∠EAD=∠BAD,AD=AD,∴△AED≌△ABD.∴∠AED=∠B=90°,即DF⊥AC.∴四边形ADCF是菱形.【点评】本题考查菱形的判定、全等三角形的判定和性质、等腰三角形的判定和性质等知识,解题的关键是灵活运用这些知识解决问题,属于基础题,中考常考题型.11.(2016•德阳)如图,在四边形ABCF中,∠ACB=90°,点E是AB边的中点,点F恰是点E关于AC所在直线的对称点.(1)证明:四边形CFAE为菱形;(2)连接EF交AC于点O,若BC=10,求线段OF的长.【分析】(1)根据直角三角形的性质得到CE=AB=EA,根据轴对称的性质得到AE=AF,CE=CF,得到CE=EA=AF=CF,根据菱形的判定定理证明结论;(2)根据菱形的性质得到OA=OC,OE=OF,根据三角形中位线定理求出OE,得到答案.【解答】(1)证明:∵∠ACB=90°,点E是AB边的中点,∴CE=AB=EA,∵点F是点E关于AC所在直线的对称点,∴AE=AF,CE=CF,∴CE=EA=AF=CF,∴四边形CFAE为菱形;(2)解:∵四边形CFAE为菱形;∴OA=OC,OE=OF,∴OE=BC=5,∴OF=5.【点评】本题考查的是菱形的判定和性质、轴对称的性质,掌握四条边相等的四边形是菱形、菱形的对角线垂直且互相平分是解题的关键.12.(2016•梅州)如图,在平行四边形ABCD中,以点A为圆心,AB长为半径画弧交AD于点F,再分别以点B、F为圆心,大于长为半径画弧,两弧交于一点P,连接AP并延长交BC于点E,连接EF.(1)四边形ABEF是菱形;(选填矩形、菱形、正方形、无法确定)(直接填写结果)(2)AE,BF相交于点O,若四边形ABEF的周长为40,BF=10,则AE的长为10,∠ABC=120°.(直接填写结果)【分析】(1)先证明△AEB≌△AEF,推出∠EAB=∠EAF,由AD∥BC,推出∠EAF=∠AEB=∠EAB,得到BE=AB=AF,由此即可证明.(2)根据菱形的性质首先证明△AOB是含有30°的直角三角形,由此即可解决问题.【解答】解:(1)在△AEB和△AEF中,,∴△AEB≌△AEF,∴∠EAB=∠EAF,∵AD∥BC,∴∠EAF=∠AEB=∠EAB,∴BE=AB=AF.∵AF∥BE,∴四边形ABEF是平行四边形∵AB=AF,∴四边形ABEF是菱形.故答案为菱形.(2)∵四边形ABEF是菱形,∴AE⊥BF,BO=OF=5,∠ABO=∠EBO,∵AB=10,∴AB=2BO,∵∠AOB=90°∴∠BA0=30°,∠ABO=60°,∴AO=BO=5,∠ABC=2∠ABO=120°.故答案为,120.【点评】本题考查菱形的判定和性质、平行四边形的性质、作图﹣基本作图等知识,解题的关键是全等三角形的证明,想到利用特殊三角形解决问题,属于中考常考题型.13.(2016•贺州)如图,AC是矩形ABCD的对角线,过AC的中点O作EF⊥AC,交BC于点E,交AD于点F,连接AE,CF.(1)求证:四边形AECF是菱形;(2)若AB=,∠DCF=30°,求四边形AECF的面积.(结果保留根号)【分析】(1)由过AC的中点O作EF⊥AC,根据线段垂直平分线的性质,可得AF=CF,AE=CE,OA=OC,然后由四边形ABCD是矩形,易证得△AOF≌△COE,则可得AF=CE,继而证得结论;(2)由四边形ABCD是矩形,易求得CD的长,然后利用三角函数求得CF的长,继而求得答案.【解答】(1)证明:∵O是AC的中点,且EF⊥AC,∴AF=CF,AE=CE,OA=OC,∵四边形ABCD是矩形,∴AD∥BC,∴∠AFO=∠CEO,在△AOF和△COE中,,∴△AOF≌△COE(AAS),∴AF=CE,∴AF=CF=CE=AE,∴四边形AECF是菱形;(2)解:∵四边形ABCD是矩形,∴CD=AB=,在Rt△CDF中,cos∠DCF=,∠DCF=30°,∴CF==2,∵四边形AECF是菱形,∴CE=CF=2,∴四边形AECF是的面积为:EC•AB=2.【点评】此题考查了矩形的性质、菱形的判定与性质以及三角函数等知识.注意证得△AOF≌△COE是关键.14.(2016•衢州)如图,已知BD是矩形ABCD的对角线.(1)用直尺和圆规作线段BD的垂直平分线,分别交AD、BC于E、F(保留作图痕迹,不写作法和证明).(2)连结BE,DF,问四边形BEDF是什么四边形?请说明理由.【分析】(1)分别以B、D为圆心,比BD的一半长为半径画弧,交于两点,确定出垂直平分线即可;(2)连接BE,DF,四边形BEDF为菱形,理由为:由EF垂直平分BD,得到BE=DE,∠DEF=∠BEF,再由AD与BC平行,得到一对内错角相等,等量代换及等角对等边得到BE=BF,再由BF=DF,等量代换得到四条边相等,即可得证.【解答】解:(1)如图所示,EF为所求直线;(2)四边形BEDF为菱形,理由为:证明:∵EF垂直平分BD,∴BE=DE,∠DEF=∠BEF,∵AD∥BC,∴∠DEF=∠BFE,∴∠BEF=∠BFE,∴BE=BF,∵BF=DF,∴BE=ED=DF=BF,∴四边形BEDF为菱形.【点评】此题考查了矩形的性质,菱形的判定,以及作图﹣基本作图,熟练掌握性质及判定是解本题的关键.15.(2016•扬州)如图,AC为矩形ABCD的对角线,将边AB沿AE折叠,使点B落在AC上的点M处,将边CD沿CF折叠,使点D落在AC上的点N处.(1)求证:四边形AECF是平行四边形;(2)若AB=6,AC=10,求四边形AECF的面积.【分析】(1)首先由矩形的性质和折叠的性质证得AB=CD,AD∥BC,∠ANF=90°,∠CME=90°,易得AN=CM,可得△ANF≌△CME(ASA),由平行四边形的判定定理可得结论;(2)由AB=6,AC=10,可得BC=8,设CE=x,则EM=8﹣x,CM=10﹣6=4,在Rt △CEM中,利用勾股定理可解得x,由平行四边形的面积公式可得结果.【解答】(1)证明:∵折叠,∴AM=AB,CN=CD,∠FNC=∠D=90°,∠AME=∠B=90°,∴∠ANF=90°,∠CME=90°,∵四边形ABCD为矩形,∴AB=CD,AD∥BC,∴AM=CN,∴AM﹣MN=CN﹣MN,即AN=CM,在△ANF和△CME中,,∴△ANF≌△CME(ASA),∴AF=CE,又∵AF∥CE,∴四边形AECF是平行四边形;(2)解:∵AB=6,AC=10,∴BC=8,设CE=x,则EM=8﹣x,CM=10﹣6=4,在Rt△CEM中,(8﹣x)2+42=x2,解得:x=5,∴四边形AECF的面积的面积为:EC•AB=5×6=30.【点评】本题主要考查了折叠的性质、矩形的性质、平行四边形的判定定理和勾股定理等,综合运用各定理是解答此题的关键.16.(2016•遵义)如图,矩形ABCD中,延长AB至E,延长CD至F,BE=DF,连接EF,与BC、AD分别相交于P、Q两点.(1)求证:CP=AQ;(2)若BP=1,PQ=2,∠AEF=45°,求矩形ABCD的面积.【分析】(1)由矩形的性质得出∠A=∠ABC=∠C=∠ADC=90°,AB=CD,AD=BC,AB∥CD,AD∥BC,证出∠E=∠F,AE=CF,由ASA证明△CFP≌△AEQ,即可得出结论;(2)证明△BEP、△AEQ是等腰直角三角形,得出BE=BP=1,AQ=AE,求出PE=BP=,得出EQ=PE+PQ=3,由等腰直角三角形的性质和勾股定理得出AQ=AE=3,求出AB=AE﹣BE=2,DQ=BP=1,得出AD=AQ+DQ=4,即可求出矩形ABCD 的面积.【解答】(1)证明:∵四边形ABCD是矩形,∴∠A=∠ABC=∠C=∠ADC=90°,AB=CD,AD=BC,AB∥CD,AD∥BC,∴∠E=∠F,∵BE=DF,∴AE=CF,在△CFP和△AEQ中,,∴△CFP≌△AEQ(ASA),∴CP=AQ;(2)解:∵AD∥BC,∴∠PBE=∠A=90°,∵∠AEF=45°,∴△BEP、△AEQ是等腰直角三角形,∴BE=BP=1,AQ=AE,∴PE=BP=,∴EQ=PE+PQ=+2=3,∴AQ=AE=3,∴AB=AE﹣BE=2,∵CP=AQ,AD=BC,∴DQ=BP=1,∴AD=AQ+DQ=3+1=4,∴矩形ABCD的面积=AB•AD=2×4=8.【点评】本题考查了矩形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、勾股定理等知识;熟练掌握矩形的性质,证明三角形全等是解决问题的关键.17.(2016•广州)如图,矩形ABCD的对角线AC,BD相交于点O,若AB=AO,求∠ABD的度数.【分析】首先证明OA=OB,再证明△ABO是等边三角形即可解决问题.【解答】解:∵四边形ABCD是矩形,∴OA=OC,OB=OD,AC=BD,∴AO=OB,∵AB=AO,∴AB=AO=BO,∴△ABO是等边三角形,∴∠ABD=60°.【点评】本题考查矩形的性质、等边三角形的判定和性质等知识,熟练掌握矩形的性质是解题的关键,属于基础题,中考常考题型.18.(2016•岳阳)已知:如图,在矩形ABCD中,点E在边AB上,点F在边BC上,且BE=CF,EF⊥DF,求证:BF=CD.【分析】由四边形ABCD为矩形,得到四个角为直角,再由EF与FD垂直,利用平角定义得到一对角互余,利用同角的余角相等得到一对角相等,利用ASA得到三角形BEF与三角形CFD全等,利用全等三角形对应边相等即可得证.【解答】证明:∵四边形ABCD是矩形,∴∠B=∠C=90°,∵EF⊥DF,∴∠EFD=90°,∴∠EFB+∠CFD=90°,∵∠EFB+∠BEF=90°,∴∠BEF=∠CFD,在△BEF和△CFD中,,∴△BEF≌△CFD(ASA),∴BF=CD.【点评】此题考查了矩形的性质,以及全等三角形的判定与性质,熟练掌握矩形的性质是解本题的关键.19.(2016•福州)如图,矩形ABCD中,AB=4,AD=3,M是边CD上一点,将△ADM沿直线AM对折,得到△ANM.(1)当AN平分∠MAB时,求DM的长;(2)连接BN,当DM=1时,求△ABN的面积;(3)当射线BN交线段CD于点F时,求DF的最大值.【分析】(1)由折叠性质得∠MAN=∠DAM,证出∠DAM=∠MAN=∠NAB,由三角函数得出DM=AD•tan∠DAM=即可;(2)延长MN交AB延长线于点Q,由矩形的性质得出∠DMA=∠MAQ,由折叠性质得出∠DMA=∠AMQ,AN=AD=3,MN=MD=1,得出∠MAQ=∠AMQ,证出MQ=AQ,设NQ=x,则AQ=MQ=1+x,证出∠ANQ=90°,在Rt△ANQ中,由勾股定理得出方程,解方程求出NQ=4,AQ=5,即可求出△ABN的面积;(3)过点A作AH⊥BF于点H,证明△ABH∽△BFC,得出对应边成比例=,得出当点N、H重合(即AH=AN)时,AH最大,BH最小,CF最小,DF最大,此时点M、F重合,B、N、M三点共线,由折叠性质得:AD=AH,由AAS证明△ABH≌△BFC,得出CF=BH,由勾股定理求出BH,得出CF,即可得出结果.【解答】解:(1)由折叠性质得:△ANM≌△ADM,∴∠MAN=∠DAM,∵AN平分∠MAB,∠MAN=∠NAB,∴∠DAM=∠MAN=∠NAB,∵四边形ABCD是矩形,∴∠DAB=90°,∴∠DAM=30°,∴DM=AD•tan∠DAM=3×tan30°=3×=;(2)延长MN交AB延长线于点Q,如图1所示:∵四边形ABCD是矩形,∴AB∥DC,∴∠DMA=∠MAQ,由折叠性质得:△ANM≌△ADM,∴∠DMA=∠AMQ,AN=AD=3,MN=MD=1,∴∠MAQ=∠AMQ,∴MQ=AQ,设NQ=x,则AQ=MQ=1+x,∵∠ANM=90°,∴∠ANQ=90°,在Rt△ANQ中,由勾股定理得:AQ2=AN2+NQ2,∴(x+1)2=32+x2,解得:x=4,∴NQ=4,AQ=5,∵AB=4,AQ=5,=S△NAQ=×AN•NQ=××3×4=;∴S△NAB(3)过点A作AH⊥BF于点H,如图2所示:∵四边形ABCD是矩形,∴AB∥DC,∴∠HBA=∠BFC,∵∠AHB=∠BCF=90°,∴△ABH∽△BFC,∴=,∵AH≤AN=3,AB=4,∴当点N、H重合(即AH=AN)时,AH最大,BH最小,CF最小,DF最大,此时点M、F重合,B、N、M三点共线,如图3所示:由折叠性质得:AD=AH,∵AD=BC,∴AH=BC,在△ABH和△BFC中,,∴△ABH≌△BFC(AAS),∴CF=BH,由勾股定理得:BH===,∴CF=,∴DF的最大值=DC﹣CF=4﹣.【点评】本题考查了矩形的性质、折叠的性质、相似三角形的判定与性质、全等三角形的判定与性质、勾股定理等知识;本题综合性强,难度较大,熟练掌握矩形和折叠的性质,证明三角形相似和三角形全等是解决问题的关键.20.(2016•吉林)如图,菱形ABCD的对角线AC,BD相交于点O,且DE∥AC,AE∥BD.求证:四边形AODE是矩形.【分析】根据菱形的性质得出AC⊥BD,再根据平行四边形的判定定理得四边形AODE为平行四边形,由矩形的判定定理得出四边形AODE是矩形.【解答】证明:∵四边形ABCD为菱形,∴AC⊥BD,∴∠AOD=90°,∵DE∥AC,AE∥BD,∴四边形AODE为平行四边形,∴四边形AODE是矩形.【点评】本题考查了矩形的判定以及菱形的性质,还考查了平行四边形的判定,掌握平行四边形的判定方法是解题的关键.21.(2016•南通)如图,将▱ABCD的边AB延长到点E,使BE=AB,连接DE,交边BC于点F.(1)求证:△BEF≌△CDF;(2)连接BD、CE,若∠BFD=2∠A,求证:四边形BECD是矩形.【分析】(1)先根据平行四边形的性质得出AB=CD,AB∥CD,再由BE=AB得出BE=CD,根据平行线的性质得出∠BEF=∠CDF,∠EBF=∠DCF,进而可得出结论;(2)根据平行四边形的性质可得AB∥CD,AB=CD,∠A=∠DCB,再由AB=BE,可得CD=EB,进而可判定四边形BECD是平行四边形,然后再证明BC=DE即可得到四边形BECD是矩形【解答】(1)证明:∵四边形ABCD是平行四边形,∵AB=CD,AB∥CD.∵BE=AB,∴BE=CD.∵AB∥CD,∴∠BEF=∠CDF,∠EBF=∠DCF,在△BEF与△CDF中,∵,∴△BEF≌△CDF(ASA);(2)证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∠A=∠DCB,∵AB=BE,∴CD=EB,∴四边形BECD是平行四边形,∴BF=CF,EF=DF,∵∠BFD=2∠A,∴∠BFD=2∠DCF,∴∠DCF=∠FDC,∴DF=CF,∴DE=BC,∴四边形BECD是矩形.【点评】此题主要考查的值矩形的判定及平行四边形的性质,关键是掌握平行四边形的对边相等;对角相等;对角线互相平分.22.(2016•兰州)阅读下面材料:在数学课上,老师请同学思考如下问题:如图1,我们把一个四边形ABCD的四边中点E,F,G,H依次连接起来得到的四边形EFGH是平行四边形吗?小敏在思考问题是,有如下思路:连接AC.结合小敏的思路作答(1)若只改变图1中四边形ABCD的形状(如图2),则四边形EFGH还是平行四边形吗?说明理由;参考小敏思考问题方法解决一下问题:(2)如图2,在(1)的条件下,若连接AC,BD.①当AC与BD满足什么条件时,四边形EFGH是菱形,写出结论并证明;②当AC与BD满足什么条件时,四边形EFGH是矩形,直接写出结论.【分析】(1)如图2,连接AC,根据三角形中位线的性质得到EF∥AC,EF=AC,然后根据平行四边形判定定理即可得到结论;(2)由(1)知,四边形EFGH是平行四边形,且FG=BD,HG=AC,于是得到当AC=BD时,FG=HG,即可得到结论;(3)根据平行线的性质得到GH⊥BD,GH⊥GF,于是得到∠HGF=90°,根据矩形的判定定理即可得到结论.【解答】解:(1)是平行四边形,证明:如图2,连接AC,∵E是AB的中点,F是BC的中点,∴EF∥AC,EF=AC,同理HG∥AC,HG=AC,综上可得:EF∥HG,EF=HG,故四边形EFGH是平行四边形;(2)AC=BD.理由如下:由(1)知,四边形EFGH是平行四边形,且FG=BD,HG=AC,∴当AC=BD时,FG=HG,∴平行四边形EFGH是菱形,(3)当AC⊥BD时,四边形EFGH为矩形;理由如下:同(2)得:四边形EFGH是平行四边形,∵AC⊥BD,GH∥AC,∴GH⊥BD,∴GH⊥GF,∴∠HGF=90°,∴四边形EFGH为矩形.【点评】此题主要考查了中点四边形,关键是掌握三角形中位线定理,三角形的中位线平行于第三边且等于第三边的一半.23.(2016•台州)如图,点P在矩形ABCD的对角线AC上,且不与点A,C重合,过点P分别作边AB,AD的平行线,交两组对边于点E,F和G,H.(1)求证:△PHC≌△CFP;(2)证明四边形PEDH和四边形PFBG都是矩形,并直接写出它们面积之间的关系.【分析】(1)由矩形的性质得出对边平行,再根据平行线的性质得出相等的角,结合全等三角形的判定定理AAS即可得出△PHC≌△CFP;(2)由矩形的性质找出∠D=∠B=90°,再结合对边互相平行即可证出四边形PEDH 和四边形PFBG都是矩形,通过角的正切值,在直角三角形中表示出直角边的关系,利用矩形的面积公式即可得出两矩形面积相等.【解答】证明:(1)∵四边形ABCD为矩形,∴AB∥CD,AD∥BC.∵PF∥AB,∴PF∥CD,∴∠CPF=∠PCH.。
正方形的判定

练习1、已知:如图,点A’、B’、C’、D’分
别是正方形ABCD四条边上的点,并且AA'=BB'=CC' =DD‘. 求证:四边形A'B'C'D' 是正方形. 小结:证明一
个四边形是正 方形关键在于 能否证明既是 矩形又是菱形.
2、如图,以△ABC的三边为边,在BC的同侧分别作 3个等边三角形,即△ABD、△BCE、△ACF (1)四边形ADEF是什么四边形? (2)当△ABC满足什么条件时,四边形ADEF是矩形? (3)当△ABC满足什么条件时,四边形ADEF是菱形?
图③
例2、如图所示,有四个动点P、Q、E、F分别 从正方形ABCD的四个顶点出发,沿着AB、BC、 CD、DA以同样的速度向B、C、D、A各点移动. (1)试判断四边形PQEF是正方形并证明; (2)PE是否总过某一定点,并说明理由. (3)四边形PQEF的顶点分别位于何处时, 其面积最小,最大?各是多少?
在下列结构图中填上适当的条件:
1、判断:
①两条对角线互相垂直的矩形是正方形. ②两条对角线相等的菱形是正方形. (√) (√) (×)
③两条对角线垂直பைடு நூலகம்相等的平行四边形是正方形.(√) ④两条对角线垂直且相等的四边形是正方形. ⑤一个角是直角且对角线互相平分且相等的四边形 是正方形.(×)
例题1、如图,已知平行四边形ABCD中,对角线AC、 BD交于点O,E是BD延长线上的点,且△ACE是等边 三角形. (1)求证:四边形ABCD是菱形. (2)若∠AED=2∠EAD,求证:四边形ABCD是正 方形.
中点,AF、DE相交于点G,则可得结论:①AF=DE,②AF⊥DE。 (不需要证明) (1) 如图②,若点 E 、 F 不是正方形ABCD 的边 BC 、的延长线和 CD的中点,但 (2) 如图③,若点 E 、 F 分别在正方形 ABCD 的边 CP DC的 满足 CE=DF。则上面的结论①、②是否仍然成立? (请直接回答“ 延长线上,且 CE=DF,此时上面的结论①、②是否仍然成立?若 成立”或“不成立” ) 成立,请写出证明过程;若不成立,请说明理由。
正方形与全等模型(含答案)

正方形与全等模型1.(垂直相等)如图,在正方形ABCD中.(1)若点E、F分别在AB、AD上,且AE=DF.试判断DE与CF的数量及位置关系,并说明理由;(2)若P、Q、M、N是正方形ABCD各边上的点,PQ与MN相交,且PQ=MN,问PQ⊥MN成立吗?为什么?2.(三垂)如图,直线MN不与正方形的边相交且经过正方形ABCD的顶点D,AM⊥MN于M,CN⊥MN于N,BR⊥MN于R.(1)求证:△ADM≌△DCN:(2)求证:MN=AM+CN;(3)试猜想BR与MN的数量关系,并证明你的猜想.3.(三垂)如图,在平的直角坐标系中,直线y=﹣2x+2与x轴、y轴分别相交于点A、B,四边形ABCD是正方形,曲线y=在第一象限经过点D.求双曲线表示的函数解析式.4.(三垂)如图,四边形ABCD是正方形,直线l1,l2,l3分别通过A,B,C三点,且l1∥l2∥l3,若l1与l2的距离为5,l2与l3的距离为7,则正方形ABCD的面积等于()A.70 B.74 C.144 D.1485.(三垂)如图在平面直角坐标系中正方形OABC的边OC,OA分别在x轴正半轴上和y轴的负半轴上,点B在双曲线y=﹣上,直线y=kx﹣k(k>0)交y轴与F.(1)求点B、E的坐标;(2)连接BE,CF交于M点,是否存在实数k,使得BE⊥CF?若存在,求出k的值;若不存在,请说明理由;(3)F在线段OA上,连BF,作OM⊥BF于M,AN⊥BF于N,当F在线段OA上运动时(不与O、A重合),的值是否变化.若变化,求出变化的范围;若不变,求其值.6.(对角互补)已知:如图,正方形ABCD中,对角线AC和BD相交于点O.E、F分别是边AB、BC上的点,若AE=4cm,CF=3cm,且OE⊥OF,则EF的长为_________cm.7.(对角互补)在图1到图3中,点O是正方形ABCD对角线AC的中点,△MPN为直角三角形,∠MPN=90°.正方形ABCD保持不动,△MPN沿射线AC向右平移,平移过程中P点始终在射线AC上,且保持PM垂直于直线AB 于点E,PN垂直于直线BC于点F.(1)如图1,当点P与点O重合时,OE与OF的数量关系为_________;(2)如图2,当P在线段OC上时,猜想OE与OF有怎样的数量关系与位置关系?并对你的猜想结果给予证明;(3)如图3,当点P在AC的延长线上时,OE与OF的数量关系为_________;位置关系为_________.8.(对角互补)如图,正方形ABCD中,AC是对角线,今有较大的直角三角板,一边始终经过点B,直角顶点P在射线AC上移动,另一边交DC于Q.(1)如图1,当点Q在DC边上时,猜想并写出PB与PQ所满足的数量关系;并加以证明;(2)如图2,当点Q落在DC的延长线上时,猜想并写出PB与PQ满足的数量关系,请证明你的猜想.9.(对角互补)如图,正方形ABCD,点P是对角线AC上一点,连接BP,过P作PQ⊥BP,PQ交CD于Q,连接BQ交AC于G,若AP=,Q为CD中点,则下列结论:①∠PBC=∠PQD;②BP=PQ;③∠BPC=∠BQC;④正方形ABCD的面积是16;其中正确结论的个数是()A.4B.3C.2D.110.(对角互补)如图1,直角∠EPF的顶点和正方形ABCD的顶点C重合,两直角边PE,PF分别和AB,AD所在的直线交于点E和F.易得△PBE≌△PDF,故结论“PE=PF”成立;(1)如图2,若点P在正方形ABCD的对角线AC上,其他条件不变,(1)中的结论是否仍然成立?说明理由;(2)如图(3)将(2)中正方形ABCD改为矩形ABCD其他条件不变,若AB=m,BC=n,直接写出的值.11.(对角互补)如图,边长一定的正方形ABCD,Q为CD上一个动点,AQ交BD于点M,过M作MN⊥AQ交BC于点N,作NP⊥BD于点P,连接NQ,下列结论:①AM=MN;②MP=BD;③BN+DQ=NQ;④为定值.其中一定成立的是()A.①②③B.①②④C.②③④D.①②③④12.(等角共顶点)(1)如图①,△ABC中,AB=AC,∠BAC=90°,点D为BC边上一点(与点B、C不重合),连接AD,以AD为一边且在AD的右侧作正方形ADEF.可猜想线段CF,BD之间的数量关系是_________,位置关系是_________;(2)当点D在线段BC的延长线时,如图②,(1)中的结论是否仍然成立?如果成立,给出证明,如果不成立,说明理由.13.(等角共顶点)已知点O为正方形ABCD的中心,M为射线OD上一动点(M与点O,D不重合),以线段AM 为一边作正方形AMEF,连接FD.(1)当点M在线段OD上时(如图1),线段BM与DF有怎样的数量及位置关系?请判断并直接写出结果;(2)当点M在线段OD的延长线上时(如图2),(1)中的结论是否仍然成立?请结合图2说明理由.14.(等角共顶点)以△ABC的各边,在边BC的同侧分别作三个正方形.他们分别是正方形ABDI,BCFE,ACHG,试探究:(1)如图中四边形ADEG是什么四边形?并说明理由.(2)当△ABC满足什么条件时,四边形ADEG是矩形?(3)当△ABC满足什么条件时,四边形ADEG是正方形?15.(等角共顶点)在直角三角形ABC中,∠C=90°,BC=2,以AB为边作正方形ABDE,连接AD、BE交O,CO=,则AC的长为()A.2B.3C.4D.16.(等角共顶点)如图,已知正方形ABCD,点E是BC上一点,以AE为边作正方形AEFG.(1)连接GD,求证:△ADG≌△ABE;(2)连接FC,求证:∠FCN=45°;(3)请问在AB边上是否存在一点Q,使得四边形DQEF是平行四边形?若存在,请证明;若不存在,请说明理由.17.(等角共顶点)如图1,2,四边形ABCD是正方形,M是AB延长线上一点.直角三角尺的一条直角边经过点D,且直角顶点E在AB边上滑动(点E不与点A,B重合),另一条直角边与∠CBM的平分线BF相交于点F.(1)如图1,当点E在AB边的中点,N为AD边的中点位置时:①通过测量DE,EF的长度,猜想DE与EF满足的数量关系是_________;②请证明你的上述猜想.(2)如图2,当点E在AB边上的任意位置时,猜想此时DE与EF有怎样的数量关系,并证明你的结论.18.(对角互补分半)已知,四边形ABCD是正方形,∠MAN=45°,它的两边AM、AN分别交CB、DC与点M、N,连接MN,作AH⊥MN,垂足为点H(1)如图1,猜想AH与AB有什么数量关系?并证明;(2)如图2,已知∠BAC=45°,AD⊥BC于点D,且BD=2,CD=3,求AD的长;小萍同学通过观察图①发现,△ABM和△AHM关于AM对称,△AHN和△ADN关于AN对称,于是她巧妙运用这个发现,将图形如图③进行翻折变换,解答了此题.你能根据小萍同学的思路解决这个问题吗?19.(对角互补分半)(1)如图①,在正方形ABCD中,△AEF的顶点E,F分别在BC,CD边上,高AG与正方形的边长相等,求∠EAF的度数.(2)如图②,在Rt△ABD中,∠BAD=90°,AB=AD,点M,N是BD边上的任意两点,且∠MAN=45°,将△ABM绕点A逆时针旋转90°至△ADH位置,连接NH,试判断MN,ND,DH之间的数量关系,并说明理由.(3)在图①中,连接BD分别交AE,AF于点M,N,若EG=4,GF=6,BM=3,求AG,MN的长.20.(对角互补分半)如图,将边长为4的正方形ABCD沿着折痕EF折叠,使点B落在边AD的中点G处,那么四边形BCFE的面积等于_________;若GH与CD交点为I,那么 GBI=____________。
正方形几何综合专题---40道题目(含答案)

01如图,在正方形ABCD中,点G在对角线BD上(不与点B,D 重合),GE⊥DC于点E,GF⊥BC于点F,连接AG.(1)写出线段AG,GE,GF长度之间的等量关系,并说明理由;(2)若正方形ABCD的边长为1,∠AGF=105°,求线段BG的长.解:(1)AG 2=GE 2+GF 2;理由:如解图,连接CG , ∵四边形ABCD 是正方形,∴∠ADG =∠CDG =45°,AD =CD ,DG =DG , ∴△ADG ≌△CDG ,∴AG =CG , 又∵GE ⊥DC ,GF ⊥BC ,∠BCD =90°, ∴四边形CEGF 是矩形,∴CF =GE ,在Rt △GFC 中,由勾股定理得,CG 2=GF 2+CF 2, ∴AG 2=GE 2+GF 2;(2)如解图,过点A 作AM ⊥BD 于点M ,∵GF ⊥BC ,∠ABG =∠GBC =45°, ∴∠BAM =∠BGF =45°,∴△ABM ,△BGF 都是等腰直角三角形, ∵AB =1, ∴AM =BM =22,∵∠AGF =105°, ∴∠AGM =60°, ∴tan60°=AM GM, ∴GM =66, ∴BG =BM +GM =22+66=32+66.02如图,正方形ABCD 中,AB =6,点E 在边CD 上,且CD =3DE .将△ADE 沿AE 对折至△AFE ,延长EF 交边BC 于点G ,连结AG 、CF .下列结论:①△ABG ≌△AFG ;②BG =GC ;③AG ∥CF ;④S △FGC =3.其中正确结论的个数是( )A .1B .2C .3D .4A BCD FEG10题图考点:翻折变换(折叠问题);全等三角形的判定与性质;勾股定理分析:根据翻折变换的性质和正方形的性质可证△ABG ≌△AFG ;在直角△ECG 中,根据勾股定理可证BG =GC ;通过证明∠AGB =∠AGF =∠GFC =∠GCF ,由平行线的判定可得AG ∥CF ;由于S △FGC =S △GCE ﹣S △FEC ,求得面积比较即可.解答:解:①正确.因为AB =AD =AF ,AG =AG ,∠B =∠AFG =90°,∴△ABG ≌△AFG ;②正确.因为:EF =DE =13CD =2,设BG =FG =x ,则CG =6﹣x .在直角△ECG 中,根据勾股定理,得(6﹣x )2+42=(x +2)2,解得x =3.所以BG =3=6﹣3=GC ; ③正确.因为CG =BG =GF ,所以△FGC 是等腰三角形,∠GFC =∠GCF .又∠AGB =∠AGF ,∠AGB +∠AGF =180°﹣∠FGC =∠GFC +∠GCF ,∴∠AGB =∠AGF =∠GFC =∠GCF ,∴AG ∥CF ; ④错误.过F 作FH ⊥DC , ∵BC ⊥DH , ∴FH ∥GC ,∴△EFH ∽△EGC , ∴FH GC =EFEG, EF =DE =2,GF =3, ∴EG =5,∴FH GC =EF EG =25, ∴S △FGC =S △GCE ﹣S △FEC =12×3×4﹣12×4×(25×3)=185≠3. 故选C .点评:本题综合性较强,考查了翻折变换的性质和正方形的性质,全等三角形的判定与性质,勾股定理,平行线的判定,三角形的面积计算,有一定的难度.A B CD FEG10题03如图,在一方形ABCD中.E为对角线AC上一点,连接EB、ED,(1)求证:△BEC≌△DEC:(2)延长BE交AD于点F,若∠DEB=140°.求∠AFE 的度数.考点:正方形的性质;对顶角、邻补角;三角形内角和定理;全等三角形的判定与性质。
正方形(性质+判定)

大家来填一填,
(3)四条边相等;(4)对角线互相垂直; (5)对角线相等;(6)两组对角相等; (7)每一条对角线平分一组对角;
将下列正确的性质的 序号填入空白中.
(8)四个角都是直角.
1.平行四边形的性质有: (1)(2)(6) 2.正方形所具备的而平行四边形不具备的性质 有:(3)(4)(5)(7)(8)
实验1:
动手画一画:画一个有一组邻边
相等的矩形. (1)剪下一个长方形; (2)选择一个角折叠,使得这 个角的两条边重合,如图.
标注2:用小活 动来提高学生的 兴趣,集中注意
力.
折叠
剪掉 右边
展开 正方形
合作探究
实验探究
问题:2.有一个角是直角的菱形是一个什么样的图形?
实验2: 当一个菱形有一个角是直角时,又是怎样的一个图
形呢?我们一起来看一下:
标注3:解决问
题2,用视频的
方式,让学生更
能理解问题2.
合作探究
小结
有一个角为直角
有一组邻边相等
标注4 案,就会出现正
方形图.
有一组邻边相等 正方形 有一个角是直角
18.2.3 正方形
归纳:
1.正方形的定义:四个角都是直角,且四条边相
小结
有一个角是直角
菱形法:
菱形
对角线相等
正方形
二、正方形的判定
作比较
请比较一般四边形,平行四边形,矩形,菱形,正 方形的对角线的性质.
矩形 对角线平分且相等
四边形
无
平行四边形
对角线互相平分
对角线相等且垂直
菱形
对角线平分 且垂直
对角线平分,相等且垂直(对角线法)
正方形
正方形的性质与判定练习题

(1)正方形的一条对角线把正方形分成两个全等的
等腰直角三角形(
√
) )
(3)如果一个菱形的对角线相等,那么它一定 是正方形 (
√
)
(4)如果一个矩形的对角线互相垂直,那么它 一定是正方形 ( 是正方形(
√
)
(5)四条边相等,且有一个角是直角的四边形
√
)
×
(2)对角线互相垂直且相等的四边形是正方形(
A
D
G B
BE=CF,探索图中AE与BF的关系。
F
E
C
10、如图,点E、F在正方形ABCD的边BC、CD上,
11、如图,在正方形ABCD中,E在BC的延长线上,
且CE=AC,AE交CD于F,则求∠AFC的度数。
A
D
F
B
C
E
12、在△ABC中,AB=AC,D是BC的中点,DE⊥AB,
DF⊥AC,垂足分别是E,F. 1)试说明:DE=DF 2)只添加一个条件,使四边形EDFA是正方形.
A
G B C
D
F E
A
D G
F
B C E
10、如图,M为正方形ABCD边AB的中 点,E是AB延长线上一点,MN⊥DM, 且交∠CBE的平分线于点N。 (1)求证:MD=MN (2)若将上述条件中的“M是AB的中点” 改为“M为AB上任意一点”,其它条件不 变,问结论MD=MN是否仍然成立。
D F
●
C N M B
D P
●
C N
A
E A
M B
E
11、探究三: 若正方形OEFG继续旋转时AM与
BN之间的关系是否还成立? 探究四: 如图,有两个大小不等的两个正 方形,其中小正方形的面积是大正方形面 积的一半,若阴影部分的面积为8,则小正 方形的边长为腰直角三角形OAB的两条直 角边AO和BO,使AO=OC,BO=OD 求证:四边形ABCD是正方形。 A O B C D
【精编版】中考数学专题训练——正方形的判定和性质
中考专题训练——正方形的判定和性质1.如图,在矩形ABCD中,点E,F分别在边AB,BC上,AF⊥DE,且AF=DE,AF与DE相交于点G.(1)求证:矩形ABCD为正方形:(2)若AE:EB=2:1,△AEG的面积为4,求四边形BEGF的面积.2.已知:如图,边长为4的菱形ABCD的对角线AC与BD相交于点O,若∠CAD=∠DBC.(1)求证:四边形ABCD是正方形.(2)E是OB上一点,BE=1,且DH⊥CE,垂足为H,DH与OC相交于点F,求线段OF的长.3.如图,菱形EFGH的三个顶点E、G、H分别在正方形ABCD的边AB、CD、DA上,连接CF.(1)求证:∠HEA=∠CGF;(2)当AH=DG时,求证:菱形EFGH为正方形.4.如图,已知四边形ABCD为正方形,AB=3,点E为对角线AC上一动点,连接DE,过点E作EF⊥DE,交BC于点F,以DE、EF为邻边作矩形DEFG,连接CG.(1)求证:矩形DEFG是正方形;(2)探究:CE+CG的值是否为定值?若是,请求出这个定值;若不是,请说明理由.5.如图①,在正方形ABCD中,点E,F分别在AB、BC上,且AE=BF.(1)试探索线段AF、DE的数量关系,写出你的结论并说明理由;(2)连接EF、DF,分别取AE、EF、FD、DA的中点H、I、J、K,则四边形HIJK是什么特殊平行四边形?请在图②中补全图形,并说明理由.6.如图,已知正方形ABCD,P是对角线AC上任意一点,PM⊥AD,PN⊥AB,垂足分别为点M和N,PE⊥PB交AD于点E.(1)求证:四边形MANP是正方形;(2)求证:EM=BN.7.如图,在等腰直角三角形ABC中,∠ACB=90°,AC=BC=4,D是AB的中点,E,F 分别是AC,BC上的点(点E不与端点A,C重合),且AE=CF,连接EF并取EF的中点O,连接DO并延长至点G,使GO=OD,连接DE,DF,GE,GF.(1)求证:四边形EDFG是正方形;(2)当点E在什么位置时,四边形EDFG的面积最小?并求四边形EDFG面积的最小值.8.如图,已知四边形ABCD为正方形,AB=,点E为对角线AC上一动点,连接DE,过点E作EF⊥DE.交射线BC于点F,以DE、EF为邻边作矩形DEFG,连接CG.①求证:矩形DEFG是正方形;②探究:CE+CG的值是否为定值?若是,请求出这个定值;若不是,请说明理由.9.平行四边形ABCD的对角线AC和BD交于O点,分别过顶点B,C作两对角线的平行线交于点E,得平行四边形OBEC.(1)如果四边形ABCD为矩形(如图),四边形OBEC为何种四边形?请证明你的结论;(2)如果四边形ABCD是正方形,四边形OBEC也是正方形吗?如果是,请给予证明;如果不是,请说明理由.10.如果P是正方形ABCD内的一点,且满足∠APB+∠DPC=180°,那么称点P是正方形ABCD的“对补点”.(1)如图1,正方形ABCD的对角线AC,BD交于点M,求证:点M是正方形ABCD 的对补点;(2)如图2,在平面直角坐标系中,正方形ABCD的顶点A(1,1),C(3,3).除对角线交点外,请再写出一个该正方形的对补点的坐标,并证明.11.已知:如图,E是正方形ABCD的对角线BD上的点,连接AE、CE.(1)求证:AE=CE;(2)若将△ABE沿AB翻折后得到△ABF,当点E在BD的何处时,四边形AFBE是正方形?请证明你的结论.12.如图所示,有四个动点P,Q,E,F分别从正方形ABCD的四个顶点出发,沿着AB,BC,CD,DA以同样速度向B,C,D,A各点移动.(1)试判断四边形PQEF是否是正方形,并证明;(2)PE是否总过某一定点,并说明理由.13.在平面直角坐标系xOy中,OEFG为正方形,点F的坐标为(1,1).将一个最短边长大于的直角三角形纸片的直角顶点放在对角线FO上.(1)如图,当三角形纸片的直角顶点与点F重合,一条直角边落在直线FO上时,这个三角形纸片与正方形OEFG重叠部分(即阴影部分)的面积为;(2)若三角形纸片的直角顶点不与点O,F重合,且两条直角边与正方形相邻两边相交,当这个三角形纸片与正方形OEFG重叠部分的面积是正方形面积的一半时,试确定三角形纸片直角顶点的坐标(不要求写出求解过程),并画出此时的图形.14.(1)如图矩形ABCD的对角线AC、BD交于点O,过点D作DP∥OC,且DP=OC,连接CP,判断四边形CODP的形状并说明理由.(2)如果题目中的矩形变为菱形,结论应变为什么?说明理由.(3)如果题目中的矩形变为正方形,结论又应变为什么?说明理由.15.四边形ABCD为正方形,点E为线段AC上一点,连接DE,过点E作EF⊥DE,交射线BC于点F,以DE、EF为邻边作矩形DEFG,连接CG.(1)如图1,求证:矩形DEFG是正方形;(2)若AB=2,CE=,求CG的长度;(3)当线段DE与正方形ABCD的某条边的夹角是30°时,直接写出∠EFC的度数.16.如图,在矩形ABCD中,AD=6,CD=8,菱形EFGH的三个顶点E、G、H分别在矩形ABCD的边AB、CD、DA上,AH=2,连接CF.(1)当DG=2时,求证:四边形EFGH是正方形;(2)当△FCG的面积为2时,求CG的值.17.已知,如图,矩形ABCD中,AD=6,DC=7,菱形EFGH的三个顶点E,G,H分别在矩形ABCD的边AB,CD,DA上,AH=2,连接CF.(1)若DG=2,求证四边形EFGH为正方形;(2)若DG=6,求△FCG的面积;(3)当DG为何值时,△FCG的面积最小.18.如图,Rt△CEF中,∠C=90°,∠CEF,∠CFE外角平分线交于点A,过点A分别作直线CE,CF的垂线,B,D为垂足.(1)∠EAF=°(直接写出结果不写解答过程);(2)①求证:四边形ABCD是正方形.②若BE=EC=3,求DF的长.(3)如图(2),在△PQR中,∠QPR=45°,高PH=5,QH=2,则HR的长度是(直接写出结果不写解答过程).19.如图1,在正方形ABCD中,G为线段BD上一点,连接AG,过G作AG⊥GE交BC 于E,连接AE.(1)求证:BG=DG+BE;(2)如图2,AB=4,E为BC中点,P,Q分别为线段AB,AE上的动点,满足QE=AP,则在P,Q运动过程中,当以PQ为对角线的正方形PRQS的一边恰好落在△ABE 的某一边上时,直接写出正方形PRQS的面积.20.四边形ABCD为正方形,点E为线段AC上一点,连接DE,过点E作EF⊥DE,交射线BC于点F,以DE、EF为邻边作矩形DEFG,连接CG.(1)如图,求证:矩形DEFG是正方形;(2)若AB=2,CE=2,求CG的长;(3)当线段DE与正方形ABCD的某条边的夹角是40°时,直接写出∠EFC的度数.参考答案;1.如图,在矩形ABCD中,点E,F分别在边AB,BC上,AF⊥DE,且AF=DE,AF与DE相交于点G.(1)求证:矩形ABCD为正方形:(2)若AE:EB=2:1,△AEG的面积为4,求四边形BEGF的面积.【分析】(1)根据矩形的性质得∠DAB=∠B=90°,由等角的余角相等可得∠ADE=∠BAF,利用AAS可得△ABF≌△DAE(AAS),由全等三角形的性质得AD=AB,即可得四边形ABCD是正方形;(2)根据相似三角形面积的比等于相似比的平方即可解决问题.【解答】(1)证明:∵四边形ABCD是矩形,∴∠DAB=∠B=90°,∵DE⊥AF,∴∠DAB=∠AGD=90°,∴∠BAF+∠DAF=90°,∠ADE+∠DAF=90°,∴∠BAF=∠ADE,在△ABF和△DAE中,,∴△ABF≌△DAE(AAS),∴AD=AB,∵四边形ABCD是矩形,∴四边形ABCD是正方形;(2)解:∵△ABF≌△DAE,∴BF=AE,∵AE:EB=2:1,设AE=2x,EB=x,∴BF=AE=2x,AB=3x,∴AF==x,∵∠EAG=∠F AB,∠AGE=∠B=90°,∴△AEG∽△AFB,∴△AEG的面积:△AFB的面积=AE2:AF2=4x2:13x2=4:13,∵△AEG的面积为4,∴△AFB的面积为13,∴四边形BEGF的面积=13﹣4=9.2.已知:如图,边长为4的菱形ABCD的对角线AC与BD相交于点O,若∠CAD=∠DBC.(1)求证:四边形ABCD是正方形.(2)E是OB上一点,BE=1,且DH⊥CE,垂足为H,DH与OC相交于点F,求线段OF的长.【分析】(1)由菱形的性质得出AD∥BC,∠BAD=2∠DAC,∠ABC=2∠DBC,得出∠BAD+∠ABC=180°,证出∠BAD=∠ABC,求出∠BAD=90°,即可得出结论;(2)由正方形的性质得出AC⊥BD,AC=BD,CO=AC,DO=BD,得出∠COB=∠DOC=90°,CO=DO,证出∠ECO=∠EDH,证明△ECO≌△FDO(ASA),即可得出结论.【解答】(1)证明:∵四边形ABCD是菱形,∴AD∥BC,∠BAD=2∠DAC,∠ABC=2∠DBC,∴∠BAD+∠ABC=180°,∵∠CAD=∠DBC,∴∠BAD=∠ABC,∴2∠BAD=180°,∴∠BAD=90°,∴四边形ABCD是正方形;(2)解:∵四边形ABCD是正方形,AB=BC=4,∴AC⊥BD,AC=BD=4,∴OB=CO=AC=2,DO=BD=2,∴∠COB=∠DOC=90°,CO=DO,∵DH⊥CE,垂足为H,∴∠DHE=90°,∠EDH+∠DEH=90°,∵∠ECO+∠DEH=90°,∴∠ECO=∠EDH,在△ECO和△FDO中,,∴△ECO≌△FDO(ASA),∴OE=OF.∵BE=1,∴OE=OF=OB﹣BE=2﹣1.3.如图,菱形EFGH的三个顶点E、G、H分别在正方形ABCD的边AB、CD、DA上,连接CF.(1)求证:∠HEA=∠CGF;(2)当AH=DG时,求证:菱形EFGH为正方形.【分析】(1)连接GE,根据正方形的性质和平行线的性质得到∠AEG=∠CGE,根据菱形的性质和平行线的性质得到∠HEG=∠FGE,解答即可;(2)证明Rt△HAE≌Rt△GDH,得到∠AHE=∠DGH,证明∠GHE=90°,根据正方形的判定定理证明.【解答】证明:(1)连接GE,∵AB∥CD,∴∠AEG=∠CGE,∵GF∥HE,∴∠HEG=∠FGE,∴∠HEA=∠CGF;(2)∵四边形ABCD是正方形,∴∠D=∠A=90°,∵四边形EFGH是菱形,∴HG=HE,在Rt△HAE和Rt△GDH中,,∴Rt△HAE≌Rt△GDH(HL),∴∠AHE=∠DGH,又∠DHG+∠DGH=90°,∴∠DHG+∠AHE=90°,∴∠GHE=90°,∴菱形EFGH为正方形;4.如图,已知四边形ABCD为正方形,AB=3,点E为对角线AC上一动点,连接DE,过点E作EF⊥DE,交BC于点F,以DE、EF为邻边作矩形DEFG,连接CG.(1)求证:矩形DEFG是正方形;(2)探究:CE+CG的值是否为定值?若是,请求出这个定值;若不是,请说明理由.【分析】(1)作出辅助线,得到EN=EM,然后判断∠DEN=∠FEM,得到△DEN≌△FEM,则有DE=EF即可;(2)同(1)的方法判断出△ADE≌△CDG得到CG=AE,即:CE+CG=CE+AE=AC =6.【解答】解:(1)如图,作EM⊥BC于M,EN⊥CD于N,∴∠MEN=90°,∵点E是正方形ABCD对角线上的点,∴EM=EN,∵∠DEF=90°,∴∠DEN=∠MEF,∵∠DNE=∠FME=90°,在△DEN和△FEM中,,∴△DEN≌△FEM(ASA),∴EF=DE,∵四边形DEFG是矩形,∴矩形DEFG是正方形;(2)CE+CG的值是定值,定值为6,理由如下:∵正方形DEFG和正方形ABCD,∴DE=DG,AD=DC,∵∠CDG+∠CDE=∠ADE+∠CDE=90°,∴∠CDG=∠ADE,在∴△ADE和△CDG中,,∴△ADE≌△CDG(SAS),∴AE=CG,∴CE+CG=CE+AE=AC=AB=×3=6是定值.5.如图①,在正方形ABCD中,点E,F分别在AB、BC上,且AE=BF.(1)试探索线段AF、DE的数量关系,写出你的结论并说明理由;(2)连接EF、DF,分别取AE、EF、FD、DA的中点H、I、J、K,则四边形HIJK是什么特殊平行四边形?请在图②中补全图形,并说明理由.【分析】(1)根据已知利用SAS判定△DAE≌△ABF,由全等三角形的判定方法可得到AF=DE.(2)根据已知可得HK,KJ,IJ,HI都是中位线,由全等三角形的判定可得到四边形四边都相等且有一个角是直角,从而来可得到该四边形是正方形.【解答】解:(1)AF=DE.∵ABCD是正方形,∴AB=AD,∠DAB=∠ABC=90°,∵AE=BF,∴△DAE≌△ABF,∴AF=DE.(2)四边形HIJK是正方形.如下图,H、I、J、K分别是AE、EF、FD、DA的中点,∴HI=KJ=AF,HK=IJ=ED,∵AF=DE,∴HI=KJ=HK=IJ,∴四边形HIJK是菱形,∵△DAE≌△ABF,∴∠ADE=∠BAF,∵∠ADE+∠AED=90°,∴∠BAF+∠AED=90°,∴∠AOE=90°∴∠KHI=90°,∴四边形HIJK是正方形.6.如图,已知正方形ABCD,P是对角线AC上任意一点,PM⊥AD,PN⊥AB,垂足分别为点M和N,PE⊥PB交AD于点E.(1)求证:四边形MANP是正方形;(2)求证:EM=BN.【分析】(1)根据有三个角是直角的四边形是矩形证明四边形MANP是矩形,再根据角平分线的性质得:PM=PN,可得结论;(2)证明△EPM≌△BPN,可得结论.【解答】证明:(1)∵四边形ABCD是正方形,∴∠DAB=90°,AC平分∠DAB,(1分)∵PM⊥AD,PN⊥AB,∴∠PMA=∠PNA=90°,∴四边形MANP是矩形,(2分)∵AC平分∠DAB,PM⊥AD,PN⊥AB,∴PM=PN,(3分)∴四边形MANP是正方形;(4分)(2)∵四边形ABCD是正方形,∴PM=PN,∠MPN=90°,∵∠EPB=90°,∴∠MPE+∠EPN=∠NPB+∠EPN=90°,∴∠MPE=∠NPB,(5分)在△EPM和△BPN中,∵,∴△EPM≌△BPN(ASA),(6分)∴EM=BN.(7分)7.如图,在等腰直角三角形ABC中,∠ACB=90°,AC=BC=4,D是AB的中点,E,F 分别是AC,BC上的点(点E不与端点A,C重合),且AE=CF,连接EF并取EF的中点O,连接DO并延长至点G,使GO=OD,连接DE,DF,GE,GF.(1)求证:四边形EDFG是正方形;(2)当点E在什么位置时,四边形EDFG的面积最小?并求四边形EDFG面积的最小值.【分析】(1)连接CD,根据等腰直角三角形的性质可得出∠A=∠DCF=45°、AD=CD,结合AE=CF可证出△ADE≌△CDF(SAS),根据全等三角形的性质可得出DE=DF、ADE=∠CDF,通过角的计算可得出∠EDF=90°,再根据O为EF的中点、GO=OD,即可得出GD⊥EF,且GD=2OD=EF,由此即可证出四边形EDFG是正方形;(2)过点D作DE′⊥AC于E′,根据等腰直角三角形的性质可得出DE′的长度,从而得出2≤DE<2,再根据正方形的面积公式即可得出四边形EDFG的面积的最小值.【解答】(1)证明:连接CD,如图1所示.∵△ABC为等腰直角三角形,∠ACB=90°,D是AB的中点,∴∠A=∠DCF=45°,AD=CD.在△ADE和△CDF中,,∴△ADE≌△CDF(SAS),∴DE=DF,∠ADE=∠CDF.∵∠ADE+∠EDC=90°,∴∠EDC+∠CDF=∠EDF=90°,∴△EDF为等腰直角三角形.∵O为EF的中点,GO=OD,∴GD⊥EF,且GD=2OD=EF,∴四边形EDFG是正方形;(2)解:过点D作DE′⊥AC于E′,如图2所示.∵△ABC为等腰直角三角形,∠ACB=90°,AC=BC=4,∴DE′=BC=2,AB=4,点E′为AC的中点,∴2≤DE<2(点E与点E′重合时取等号).∴4≤S四边形EDFG=DE2<8.∴当点E为线段AC的中点时,四边形EDFG的面积最小,该最小值为4.8.如图,已知四边形ABCD为正方形,AB=,点E为对角线AC上一动点,连接DE,过点E作EF⊥DE.交射线BC于点F,以DE、EF为邻边作矩形DEFG,连接CG.①求证:矩形DEFG是正方形;②探究:CE+CG的值是否为定值?若是,请求出这个定值;若不是,请说明理由.【分析】(1)作出辅助线,得到EN=EM,然后判断∠DEN=∠FEM,得到△DEN≌△FEM,则有DE=EF即可;(2)同(1)的方法证出△ADE≌△CDG得到CG=AE,得出CE+CG=CE+AE=AC=4即可.【解答】①证明:过E作EM⊥BC于M点,过E作EN⊥CD于N点,如图所示:∵正方形ABCD∴∠BCD=90°,∠ECN=45°∴∠EMC=∠ENC=∠BCD=90°且NE=NC,∴四边形EMCN为正方形∵四边形DEFG是矩形,∴EM=EN,∠DEN+∠NEF=∠MEF+∠NEF=90°∴∠DEN=∠MEF,又∠DNE=∠FME=90°,在△DEN和△FEM中,,∴△DEN≌△FEM(ASA),∴ED=EF,∴矩形DEFG为正方形,②解:CE+CG的值为定值,理由如下:∵矩形DEFG为正方形,∴DE=DG,∠EDC+∠CDG=90°∵四边形ABCD是正方形,∵AD=DC,∠ADE+∠EDC=90°∴∠ADE=∠CDG,在△ADE和△CDG中,,∴△ADE≌△CDG(SAS),∴AE=CG∴AC=AE+CE=AB=×2=4,∴CE+CG=4 是定值.9.平行四边形ABCD的对角线AC和BD交于O点,分别过顶点B,C作两对角线的平行线交于点E,得平行四边形OBEC.(1)如果四边形ABCD为矩形(如图),四边形OBEC为何种四边形?请证明你的结论;(2)如果四边形ABCD是正方形,四边形OBEC也是正方形吗?如果是,请给予证明;如果不是,请说明理由.【分析】(1)由平行线可得四边形OBEC为平行四边形,又矩形对角线互相平分且相等,则可得四边形OBEC为菱形;(2)由平行线可得四边形OBEC为平行四边形,又正方形对角线互相垂直、平分且相等,则可得四边形OBEC为正方形.【解答】解:(1)四边形OBEC是菱形.证明:∵BE∥OC,CE∥OB,∴四边形OBEC为平行四边形.又∵四边形ABCD是矩形,∴OC=OB,∴平行四边形OBEC为菱形;(2)四边形OBEC是正方形.证明:∵BE∥OC,CE∥OB,∴四边形OBEC为平行四边形.又∵四边形ABCD是正方形,∴OC=OB,∠BOC=90°,∴平行四边形OBEC为正方形.10.如果P是正方形ABCD内的一点,且满足∠APB+∠DPC=180°,那么称点P是正方形ABCD的“对补点”.(1)如图1,正方形ABCD的对角线AC,BD交于点M,求证:点M是正方形ABCD 的对补点;(2)如图2,在平面直角坐标系中,正方形ABCD的顶点A(1,1),C(3,3).除对角线交点外,请再写出一个该正方形的对补点的坐标,并证明.【分析】(1)根据四边形ABCD是正方形,得到AC⊥BD,于是得到结论;(2)如图2,延长CD交y轴于E,延长CB交x轴于F,则四边形CEOF是正方形连接OC,EF交于P,推出A,C在直线y=x上,得到A在OC上,根据全等三角形的性质得到∠APD=∠APB,得到∠CPD+∠APB=180°,于是得到结论.【解答】解:(1)∵四边形ABCD是正方形,∴AC⊥BD,∴∠AMB=∠CMD=90°,∴∠AMB+∠CMD=180°,∴点M是正方形ABCD的对补点;(2)如图2,点P(,)是该正方形的对补点,延长CD交y轴于E,延长CB交x轴于F,则四边形CEOF是正方形连接OC,EF交于P,∵A(1,1),C(3,3),∴A,C在直线y=x上,∴A在OC上,在△APD与△APB中,,∴△APD≌△APB,∴∠APD=∠APB,∴∠DPE=∠BPF,∵∠EPC+∠APF=180°,∴∠CPD+∠APB=180°,∴P(,)是该正方形的对补点.11.已知:如图,E是正方形ABCD的对角线BD上的点,连接AE、CE.(1)求证:AE=CE;(2)若将△ABE沿AB翻折后得到△ABF,当点E在BD的何处时,四边形AFBE是正方形?请证明你的结论.【分析】(1)利用正方形的性质和SAS证明△ABE≌△CBE即可;(2)由折叠的性质得出∠F=∠AEB,AF=AE,BF=BE,由直角三角形斜边上的中线性质得出AE=BD=BE=DE,证出AE=BE=AF=BF,得出四边形AFBE是菱形,AE ⊥BD,即可得出结论.【解答】(1)证明:∵四边形ABCD是正方形,∴AB=CB,∠BAD=∠ABC=90°,∠ABE=∠CBE=45°,在△ABE和△CBE中,,∴△ABE≌△CBE(SAS),∴AE=CE.(2)解:点E在BD的中点时,四边形AFBE是正方形;理由如下:由折叠的性质得:∠F=∠AEB,AF=AE,BF=BE,∵∠BAD=90°,E是BD的中点,∴AE=BD=BE=DE,∵BF=BE,∴AE=BE=AF=BF,∴四边形AFBE是菱形,E是正方形ABCD对角线的交点,∴AE⊥BD,∴∠AEB=90°,∴四边形AFBE是正方形.12.如图所示,有四个动点P,Q,E,F分别从正方形ABCD的四个顶点出发,沿着AB,BC,CD,DA以同样速度向B,C,D,A各点移动.(1)试判断四边形PQEF是否是正方形,并证明;(2)PE是否总过某一定点,并说明理由.【分析】(1)正方形的定义:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形,故可根据正方形的定义证明四边形PQEF是否使正方形.(2)证PE是否过定点时,可连接AC,证明四边形APCE为平行四边形,即可证明PE 过定点.【解答】解:(1)在正方形ABCD中,AP=BQ=CE=DF,AB=BC=CD=DA,∴BP=QC=ED=F A.又∵∠BAD=∠B=∠BCD=∠D=90°,∴△AFP≌△BPQ≌△CQE≌△DEF.∴FP=PQ=QE=EF,∠APF=∠PQB.∴四边形PQEF是菱形,∵∠FPQ=90°,∴四边形PQEF为正方形.(2)连接AC交PE于O,∵AP平行且等于EC,∴四边形APCE为平行四边形.∵O为对角线AC的中点,∴对角线PE总过AC的中点.13.在平面直角坐标系xOy中,OEFG为正方形,点F的坐标为(1,1).将一个最短边长大于的直角三角形纸片的直角顶点放在对角线FO上.(1)如图,当三角形纸片的直角顶点与点F重合,一条直角边落在直线FO上时,这个三角形纸片与正方形OEFG重叠部分(即阴影部分)的面积为;(2)若三角形纸片的直角顶点不与点O,F重合,且两条直角边与正方形相邻两边相交,当这个三角形纸片与正方形OEFG重叠部分的面积是正方形面积的一半时,试确定三角形纸片直角顶点的坐标(不要求写出求解过程),并画出此时的图形.【分析】(1)S=OE•EF=;(2)如图,正方形GFEO的面积为1,当重合的面积为正方形GFEO的面积的一半时,有两种情况:①四边形OSCB的面积为时,易证得四边形ACDO为正方形,△ABC≌△DSC,有四边形OSCB的面积与正方形ACDO的面积相等,故有OD=OA=即点C的坐标为(,).②四边形FSCB的面积为时,易证得四边形ACDF为正方形,△ABC≌△DSC,有四边形FSCB的面积与正方形ACDO的面积相等,故有AD=F A=即点C的坐标为(1﹣,1﹣).【解答】解:(1)S=OE•EF=;(2)如图,正方形GFEO的面积为1,当重合的面积为正方形GFEO的面积的一半时,有两种情况:①四边形OSCB的面积为时,易证得四边形ACOD为正方形,△ABC≌△DSC,有四边形OSCB的面积与正方形ACOD的面积相等,故有OD=OA=即点C的坐标为(,).②四边形FSCB的面积为时,易证得四边形ACDF为正方形,△ABC≌△DSC,有四边形FSCB的面积与正方形ACDO的面积相等,故有FD=F A=即点C的坐标为(1﹣,1﹣).14.(1)如图矩形ABCD的对角线AC、BD交于点O,过点D作DP∥OC,且DP=OC,连接CP,判断四边形CODP的形状并说明理由.(2)如果题目中的矩形变为菱形,结论应变为什么?说明理由.(3)如果题目中的矩形变为正方形,结论又应变为什么?说明理由.【分析】(1)根据矩形的性质得出OD=OC,根据有一组对边平行且相等的四边形是平行四边形得出四边形CODP是平行四边形,根据菱形的判定推出即可;(2)根据菱形的性质得出∠DOC=90°,根据有一组对边平行且相等的四边形是平行四边形得出四边形CODP是平行四边形,根据矩形的判定推出即可;(3)根据正方形的性质得出OD=OC,∠DOC=90°,根据有一组对边平行且相等的四边形是平行四边形得出四边形CODP是平行四边形,根据正方形的判定推出即可;【解答】解:(1)四边形CODP的形状是菱形,理由是:∵四边形ABCD是矩形,∴AC=BD,OA=OC=AC,OB=OD=BD,∴OC=OD,∵DP∥OC,DP=OC,∴四边形CODP是平行四边形,∵OC=OD,∴平行四边形CODP是菱形;(2)四边形CODP的形状是矩形,理由是:∵四边形ABCD是菱形,∴AC⊥BD,∴∠DOC=90°,∵DP∥OC,DP=OC,∴四边形CODP是平行四边形,∵∠DOC=90°,∴平行四边形CODP是矩形;(3)四边形CODP的形状是正方形,理由是:∵四边形ABCD是正方形,∴AC⊥BD,AC=BD,OA=OC=AC,OB=OD=BD,∴∠DOC=90°,OD=OC,∵DP∥OC,DP=OC,∴四边形CODP是平行四边形,∵∠DOC=90°,OD=OC∴平行四边形CODP是正方形.15.四边形ABCD为正方形,点E为线段AC上一点,连接DE,过点E作EF⊥DE,交射线BC于点F,以DE、EF为邻边作矩形DEFG,连接CG.(1)如图1,求证:矩形DEFG是正方形;(2)若AB=2,CE=,求CG的长度;(3)当线段DE与正方形ABCD的某条边的夹角是30°时,直接写出∠EFC的度数.(1)作EP⊥CD于P,EQ⊥BC于Q,证明Rt△EQF≌Rt△EPD,得到EF=ED,【分析】根据正方形的判定定理证明即可;(2)通过计算发现E是AC中点,点F与C重合,△CDG是等腰直角三角形,由此即可解决问题.(3)分两种情形考虑问题即可;【解答】(1)证明:作EP⊥CD于P,EQ⊥BC于Q,∵∠DCA=∠BCA,∴EQ=EP,∵∠QEF+∠FEC=45°,∠PED+∠FEC=45°,∴∠QEF=∠PED,在Rt△EQF和Rt△EPD中,,∴Rt△EQF≌Rt△EPD(ASA),∴EF=ED,∴矩形DEFG是正方形;(2)如图2中,在Rt△ABC中.AC=AB=2,∵EC=,∴AE=CE,∴点F与C重合,此时△DCG是等腰直角三角形,易知CG=.(3)①当DE与AD的夹角为30°时,点F在BC边上,∠ADE=30°,则∠CDE=90°﹣30°=60°,在四边形CDEF中,由四边形内角和定理得:∠EFC=360°﹣90°﹣90°﹣60°=120°,②当DE与DC的夹角为30°时,点F在BC的延长线上,∠CDE=30°,如图3所示:∵∠HCF=∠DEF=90°,∠CHF=∠EHD,∴∠EFC=∠CDE=30°,综上所述,∠EFC=120°或30°.16.如图,在矩形ABCD中,AD=6,CD=8,菱形EFGH的三个顶点E、G、H分别在矩形ABCD的边AB、CD、DA上,AH=2,连接CF.(1)当DG=2时,求证:四边形EFGH是正方形;(2)当△FCG的面积为2时,求CG的值.【分析】(1)由于四边形ABCD为矩形,四边形HEFG为菱形,那么∠D=∠A=90°,HG=HE,而AH=DG=2,易证△AHE≌△DGH,从而有∠DHG=∠HEA,等量代换可得∠AHE+∠DHG=90°,易证四边形HEFG为正方形;(2)过F作FM⊥DC于M,根据AB∥CD,可得∠AEG=∠MGE,同理有∠HEG=∠FGE,利用等式性质有∠AEH=∠MGF,再结合∠A=∠M=90°,HE=FG,可证△AHE≌△MFG,利用三角形面积解答即可.【解答】(1)证明:在矩形ABCD中,有∠A=∠D=90°,∴∠DGH+∠DHG=90°.在菱形EFGH中,EH=GH∵AH=2,DG=2,∴AH=DG,∴Rt△AEH≌Rt△DHG(HL).∴∠AHE=∠DGH.∴∠AHE+∠DHG=90°.∴∠EHG=90°.∴四边形EFGH是正方形.(2)过F作FM⊥DC于M,则∠FMG=90°.∴∠A=∠FMG=90°.连接EG.由矩形和菱形性质,知AB∥DC,HE∥GF,∴∠AEG=∠MGE,∠HEG=∠FGE,∴∠AEH=∠MGF.∵EH=GF,∴△AEH≌△MGF.∴FM=AH=2.∵S△FCG=,∴CG=2.17.已知,如图,矩形ABCD中,AD=6,DC=7,菱形EFGH的三个顶点E,G,H分别在矩形ABCD的边AB,CD,DA上,AH=2,连接CF.(1)若DG=2,求证四边形EFGH为正方形;(2)若DG=6,求△FCG的面积;(3)当DG为何值时,△FCG的面积最小.【分析】(1)由于四边形ABCD为矩形,四边形HEFG为菱形,那么∠D=∠A=90°,HG=HE,而AH=DG=2,易证△AHE≌△DGH,从而有∠DHG=∠HEA,等量代换可得∠AHE+∠DHG=90°,易证四边形HEFG为正方形;(2)过F作FM⊥DC,交DC延长线于M,连接GE,由于AB∥CD,可得∠AEG=∠MGE,同理有∠HEG=∠FGE,利用等式性质有∠AEH=∠MGF,再结合∠A=∠M=90°,HE=FG,可证△AHE≌△MFG,从而有FM=HA=2(即无论菱形EFGH如何变化,点F到直线CD的距离始终为定值2),进而可求三角形面积;(3)先设DG=x,由第(2)小题得,S△FCG=7﹣x,在△AHE中,AE≤AB=7,利用勾股定理可得HE2≤53,在Rt△DHG中,再利用勾股定理可得x2+16≤53,进而可求x ≤,从而可得当x=时,△GCF的面积最小.【解答】解:(1)∵四边形ABCD为矩形,四边形HEFG为菱形,∴∠D=∠A=90°,HG=HE,又AH=DG=2,∴Rt△AHE≌Rt△DGH(HL),∴∠DHG=∠HEA,∵∠AHE+∠HEA=90°,∴∠AHE+∠DHG=90°,∴∠EHG=90°,∴四边形HEFG为正方形;(2)过F作FM⊥DC,交DC延长线于M,连接GE,∵AB∥CD,∴∠AEG=∠MGE,∵HE∥GF,∴∠HEG=∠FGE,∴∠AEH=∠MGF,在△AHE和△MFG中,∠A=∠M=90°,HE=FG,∴△AHE≌△MFG,∴FM=HA=2,即无论菱形EFGH如何变化,点F到直线CD的距离始终为定值2,因此;(3)设DG=x,则由第(2)小题得,S△FCG=7﹣x,在△AHE中,AE≤AB=7,∴HE2≤53,∴x2+16≤53,∴x≤,∴S△FCG的最小值为,此时DG=,∴当DG=时,△FCG的面积最小为().18.如图,Rt△CEF中,∠C=90°,∠CEF,∠CFE外角平分线交于点A,过点A分别作直线CE,CF的垂线,B,D为垂足.(1)∠EAF=45°(直接写出结果不写解答过程);(2)①求证:四边形ABCD是正方形.②若BE=EC=3,求DF的长.(3)如图(2),在△PQR中,∠QPR=45°,高PH=5,QH=2,则HR的长度是(直接写出结果不写解答过程).【分析】(1)根据平角的定义得到∠DFE+∠BEF=360°﹣90°=270°,根据角平分线的定义得到∠AFE=DFE,∠AEF=BEF,求得∠AEF+∠AFE=(∠DFE+∠BEF),根据三角形的内角和定理即可得到结论;(2)①作AG⊥EF于G,如图1所示:则∠AGE=∠AGF=90°,先证明四边形ABCD 是矩形,再由角平分线的性质得出AB=AD,即可得出四边形ABCD是正方形;②设DF=x,根据已知条件得到BC=6,由①得四边形ABCD是正方形,求得BC=CD =6,根据全等三角形的性质得到BE=EG=3,同理,GF=DF=x,根据勾股定理列方程即可得到结论;(3)把△PQH沿PQ翻折得△PQD,把△PRH沿PR翻折得△PRM,延长DQ、MR交于点G,由(1)(2)得:四边形PMGD是正方形,MR+DQ=QR,MR=HR,DQ=HQ =2,得出MG=DG=MP=PH=6,GQ=4,设MR=HR=a,则GR=6﹣a,QR=a+2,在Rt△GQR中,由勾股定理得出方程,解方程即可.【解答】解:(1)∵∠C=90°,∴∠CFE+∠CEF=90°,∴∠DFE+∠BEF=360°﹣90°=270°,∵AF平分∠DFE,AE平分∠BEF,∴∠AFE=DFE,∠AEF=BEF,∴∠AEF+∠AFE=(∠DFE+∠BEF)=270°=135°,∴∠EAF=180°﹣∠AEF﹣∠AFE=45°,故答案为:45;(2)①作AG⊥EF于G,如图1所示:则∠AGE=∠AGF=90°,∵AB⊥CE,AD⊥CF,∴∠B=∠D=90°=∠C,∴四边形ABCD是矩形,∵∠CEF,∠CFE外角平分线交于点A,∴AB=AG,AD=AG,∴AB=AD,∴四边形ABCD是正方形;②设DF=x,∵BE=EC=3,∴BC=6,由①得四边形ABCD是正方形,∴BC=CD=6,在Rt△ABE与Rt△AGE中,,∴Rt△ABE≌Rt△AGE(HL),∴BE=EG=3,同理,GF=DF=x,在Rt△CEF中,EC2+FC2=EF2,即32+(6﹣x)2=(x+3)2,解得:x=2,∴DF的长为2;(3)解:如图2所示:把△PQH沿PQ翻折得△PQD,把△PRH沿PR翻折得△PRM,延长DQ、MR交于点G,由(1)(2)得:四边形PMGD是正方形,MR+DQ=QR,MR=HR,DQ=HQ=2,∴MG=DG=MP=PH=5,∴GQ=3,设MR=HR=a,则GR=5﹣a,QR=a+2,在Rt△GQR中,由勾股定理得:(5﹣a)2+32=(2+a)2,解得:a=,即HR=;故答案为:.19.如图1,在正方形ABCD中,G为线段BD上一点,连接AG,过G作AG⊥GE交BC 于E,连接AE.(1)求证:BG=DG+BE;(2)如图2,AB=4,E为BC中点,P,Q分别为线段AB,AE上的动点,满足QE=AP,则在P,Q运动过程中,当以PQ为对角线的正方形PRQS的一边恰好落在△ABE 的某一边上时,直接写出正方形PRQS的面积.【分析】(1)过点G作GN⊥BC于点N,作GM⊥AB于点M,过点E作EF⊥BC,交BD于点F,先证明△AGM≌△EGN(ASA),从而AM=EN,再利用DG=BD﹣BG=AB﹣BM=AM,FG=BG﹣BF=BN﹣BE=EN,得出DG=FG,则BG =BF+FG=DG+BE;(2)分五种情况讨论,以点B为原点,BC所在直线为x轴,BA所在直线为y轴建立平面直角坐标系,分别求得AE和PQ的解析式,二者联立解得用含m的式子表示的点Q 的坐标,在Rt△QEF中,由勾股定理得出QE的表达式,然后结合QE=AP得出关于m的方程,解得m的值,则可得点Q的横坐标,从而可得正方形PRQS的面积,利用锐角三角函数和线段的和差关系列出方程,可求正方形的边长,即可求解.【解答】解:(1)证明:过点G作GN⊥BC于点N,作GM⊥AB于点M,过点E作EF ⊥BC,交BD于点F,如图所示:∵四边形ABCD是正方形,BD是对角线,∴BF=BE,GM=GN,∵AG⊥GE,GN⊥BC,GM⊥AB,∴∠AMG=∠ENG=90°,∠AGM+∠MGN=∠EGN+∠MGN,∴∠AGM=∠EGN,∴在△AGM和△EGN中,,∴△AGM≌△EGN(ASA),∴AM=EN,∵DG=BD﹣BG=AB﹣BM=AM,FG=BG﹣BF=BN﹣BE=EN,∴DG=FG,∴BG=BF+FG=DG+BE;(2)①若正方形PRQS的一边恰好落在AB上,如图2:当点P在点R的上方,∵AB=4,E为BC中点,∴A(0,4),E(2,0),设AE的解析式为y=kx+4,将(2,0)代入得:0=2k+4,∴k=﹣2,∴y=﹣2x+4,∵PQ与AB的夹角为45°,∴设PQ的解析式为y=﹣x+m,则P为(0,m),|AP|=4﹣m,由解得:Q(4﹣m,2m﹣4),过Q作QF⊥BC,则QF=2m﹣4,EF=m﹣2,∴在Rt△QEF中,由勾股定理得:QE==(m﹣2).∵QE=AP,∴(m﹣2)=(4﹣m),∴m=3,∴4﹣m=1,∴正方形PRQS的面积为1.如图2﹣1,当点P在点R的下方,∵tan∠RAQ==,∴AR=2RQ,∴AP=AR+RP=3RQ,∴AQ==RQ,∵BE=2,AB=4,∴AE===2,∵QE=AP,∴QE=3RQ,∴3RQ+RQ=2,∴RQ=,∴正方形PRQS的面积为.②当正方形PRQS的一边落在AE上,如图2﹣2,∵tan∠P AQ==,∴AS=2PS,∴AP==PS,∵QE=AP,∴QE=5PS,∵AE=AS+SQ+QE=2,∴2PS+PS+5PS=2,PS=,∴正方形PRQS的面积为,如图2﹣3,同理可得:AE=AR+RE=AR+QE﹣QR=(5+1)RP=2,∴PR=,∴正方形PRQS的面积为,当正方形PRQS与BC重合时,如图2﹣4,∵tan∠BAE==,∴AS=2SQ,∴AP=AS+SP=3SQ,∵sin∠AEB===,∵QE=QR,∴QE≠AP,∴这种情况不存在,故舍去,综上所述:正方形PRQS的面积为或1或或.20.四边形ABCD为正方形,点E为线段AC上一点,连接DE,过点E作EF⊥DE,交射线BC于点F,以DE、EF为邻边作矩形DEFG,连接CG.(1)如图,求证:矩形DEFG是正方形;(2)若AB=2,CE=2,求CG的长;(3)当线段DE与正方形ABCD的某条边的夹角是40°时,直接写出∠EFC的度数.(1)作EP⊥CD于P,EQ⊥BC于Q,证明Rt△EQF≌Rt△EPD,得到EF=ED,【分析】根据正方形的判定定理证明即可;(2)通过计算发现E是AC中点,点F与C重合,△CDG是等腰直角三角形,由此即可解决问题.(3)分两种情形考虑问题即可;【解答】(1)证明:作EP⊥CD于P,EQ⊥BC于Q,∵∠DCA=∠BCA,∴EQ=EP,∵∠QEF+∠FEC=45°,∠PED+∠FEC=45°,∴∠QEF=∠PED,在Rt△EQF和Rt△EPD中,,∴Rt△EQF≌Rt△EPD(ASA),∴EF=ED,∴矩形DEFG是正方形;(2)如图2中,在Rt△ABC中,AC=AB=4,∵EC=2,∴AE=CE,∴点F与C重合,此时△DCG是等腰直角三角形,易知CG=2;(3)①如图3,当DE与AD的夹角为40°时,∠DEC=45°+40°=85°,∵∠DEF=90°,∴∠CEF=5°,∵∠ECF=45°,∴∠EFC=130°,②如图4,当DE与DC的夹角为40°时,∵∠DEF=∠DCF=90°,∴∠EFC=∠EDC=40°,。
专题05 正方形的性质与判定基础题型解析版
专题05 正方形的性质与判定(基础题型)1.下列性质中正方形具有而矩形不具有的是( )A.对边相等B.对角线相等C.四个角都是直角D.对角线互相垂直【答案】D【解析】A.对边相等,是平行四边形的性质,矩形和正方形都具有;B.对角线相等,是矩形的性质,正方形也有;C.四个角都是直角,是矩形的性质,正方形也有;D.对角线互相垂直,是菱形的性质,正方形具有,而矩形没有,故选D.2.下列说法正确的是()A.矩形的对角线互相垂直平分B.对角线相等的菱形是正方形C.两邻边相等的四边形是菱形D.对角线互相垂直且相等的四边形是正方形【答案】B【分析】根据平行四边形,矩形,菱形,正方形的性质与判定分别判别即可.【详解】解:A.矩形的对角线相等,不一定互相垂直平分,故A说法错误;B.对角线相等的菱形是正方形,正确;C.两邻边相等的四边形不一定是菱形,故C说法错误;D.对角线互相垂直且相等的四边形不一定是正方形,故D说法错误;故选:B.【点睛】此题主要考查了平行四边形,矩形,菱形,正方形的性质与判定,熟悉相关性质是解题的关键.3.下列命题是真命题的是().A.任何数的0次幂都等于1B.顺次连接菱形四边中点的线段组成的四边形是正方形C.图形的旋转和平移会改变图形的形状和大小D.角平分线上的点到角两边的距离相等【分析】根据零次幂、正方形的判定、旋转的性质及角平分线的性质定理可直接进行排除选项.【详解】A、除0外,任何数的0次幂都等于1,错误,是假命题.B、顺次连接菱形四边中点的线段组成的四边形是矩形,错误,是假命题.C、图形的旋转和平移不会改变图形的形状和大小,错误,是假命题.D、角平分线上的点到角两边的距离相等,正确,是真命题.故选D.【点睛】本题主要考查零次幂、正方形的判定、旋转的性质及角平分线的性质定理,熟练掌握零次幂、正方形的判定、旋转的性质及角平分线的性质定理是解题的关键.4.下列说法正确的是()A.矩形的对角线互相垂直B.菱形的对角线相等C.正方形的对角线互相垂直且相等D.平行四边形的对角线相等【答案】C【分析】根据矩形、菱形、正方形、平行四边形的性质进行判断.【详解】A选项:矩形的对角线不一定互相垂直,故不符合题意;B选项:菱形的对角线垂直不一定相等,故不符合题意;C选项:正方形的对角线互相垂直且相等,故符合题意;D选项:平行四边形的对角线相等不一定相等,故不符合题意;故选:C.【点睛】考查了矩形、菱形、正方形、平行四边形的性质.解题关键是熟记平行四边形及特殊的平行四边形的性质.5.下列命题是假命题的是()A.平行四边形的对角线互相平分B.正方形的对角线相等且互相垂直平分C.对角线相等的平行四边形是矩形D.对角线互相垂直的四边形是菱形【分析】根据平行四边形、正方形的性质定理、矩形、菱形的判定定理判断即可.【详解】解:A、平行四边形的对角线互相平分,是真命题;B、正方形的对角线相等且互相垂直平分,是真命题;C、对角线相等的平行四边形是矩形,是真命题;D、对角线互相垂直的平行四边形是菱形,故本选项说法是假命题;故选:D.【点睛】本题考查的是命题的真假判断,掌握平行四边形、正方形的性质定理、矩形、菱形的判定定理是解题的关键,6.下列命题中正确的是()A.一组对边平行的四边形是平行四边形B.有一个角是直角的四边形是矩形C.有一组邻边相等的平行四边形是菱形D.对角线互相垂直平分的四边形是正方形【答案】C【分析】根据平行四边形及特殊的平行四边形的定义或性质可以得到解答.【详解】A、有一组对边平行且相等的四边形是平行四边形,错误;B、有一个角是直角的平行四边形是矩形,错误;C、有一组邻边相等的平行四边形是菱形,正确;D、对角线互相垂直平分的四边形是菱形,错误.故选C.【点睛】本题考查平行四边形及特殊的平行四边形的定义或性质,对有关定义和性质在理解的基础上并熟记是解题关键.7.顺次连接菱形四边的中点得到的四边形一定是()A.正方形B.菱形C.矩形D.以上都不对【答案】C【分析】作出图形,根据三角形的中位线平行于第三边并且等于第三边的一半判定出四边形EFGH是平行四边形,再根据菱形的对角线互相垂直可得EF⊥FG,然后根据有一个角是直角的平行四边形是矩形判断.【详解】解:如图,∵四边形ABCD是菱形,∴AC⊥BD,∵E,F,G,H是中点,∴EF∥BD,FG∥AC,∴EF⊥FG,同理:FG⊥HG,GH⊥EH,HE⊥EF,∴四边形EFGH是矩形.故选:C.【点睛】本题考查菱形的性质与判定定理,矩形的判定定理以及三角形的中位线定理.8.下列说法错误的是( )A.对角线互相平分的四边形是平行四边形B.对角线相等的平行四边形是矩形C.对角线互相垂直平分的四边形是菱形D.对角线相等且垂直的四边形是正方形【答案】D【分析】可分别由平行四边形的判定,矩形的判定,菱形的判定,正方形的判定等进行判断.【详解】解:①由平行四边形的判定可知A正确;②由矩形的判定可知B正确;③因为对角线互相平分的四边形是平行四边形,而对角线互相垂直的平行四边形是菱形,故C正确;④D选项中再加上一个条件:对角线互相平分,可证其是正方形,故D错误;故选:D.【点睛】本题考查了平行四边形的判定与性质,菱形的判定,矩形的判定,正方形的判定等,解题关键是熟练掌握并能够灵活运用平行四边形的判定与性质等.9.下列说法正确的是()A.平行四边形对角线相等B.矩形的对角线互相垂直C.菱形的四个角都相等D.正方形的对角线互相平分【答案】D【分析】根据平行四边形的性质,矩形的性质、菱形的性质、正方形的性质对各个命题分别判断,即可得出答案.【详解】解:A、平行四边形对角线互相平分,故本选项错误;B、矩形的对角线相等,故本选项错误;C、菱形的对角相等,故本选项错误;D、正方形的对角线互相垂直平分且相等,每一条对角线平分一组对角,故本选项正确;故选:D.【点睛】此题考查了命题与定理,解题的关键是掌握真命题与假命题的定义,能根据有关性质与判定对命题的真假进行判断是关键.10.在一个棱长为1dm的正方体的8个角上,各锯下一个棱长为1cm的正方体,现在它的表面积和原来比()A.不变B.减少C.增加D.无法确定【答案】A【分析】根据几何体表面积的性质求解即可.【详解】∵每个角锯下的表面积=每个角新增面积=3个边长为1cm的正方形的面积∴现在它的表面积和原来比不变故答案为:A.【点睛】本题考查了几何体表面积的问题,掌握几何体表面积的性质是解题的关键.11.四边形ABCD中,AC、BD相交于点O,能判别这个四边形是正方形的条件是()A.OA=OB=OC=OD,AC⊥BD B.AB∥CD,AC=BDC.AD∥BC,∠A=∠C D.OA=OC,OB=OD,AB=BC【答案】A【分析】根据正方形的性质以及判定定理对各项进行分析即可.【详解】A. OA=OB=OC=OD,AC⊥BD,能判定;B. AB∥CD,AC=BD,不能判定;C. AD∥BC,∠A=∠C,不能判定;D. OA=OC,OB=OD,AB=BC,不能判定;故答案为:A.【点睛】本题考查了正方形的判定问题,掌握正方形的性质以及判定定理是解题的关键.12.如图,矩形纸片ABCD中,AB=6cm,BC=8cm.现将其沿AE对折,使得点B落在边AD上的点B1处,折痕与边BC交于点E,则CB1的长为( )A.cm B.cm C.8cm D.10cm【答案】B【分析】根据翻折变换的性质可以证明四边形ABEB1为正方形,得到BE=AB,根据EC=BC﹣BE计算得到EC,再根据勾股定理可求答案.【详解】解:∵∠AB1E=∠B=90°,∠BAB1=90°,∴四边形ABEB1为矩形,又∵AB=AB1,∴四边形ABEB1为正方形,∴BE=AB=6cm,∴EC=BC﹣BE=2cm,∴CB1cm.故选B.【点睛】本题考查的是翻折变换、矩形和正方形的判定和性质,掌握翻折变换的性质及矩形、正方形的判定定理和性质定理是解题的关键.13.任意四边形ABCD各边中点分别是E、F、G、H,若对角线AC=20cm,BD=30cm,则四边形EFGH的周长是()A.80cm B.70cm C.60cm D.50cm【答案】D【分析】利用三角形中位线定理易得所求四边形的各边长都等于AC,或BD的一半,进而求四边形周长即可.【详解】∵E,F,G,H,是四边形ABCD各边中点,∴HG12=AC,EF12=AC,GF=HE12=B D.又∵AC=20cm,BD=30cm,∴四边形EFGH的周长是HG+EF+GF+HE12=(AC+AC+BD+BD)=AC+BD=50cm.故选D.【点睛】本题考查了中点四边形,三角形的中位线定理,解决本题的关键是找到四边形的四条边与已知的两条对角线的关系.三角形中位线的性质为我们证明两直线平行,两条线段之间的数量关系又提供了一个重要的依据.14.如图,正方形ABCD 的对角线AC ,BD 交于点O ,M 是边AD 上一点,连接OM ,过点O 做ON ⊥OM ,交CD 于点N .若四边形MOND 的面积是1,则AB 的长为( )A .1B C .2D .【答案】C【分析】先证明()MAO NDO ASA @V V ,再证明四边形MOND 的面积等于,DAO V 的面积,继而解得正方形的面积,据此解题.【详解】解:在正方形ABCD 中,对角线BD ⊥AC ,90AOD \Ð=°ON OM^Q 90MON \Ð=°AOM DON\Ð=Ð又45,MAO NDO AO DOÐ=Ð=°=Q ()MAO NDO ASA \@V VMAO NDOS S \=V V Q 四边形MOND 的面积是1,1DAO S \=V \正方形ABCD 的面积是4,24AB \=2AB \=故选:C .【点睛】本题考查正方形的性质、全等三角形的判定与性质等知识,是重要考点,难度较易,掌握相关知识是解题关键.15.如图,四边形ABCD 是正方形,O 是坐标原点,对角线AC ,BD 分别位于x 轴和y 轴上,点D 的坐标是()0,3,则正方形ABCD 的周长是( )A .B .12C .D .【答案】D【分析】正方形的对角线互相平分且相等且垂直,所以根据点D 的坐标知道OD 的长度,然后在直角三角形中计算CD 的长度,从而推算出周长即可.【详解】Q 四边形ABCD 是正方形,且点()0,3D 3OD OC \==,在Rt OCD △中,222+OD OC CD =,既2223+3CD =,CD \=∴正方形的周长为.故答案为:D【点睛】本题考查正方形的性质,能够根据条件计算出正方形的边长是解题关键.17.如图所示,正方形ABCD 的边长为2,以对角线AC 为一边作菱形AEFC ,AF 与BC 交于G 点,则∠BCE 的度数与BE 的长分别为( )A .30°,-2B .30°,-1C .22.5°,-2D .22.5°,-1【答案】C【分析】根据正方形的对角线平分一组对角可得45BAC ACB Ð=Ð=°,根据菱形的四条边都相等可得AC AE =,然后根据等腰三角形两底角相等求出ACE Ð,然后根据BCE ACE ACB Ð=Ð-Ð倍求出AE AC =,然后根据BE AE AB =-计算即可得解.【详解】解:在正方形ABCD 中,45BAC ACB Ð=Ð=°,Q 四边形AEFC 是菱形,AC AE \=,11(180)(18045)67.522ACE BAC \Ð=°-Ð=°-°=°,67.54522.5BCE ACE ACB \Ð=Ð-Ð=°-°=°,Q 正方形ABCD 的边长为2,AE AC \==2BE AE AB\=-=-.故选:C.【点睛】本题考查了正方形的性质,菱形的性质,等边对等角的性质,熟记两图形的性质并准确识图是解题的关键.18.如图,四边形ABCD为矩形,E、F、G、H为AB、BC、CD、DA的中点,则四边形EFGH 的形状是( )A.平行四边形B.矩形C.菱形D.正方形【答案】C【分析】连接AC、BD,根据三角形中位线定理、平行四边形的判定定理得到四边形EFGH是平行四边形,根据矩形的性质、菱形的判定定理解答.【详解】解:连接AC、BD,∵在△DAC中,G、H为CD、DA的中点,∴HG∥AC,且HG=12 AC,在△BAC中,E、F为AB、BC的中点,EF∥AC,且EF=12 AC,∴HG∥EF,且HG=EF,∴四边形EFGH是平行四边形,∵四边形ABCD是矩形,∴AC=BD,∴EH=EF,∴平行四边形EFGH是菱形,故选:C.【点睛】本题考查了中点四边形,掌握三角形中位线定理、矩形的性质、菱形的判定定理是解题的关键.19.如图,在正方形ABCD中,E为CD上的一点,连接BE,若∠EBC=20°,将△EBC绕点C 按顺时针方向旋转90°得到△FDC,连接EF,则∠EFD的度数为( )A.15°B.20°C.25°D.30°【答案】C【分析】根据旋转的性质得到∠EBC=∠FDC,CE=CF,结合三角形的外角定理求解即可.【详解】由旋转得:∠EBC=∠FDC=20°,CE=CF,∵∠ECF=90°,∴△CEF是等腰直角三角形,∠CEF=45°,根据三角形的外角定理得:∠EFD=∠CEF-∠FDC=45°-20°=25°,故选:C.【点睛】本题考查旋转的性质,理解旋转变化的基本性质是解题关键.20.如图,正方形ABCD的边长为4,点E、F分别为BC、CD的中点,点P是对角线BD上的动点,则四边形PECF周长的最小值为()A .4B .4+C .8D .4+【答案】C【分析】作E 关于BD 的对称点E ¢,连接E F ¢交BD 于点O ,根据轴对称性质及两点之间,线段最短,得到四边形PECF 的周长最小,即OE OF +最小,再利用三角形三边关系解题即可.【详解】解:如图,作E 关于BD 的对称点E ¢,连接E F ¢交BD 于点O ,故点P 与点O 重合时,四边形PECF 的周长最小,即OE OF +最小,E Q 和E ¢关于BD 对称,则,4OE OE EO OF E O OF ¢¢=+=+=连接E P ¢,同样E P PE ¢=,EP PF E P PF E F¢¢+=+>而4E F E O OF ¢¢=+=,即EP PF E F¢+>所以当P 与O 重合时,四边形PECF 周长最小,即为4228++=,故选:C .【点睛】本题考查正方形的性质、轴对称与最值问题等知识,是重要考点,难度较易,掌握相关知识是解题关键.21.如图,在正方形ABCD 外侧作直线DE ,点C 关于直线DE 的对称点为M ,连接CM ,AM .其中AM 交直线DE 于点N .若4590CDE °<Ð<°,则当4,3MN AN ==时,正方形ABCD 的边长为( )A B .5C .D 【答案】D【分析】根据对称的性质可知,,NC NM DC DM ==,推出NCD NMD DAM Ð=Ð=Ð,推出90ANC Ð=°,求出AC 即可解决问题.【详解】解:如图所示,连接CN 、DM 、AC ,∵点C 关于直线DE 的对称点为M ,∴CN =MN ,CD =DM ,∴∠NCM =∠NMC ,∠DCM =∠DMC ,∴DCN DMN Ð=Ð,在正方形ABCD 中,AD CD =,∴AD DM =,∴DAM DMN Ð=Ð,∴DCN DAM Ð=Ð,∵90ACN CAN BCD DCN CAD DAM BCD CAD Ð+Ð=Ð-Ð+Ð+Ð=Ð+Ð=°,∴1809090ANC Ð=°-°=°,∴ACN △是直角三角形,∴5AC ===,∴正方形ABCD 的边长AC ==故选:D .【点睛】本题考查正方形的性质、轴对称的性质、勾股定理等知识,解题的关键是发现△ANC 是直角三角形,属于中考常考题型.22.如图,把正方形纸片ABCD 沿对边中点所在的直线对折后展开,折痕为MN ,再过点C 折叠纸片,使点C 落在MN 上的点F 处,折痕为BE .若AB 的长为1,则FM 的长为( )A .1B C D .12【答案】B【分析】根据翻折得到1FB BC ==,12BM =,在Rt BFM V 中,可利用勾股定理求出FM 的值.【详解】解:Q 四边形ABCD 是正方形,1AB BC \==,由折叠的性质可知,1FB BC ==,1122BM AB ==,在Rt BFM VFM ===故选:B .【点睛】本题考查翻折、正方形的性质、勾股定理等知识,是重要考点,难度较易,掌握相关知识是解题关键.23.如图,已知正方形ABCD 的对角线BD 长为,点O 为正方形的对称中心,将正方形ABCD 沿过点O 的直线EF 折叠,则图中阴影部分四个三角形周长的和为________.【答案】16【详解】如解图,设正方形的边长为a ,则222a =,解得4a =.由翻折变换的性质可知,,A D AD A H AH D G DG ¢¢=¢=¢=,阴影部分的周长和()()A D A H BH BC CG D G =¢¢+¢++++¢=4416AD AB BC CD +++=´=.24.如图,平行四边形ABCD 中,2AB =,1AD =,60ADC Ð=°,将平行四边形ABCD 沿过点A 的直线l 折叠,使点D 落到AB 边上的点D ¢处,折痕交CD 边于点E .若点P 是直线l 上的一个动点,则PD PB ¢+的最小值______.【分析】利用翻折变换的性质以及平行线的性质得出四边形DAD ′E 是平行四边形,然后根据菱形的判定定理得到▱DAD ′E 是菱形,推出D 与D ′关于AE 对称,连接BD 交AE 于P ,则BD 的长即为PD ′+PB 的最小值,过D 作DG ⊥BA 于G ,解直角三角形得到AG =12,DG 定理即可得到结论.【详解】解:∵将▱ABCD 沿过点A 的直线l 折叠,使点D 落到AB 边上的点D ′处,∴∠DAE =∠D ′AE ,∠DEA =∠D ′EA ,∠D =∠AD ′E ,AD =AD ′,∵DE ∥AD ′,∴∠DEA =∠EAD ′,∴∠DAE =∠EAD ′=∠DEA =∠D ′EA ,∴∠DAD ′=∠DED ′,∴四边形DAD ′E 是平行四边形,∵AD =AD ′,∴四边形DAD ′E 是菱形,∴D 与D ′关于AE 对称,连接BD 交AE 于P ,则BD 的长即为PD ′+PB 的最小值,过D 作DG ⊥BA 于G ,∵CD ∥AB ,∴∠DAG =∠CDA =60°,∵AD =1,∴AG =12,DG ,∴BG =52,∴BD ,∴PD ′+PB ..【点睛】本题考查了平行四边形的性质,最短距离问题,勾股定理,菱形的判定和性质,正确的作出辅助线是解题的关键.25.已知平行四边形ABCD ,对角线AC 、BD 相交于点O ,且CA =CB ,延长BC 至点E ,使CE =BC ,连接DE .(1)当AC ⊥BD 时,求证:BE =2CD ;(2)当∠ACB =90°时,求证:四边形ACED 是正方形.【答案】(1)见解析;(2)见解析【分析】(1)根据已知条件得到四边形ABCD 是菱形.求得BC =CD .得到BE =2BC ,于是得到结论;(2)根据平行四边形的性质得到AD =BC ,AD ∥BE ,求得AD =CE ,AD ∥CE ,推出平行四边形ACED 是矩形,根据正方形的判定定理即可得到结论.【详解】(1)证明:∵四边形ABCD 是平行四边形,又∵AC ⊥BD ,∴四边形ABCD 是菱形.∴BC =CD .又∵CE =BC ,∴BE =2BC ,∴BE =2CD ;(2)证明:∵四边形ABCD 是平行四边形,∴AD =BC ,AD ∥BE ,又∵CE =BC ,∴AD =CE ,AD ∥CE ,∴四边形ACED 是平行四边形.∵∠ACB =90°,∴平行四边形ACED 是矩形,又∵CA =CB ,∴CA =CE ,∴矩形ACED 是正方形.【点睛】本题考查了正方形的判定,平行四边形的性质,菱形的判定和性质,熟练掌握各定理是解题的关键.26.如图,在等边ABE △下方作一个正方形BCDE ,连接AC ,AD .(1)求证:ABC V ≌AED V ;(2)求CAD Ð的度数.【答案】(1)见解析;(2)30CAD Ð=°【分析】(1)利用等边三角形的性质和正方形的性质可得∠ABC =∠AED =150°,由“SAS ”可证△ABC ≌△AED ;(2)首先得出∠BAC =∠EAD =15°,由三角形的外角性质可求解.【详解】解:(1)证明:∵正方形BCDE 中,BC DE =,90CBE DEB Ð=Ð=°,等边ABE △中,AB AE =,60ABE AEB Ð=Ð=°,∴150ABC ABE CBE Ð=Ð+Ð=°,150AED AEB DEB Ð=Ð+Ð=°,∴ABC AED Ð=Ð,∴ABC V ≌AED V (SAS );(2)∵正方形BCDE 中,BC DE =,等边ABE △中,AB AE =,∴AB BC =,∴BAC BCA Ð=Ð,又由(1)得:150ABC Ð=°,∴由三角形内角和定理可知:∠BAC =∠EAD =15°,∴603030CAD Ð=°-°=°.【点睛】本题主要考查了正方形的性质以及全等三角形的判定与性质,正确得出△ABC ≌△AED 是解题关键.27.如图,AC 为正方形ABCD 的对角线,E 为AC 上一点,且AE =AB ,过E 作EF ⊥AC ,交BC 于点F .求证:BF =EF .【答案】证明见解析.【分析】如图连接AF .利用“HL ”证明△AFE ≌△AFB 即可解决问题.【详解】解:如图连接AF .∵四边形ABCD 是正方形,且FE ⊥AC ,∴∠AEF =∠B =90°,在Rt △AFE 和Rt △AFB 中,AF AF AE AB =ìí=î,∴Rt △AFE ≌Rt △AFB (HL ),∴BF =EF .【点睛】本题考查正方形的性质、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.28.如图,E 、F 是正方形ABCD 的对角线AC 上的两点,BE ∥DF .求证:AE =CF .【答案】见解析【分析】先证∠AEB =∠CFD ,再根据AA S 证△ABE ≌△CDF ,从而得出AE =CF .【详解】证明:∵四边形ABCD 是正方形,∴AB =CD ,AB ∥CD ,∴∠BAE =∠DCF ,∵BE ∥DF ,∴∠BEC =∠DFA ,∴∠AEB =∠CFD ,在△ABE 和△CDF 中,AEB CFD BAE DCF AB CD Ð=ÐìïÐ=Ðíï=î,∴△ABE ≌△CDF (AA S ),∴AE =CF .【点睛】本题主要考查了正方形的性质,全等三角形性质和判定,熟练掌握正方形的性质和全等三角形的判定是解决问题的关键.29.如图,E 、F 是正方形ABCD 的对角线AC 上的两点,//BE DF .求证:AE CF =.【答案】见详解【分析】由题意易得,//AB CD AB CD =,BEF DFE Ð=Ð,则有,EAB FCD DFC BEA Ð=ÐÐ=Ð,进而可证AEB CFD △≌△,然后根据全等三角形的性质可求证.【详解】证明:∵四边形ABCD 是正方形,∴,//AB CD AB CD =,∴EAB FCD Ð=Ð,∵//BE DF ,∴BEF DFE Ð=Ð,∵180BEF BEA DFE DFC Ð+Ð=Ð+Ð=°,∴DFC BEA Ð=Ð,∴AEB CFD △≌△(AAS ),∴AE CF =.【点睛】本题主要考查正方形的性质,熟练掌握正方形的性质是解题的关键.30.如图,已知平行四边形ABCD ,若M ,N 是BD 上两点,且BM =DN ,AC =2OM ,(1)求证:四边形 AMCN 是矩形;(2)△ABC 满足什么条件,四边形AMCN 是正方形,请说明理由.【答案】(1)证明见解析;(2)AB=BC【分析】(1)由平行四边形的性质可知:OA=OC,OB=OD,再证明OM=ON即可证明四边形AMCN 是平行四边形;(2)当AB=BC时,四边形AM CN是正方形;根据四边形ABCD是平行四边形,AB=BC即可得出四边形ABCD是菱形,再由(1)可知四边形AMCN是矩形;从而得出结论;【详解】(1)证明:四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵对角线BD上的两点M、N满足BM=DN,∴OB-BM=OD-DN,即OM=ON,∴四边形AMCN是平行四边形,∴MN=2OM,∵ AC=2OM,∴MN=AC,∴四边形AMCN是矩形;(2)当AB=BC时,四边形AMCN是正方形;∵AB=BC,四边形ABCD是平行四边形,∴四边形ABCD是菱形,∴ AC⊥BD,∴AC⊥MN,由(1)可知四边形ABCD是矩形,∴四边形ABCD是正方形;【点睛】本题考查了矩形的判定,平行四边形的判定与性质,正方形的判定,解题的关键是灵活运用所学知识解决问题;31.如图,已知ABC V 中,90BAC Ð=°,AB AC ==,点D 为边BC 上一动点,四边形ADEG 是正方形,连接GC ,正方形对角线AE 交BC 于点F .(1)求证:ABD ACG △≌△;(2)若4BD =,求AE 的值;(3)若5DF =,求BD 的值.【答案】(1)见详解;(2)(3)3或4【分析】(1)根据同角的余角相等,证明BAD CAG Ð=Ð,然后根据正方形的性质,得出边相等,由三角形全等的判定条件SAS 即可证明(2)由(1)中全等的性质以及勾股定理求出DG 的长,根据正方形的性质:对角线相等即可求解(3)根据SAS 证明DAF GAF △≌△,然后根据全等的性质,在直角△GFC 根据勾股定理即可求解【详解】(1)证明:Q 四边形ADEG 是正方形AD AG \=,90DAG =°∠90BAC Ð=°Q BAC DAG\Ð=ÐBAD DAC DAC CAG\Ð+Ð=Ð+ÐBAD CAG\Ð=Ð在ABD △和ACG V 中AB AC BAD CAGAD AG =ìïÐ=Ðíï=îABD ACG\△△≌故答案为ABD ACG△≌△(2)90BAC Ð=°Q,AB AC ==,45B ACB \Ð=Ð=°在Rt ABC △中BC \==12=4BD =Q 1248DC BC BD \=-=-=由(1)知ABD ACG △≌△,4GC BD \==,45ACG B Ð=Ð=°454590ACB ACG \Ð+Ð=°+°=°连接DG在Rt DCG △中DG ===Q 四边形ADEG 是正方形AE DG\=AE \=故答案为(3)如图所示,连接FGQ 四边形ADEG 是正方形AD DE \=,90ADE Ð=°45DAE AED \Ð=Ð=°90BAC Ð=°Q BAD FAC BAC \Ð+Ð=Ð-904545DAE Ð=°-°=°由(1)知ABD ACG △≌△,BAD CAG \Ð=Ð,AD AG =,BD GC=45CAG FAC BAD FAC \Ð+Ð=Ð+Ð=°45FAG \Ð=°FAG FAD\Ð=Ð在DAF △和GAF V 中AF AF FAG FADAG AD =ìïÐ=Ðíï=î(SAS)DAF GAF \△≌△GF DF\=5DF =Q 5GF \=设BD x =,则1257FC x x=--=-由(2)知90FCG Ð=°在Rt FCG △中222GC FC FG +=222(7)5x x \+-=13x \=,24x =BD \的值为3或4.故答案为3或4【点睛】本题主要考察三角形全等的判定和性质,正方形的性质,勾股定理,熟练掌握勾股定理是解题的关键32.如图,在正方形ABCD 中,点P 是对角线AC 上一点,连接PB 、PD ,点E 在BC 的延长线上,且P E =PB .求证:(1)△BCP ≌△D CP ;(2)∠DPE =∠ABC .【答案】(1)见解析;(2)见解析【分析】(1)根据正方形的四条边都相等可得BC=DC ,对角线平分一组对角可得∠BCP=∠DCP ,然后利用“边角边”证明即可;(2)根据全等三角形对应角相等可得∠CBP=∠CDP ,根据等边对等角可得∠CBP=∠E ,然后根据等角的余角得出∠DPE= 90°,从而得证;【详解】证明:(1)∵四边形ABCD 是正方形∴BC=DC ,∠ACB =∠ACD ,∠ABC = 90°又∵PC = PC∴△BCP≌△D CP.(2)∵P E=PB,∴∠E=∠PBE ,∵△BCP≌△D CP,∴∠PBE=∠PDC ,∴∠E=∠PDC ,∵∠E+∠1=90°,∠1=∠2∴∠PDC+∠2=90°即∠DPE=90°∴∠DPE=∠ABC.【点睛】本题考查了正方形的性质,全等三角形的判定与性质,等边对等角的性质,熟记正方形的性质确定出∠BCP=∠DCP是解题的关键.33.如图,在正方形ABCD中,E、F是对角线BD上两点,且∠EAF=45°,将△ADF绕点A顺时针旋转90°后,得到△ABQ,连接EQ.(1)求证:EA是∠QED的平分线;(2)已知BE=1,DF=3,求EF的长.【答案】(1)见解析;(2【分析】(1)直接利用旋转的性质得出△AQE ≌△AFE (SAS ),进而得出∠AEQ =∠AEF ,即可得出答案;(2)由全等三角形的性质可得QE =EF ,∠ADF =∠ABQ ,再结合勾股定理得出答案.【详解】证明:(1)∵将△ADF 绕点A 顺时针旋转90°后,得到△ABQ ,∴QB =DF ,AQ =AF ,∠BAQ =∠DAF ,∵∠EAF =45°,∴∠DAF +∠BAE =45°,∴∠QAE =45°,∴∠QAE =∠FAE ,在△AQE 和△AFE 中,AQ AF QAE FAE AE AE =ìïÐ=Ðíï=î,∴△AQE ≌△AFE (SAS ),∴∠AEQ =∠AEF ,∴EA 是∠QED 的平分线;(2)由(1)得△AQE ≌△AFE ,∴QE =EF ,∠ADF =∠ABQ ,∵四边形ABCD 是正方形,∴∠ADB =∠ABD =45°,∴∠ABQ =45°,∴∠QBE =∠ABQ +∠ABD =90°,在Rt △QBE 中,QB 2+BE 2=QE 2,又∵QB =DF ,∴EF 2=BE 2+DF 2=1+9=10,∴EF.【点睛】本题考查了旋转的性质,全等三角形的判定与性质,勾股定理等知识,证明△AQE ≌△AFE 是解题关键.34.如图,△ABC 中,AD 是BC 边的中线,E 是AD 的中点,过点A 作BC 的平行线交BE 的延长线于F ,连结CF .(1)求证:四边形ADCF 是平行四边形;(2)当△ABC 满足什么条件时,四边形ADCF 是菱形;(3)当△ABC 满足什么条件时,四边形ADCF 是正方形.注:(2)、(3)小题直接填写条件,不需要写出理由.【答案】(1)见解析;(2)当△ABC 满足∠BAC =90゜条件时,四边形ADCF 是菱形;(3)当△ABC 满足AB =AC 且∠BAC =90゜条件时,四边形ADCF 是正方形.【分析】(1)由两直线平行,内错角相等,得到∠FAE =∠EDB ,∠AFE =∠EBD ,进而证明△AEF ≌△DEB (AAS ),再由全等三角形对应边相等性质,解得AF=DB ,结合AD 是BC 边中线,解得AF=DC ,最后根据一组对边平行且相等可证明四边形ADCF 为平行四边形;(2)根据一组邻边相等的平行四边形是菱形解题,即当三角形ABC 是直角三角形时,斜边中线等于斜边的一半即可判定;(3)根据有一个直角的菱形是正方形解题,当AD BC ^且BA AC ^时,由三线合一性质,可解题.【详解】(1)证明:∵AF //BC ,∴∠FAE =∠EDB ,∠AFE =∠EBD ,在AEF 和△DEB 中,AFE DBE AEF DEB AE DE Ð=ÐìïÐ=Ðíï=î,∴△AEF ≌△DEB (AAS ),∴AF =DB ,又∵BD =DC ,∴AF =DC,又∵AF //DC ,∴四边形ADCF 为平行四边形.(2)当△ABC 满足∠BAC =90゜条件时,四边形ADCF 是菱形;Q AD 是t R ABC V 斜边BC 的中线,12AD BC DC \==又Q 四边形ADCF 是平行四边形\四边形ADCF 是菱形;(3)当△ABC 满足AB =AC 且∠BAC =90゜条件时,四边形ADCF 是正方形.Q ∠BAC =90゜,AD 是BC 边的中线,AD BC\=又Q 四边形ADCF 为平行四边形,∴四边形ADCF 为菱形,90ADC Ð=°Q ∴四边形ADCF 为正方形.【点睛】本题考查特殊平行四边形的判定与性质,其中涉及平行线的判定、全等三角形的判定与性质、平行四边形的判定、菱形的判定、正方形的判定等知识,是重要考点,难度较易,掌握相关知识是解题关键.。
初一全等正方形证明题专题
初一全等正方形证明题专题本文档将介绍初一全等正方形证明题的专题讨论。
在初一阶段,正方形的全等性质是一种基本的几何概念,对学生的几何思维能力的培养至关重要。
通过探究和证明正方形的全等性质,学生可以进一步理解几何中的关系和性质,提高解决几何问题的能力。
正方形的定义正方形是具有四个等长边和四个直角的四边形。
它具有如下性质:- 所有边长相等。
- 所有内角均为直角。
- 对角线相等且垂直。
全等三角形的概念全等三角形是指具有相等边长和相等内角的三角形。
三角形的全等性质包括以下几种情况:1. SSS准则(边边边):若两个三角形的三条边分别相等,则它们是全等的。
2. SAS准则(边角边):若两个三角形的两边和夹角分别相等,则它们是全等的。
3. ASA准则(角边角):若两个三角形的两个角和夹边分别相等,则它们是全等的。
证明全等正方形的方法证明全等正方形可以使用以下几种方法:1. SSS准则:若两个正方形的边长相等,则它们是全等的。
通过测量边长并进行比较,可以证明两个正方形是否全等。
2. SAS准则:若两个正方形的两边和夹角分别相等,则它们是全等的。
通过测量边长和夹角并进行比较,可以证明两个正方形是否全等。
3. ASA准则:若两个正方形的两个角和夹边分别相等,则它们是全等的。
通过测量角和夹边并进行比较,可以证明两个正方形是否全等。
例题分析现有以下例题需要证明:例题1:如图所示,ABCD和EFGH是两个正方形。
已知AB=EF,AD=FG,∠BAD=∠EFG,证明ABCD和EFGH全等。
解答:由题可知,已知AB=EF,AD=FG,∠BAD=∠EFG,我们需要证明ABCD和EFGH全等。
根据题意,我们使用SAS准则进行证明:步骤1:由已知条件可得AB=EF,AD=FG。
步骤2:由角度条件∠BAD=∠EFG,结合两个正方形的定义,可以得出∠BAC=∠EFG。
步骤3:根据两边夹角的SAS准则,可以得出△ABC≌△EFG。
正方形的性质与判定(必考)
(2)四个角都是______;
直角
(3)对角线相等,且互相垂直______;
平分
(4)既是中心对称图形,又是轴对称图形,它有____条对称轴.
四
① 或 或 ;②每条对角线平分一组对角.
方法归纳
利用正方形的性质进行相关证明及计算时还应掌握以下知识
(1)一条对角线将正方形分成2个全等的等腰直角三角形,两条对角线将正方形分成4个全等的等腰直角三角形;
2.(北师九上P27T13改编)如图,在 中, , .点 是斜边上一点,过点 作 于点 , 于点 ,连接 .
第2题图
(1)当 平分 时,求证:四边形 是正方形;
证明略
(2)①若点 是 的中点,当 ___时,四边形 是正方形;
1
②当 <m></m> , <m></m> 时,当 <m></m> ____时,四边形 <m></m> 的面积最大.
第五章 四边形
命题点5 正方形的性质与判定(必考)
2023年安徽数学
2022版课标要求
1. 理解正方形的概念;
2. 正方形既是矩形,又是菱形.
1.定义:四条边都______,四个角都是______的四边形叫作正方形.
相等
直角
2.性质:具有平行四边形、矩形和菱形的一切性质.
(1)四条边都______;(2)若 <m></m> 为等边三角形,则 <m></m> _____, <m></m> ______;
(3)若 <m></m> , <m></m> ,则 <m></m> ____, <m></m> 的长为_ ____;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A
B
C
DE
F
G
H
(1)已知:如图1,在正方形ABCD中,E是BC的中点,F为DC上一点,且∠1=∠2,求证:AF=BC+FC;
(2)已知:如图2,把三角尺的直角顶点落在矩形ABCD的对角线交点P处,若旋转三角尺时,它的两条直角
边与矩形的两边BC、CD分别相交于M、N,试证:MN2=BM2+DN2.
如图,E为正方形ABCD的CD边上一点,连接BE,过点A作AF∥BE,交CD的延长线于点F, ABE 的平分
线分别交AF、AD于点G、H.
(1)若30CBE,3AG,求DH的长度;
(2)证明:DFAHBE.
已知:如图,正方形ABCD中,点E是BA延长线上一点,连接DE,点F在DE上且DF=DC,DG⊥
CF于G. DH平分∠ADE交CF于点H,连接BH.
(1)若DG=2,求DH的长;
(2)求证:BH+DH=2CH.
、
如图,四边形ABCD是正方形,BE⊥BF,BE=BF,EF与BC交于点G.
(1)求证:△ABE≌△CBF;
(2)若∠ABE=50°,求∠EGC的大小.
如图,正方形ABCD的边长为2,M是AD的中点,连接BM,BM的垂
直平分线交BC的延长线于F,连接MF交CD于N.
G
H
F
A
C
B
D
E
C
DE
F
G
H
C
D
E
AGFB
p
(1)求证:BM=EF; (2)求CF的长.
如图,点E是正方形ABCD的边BC上的一点,∠DAE的平分线AF交BC的延长线于点F,交CD于点G
(1)若AB=8,BF=16,求CE的长;
(2)求证:AE=BE+DG.
已知:如图, 在正方形ABCD外取一点E,连接AE、BE、DE,DE交AB于F。
⑴若点G为DF的中点,连接AG,∠AED=2∠DAG,AE=2,求DF的长;⑵若
AE⊥AB,BE⊥DE,点F为AB的中点,求证:FG-EF=BE
如图,P为正方形ABCD边BC上一点,F在AP上,且AF=AD,FE⊥AP交CD于点E,G为CB延长
线上一点,BG=DE,(1)求证:DAPBAPPAG21(2)若DE=2,
AB=4,求AP的长
如图,E为正方形ABCD的CD边上一点,连接BE,过点A作AF∥BE,交
CD的延长线于点F, ABE 的平分线分别交AF、AD于点G、H.
(1)若30CBE,3AG,求DH的长度;
(2)证明:DFAHBE.
MFECD
B
A
如图,正方形ABCD中,M为AD边上的一点,连接BM,过点C作CN//BM,交
AD
的延长线于点N,在CN上截取CE=BC,连接BE交CD于F ,
(1)若60AMB,23CE,求DF的长度;
(2)求证:BM=DN+CF
如图正方形ABCD中,E为AD边上的中点,过A作AF⊥BE,交CD边于F,M是AD边上一点,且有BM=DM+
CD. (1)求证:点F是CD边的中点; (2)求证:∠MBC=2∠ABE.
如图,AC是正方形ABCD的对角线,点O是AC的中点,点Q是AB上一点,连
接CQ,DP⊥CQ于点E,交BC于点P,连接OP,OQ;求证:
(1)△BCQ≌△CDP;
(2)OP=OQ.
如图,已知正方形ABCD,点E是BC上一点,点F是CD延长线上一点,连接EF,若
BE=DF,点P是EF的中点.
(1)求证:DP平分∠ADC;
(2)若∠AEB=75°,AB=2,求△DFP的面积.