2009年上海市中考数学真题试题(含答案)

合集下载

上海市青浦区2009年初三中考数学模拟试卷及答案

上海市青浦区2009年初三中考数学模拟试卷及答案

上海市青浦区2009年初三中考数学模拟考试(满分150分,考试时间100分钟) 2009.4一、选择题:(本大题共6题,每题4分,满分24分)[每小题只有一个正确选项,在答题纸的相应题号的选项上用2 B 铅笔填涂]1.一个数的相反数是2,则这个数是 ( ) (A )2;(B )2-;(C )21; (D )21-. 2.下列根式中,与12为同类二次根式的是 ( ) (A )4; (B )6;(C )31; (D )18.3.不等式组⎩⎨⎧≤>+13x x 的解集在数轴上表示正确的是 ( )4.甲、乙两辆运输车沿同一条道路从A 地出发前往B 地,他们离出发地的路程s (千米)和行驶时间t (小时)之间的函数关系的图像如图所示,根据图中提供的信息判断: 下列说法不正确的是 ( )(A )甲车比乙车早出发1小时,但甲车在途中停留了1小时;(B )相遇后,乙车的速度大于甲车的速度;(C )甲乙两车都行驶了240千米; (D )甲乙两车同时到达目的地.5.下列命题中正确的是 ( ) (A )两条对角线互相平分的四边形是平行四边形; (B )两条对角线相等的四边形是矩形; (C )两条对角线互相垂直的四边形是菱形;(D )两条对角线互相垂直且平分的四边形是正方形.6.如果两圆的半径分别为3cm 、7cm ,圆心距为6cm ,那么两圆的位置关系为 ( ) (A )外切; (B )相交; (C )内切; (D )内含. 二、填空题(本大题每小题4分,满分48分) 7.计算:=÷-xy y x 232 .(A )(B )(C )(D )8.因式分解:ab a 32-= . 9.函数x y -=1的定义域是 . 10.方程35=-x 的根是 .11.解双二次方程014524=-+x x 时,如果设y x =2,那么原方程化为关于y 的方程是_____.12.若关于x 的方程0)1(2=---k x k x 有两个相等的实数根,则k = . 13.如图,假设可以在图中每个小正方形内任意取点(每个小正方形除颜色外完全相同),那么这个点取在阴影部分的概率是 .14.已知ABC ∆∽C B A '''∆,顶点A 、B 、C 分别与A '、B '、C '对应,ABC ∆的周长为48,C B A '''∆的周长为60,且12=AB ,则=''B A .15.在︒=∠∆90C ABC Rt 中,,21tan =A , 若1=BC ,则AB 边的长是 .16.如图,在平行四边形ABCD 中,E 是边CD 上的点,BE 与AC 交于点F ,如果31=CD CE ,那么=FBEF .17.如图,在△ABC 中,点D 是边BC 的中点,设a AB = ,b AC = ,用a 、b 的线性组合表示AD 是 .18.如图,在ABC Rt ∆中,90=∠ACB ,30=∠A ,cm BC 2=,C B A ''∆是ABC Rt ∆绕点C 按顺时针方向旋转30后得到的,设B A ''边交BC 边于点D , 则B CD '∆的面积是 2cm . 三、解答题(满分78分)19.(本题满分10分)计算:12)81()32()61(2)32(---+-++20.(本题满分10分)解方程: 23416222+=---+x x x xA'A 'D B CCB AD21.(本题满分10分)某区教育部门对今年参加中考的6000名初中毕业生进行了一次视力抽样调查,以调查数据为样本,绘制出部分频数分布表和部分频率分布直方图(每组数据含最小值,不含最大值,组距取0.3).请根据图表信息回答下列问题:(1)在部分频数分布表中,a 的值为 ,b 的值为 ; (2)把部分频率分布直方图补充完整;(3)若视力在4.9以上(含 4.9)均属正常,视力正常的学生占被统计人数的百分比是 ;根据以上信息,估计全区初中毕业生视力正常的学生有 人.22.(本题满分10分)如图,Rt △AOB 是一张放在平面直角坐标系中的三角形纸片,点O 与原点重合,点A 在x 轴正半轴上,点B 在y 轴正半轴上,32=OB ,30=∠OAB ,将Rt △AOB折叠,使OB 边落在AB 边上,点O 与点D 重合,折痕为BE. (1)求点E 和点D 的坐标;(2)求经过O 、D 、A 三点的二次函数图像的解析式.23.(本题满分12分)如图,在ABC ∆中,B C ∠=∠2,D 是BC 边上一点,且AB AD ⊥,点E 是线段BD 的中点,连结AE .A(1)求证:AC BD 2=;(2)若BC DC AC ⋅=2,求证:AEC ∆是等腰直角三角形.24.(本题满分12分)如图,在平面直角坐标系中,直线b kx y +=分别与x 轴负半轴交于点A , 与y 轴的正半轴交于点B ,⊙P 经过点A 、点B (圆心P 在x 轴负半轴上),已知AB=10,425=AP . (1)求点P 到直线AB 的距离; (2)求直线b kx y +=的解析式;(3)在⊙P 上是否存在点Q ,使以A 、P 、B 、Q 为顶点的四边形是菱形?若存在,请求出点Q 的坐标;若不存在,请说明理由.25. (本题满分14分)如图,正方形ABCD 的边长为8厘米,动点P 从点A 出发沿AB 边由A 向B 以1厘米/秒的速度匀速移动(点P 不与点A 、B 重合),动点Q 从点B 出发沿折线BC-CD 以2厘米/秒的速度匀速移动.点P 、Q 同时出发,当点P 停止运动,点Q 也随之停止.联结 AQ ,交BD 于点E.设点P 运动时间为x 秒.(1)当点Q 在线段BC 上运动时,点P 出发多少时间后,∠BEP 和∠BEQ 相等; (2)当点Q 在线段BC 上运动时,求证:∆BQE 的面积是∆APE 的面积的2倍; (3)设APE ∆的面积为y ,试求出y 关于x 的函数解析式,并写出函数的定义域.备用图备用图青浦区2009年初中学业模拟考试数学试卷答案一、选择题:(本大题共6题,每题4分,满分24分) 1、B ;2、C ;3、A ;4、D ;5、A ;6、B . 二、填空题(本大题每小题4分,满分48分)7、y x 22-;8、)3(b a a -;9、1≤x ;10、4-=x ;11、01452=-+y y ;12、1-;13、31;14、15;15、5;16、31;17、b a 2121+;18、23.三、解答题(满分78分)19. 解:原式=81)622625-+-++ (8') =0 (2')20.解: 方程两边同乘以)2)(2(-+x x 得,)2(316)2(2-=-+x x (3') 整理得 062=-+x x (2') 解这个方程得 31-=x ,22=x (4')经检验22=x 是增根,31-=x 是原方程的根,所以,原方程的根是31-=x .(1') 21.(1)a =0.3; b =10(4');(2)图略(2');(3)35%,2100人(4').22.解:(1)过点D 作DF ⊥OA ,垂足为F ,因为Rt △AOB 沿BE 折叠时,OB 边落在AB 边上,点O 与点D 重合,所以,DBE OBE ∠=∠,DB OB =(1'). 由Rt △AOB 中,30=∠OAB ,得60=∠ABO ,且630cot ==OB OA ,得点)0,6(A (1').在Rt △AOB 中,由 30=∠OBE ,得2=OE ,得点)0,2(E (1');Rt △AOB 中,由30=∠OAB 得 DB OB AB 22==,所以D 是AB 的中点,得321==OB DF ,321==OA OF ,得点)3,3(D (2').(2)设经过O 、D 、A 三点的二次函数图像的解析式为bx ax y +=2.把)0,6(A ,)3,3(D 入bx ax y +=2,得⎩⎨⎧=+=+3390636b a b a (2') 解得⎪⎪⎩⎪⎪⎨⎧=-=33293b a (2')所以,经过O 、D 、A 三点的二次函数图像的解析式为x x y 332932+-=(1'). 23.(1)证明:由AB AD ⊥ 得90=∠BAD (1').由点E 是BD 的中点, 得BE BD AE ==21即AE BD 2=.由BE AE = 得BAE B ∠=∠(2').由 BAE B AEC ∠+∠=∠得B AEC ∠=∠2,又B C ∠=∠2,所以C AEC ∠=∠,所以AC AE =(2').因为AE BD 2=所以AC BD 2=.(1') (2)由BC DC AC ⋅=2得ACBCDC AC =(1'), 又BCA ACD ∠=∠ 得ACD ∆∽BCA ∆(1'), 所以B C A D ∠=∠, 又B BAE ∠=∠,所以B A EC AD ∠=∠(2') .因为 90=∠+∠EAD BAE ,所以 90=∠+∠EAD CAD 即 90=∠EAC .又AC AE =所以A E C∆是等腰直角三角形.(2') 24.解:(1)如图,过点P 作PD ⊥AB ,垂足为D ,由垂径定理得AD=DB=5(1'). 在Rt △APD 中,由AD=5,425=AP 得 415=PD (2').(2)由AOB ADP ∠=∠,BAO PAD ∠=∠,得P A D ∆∽BAO∆(1'),得OA=8,OB=6(2'),得)0,8(-A ,)6,0(B (1').把 )0,8(-A ,)6,0(B 代入b kx y +=得 K=43,b=6,得 解析式为643+=x y (2').(3)答:在⊙P 上不否存在点Q ,使以A 、P 、B 、Q 为顶点的四边形是菱形.因为,PA=PB, 但A B ≠PA ,所以以A 、P 、B 、Q 为顶点的菱形的顶点D 只能在PD 的延长线上(1').延长PD 至点Q,使DQ=P Q ,由DQ=P Q ,AD=DB ,且PD ⊥AB 得菱形APB Q ,但PQ=2PD=430大于半径PA ,所以,点P 在⊙P 外,即在⊙P 上不否存在点Q ,使以A 、P 、B 、Q 为顶点的四边形是菱形(2').25. 解:(1)由正方形ABCD 得∠ABD=∠DBC .当∠BEP=∠BEQ 时,因为∠PBE=∠QBE ,BE=BE ,所以,PBE ∆≌QBE ∆,得PB=QB ,即x x 28=-,解得38=x ,即点P 出发38秒后,∠BEP=∠BEQ (2').(2)当点Q 在线段BC 上运动时,如图1,过点E 作MN ⊥BC ,垂足为M ,交AD 于点N ,作EH ⊥AB ,垂足为H .因为∠ABD=∠DBC ,EH ⊥AB ,EM ⊥BC ,得EH=EM.又因为BQ=x 2,AP=x 1,得BQ=2AP (2')而EH AP S APE ⋅=∆21, EH AP EH AP EM BQ S BQE ⋅=⋅⋅=⋅=∆22121,所以APE BQE S S ∆∆=2(2'). (3)①当40<<x 时,点Q 在BC 边上运动.由正方形ABCD 得A D ∥BC ,可得MN ⊥AD .由A D ∥BC 得BEQ ∆∽DEA ∆,得EN EM AD BQ =,即EM EM x -=882,解得xx EM +=48,即EH=x x+48(2'),所以x x x x x EH AP S APE+=+⋅⋅=⋅=∆444821212,即xx y +=442(2') ②当4=x 时,点Q 与点C 重合.此时8=y (1');③当84<<x 时,点Q 在CD 边上运动.如图2,过点E 作MH ⊥AB ,垂足为H ,可知MH ⊥CD, 设垂足为M ,由AB ∥DC 得,AEB ∆∽DEQ ∆,得EM EH DQ AB =,即EHEHx -=-82168,解得EH=x -1232(2'),所以,x x x x EH AP S APE -=-⋅⋅=⋅=∆121612322121,即xxy -=1216(1'),综上所述,y 关于x 的函数解析式为x x y +=442(40<<x );8=y (4=x );xx y -=1216(84<<x ).备用图2备用图1。

2009年浦东新区中考数学预测卷参考答案及评分说明

2009年浦东新区中考数学预测卷参考答案及评分说明

2009年浦东新区中考数学预测卷参考答案及评分说明一.选择题:(本大题共6题,每题4分,满分24分)1.D2.B3.A4.A5.C6.C二.填空题:(本大题共12题,每题4分,满分48分)7.x8.2-9.1x=-10.1 11.14m>12.增大13.(14.()b a x-15.AB C D=等16.23a-17.18.32或80三.解答题:(本大题共7题,满分78分)19.解:原式=)113+…………………………………………(5分)=15133+-………………………………………………(2分)=73+.…………………………………………………………………(3分)20.解:1,7.5xx≥-⎧⎪⎨<⎪⎩……………………………………………………………………(3分,3分)∴不等式组的解集为715x-≤<.………………………………………………(2分)∴不等式组的整数解为1,0,1-.…………………………………………………(2分)21.解:(1)作半径O C AB⊥,垂足为点D,联结OA,则CD即为弓形高.………(1分)∵O C AB⊥,∴12AD AB=.…………………………………………(2分)∵0.5AO=,0.6A B=,∴0.4O D=.…………………………………(1分)∴0.1C D=,即此时的水深为0.1米.……………………………………(1分)(2)当水位上升到水面宽MN为0.8米时,直线OC与MN相交于点P.同理可得0.3O P=.…………………………………………………………(1分)(i)当MN与AB在圆心同侧时,水面上升的高度为0.1米;……………(2分)(ii)当MN与AB在圆心异侧时,水面上升的高度为0.7米.……………(2分)22.解:(1)120;…………………………………………………………………………(2分)(2)0.15;………………………………………………………………………(2分)(3)31.5;…………………………………………………………………………(3分) (4)不合理,………………………………………………………………………(1分)因为所抽取的样本不是从该地区中随机抽取的,所以对该地区全体学生不具有代表性.……………………………………………………………………………(2分)23.证明:(1)在正△ABC 与正△BDE 中,∵AB BC =,BE BD =,60ABC EBD ∠=∠=︒, ……………………(3分) ∴ABE C BD ∠=∠.…………………………………………………………(1分) ∴△ABE ≌△CBD .…………………………………………………………(2分) (2)∵△ABE ≌△CBD ,∴60BAE C ∠=∠=︒,AE C D =.………………(2分)∴BAE ABC ∠=∠. ………………………………………………………(1分) ∴//A E B C .…………………………………………………………………(1分) 又∵CD AC BC >=,∴BC AE >.…………………………………………(1分) ∴四边形AEBC 是梯形.……………………………………………………(1分)24.解:(1)∵一次函数m x y +-=21的图像经过点A (2,3)-,∴13(2)2m =-⨯-+,得2m =. …………………………………………(1分) ∴所求一次函数的解析式为 122y x =-+. ……………………………(1分)∴点B 的坐标为(4,0).…………………………………………………(1分)∵二次函数22-+=bx ax y 的图像经过点A (2,3)-和点(4,0)B , ∴3422,0164 2.a b a b =--⎧⎨=+-⎩…………………………………………………………(1分)∴1,23.2a b ⎧=⎪⎪⎨⎪=-⎪⎩…………………………………………………………………(1分)∴所求二次函数的解析式为 213222y x x =--. ………………………(1分) (2)设平移后的二次函数解析式为213222y x x n =--+.……………………(1分)∴对称轴是直线32x =,(0,2)Q n -.……………………………………(1分)∴(3,2)P n -在一次函数122y x =-+的图像上.………………………(1分)∴12322n -=-⨯+.………………………………………………………(1分)∴52n =.……………………………………………………………………(1分)∴二次函数的图像向上平移了52个单位.…………………………………(1分)25.解:(1)∵AB ⊥MN ,AC ⊥AP ,∴90ABP C AP ∠=∠=︒.又∵∠ACP =∠BAP ,∴△ABP ∽△CAP .……………………………………(1分) ∴BP AP APPC=,即yxxx161622+=+.………………………………(1分)∴所求的函数解析式为216x y x+= (0)x >.……………………(1分,1分)(2)CD 的长不会发生变化.……………………………………………………(1分)延长CA 交直线MN 于点E .………………………………………………(1分) ∵AC ⊥AP ,∴90PAE PAC ∠=∠=︒.∵∠ACP =∠BAP ,∴APC APE ∠=∠.∴AEP AC P ∠=∠. ∴PE PC =.∴AE AC =. ………………………………………………………………(1分) ∵AB M N ⊥,C D M N ⊥,∴//A B C D . ∴12AB AE C DC E==.…………………………………………………………(1分)∵AB =4,∴8C D =.………………………………………………………(1分) (3)∵圆C 与直线MN 相切,∴圆C 的半径为8.……………………………(1分)(i )当圆C 与圆P 外切时,C P PB C D =+,即8y x =+.∴2168x x x+=+.∴2x =. ……………………………………………(1分)∴31:=PD BP . …………………………………………………………(1分)(ii )当圆C 与圆P 内切时,C P PB C D =-,即8y x =-,∴2168x x x +=-. ∴2168x x x+=- 或2168x x x+=-.∴2x =-(不合题意,舍去)或无实数解.……………………(1分,1分) ∴综上所述 31:=PD BP .。

2009年中考数学试题参考答案

2009年中考数学试题参考答案

2009年中考数学试题参考答案一、 选择题(每题3分,共30分)ADCBA BADCD二、 填空题(每题3分,共18分)11、1 12、A B ⊥CD 或AD=BD 或AC =CB 等 13、y=2x 14、20 15、10+33 16、19 三、解答题(每小题8分,共16分)17、解:由(1)得 x >-2 ………………………… 2分 由(2)得3x -1《2x -2 得x ≤-1 ………………………… 4分 所以,不等式组的解集为-2〈x ≤-1……6分在数轴上表示为 ……………………… 8分 18.解:原式=()()2111x x x x x -+÷+ ……………………………… 2分 =()()1112-+∙+x x xxx …………………………… 4分=1-x x ………………………………………………… 6分当x=2时,1-x x =2122=- …………………………… 8分四、解答题(每小题9分,共18分)19、解:(1)作业完成时间在1.5 ~2小时时间段内的学生有6人 …… 2分 (2)该班共有学生:40%4518=名 ………… 4分(3)(略) ………………………………………………… 6分 (4)作业完成时间在0.5~1小时的部分对应的扇形圆心角的度数是: 360°×30% = 108° ………………………………………9分20、解:(1)用列表法或数状图表示为: 列表法…………………………5分树状图法(2)P(恰好选中女生甲和男生A)=61 ………………………………………………8分∴恰好选中女生甲和男生A 的概率为61……………………………………… 9分21、证明:(1)在□ABCD 中,AD=CB,AB=CD,∠D=∠B …………………………… 1分 ∵EF 分别是AB 、CD 的中点 ∴DF=21CD,BE=21AB , DF=BE ………………………………………3分∴△AFD ≌△CEB ………………………………………………4分 (2)在□ABCD 中,AB=CD,AB ∥CD ……………………………………6分 由(1)得BE=DF ,∴AE=CF ………………………………………………7分 ∴四边形AECF 是平行四边形 ………………………………………8分22、解:∵点A(-3,1),B(2,n)是一次函和反比例函数的交点 ∴把x=-3,y=1代入y=xm ,得:m=-3∴反比例函数的解析式是y=- x3 …………………………………………3分把x=-3,y=n 代入y=-x3 得:n=-23把x=-3,y=1,x=2,y=-23分别代入y=kx+b得:⎪⎩⎪⎨⎧-=+=+-23213b k b k ,解得 ⎪⎩⎪⎨⎧-=-=2121b k ……………………………………4分 ∴一次函数的解析式为y=- 2121-x ……………………………………5分(3)过点A 作AE ⊥x 轴于点E ∴A 点的纵坐标为1,∴AE=1 由一次函数的解析式为y=- 2121-x得C 点的坐标为(0,-21), ……………………………………6分∴OC=21在Rt △OCD 和Rt △EAD 中,∠COD=∠AED=90°,∠CDO=∠ADE∴Rt △OCD ∽Rt △EAD ……………………………………7分 ∴==COAE CDAD 2 ……………………………………8分23、(1)证明:连接OD, ∵OD=OA, ∴∠ODA=OAD ………………………………1分又∵DE 是⊙O 的切线,∴∠ODE=90°,OD ⊥DE ……………………………2分 又∵DE ⊥EF, ∴OD ∥EF ……………………………………3分 ∴∠ODA=∠DAE, ∠DAE=∠OAD, ∴AD 平分∠CAE …………………………5分 (2)解:∵AC 是⊙O 的直径,∴∠ADC=90°………………………………6分 由(1)知:∠ODA=∠DAE, ∠AED=∠ADC, ∴△ADC ∽△AED, ∴ADAC AEAD = ………………………………7分在Rt △ADE 中,DE=4,AE=2, ∴AD=25 ………………………………7分∴52252AC =,∴AC=10 ……………………………………8分∴⊙O 的半径为5 ……………………………………9分 24、解(1)∵抛物线与x 轴交于A(1,0),B(70)∴y=a (x-1)(x-7) ……………………………………1分 又∴抛物线与y 轴交于C,且OA=7,则C 点的坐标为(7,0) ∴7=a (0-1)(0-7),7a=7, a=1 ……………2分∴抛物线的解析式为y=(x-1)(x-7)=782+-x x …………………………3分 (2)∵E 点在抛物线上∴m=25-40+7,m=-8 …………4分 ∵直线y=kx+b 经过点C(0,7),E(5,-8)∴⎩⎨⎧-===8757k b 解得:k=-3,b=7 …………………………5分∴直线CE 的表达式是y=-3x+7 ……………………………………6分 (3)设直线CE 于x 轴的交点为D 当y=0时,-3x+7=0,x=37∴D 点的坐标为(37,0) ……………………………………7分∴S=3531008)377(217)377(21==⨯-⨯+⨯-⨯=+∆∆BDE BDC S S …………8分(4)在抛物线上存在点P 使得△ABP 为等腰三角形 ………………………9分 ∵抛物线的顶点是满足条件的一个点除此之外,还有六个点理由如下: ∵AP=BP=103909322==+>6分别以A 、B 为圆心,半径长为6画圆,分别与抛物线交于点B 、1P 、2P 、A 、3P 、4P 、5P 、6P ,除去A 、B 两点外,其余六个点为满足条件的点,…………11分∴一共有七个满足条件的点P ……………………………………12分。

2009中考数学题及答案

2009中考数学题及答案

2009年大连市中考数学试题与参考答案注意事项:1.请将答案写在答题卡上,写在试卷上无效. 2.本试卷满分150分,考试时间120分钟.一、选择题(在每小题给出的四个选项中,只有一个正确答案.本大题共有8小题,每小题3分,共24分) 1.|-3|等于 ( )A .3B .-3C .31D .-31 2.下列运算正确的是 ( )A .523x x x =+ B .x x x =-23C .623x x x =⋅ D .x x x =÷233.函数2-=x y 中,自变量x 的取值范围是 ( )A .x < 2B .x ≤2C .x > 2D .x ≥24.将一张等边三角形纸片按图1-①所示的方式对折,再按图1-②所示 的虚线剪去一个小三角形,将余下纸片展开得到的图案是 ( )5.下列的调查中,选取的样本具有代表性的有 ( )A .为了解某地区居民的防火意识,对该地区的初中生进行调查B .为了解某校1200名学生的视力情况,随机抽取该校120名学生进行调查C .为了解某商场的平均晶营业额,选在周末进行调查D .为了解全校学生课外小组的活动情况,对该校的男生进行调查6.如图,等腰梯形ABCD 中,AD ∥BC ,AE ∥DC ,∠AEB =60°, AB = AD = 2cm ,则梯形ABCD 的周长为 ( ) A .6cm B .8cm C .10cm D .12cm 7.下列四个点中,有三个点在同一反比例函数xky =的图象上,则不在这个函数图象上的点是 ( ) A .(5,1) B .(-1,5) C .(35,3) D .(-3,35-)8.图3是一个几何体的三视图,其中主视图、左视图都是腰为13cm ,底为10cm 的等腰三角形,则这个几何的侧面积是 ( )A .60πcm 2B .65πcm 2C .70πcm 2D .75πcm 2图1②①DCBA 图2俯视图左视图主视图图3DC BA二、填空题(本题共有9小题,每小题3分,共27分)9.某天最低气温是-5℃,最高气温比最低气温高8℃,则这天的最高气温是_________℃. 10.计算)13)(13(-+=___________.11.如图4,直线a ∥b ,∠1 = 70°,则∠2 = __________.12.如图5,某游乐场内滑梯的滑板与地面所成的角∠A = 35°,滑梯的高度BC = 2米,则滑板AB 的长约为_________米(精确到0.1).13.在某智力竞赛中,小明对一道四选一的选择题所涉及的知识完全不懂,只能靠猜测得出结果,则他答对这道题的概率是_______________.14.若⊙O 1和⊙O 2外切,O 1O 2 = 10cm ,⊙O 1半径为3cm ,则⊙O 2半径为___________cm .15.图6是某班为贫困地区捐书情况的条形统计图,则这个班平均每名学生捐书_____________册. 16.图7是一次函数b kx y +=的图象,则关于x 的不等式0>+b kx 的解集为_________________.17.如图8,原点O 是△ABC 和△A ′B ′C ′的位似中心,点A (1,0)与点A ′(-2,0)是对应点,△ABC 的面积是23,则△A ′B ′C ′的面积是________________. 三、解答题(本题共有3小题,18题、19题、20题各12分,共36分) 18.如图9,在△ABC 和△DEF 中,AB = DE ,BE = CF ,∠B =∠1. 求证:AC = DF (要求:写出证明过程中的重要依据)21c b a 图 4CBA 图 5 491017201510554320人数册数图 6 O y x -24图 7 A C B A′123-1-2-3-4-3-2-14321O y x 图 8 1F E DCBA19.某地区林业局要考察一种树苗移植的成活率,对该地区这种树苗移植成活情况进行调查统计,并绘制了如图10所示的统计表,根据统计图提供的信息解决下列问题:⑴这种树苗成活的频率稳定在_________,成活的概率估计值为_______________. ⑵该地区已经移植这种树苗5万棵. ①估计这种树苗成活___________万棵;②如果该地区计划成活18万棵这种树苗,那么还需移植这种树苗约多少万棵?20.甲、乙两车间生产同一种零件,乙车间比甲车间平均每小时多生产30个,甲车间生产600个零件与乙车间生产900个零件所用时间相等,设甲车间平均每小时生产x 个零件,请按要求解决下列问题: ⑴根据题意,填写下表: 车间 零件总个数平均每小时生产零件个数所用时间甲车间 600xx600乙车间900________⑵甲、乙两车间平均每小时各生产多少个零件?四、解答题(本题3小题,其中21、22题各9分,23题10分,共28分) 21.如图11,在⊙O 中,AB 是直径,AD 是弦,∠ADE = 60°, ∠C = 30°.⑴判断直线CD 是否是⊙O 的切线,并说明理由; ⑵若CD = 33 ,求BC 的长.图 10 0成活的概率移植数量/千棵10.90.8108642E DCBA O图 1122.如图12,直线2--=x y 交x 轴于点A ,交y 轴于点B ,抛物线c bx ax y ++=2的顶点为A ,且经过点B . ⑴求该抛物线的解析式; ⑵若点C(m ,29-)在抛物线上,求m 的值.23.A 、B 两地的路程为16千米,往返于两地的公交车单程运行40分钟.某日甲车比乙车早20分钟从A 地出发,到达B 地后立即返回,乙车出发20分钟后因故停车10分钟,随后按原速继续行驶,并与返回途中的甲车相遇.图13是乙车距A 地的路程y (千米)与所用时间x (分)的函数图象的一部分(假设两车都匀速行驶). ⑴请在图13中画出甲车在这次往返中,距A 地的路程y (千米)与时间x (分)的函数图象; ⑵乙车出发多长时间两车相遇?五、解答题(本题共有3小题,其中24题11分,25、26题各12分,共25分)24.如图14,矩形ABCD 中,AB = 6cm ,AD = 3cm ,点E 在边DC 上,且DE = 4cm .动点P 从点A 开始沿着A →B →C →E 的路线以2cm/s 的速度移动,动点Q 从点A 开始沿着AE 以1cm/s 的速度移动,当点Q 移动到点E 时,点P 停止移动.若点P 、Q 同时从点A 同时出发,设点Q 移动时间为t (s),P 、Q 两点运动路线与线段PQ 围成的图形面积为S (cm2),求S 与t 的函数关系式.25.如图15,在△ABC 和△PQD 中,AC = k BC ,DP = k DQ ,∠C =∠PDQ ,D 、E 分别是AB 、AC 的中点,点P 在直线BC 上,连结EQ 交PC 于点H .PQE D CB A 图 14 y/千米16O -2080604020x/分图 13 yx O B A 图 12猜想线段EH 与AC 的数量关系,并证明你的猜想.26.如图18,抛物线F :c bx ax y ++=2的顶点为P ,抛物线:与y 轴交于点A ,与直线OP 交于点B .过点P 作PD ⊥x 轴于点D ,平移抛物线F 使其经过点A 、D 得到抛物线F ′:'+'+'=c x b x a y 2,抛物线F ′与x 轴的另一个交点为C .⑴当a = 1,b =-2,c = 3时,求点C 的坐标(直接写出答案); ⑵若a 、b 、c 满足了ac b 22=①求b :b ′的值;②探究四边形OABC 的形状,并说明理由.Q(H)EDCQAB CDEPH H Q P ED CB A B(P)A图 15 图 16图 17yxO P DC BA图 18大连市2009年初中升学考试评分标准与参考答案一、选择题1. A 2.D 3.D 4.A 5.B 6.C 7.B 8.B 二、填空题9.3 10.2 11.110° 12.3.5 13.4114.7 15.3 16.2->x 17.6 三、解答题18.证明:∵BE=CF , ∴BE+EC=CF+EC ,即 B C =E F . ………………………………………………………………………………2分 在△ABC 和△DEF 中,314AB DE B BC EF =⎧⎪∠=∠⎨⎪=⎩,分,分. ∴△A B C ≌△D E F …………………………………………………………………………6分 (S A S ) . ……………………………………………………………………………………8分 ∴A C =D F …………………………………………………………………………………10分 (全等三角形对应边相等) . ……………………………………………………………12分 19.解:(1)0.9,……………………………………………………………………………2分 0.9; ………………………………………………………………………………………5分 (2) ①4.5;…………………………………………………………………………………8分 ②方法1:18÷0.9-5 …………………………………………………………………………………10分 =15.…………………………………………………………………………………………11分方法2:设还需移植这种树苗x 万棵.根据题意,得189.0)5(=⨯+x ,…………………………………………………………10分 解得15=x . ………………………………………………………………………………11分 答:该地区需移植这种树苗约15万棵. ………………………………………………12分 20. 解:(1) 30+x , ……………………………………………………………………2分 3900+x ;………………………………………………………………………………………4分 (2)根据题意,得30900600+=x x ,..................................................................7分 解得 60=x . (9)分 9030=+x . …………………………………………………………………10分 经检验60=x 是原方程的解,且都符合题意.………………………………………11分 答:甲车间每小时生产60个零件,乙车间每小时生产90个零件.…………………12分 21.(1)C D 是⊙O 的切线. …………………………………………………………………1分 证明:连接OD .∵∠A D E =60°,∠C =30°,∴∠A =30°. ............................................................2分 ∵O A =O D ,∴∠O D A =∠A =30°. (3)分∴∠O D E =∠O D A +∠A D E =30°+60°=90°,∴O D ⊥C D .…………………………………4分 ∴C D 是⊙O 的切线. ……………………………………………………………………5分 (2)解:在Rt △ODC 中,∠ODC =90°, ∠C =30°, CD =33.∵t a n C =CDOD, …………………………………………………………………………6分 ∴O D =C D ·t a n C =33×33=3. (7)分 ∴O C =2O D =6.…………………………………………………………………………8分 ∵O B =O D =3,∴B C =O C -O B =6-3=3.………………………………………………9分22. 解:(1)直线2--=x y .令2,0-==y x 则,∴点B 坐标为(0,-2).………………………………………………1分 令2,0-==x y 则 ∴点A 坐标为(-2,0). ………………………………………………2分 设抛物线解析式为k h x a y +-=2)(. ∵抛物线顶点为A ,且经过点B ,∴2)2(+=x a y ,………………………………………………………………………4分∴-2=4a ,∴21-=a .…………………………………………………………………5分 ∴抛物线解析式为2)2(21+-=x y ,…………………………………………………5分∴22212---=x x y .………………………………………………………………6分(2)方法1:∵点C (m ,29-)在抛物线2)2(21+-=x y 上,∴29)2(212-=+-m ,9)2(2=+m ,………………………………………………7分解得11=m ,52-=m .……………………………………………………………9分 方法2:∵点C (m ,29-)在抛物线22212---=x x y 上,∴22212---m m 29-=,∴,0542=-+m m (7)分解得11=m ,52-=m .……………………………………………………………9分 23.解:(1)画出点P 、M 、N (每点得1分)……………………………………3分 (2)方法1.设直线EF 的解析式为11b x k y +=. 根据题意知,E (30,8),F (50,16),⎪⎩⎪⎨⎧+=+=分分5.1150164,11308 b k b k 解得⎪⎩⎪⎨⎧-==.4,5211b k ∴452-=x y .①……………………………………………………………6分设直线MN 的解析式为22b x k y +=. 根据题意知,M (20,16),N (60,0),∴⎩⎨⎧+=+=分分8.6007,20162222 b k b k 解得⎪⎩⎪⎨⎧=-=.24,5222b k ∴2452+-=x y .②………………………………………………………9分由①、②得方程452-x 2452+-=x ,解得x =35. ……………………………………(10分) 答:乙车出发35分钟两车相遇. ………………………………………………………10分 方法2.公交车的速度为16÷40=52(千米/分). …………………………………………………4分设乙车出发x 分钟两车相遇. ……………………………………………………………5分根据题意,得32)20(52)10(52=++-x x ,………………………………………………8分解得x =35. …………………………………………………………………………………9分 答:乙车出发35分钟两车相遇. ………………………………………………………10分 方法3.公交车的速度为16÷40=52(千米/分). …………………………………………………4分设乙车出发x 分钟两车相遇. ……………………………………………………………5分根据题意,得16)20(52)10(52=-+-x x ,………………………………………………8分解得x =35. …………………………………………………………………………………9分 答:乙车出发35分钟两车相遇. ………………………………………………………10分 方法4.由题意知:M (20,16),F (50,16),C (10,0),∵△DMF ∽△DNC ,∴DHDICN MF =∴DHDH -=165030,∴DH =10; ∵△CDH ∽△CFG ,∴CGCH FG DH =,∴25164010=⨯=CH ; ∴OH =OC +CH =10+25=35.答:乙车出发35分钟两车相遇. …………………………………………………………10分24.解:在R t △A D E 中,.5432222=+=+=DE AD AE …………………………1分当0<t ≤3时,如图1. ……………………………………………………………………2分过点Q 作QM ⊥AB 于M ,连接QP . ∵AB ∥CD , ∴∠QAM =∠DEA ,又∵∠AMQ =∠D =90°, ∴△AQM ∽△EAD .∴AEAQAD QM =,∴t AE AQ AD QM 53=⋅=.……………………………………………………3分 .5353221212t t t QM AP S =⨯⨯=⋅= (4)分 当3<t ≤29时,如图2. (5)分方法1 :在Rt △ADE 中,.5432222=+=+=DE AD AE过点Q 作QM ⊥AB 于M , QN ⊥BC 于N , 连接QB . ∵AB ∥CD , ∴∠QAM =∠DEA , 又∵∠AMQ =∠ADE =90°, ∴△AQM ∽△EAD . ∴AE AQ AD QM =, AEAQ DE AM =, ∴t AE AQ AD QM 53=⋅=.………………………………………………………………………6分t AE AQ DE AM 54=⋅=,∴Q N =t AM BM 5466-=-=.…………………………………7分∴QAB S ∆,595362121t t QM AB =⨯⨯=⋅=QBP S ∆.1854254)546)(62(21212-+-=--=⋅=t t t t QN BP∴QBP QAB S S S ∆∆+=t 59=+(18542542-+-t t ).18551542-+-=t t ……………………8分方法2 :过点Q 作QM ⊥AB 于M , QN ⊥BC 于N ,连接QB . ∵AB ∥BC , ∴∠QAM =∠DEA , 又∵∠AMQ =∠ADE =90°,∴△AQM ∽△EAD . ∴AE AQ AD QM =, AEAQ DE AM =, ∴t AE AQ AD QM 53=⋅=.………………………………………………………………………6分t AE AQ DE AM 54=⋅=,∴Q N =t AM BM 5466-=-=.…………………………………7分∴.256535421212t t t QM AM S AMQ =⨯⨯=⋅=∆.185512526)546)(5362(21)(212-+-=-+-=⋅+=t t t t t BM QM BP S BPQM 梯∴BPQM AMQ S S S 梯+=∆2256t =+(1855125262-+-t t ).18551542-+-=t t ……………8分 当29<t ≤5时. 方法1 :过点Q 作QH ⊥CD 于H . 如图3.由题意得QH ∥AD ,∴△EHQ ∽△EDA ,∴,AEQEAD QH = ∴).5(53t AE QE AD QH -=⋅=…………………………………………………………………10分 ∴,123)62(21)(21=⨯+=⋅+=BC AB EC S ABCE 梯,233106353)5(53)211(21212+-=-⨯-=⋅=∆t t t t QH EP S EQP∴EQP ABCE S S S ∆-=梯12=2331063532-+-t t .291063532-+-=t t ………………………11分方法2:连接QB 、QC ,过点Q 分别作QH ⊥DC 于H ,QM ⊥AB 于M ,QN ⊥BC 于N . 如图4.由题意得QH ∥AD ,∴△EHQ ∽△EDA ,∴,AEQEAD QH =∴).5(53t AE QE AD QH -=⋅=…………………………………………………………………10分∴.595362121t t QN AB S QAB =⨯⨯=⋅=∆.569)546(32121t t QN BC S QBC -=-⨯=⋅=∆.227105753)533)(92(21212-+-=--=⋅=∆t t t t QH PC S QCP∴QCP QBC QAB S S S S ∆∆∆++=t 59=)569(t -+)227105753(2-+-+t t .291063532-+-=t t ………………………………11分 25.结论:E H =21A C . (1)分 证明:取B C 边中点F ,连接D E 、D F . ……………………………………………………2分∵D 、E 、F 分别是边AB 、AC 、BC 的中点.∴DE ∥BC 且DE =21BC ,D F ∥A C 且D F =21A C , (4)分EC =21AC ∴四边形DFCE 是平行四边形.∴∠EDF=∠C .∵∠C =∠P D Q ,∴∠P D Q =∠E D F , ∴∠P D F =∠Q D E .…………………………6分又∵AC=kBC ,∴DF=kDE . ∵D P =k D Q ,∴k DEDFDQ DP ==.……………………………………………………………7分 ∴△PDF ∽△QDE . …………………………………………………………………………8分∴∠D E Q =∠D F P . ……………………………………………………………………………9分 又∵DE ∥BC ,DF ∥AC , ∴∠DEQ=∠EHC ,∠DFP=∠C .∴∠C =∠E H C . ……………………………………………………………………………10分∴E H =E C . (11)分 ∴E H =21A C . (12)分 选图16.结论:E H =21A C . (1)分 证明:取B C 边中点F ,连接D E 、D F . ……………………………………………2分∵D 、E 、F 分别是边AB 、AC 、BC 的中点,∴D E ∥B C 且D E =21B C , D F ∥A C 且D F =21A C , (4)分EC=21AC ,∴四边形DFCE 是平行四边形.∴∠EDF=∠C .∵∠C =∠P D Q ,∴∠P D Q =∠E D F , ∴∠P D F =∠Q D E . ……………………………6分 又∵A C =B C , ∴D E =D F ,∵P D =Q D ,∴△P D F ≌△Q D E . ……………………………7分∴∠DEQ=∠DFP .∵DE ∥BC ,DF ∥AC , ∴∠DEQ=∠EHC ,∠DFP=∠C .∴∠C =∠E H C .............................................................................................8分 ∴E H =E C . (9)分 ∴E H =21A C . (10)分 选图17. 结论: E H =21A C . (1)分证明:连接A H . ………………………………………………………………………………2分 ∵D 是AB 中点,∴DA=DB .又∵DB=DQ ,∴DQ=DP=AD .∴∠DBQ=∠DQB ,.∵∠DBQ+∠DQB+∠DQA+∠DAQ ,=180°,∴∠AQB=90°,∴AH ⊥BC .……………………………………………………………………………………4分又∵E 是A C 中点,∴H E =21A C . ……………………………………………………6分 26.解:(1) C (3,0);……………………………………………………………………3分(2)①抛物线c bx ax y ++=2,令x =0,则y =c , ∴A 点坐标(0,c ).∵ac b 22=,∴ 242424442ca ac a ac ac ab ac ==-=-,∴点P 的坐标为(2,2ca b -). ……………………………………………………4分∵P D ⊥x 轴于D ,∴点D 的坐标为(0,2ab-). ……………………………………5分根据题意,得a=a ′,c= c ′,∴抛物线F ′的解析式为c x b ax y ++='2.又∵抛物线F ′经过点D (0,2a b-),∴c a b b ab a +-+⨯=)2('4022.……………6分∴ac bb b 4'202+-=.又∵ac b 22=,∴'2302bb b -=.∴b :b ′=32.…………………………………………………………………………………7分 ②由①得,抛物线F ′为c bx ax y ++=232.令y =0,则0232=++c bx ax .………………………………………………………………8分∴abx a b x -=-=21,2.∵点D 的横坐标为,2a b -∴点C 的坐标为(0,ab-). ……………………………………9分设直线OP 的解析式为kx y =.∵点P 的坐标为(2,2ca b -), ∴k a b c 22-=,∴22222b b b b ac b ac k -=-=-=-=,∴x b y 2-=.………………………10分 ∵点B 是抛物线F 与直线OP 的交点,∴x bc bx ax 22-=++.∴abx a b x -=-=21,2.∵点P 的横坐标为a b 2-,∴点B 的横坐标为ab-.把a b x -=代入x b y 2-=,得c a aca b a b b y ===--=222)(22.∴点B 的坐标为),(c ab-.…………………………………………………………………11分∴BC ∥OA ,AB ∥OC .(或BC ∥OA ,BC =OA ), ∴四边形OABC 是平行四边形. 又∵∠AOC =90°,∴四边形OABC 是矩形. ………………………………………………12分。

2009年上海市中学考试数学及问题详解

2009年上海市中学考试数学及问题详解

实用文档文案大全2009年上海市初中毕业统一学业考试数 学 卷(满分150分,考试时间100分钟)考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】 1.计算32()a 的结果是( ) A .5aB .6aC .8aD .9a2.不等式组1021x x +>⎧⎨-<⎩,的解集是( )A .1x >-B .3x <C .13x -<<D .31x -<<3.用换元法解分式方程13101x x x x --+=-时,如果设1x y x-=,将原方程化为关于y 的整式方程,那么这个整式方程是( ) A .230y y +-= B .2310y y -+=C .2310y y -+=D .2310y y --=4.抛物线22()y x m n =++(m n ,是常数)的顶点坐标是( ) A .()m n ,B .()m n -,C .()m n -,D .()m n --,5.下列正多边形中,中心角等于内角的是( )A .正六边形B .正五边形C .正四边形 C .正三边形 6.如图1,已知AB CD EF ∥∥,那么下列结论正确的是( )A .AD BCDF CE = B .BC DFCE AD =C .CD BCEF BE= D .CD ADEF AF= 二、填空题:(本大题共12题,每题4分,满分48分)A B D C E F图1实用文档文案大全【请将结果直线填入答题纸的相应位置】 7.分母有理化:81=的根是 .9.如果关于x 的方程20x x k -+=(k 为常数)有两个相等的实数根,那么k = .10.已知函数1()1f x x =-,那么(3)f = . 11.反比例函数2y x=图像的两支分别在第 象限.12.将抛物线2y x =向上平移一个单位后,得以新的抛物线,那么新的抛物线的表达式是 .13.如果从小明等6名学生中任选1名作为“世博会”志愿者,那么小明被选中的概率是 .14.某商品的原价为100元,如果经过两次降价,且每次降价的百分率都是m ,那么该商品现在的价格是 元(结果用含m 的代数式表示).15.如图2,在ABC △中,AD 是边BC 上的中线,设向量 , 如果用向量a ,b 表示向量AD ,那么AD =16.在圆O 中,弦AB 的长为6,它所对应的弦心距为4,那么半径OA = .17.在四边形ABCD 中,对角线AC 与BD 互相平分,交点为O .在不添加任何辅助线的前提下,要使四边形ABCD 成为矩形,还需添加一个条件,这个条件可以是 .18.在Rt ABC △中,903BAC AB M ∠==°,,为边BC 上的点,联结AM (如图3所示).如果将ABM △沿直线AM 翻折后,点B 恰好落在边AC 的中点处,那么点M 到AC 的距离是 . 三、解答题:(本大题共7题,满分78分) 19.(本题满分10分)计算:22221(1)121a a a a a a +-÷+---+.20.(本题满分10分)解方程组:21220y x x xy -=⎧⎨--=⎩,①.②图2AA 图3B M C=BC b =AB a =实用文档文案大全21.(本题满分10分,每小题满分各5分)如图4,在梯形ABCD 中,86012AD BC AB DC B BC ==∠==∥,,°,,联结AC . (1)求tan ACB ∠的值;(2)若M N 、分别是AB DC 、的中点,联结MN ,求线段MN 的长.22.(本题满分10分,第(1)小题满分2分,第(2)小题满分3分,第(3)小题满分2分,第(4)小题满分3分)为了了解某校初中男生的身体素质状况,在该校六年级至九年级共四个年级的男生中,分别抽取部分学生进行“引体向上”测试.所有被测试者的“引体向上”次数情况如表一所示;各年级的被测试人数占所有被测试人数的百分率如图5所示(其中六年级相关数据未标出).表一根据上述信息,回答下列问题(直接写出结果): (1)六年级的被测试人数占所有被测试人数的百分率是 ;(2)在所有被测试者中,九年级的人数是 ; (3)在所有被测试者中,“引体向上”次数不小于6的人数所占的百分率是 ;(4)在所有被测试者的“引体向上”次数中,众数是 .23.(本题满分12分,每小题满分各6分)已知线段AC 与BD 相交于点O ,联结AB DC 、,E 为OB的中点,F 为OC 的中点,联结EF (如图6所示).(1)添加条件A D ∠=∠,OEF OFE ∠=∠,求证:AB DC =.(2)分别将“A D ∠=∠”记为①,“OEF OFE ∠=∠”记为②,“AB DC =”记为③,添加条件①、③,以②为结论构成命题1,添加条件②、③,以①为结论构成命题2.命题1是 命题,命题2是 命题(选择“真”或“假”填入空格). 24.(本题满分12分,每小题满分各4分)A D C图4 B 九年级 八年级 七年级六年级 25%30%25% 图5 图6 O D CAB E F实用文档文案大全在直角坐标平面内,O 为原点,点A 的坐标为(10),,点C 的坐标为(04),,直线CM x ∥轴(如图7所示).点B 与点A 关于原点对称,直线y x b =+(b 为常数)经过点B ,且与直线CM 相交于点D ,联结OD .(1)求b 的值和点D 的坐标; (2)设点P 在x 轴的正半轴上,若POD △是等腰三角形,求点P 的坐标; (3)在(2)的条件下,如果以PD 为半径的圆P 与圆O 外切,求圆O 的半径.25.(本题满分14分,第(1)小题满分4分,第(2)小题满分5分,第(3)小题满分5分)已知9023ABC AB BC AD BC P∠===°,,,∥,为线段BD 上的动点,点Q 在射线AB 上,且满足PQ ADPC AB=(如图8所示). (1)当2AD =,且点Q 与点B 重合时(如图9所示),求线段PC 的长; (2)在图8中,联结AP .当32AD =,且点Q 在线段AB 上时,设点B Q 、之间的距离为x ,APQ PBCS y S =△△,其中APQ S △表示APQ △的面积,PBC S △表示PBC △的面积,求y 关于x 的函数解析式,并写出函数定义域;(3)当AD AB <,且点Q 在线段AB 的延长线上时(如图10所示),求QPC ∠的大小.ADPCBQ 图8DAPCB(Q ) 图9图10CADPB Qxb实用文档文案大全2009年上海市初中毕业统一学业考试数学卷答案要点与评分标准说明:1. 解答只列出试题的一种或几种解法.如果考生的解法与所列解法不同,可参照解答中评分标准相应评分;2. 第一、二大题若无特别说明,每题评分只有满分或零分;3.第三大题中各题右端所注分数,表示考生正确做对这一步应得分数;4. 评阅试卷,要坚持每题评阅到底,不能因考生解答中出现错误而中断对本题的评阅.如果考生的解答在某一步出现错误,影响后继部分而未改变本题的内容和难度,视影响的程度决定后继部分的给分,但原则上不超过后继部分应得分数的一半; 5. 评分时,给分或扣分均以1分为基本单位.一.选择题:(本大题共6题,满分24分)1. B ; 2.C ; 3.A; 4.B; 5.C; 6.A . 1、2、解:解不等式①,得x >-1,解不等式②,得x <3,所以不等式组的解集为-1<x <3,故选C .3、4、5、6、二.填空题:(本大题共12题,满分48分) 7.;8.2 x ;解:由题意知x-1=1,解得x=2. 9.14;实用文档文案大全10.-12;11.一、三;12.21y x =-;解:由“上加下减”的原则可知,将抛物线y=x 2-2向上平移一个单位后,得以新的抛物线,那么新的抛物线的表达式是,y=x 2-2+1,即y=x 2-1. 故答案为:y=x2-1. 13.16;解:因为从小明等6名学生中任选1名作为“世博会”志愿者,可能出现的结果有6种,选中小明的可能性有一种,所以小明被选中的概率是1/ 6 .14.2)1(100m -;解:第一次降价后价格为100(1-m ),第二次降价是在第一次降价后完成的,所以应为100(1-m )(1-m ),即100(1-m )2.15.b a 21+;解:因为向量 AB = a , BC = b ,根据平行四边形法则,可得: AB = a , BC = b , AC = AB + BC =a+b ,又因为在△ABC 中,AD 是BC 边上的中线,所以16.5;17.AC BD =(或︒=∠90ABC 等); 解:∵对角线AC 与BD 互相平分, ∴四边形ABCD 是平行四边形, 要使四边形ABCD 成为矩形,需添加一个条件是:AC=BD 或有个内角等于90度. 18. 2.实用文档文案大全三.解答题:(本大题共7题,满分78分) 19.解:原式=2)1()1)(1(111)1(2-+--+⋅-+a a a a a a ··········································· (7分) =1112-+--a a a ······································································· (1分) =11--a a·············································································· (1分)=1-. ················································································ (1分) 20.解:由方程①得1+=x y , ③ ························································ (1分)将③代入②,得02)1(22=-+-x x x , ·········································· (1分)整理,得022=--x x , ······························································ (2分) 解得1221x x ==-,, ·································································· (3分) 分别将1221x x ==-,代入③,得1230y y ==,, ·························· (2分)所以,原方程组的解为1123x y =⎧⎨=⎩,; 2210.x y =-⎧⎨=⎩,····································· (1分) 21.解:(1) 过点A 作BC AE ⊥,垂足为E . ··········································· (1分)在Rt △ABE 中,∵︒=∠60B ,8=AB , ∴460cos 8cos =︒⨯=⋅=B AB BE , ·············································· (1 分)3460sin 8sin =︒⨯=⋅=B AB AE . ·················································· (1分)∵12=BC ,∴8=EC . ······························································· (1 分) 在Rt △AEC 中,23834tan ===∠EC AE ACB . ··································· (1分) (2) 在梯形ABCD 中,∵DC AB =,︒=∠60B ,∴︒=∠=∠60B DCB . ········································································ (1分) 过点D 作BC DF ⊥,垂足为F ,∵︒=∠=∠90AEC DFC ,∴DF AE //. ∵BC AD //,∴四边形AEFD 是平行四边形.∴EF AD =. ···················· (1分) 在Rt △DCF 中, 460cos 8cos =︒⨯=∠⋅=DCF DC FC , ···················· (1分) ∴4=-=FC EC EF .∴4=AD . ∵M 、N 分别是AB 、DC 的中点,∴821242=+=+=BC AD MN . ······· (2分)实用文档文案大全22.(1) %20; ················································································· (2分) (2) 6; ··················································································· (3分) (3) %35; ················································································ (2分) (4) 5. ······················································································ (3分)23.(1) 证明:OFE OEF ∠=∠ ,∴OF OE =. ··································································· (1分) ∵E 为OB 的中点,F 为OC 的中点, ∴OE OB 2=,OF OC 2=. ············································· (1分) ∴OC OB =. ··································································· (1分) ∵D A ∠=∠,DOC AOB ∠=∠,∴△AOB ≌△DOC . ························································ (2分) DC AB =∴. ··································································· (1分) (2) 真; ························································································ (3分) 假. ··························································································· (3分)24.解:(1) ∵点A 的坐标为(10),,点B 与点A 关于原点对称,∴点B 的坐标为(10)-,. ································································· (1分) ∵直线b x y +=经过点B ,∴01=+-b ,得1=b . ··························· (1分) ∵点C 的坐标为(04),,直线x CM //轴,∴设点D 的坐标为(4)x ,. ······· (1分) ∵直线1+=x y 与直线CM 相交于点D ,∴3=x .∴D 的坐标为(34),.…(1分) (2) ∵D 的坐标为(34),,∴5=OD . ··············································· (1分) 当5==OD PD 时,点P 的坐标为(60),; ····································· (1分) 当5==OD PO 时,点P 的坐标为(50),, ····································· (1分) 当PD PO = 时,设点P 的坐标为(0)x ,)0(>x ,∴224)3(+-=x x ,得625=x ,∴点P 的坐标为25(0)6,. ··········· (1分) 综上所述,所求点P 的坐标是(60),、(50),或25(0)6,. (3) 当以PD 为半径的圆P 与圆O 外切时, 若点P 的坐标为(60),,则圆P 的半径5=PD ,圆心距6=PO , ∴圆O 的半径1=r . ····································································· (2分) 若点P 的坐标为(50),,则圆P 的半径52=PD ,圆心距5=PO ,∴圆O 的半径525-=r . ·························································· (2分) 综上所述,所求圆O 的半径等于1或525-.25.解:(1) ∵BC AD //, ∴DBC ADB ∠=∠.∵2==AB AD ,∴ADB ABD ∠=∠.∴ABD DBC ∠=∠. ∵︒=∠90ABC .∴︒=∠45PBC . ················································ (1分)∵ABADPC PQ =,AB AD =,点Q 与点B 重合,∴PC PQ PB ==. ∴︒=∠=∠45PBC PCB . ······························································ (1分) ∴︒=∠90BPC . ········································································· (1分)实用文档文案大全在Rt △BPC 中,22345cos 3cos =︒⨯=⋅=C BC PC . ···················· (1分) (2) 过点P 作BC PE ⊥,AB PF ⊥,垂足分别为E 、F . ···················· (1分)∴︒=∠=∠=∠90BEP FBE PFB .∴四边形FBEP 是矩形. ∴BC PF //,BF PE =.∵BC AD //,∴AD PF //.∴ABADBF PF =. ∵23=AD ,2=AB ,∴43=PE PF . ················································ (1分) ∵x QB AB AQ -=-=2,3=BC ,∴22APQ x S PF -=△,32PBC S PE =△.∴42x S S PBC APQ -=∆∆,即42x y -= . ················································· (2分) 函数的定义域是0≤x ≤87. ··························································· (1分)(3) 过点P 作BC PM ⊥,AB PN ⊥,垂足分别为M 、N .易得四边形PNBM 为矩形,∴BC PN //,BN PM =,︒=∠90MPN .∵BC AD //,∴AD PN //.∴AB AD BN PN =.∴ABADPM PN =. ·············· (1分) ∵AB AD PC PQ =,∴PCPQ PM PN =. ······················································ (1分) 又∵︒=∠=∠90PNQ PMC ,∴Rt △PCM ∽Rt △PQN . ··············· (1分) ∴QPN CPM ∠=∠. ··································································· (1分) ∵︒=∠90MPN ,∴︒=∠=∠+∠=∠+∠90MPN QPM QPN QPM CPM , 即︒=∠90QPC . ········································································· (1分)。

上海宝山区2009年初三数学中考模拟试卷含参考答案及评分标准

上海宝山区2009年初三数学中考模拟试卷含参考答案及评分标准

2009年宝山区初三模拟测试数学试卷(满分150分,考试时间100分钟) 2009.4.考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分) 【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】 1.4的平方根是(A )2; (B )2-; (C )2±; (D )2±.2.下列等式中,一定成立的是(A )222)(b a b a +=+; (B )3232a a a =+;(C )aa2121=-; (D )523a a a =⋅. 3.1=x 是下列哪个方程的解(A)01=+x ; (B)1112-=-x x x ; (C)1=+y x ; (D)0433=-+x x . 4.已知点A (-2,3 )在双曲线xky =上,则下列点中,一定在该双曲线上的点是 (A )A (3,-2 ); (B )A (-2,-3 ); (C )A (2,3 ); (D )A (3,2) . 5.下列图形中,是旋转对称图形,但不是中心对称图形的是(A )等腰梯形; (B )等边三角形; (C )平行四边形; (D )直角梯形.6.在研究圆的有关性质时,我们曾做过这样的一个操作“将一张圆形纸片沿着它的任意一条 直径翻折,可以看到直径两侧的两个半圆互相重合”。

由此说明:(A)圆是中心对称图形,圆心是它的对称中心;(B)圆是轴对称图形,任意一条直径所在的直线都是它的对称轴; (C)圆的直径互相平分;(D)垂直弦的直径平分弦及弦所对的弧.一、填空题:(本大题共12题,每题4分,满分48分) [请将结果直接填入答题纸的相应位置] 7.计算:28-= ▲ .8.因式分解:a a 2213-= ▲ .9.方程21=-x 的解为 ▲ .10.已知一次函数y=kx+b 的图象经过点A (2,1)(如图1), 当x ▲ 时,y ≥1.11.从1、2、3、…… 9九个自然数中任选一个数,选出的数被2整除的概率是 ▲ .12.小明家离开学校的距离是a 米,他上学时每分钟走b 米,放学回家时每分钟比上学时少走 15米,则小明从学校回家用的时间是 ▲ 分钟(用含a 、b 的代数式表示). 13.请你写出一个..二次函数解析式,使其图像的顶点在y 轴上,且在y 轴右侧图像是下降的。

2009年上海市初中毕业生统一学业考试

2009年上海市初中毕业生统一学业考试数学试卷一.选择题:(本大题含I 、II 两组,每组各6题,每题4分,满分24分) I 组 :供使用一期课改教材的考生完成 1.下列运算中,计算结果正确的是(A )x ·x 3=2x 3; (B )x 3÷x =x 2; (C )(x 3)2=x 5; (D )x 3+x 3=2x 6.2.新建的北京奥运会体育场——“鸟巢”能容纳91 000位观众,将91 000用科学记数法表示为(A )31091⨯; (B )210910⨯; (C )3101.9⨯; (D )4101.9⨯. 3.下列图形中,既是轴对称图形,又是中心对称图形的是(A ); (B ); (C ); (D ).4.若抛物线2)1x (y 2-+=与x 轴的正半轴相交于点A ,则点A 的坐标为(A )(21--,0); (B )(2,0); (C )(-1,-2); (D )(21+-,0). 5.若一元二次方程1x 3x 42=+的两个根分别为1x 、2x ,则下列结论正确的是 (A )43x x 21-=+,41x x 21-=⋅; (B )3x x 21-=+,1x x 21-=⋅;(C )43x x 21=+,41x x 21=⋅; (D )3x x 21=+,1x x 21=⋅.6.下列结论中,正确的是(A )圆的切线必垂直于半径; (B )垂直于切线的直线必经过圆心;(C )垂直于切线的直线必经过切点; (D )经过圆心与切点的直线必垂直于切线.II 组 :供使用二期课改教材的考生完成1.下列运算中,计算结果正确的是(A )x ·x 3=2x 3; (B )x 3÷x =x 2; (C )(x 3)2=x 5; (D )x 3+x 3=2x 6 .2.新建的北京奥运会体育场——“鸟巢”能容纳91 000位观众,将91 000用科学记数法表示为(A )31091⨯; (B )210910⨯; (C )3101.9⨯; (D )4101.9⨯. 3.下列图形中,既是轴对称图形,又是中心对称图形的是(A ); (B ); (C ); (D ).4.一个布袋中有4个红球与8个白球,除颜色外完全相同,那么从布袋中随机摸一个球是白球的概率是 (A )121; (B )31; (C )32; (D )21.5.若AB 是非零向量,则下列等式正确的是(A)(B )AB =BA ; (C )AB +BA =0; (D=0. 6.下列事件中,属必然事件的是(A )男生的身高一定超过女生的身高; (B )方程04x 42=+在实数范围内无解; (C )明天数学考试,小明一定得满分; (D )两个无理数相加一定是无理数.二.填空题:(本大题共12题,每题4分,满分48分) [请将结果直接填入答题纸的相应位置]7.不等式2-3x>0的解集是 . 8.分解因式xy –x - y+1= . 9.化简:=-321 .10.方程31x 2=-的根是 .11.函数1x x y-=的定义域是 .12.若反比例函数)0k (xk y <=的函数图像过点P (2,m )、Q (1,n ),则m 与n 的大小关系是:m n (选择填“>” 、“=”、“<”).13.关于x 的方程01mx mx 2=++有两个相等的实数根,那么m= .14.在平面直角坐标系中,点A 的坐标为(-2,3),点B 的坐标为 (-1,6).若点C 与点A 关于x 轴对称,则点B 与点C 之间的 距离为 .15.如图1,将直线OP 向下平移3个单位,所得直线的函数解析式为 .16.在⊿ABC 中,过重心G 且平行BC 的直线交AB 于点D , 那么AD:DB= .17.如图2,圆O 1与圆O 2相交于A 、B 两点,它们的半径都为2,圆O 1经过点O 2,则四边形O 1AO 2B 的面积为 .18.如图3,矩形纸片ABCD ,BC=2,∠ABD=30°.将该纸片沿对角线BD 翻折,点A 落在点E 处,EB 交DC 于点F ,则点F 到直线 DB 的距离为 .三.解答题:(本大题共7题,满分78分) 19.(本题满分10分) 先化简,再求值:)b1a1(bab ab 2a2222-÷-+-,其中12b ,12a -=+=.20.(本题满分10分)解方程251x x x1x =---.21.(本题满分10分,第(1)题满分6分,第(2)题满分4分)如图4,在梯形ABCD 中,AD ∥BC ,AC ⊥AB ,AD=CD ,cosB=135,BC=26.求(1)cos ∠DAC 的值;(2)线段AD 的长.图1 O 1 O 2A 图2 FCBA图3DECBA 图4D22.(本题满分10分,第(1)题满分3分,第(2)题满分5分,第(3)题满分2分) 近五十年来,我国土地荒漠化扩展的面积及沙尘暴发生的次数情况如表1、表2所示.(2)在图5中画出不同年代沙尘暴发生的次数的折线图; (3)观察表2或(2)所得的折线图,你认为沙尘暴发生 次数呈 (选择“增加”、“稳定”或“减少”)趋势.23.(本题满分12分,每小题满分各6分) 如图6,在⊿ABC 中,点D 在边AC 上,DB=BC ,点E 是CD 的中点,点F 是AB 的中点.(1)求证:EF=21AB ;(2)过点A 作AG ∥EF ,交BE 的延长线于点G ,求证:⊿ABE ≌⊿AGE .24.(本题满分12分,每小题满分各4分)如图7,在平面直角坐标系中,点O 为坐标原点,以点A (0,-35为半径作圆A ,交x 轴于B 、C 两点,交y 轴于点D 、E 两点. (1)求点B 、C 、D 的坐标;(2)如果一个二次函数图像经过B 、C 、D 三点,求这个二次函数解析式; (3)P 为x 轴正半轴上的一点,过点P 作与圆A 相离并且与 x 轴垂直的直线,交上述二次函数图像于点F , 当⊿CPF 中一个内角的正切之为21时,求点P 的坐标.25.(本题满分14分,第(1)题满分3分,第(2)题满分7分,第(3)题满分4分) 正方形ABCD 的边长为2,E 是射线CD 上的动点(不与点D 重合),直线AE 交直线BC 于点AB FEDC图650年代 60年代 70年代 80年代 90年代图5G ,∠BAE 的平分线交射线BC 于点O .(1)如图8,当CE=32时,求线段BG 的长;(2)当点O 在线段BC 上时,设xEDCE =,BO=y ,求y 关于x 的函数解析式; (3)当CE=2ED 时,求线段BO 的长.2008年上海市初中毕业生统一学业考试 数学模拟卷答案要点与评分标准说明:1. 解答只列出试题的一种或几种解法.如果考生的解法与所列解法不同,可参照解答中评分标准相应评分;2. 第一、二大题若无特别说明,每题评分只有满分或零分;3. 第三大题中各题右端所注分数,表示考生正确做对这一步应得分数;4. 评阅试卷,要坚持每题评阅到底,不能因考生解答中出现错误而中断对本题的评阅.如果考生的解答在某一步出现错误,影响后继部分而未改变本题的内容和难度,视影响的程度决定后继部分的给分,但原则上不超过后继部分应得分数的一半; 5. 评分时,给分或扣分均以1分为基本单位一.选择题:(本大题含I 、II 两组,每组各6题,满分24分)I 组 1、B ; 2、D ; 3、C; 4、D; 5、A; 6、D . II 组 1、B ; 2、D ; 3、C; 4、C; 5、A; 6、B . 二.填空题:(本大题共12题,满分48分) 7、32<x ; 8、(1)(1)x y --; 9、2+ 10、5=x ;11、0≥x 且1≠x ; 12、>; 13、4; 14、23; 15、32-=x y ; 16、1:2(或2); 17、32; 183ADBG EC图8O 备用图ABCD三.解答题:(本大题共7题,满分78分) 19.解:原式=2()()()a b a b a b a b ab--÷+- --------------------(3分)ba ab ba b a -⋅+-= ----------------------- (2分)ba ab +=,---------------------------(2分) 当1,1a b ==时,4=--------------(3分)20.解: [方法一]设1x y x-=,-----------------------(2分) 则原方程化为152y y+=, 整理得22520y y -+=, ---------- (2分)∴112y =, 22y =;-------------------------(2分)当12y =时, 112x x -= , 得 2x =,---------------- (1分)当2y =时, 12x x-= 得 1x =-,----------------- (1分)经检验 12x =,21x =-是原方程的根; ----------------(2分) [方法二]去分母得 222(1)25(1)x x x x -+=-, --------------(3分) 整理得 220x x --=, ------------------------(2分) 解得 12x =,21x =-,------------------------(3分) 经检验 12x =,21x =-是原方程的根.------------------(2分) 21.解:(1)在Rt △ABC 中,90BAC ∠= ,cos B =513A B B C=.--------- (1分)∵BC =26,∴AB =10. ------------------------- (1分) ∴AC 24==.---------------- (2分)∵AD //BC ,∴∠DAC =∠ACB .--------------------- (1分) ∴cos ∠DAC = cos ∠ACB =1213A CB C=;------------------ (1分)(2)过点D 作DE ⊥AC ,垂足为E .--------------------(1分) ∵AD =DC , AE =EC =1122A C =.--------------------(1分)在Rt △ADE 中,cos ∠DAE =1213A E A D=,----------------- (1分)∴AD =13. ------------------------------(1分)22.解:(1)平均每年土地荒漠化扩展的面积为102020102460202100201560++⨯+⨯+⨯ (2分)1956=(km 2), ---------(1分)答:所求平均每年土地荒漠化扩展的面积为1956 km 2;(2)右图; ------------- (5分) (3)增加.--------------(2分)23.证明:(1) 连结BE ,---------- (1分)∵DB=BC ,点E 是CD 的中点,∴BE ⊥CD .(2分)∵点F 是Rt △ABE 中斜边上的中点,∴EF=12A B ;------------ (3分)(2) [方法一]在△A B G 中,AF BF =,//AG EF ,∴BE EG =.------(3分) 在△ABE 和△AG E 中,AE AE =,∠AEB =∠AEG=90°,∴△ABE ≌△AGE ;--(3分) [方法二]由(1)得,EF=AF ,∴∠AEF =∠FAE . -------------(1分) ∵EF//AG ,∴∠AEF =∠EAG . --------------------(1分) ∴∠EAF=∠EAG .-------------------------- (1分) ∵AE=AE ,∠AEB =∠AEG=90°,∴△ABE ≌△AGE .----------- (3分)24.解:(1)∵点A 的坐标为(0 ,3)-,线段5AD =,∴点D 的坐标(0 ,2).----(1分) 连结AC ,在Rt △AOC 中,∠AOC=90°,OA=3,AC=5,∴OC=4. -----(1分) ∴点C 的坐标为(4 ,0);------------------------(1分) 同理可得 点B 坐标为( 4 ,0)-.--------------------- (1分) (2)设所求二次函数的解析式为2y ax bx c =++,由于该二次函数的图像经过B 、C 、D 三点,则0164,0164,2,a b c a b c c =-+⎧⎪=++⎨⎪=⎩------------------------(3分)解得 1 ,80 ,2,a b c ⎧=-⎪⎪=⎨⎪=⎪⎩∴所求的二次函数的解析式为2128y x =-+;-------(1分)(3)设点P 坐标为( ,0)t ,由题意得5t >,----------------(1分)且点F 的坐标为21(,2)8t t -+,4PC t =-,2128PF t =-,∵∠CPF =90°,∴当△CPF 中一个内角的正切值为12时,①若12C P PF=时,即2411228t t -=-,解得 112t =, 24t =(舍);-------(1分)②当12PF C P=时,2121842t t -=- 解得 10t =(舍),24t =(舍),------- (1分)所以所求点P 的坐标为(12,0).--------------------- (1分) 25.解:(1)在边长为2的正方形ABCD 中,32=CE ,得34=DE ,又∵//AD BC ,即//AD C G ,∴12C G C E ADD E==,得1C G =.--------(2分)∵2BC =,∴3BG =; ------------------------(1分) (2)当点O 在线段BC 上时,过点O 作AG OF ⊥,垂足为点F ,∵AO 为BAE ∠的角平分线,90=∠ABO ,∴y BO OF ==.------(1分)在正方形ABCD 中,BC AD //,∴C G C E x ADED==.∵2=AD ,∴x CG 2=.-----------------------(1分) 又∵C E x ED=,2C E ED +=,得xx CE +=12.--------------(1分)∵在Rt △ABG 中,2AB =,22BG x =+,90B ∠= ,∴A G =∵2AF AB ==,∴2FG AG AF =-=.----------(1分) ∵O F AB FGBG=,即AB y FG BG=⋅,得122222+-++=x x x y ,)0(≥x ;(2分)(1分)(3)当ED CE 2=时,①当点O 在线段B C 上时,即2=x ,由(2)得32102-==y OB ;--(1分)②当点O 在线段B C 延长线上时,4C E =,2==DC ED ,在 Rt △ADE 中,22=AE .设AO 交线段DC 于点H ,∵AO 是BAE ∠的平分线,即HAE BAH ∠=∠, 又∵CD AB //,∴AHE BAH ∠=∠.∴AHE HAE ∠=∠.∴22==AE EH .∴224-=CH .---------------(1分) ∵CD AB //,∴BOCO ABCH =,即BOBO 22224-=-,得222+=BO . (2分)。

数学中考分类试题(含答案)

1有理数一、选择题1.(2009年福建省泉州市)计算:=-0)5(( ).A .1B .0C .-1D .-5【答案】A2.(2009年梅州市)12-的倒数为( ) A .12B .2C .2-D .1-【答案】C3.(2009年抚顺市)某市在一次扶贫助残活动中,共捐款2580000元.将2580000元用科学记数法表示为( )A .72.5810⨯元 B .70.25810⨯元 C .62.5810⨯元 D .625.810⨯元 【答案】C4.(2009年抚顺市)2-的相反数是( ) A .2 B .12-C .2-D .12【答案】A5.(2009年绵阳市)2009年初甲型H1N1流感在墨西哥暴发并在全球蔓延,我们应通过注意个人卫生加强防范.研究表明,甲型H1N1流感球形病毒细胞的直径约为0.00000156 m ,用科学记数法表示这个数是 A .0.156×10-5 B .0.156×105 C .1.56×10-6 D .1.56×106 【答案】C 6.(2009年绵阳市)如果向东走80 m 记为80 m ,那么向西走60 m 记为 A .-60 m B .︱-60︱m C .-(-60)m D .601m 【答案】A 7.(2009呼和浩特)2-的倒数是( ) A .12-B .12C .2D .2-答案:A8.(2009年龙岩)-2的相反数是( )A .-2B .2C .21D .-21 【答案】B 9.(2009年铁岭市)目前国内规划中的第一高楼上海中心大厦,总投入约14 800 000 000元.14 800 000 000元用科学记数法表示为( ) A .111.4810⨯元 B .90.14810⨯元C .101.4810⨯元D .914.810⨯元【答案】C10.(2009年黄石市)12-的倒数是( ) A .2 B .12 C .12- D .2-【答案】D11.(2009年广东省)《广东省2009年重点建设项目计划(草案)》显示,港珠澳大桥工程估算总投资726亿元,用科学记数法表示正确的是( )A .107.2610⨯ 元B .972.610⨯ 元C .110.72610⨯ 元 D .117.2610⨯元 【答案】A 12.(2009年枣庄市)实数a ,b 在数轴上的对应点如图所示,则下列不等式中错误..的是( ) A .0ab > B .0a b +< C .1ab <D .0a b -< 【答案】C13.(2009年枣庄市)-12的相反数是( ) A .2 B .2- C .12 D .12-【答案】C14.(2009年赤峰市)景色秀美的宁城县打虎石水库,总库容量为119600000立方米,用科学计数法表示为 ( ) A 、1.196×108立方米 B 、1.196×107立方米 C 、11.96×107立方米 D 、0.1196×109立方米 【答案】A15.(2009年赤峰市)3(3)-等于( ) A 、-9 B 、9 C 、-27 D 、2716.(2009贺州)计算2)3(-的结果是( ).A .-6B .9C .-9D .6 【答案】B 17.(2009年浙江省绍兴市)甲型H1N1流感病毒的直径大约是0.000 000 081米,用科学记数法可表示为( )A .8.1×190-米 B .8.1×180-米 C .81×190-米 D .0.81×170-米 【答案】B 18.(2009年江苏省)2-的相反数是( ) A .2 B .2-C .12D .12-【答案】A 19.(2009贵州黔东南州)下列运算正确的是( C ) A 、39±= B 、33-=- C 、39-=- D 、932=-【答案】B20.(2009年淄博市)如果2()13⨯-=,则“”内应填的实数是( D )A . 32B . 23C .23-D .32-21.(2009襄樊市)通过世界各国卫生组织的协作和努力,甲型H1N1流感疫情得到了有效的控制,到目前为止,全球感染人数约为20000人左右,占全球人口的百分比约为0.0000031,将数字0.0000031用科学记数法表示为( B ) A .53.110-⨯ B .63.110-⨯ C .73.110-⨯ D .83.110-⨯ 解析:本题考查科学记数法,0.0000031=63.110-⨯,故选B 。

上海市宝山区2009年初三数学中考模拟试卷含参考答案及评分标准

▃ ▄ ▅ ▆ ▇ █ █ ■ ▓点亮心灯 ~~~///(^v^)\\\~~~ 照亮人生 ▃ ▄ ▅ ▆ ▇ █ █ ■ ▓2009年宝山区初三模拟测试数学试卷(满分150分,考试时间100分钟) 2009.4.考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分) 【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】 1.4的平方根是(A )2; (B )2-; (C )2±; (D )2±.2.下列等式中,一定成立的是(A )222)(b a b a +=+; (B )3232a a a =+;(C )aa2121=-; (D )523a a a =⋅. 3.1=x 是下列哪个方程的解(A)01=+x ; (B)1112-=-x x x ; (C)1=+y x ; (D)0433=-+x x . 4.已知点A (-2,3 )在双曲线xky =上,则下列点中,一定在该双曲线上的点是 (A )A (3,-2 ); (B )A (-2,-3 ); (C )A (2,3 ); (D )A (3,2) . 5.下列图形中,是旋转对称图形,但不是中心对称图形的是(A )等腰梯形; (B )等边三角形; (C )平行四边形; (D )直角梯形.▃ ▄ ▅ ▆ ▇ █ █ ■ ▓点亮心灯 ~~~///(^v^)\\\~~~ 照亮人生 ▃ ▄ ▅ ▆ ▇ █ █ ■ ▓6.在研究圆的有关性质时,我们曾做过这样的一个操作“将一张圆形纸片沿着它的任意一条 直径翻折,可以看到直径两侧的两个半圆互相重合”。

由此说明: (A)圆是中心对称图形,圆心是它的对称中心;(B)圆是轴对称图形,任意一条直径所在的直线都是它的对称轴; (C)圆的直径互相平分;(D)垂直弦的直径平分弦及弦所对的弧.一、填空题:(本大题共12题,每题4分,满分48分) [请将结果直接填入答题纸的相应位置] 7.计算:28-= ▲ .8.因式分解:a a 2213-= ▲ .9.方程21=-x 的解为 ▲ .10.已知一次函数y=kx+b 的图象经过点A (2,1)(如图1), 当x ▲ 时,y ≥1.11.从1、2、3、…… 9九个自然数中任选一个数,选出的数被2整除的概率是 ▲ .12.小明家离开学校的距离是a 米,他上学时每分钟走b 米,放学回家时每分钟比上学时少走 15米,则小明从学校回家用的时间是 ▲ 分钟(用含a 、b 的代数式表示). 13.请你写出一个..二次函数解析式,使其图像的顶点在y 轴上,且在y 轴右侧图像是下降的。

2009年上海市初中毕业统一学业考试度试题及答案

2009年上海市初中毕业统一学业考试数 学 卷(满分150分,考试时间100分钟)考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】1.计算32()a 的结果是(B ) A .5aB .6aC .8aD .9a2.不等式组1021x x +>⎧⎨-<⎩,的解集是( C )A .1x >-B .3x <C .13x -<<D .31x -<<3.用换元法解分式方程13101x x x x --+=-时,如果设1x y x-=,将原方程化为关于y 的整式方程,那么这个整式方程是( A ) A .230y y +-= B .2310y y -+=C .2310y y -+=D .2310y y --=4.抛物线22()y x m n =++(m n ,是常数)的顶点坐标是( B ) A .()m n ,B .()m n -,C .()m n -,D .()m n --,5.下列正多边形中,中心角等于内角的是( C )A .正六边形B .正五边形C .正四边形 C .正三边形 6.如图1,已知AB CD EF ∥∥,那么下列结论正确的是(A )A .AD BCDF CE = B .BC DFCE AD =C .CD BCEF BE= D .CD ADEF AF= 二、填空题:(本大题共12题,每题4分,满分48分) 【请将结果直线填入答题纸的相应位置】A B D C E F图1781=的根是 x=2 .9.如果关于x 的方程20x x k -+=(k 为常数)有两个相等的实数根,那么k =.10.已知函数1()1f x x =-,那么(3)f = —1/2 .11.反比例函数2y x=图像的两支分别在第 I III 象限.12.将抛物线2y x =向上平移一个单位后,得以新的抛物线,那么新的抛物线的表达式是 .13.如果从小明等6名学生中任选1名作为“世博会”志愿者,那么小明被选中的概率是 1/6 .14.某商品的原价为100元,如果经过两次降价,且每次降价的百分率都是m ,那么该商品现在的价格是100*(1—m)^2 元(结果用含m 的代数式表示).15.如图2,在ABC △中,AD 是边BC 上的中线,设向量 , 如果用向量a ,b 表示向量AD ,那么AD =a +(b/2).16.在圆O 中,弦AB 的长为6,它所对应的弦心距为4,那么半径OA = 5 .17.在四边形ABCD 中,对角线AC 与BD 互相平分,交点为O .在不添加任何辅助线的前提下,要使四边形ABCD 成为矩形,还需添加一个条件,这个条件可以是AC=BD 或者有个内角等于90度 .18.在Rt ABC △中,903BAC AB M ∠==°,,为边BC 上的点,联结AM (如图3所示).如果将ABM △沿直线AM 翻折后,点B 恰好落在边AC 的中点处,那么点M 到AC 的距离是 2 .三、解答题:(本大题共7题,满分78分) 19.(本题满分10分)计算:22221(1)121a a a a a a +-÷+---+. = —120.(本题满分10分)解方程组:21220y x x xy -=⎧⎨--=⎩,①.②(X=2 y=3 ) (x=-1 y=0)图2A 图3B M C=142y x =5AB a =21.(本题满分10分,每小题满分各5分)如图4,在梯形ABCD 中,86012AD BC AB DC B BC ==∠==∥,,°,,联结AC .(1)求tan ACB ∠的值;(2)若M N 、分别是AB DC 、的中点,联结MN ,求线段MN 的长. (1) 二分之根号3(2)822.(本题满分10分,第(1)小题满分2分,第(2)小题满分3分,第(3)小题满分2分,第(4)小题满分3分)为了了解某校初中男生的身体素质状况,在该校六年级至九年级共四个年级的男生中,分别抽取部分学生进行“引体向上”测试.所有被测试者的“引体向上”次数情况如表一所示;各年级的被测试人数占所有被测试人数的百分率如图5所示(其中六年级相关数据未标出).表一根据上述信息,回答下列问题(直接写出结果):(1)六年级的被测试人数占所有被测试人数的百分率是 20% ;(2)在所有被测试者中,九年级的人数是 6 ;(3)在所有被测试者中,“引体向上”次数不小于6的人数所占的百分率是 35% ; (4)在所有被测试者的“引体向上”次数中,众数是 5 .23.(本题满分12分,每小题满分各6分)已知线段AC 与BD 相交于点O ,联结AB DC 、,E 为OB的中点,F 为OC 的中点,联结EF (如图6所示).(1)添加条件A D ∠=∠,OEF OFE ∠=∠,求证:AB DC =. 证明:由已知条件得:2OE=2OC OB=OC 又 A D ∠=∠角AOB=角DOC 所以三角形ABO 全等于三角形DOC 所以AB DC =(2)分别将“A D ∠=∠”记为①,“OEF OFE ∠=∠”记为②,“AB DC =”记为③,添加条件①、③,以②为结论构成命题1,添加条件②、③,以①为结论构成命题2.命题1是 真 命题,命题2是 假 命题(选择“真”或“假”填入空格). 24.(本题满分12分,每小题满分各4分)A DC图4 B 九年级八年级 七年级六年级25%30% 25% 图5图6 O D CAB E F在直角坐标平面内,O 为原点,点A 的坐标为(10),,点C 的坐标为(04),,直线CM x ∥轴(如图7所示).点B 与点A 关于原点对称,直线y x b =+(b 为常数)经过点B ,且与直线CM 相交于点D ,联结OD .(1)求b 的值和点D 的坐标;(2)设点P 在x 轴的正半轴上,若POD △是等腰三角形,求点P 的坐标;(3)在(2)的条件下,如果以PD 为半径的圆P 与圆O 外切,求圆O 的半径.解:(1)点B (—1,0),代入得到 b=1 直线BD :y=x+1Y=4代入 x=3 点D (3,1)(2)1、PO=OD=5 则P (5,0)2、PD=OD=5 则PO=2*3=6 则点P (6,0)3、PD=PO 设P (x ,0) D (3,4)则由勾股定理 解得 x=25/6 则点P (25/6,0)(3)由P ,D 两点坐标可以算出:1、r=5—2、PD=5 r=13、PD=25/6 r=025.(本题满分14分,第(1)小题满分4分,第(2)小题满分5分,第(3)小题满分5分)已知9023ABC AB BC AD BC P ∠===°,,,∥,为线段BD 上的动点,点Q 在射线AB 上,且满足PQ AD PC AB=(如图8所示). (1)当2AD =,且点Q 与点B 重合时(如图9所示),求线段PC 的长; (2)在图8中,联结AP .当32AD =,且点Q 在线段AB 上时,设点B Q 、之间的距离为x ,APQ PBCS y S =△△,其中APQ S △表示APQ △的面积,PBC S △表示PBC △的面积,求y 关于x 的函数解析式,并写出函数定义域;(3)当AD AB <,且点Q 在线段AB 的延长线上时(如图10所示),求QPC ∠的大小.ADPCBQ 图8DAPCB(Q ) 图9图10CADPBQxb解:(1)AD=2,且Q 点与B 点重合,根据题意,∠PBC=∠PDA ,因为∠A=90。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2009年上海市中考数学试卷(含答案)一、选择题(共6小题,每小题4分,满分24分)1.(2009•上海)抛物线y=2(x+m)2+n(m,n是常数)的顶点坐标是()A.(m,n)B.(﹣m,n)C.(m,﹣n)D.(﹣m,﹣n)2.(2009•上海)下列正多边形中,中心角等于内角的是()A.正六边形B.正五边形C.正四边形D.正三边形3.(2009•上海)如图,已知AB∥CD∥EF,那么下列结论正确的是()A.B.C.D.4.计算(a3)2的结果是()A.a5B.a6C.a8D.a﹣15.(2009•上海)不等式组的解集是()A.x>﹣1 B.x<3 C.﹣1<x<3 D.﹣3<x<16.(2009•上海)用换元法解分式方程﹣+1=0时,如果设=y,将原方程化为关于y的整式方程,那么这个整式方程是()A.y2+y﹣3=0 B.y2﹣3y+1=0 C.3y2﹣y+1=0 D.3y2﹣y﹣1=0二、填空题(共12小题,每小题4分,满分48分)7.(2009•上海)某商品的原价为100元,如果经过两次降价,且每次降价的百分率都是m,那么该商品现在的价格是_________元(结果用含m的代数式表示).8.(2009•上海)如果从小明等6名学生中任选1名作为“世博会”志愿者,那么小明被选中的概率是_________.9.(2009•上海)如图,在△ABC中,AD是边BC上的中线,设向量,如果用向量,表示向量,那么=_________.10.如图,在Rt△ABC中,∠BAC=90°,AB=3,M为BC上的点,连接AM,如果将△ABM沿直线AM翻折后,点B恰好落在边AC的中点处,求点M到AC的距离.11.(2009•上海)在圆O中,弦AB的长为6,它所对应的弦心距为4,那么半径OA=_________.12.(2009•上海)将抛物线y=x2﹣2向上平移一个单位后,得以新的抛物线,那么新的抛物线的表达式是_________.13.(2009•上海)方程的根是x=_________.14.(2009•上海)分母有理化:=_________.15.(2009•上海)如果关于x的方程x2﹣x+k=0(k为常数)有两个相等的实数根,那么k=_________.16.反比例函数图象的两分支分别在第_________象限.17.(2009•上海)已知函数f(x)=,那么f(3)=_________.18.(2009•上海)在四边形ABCD中,对角线AC与BD互相平分,交点为O.在不添加任何辅助线的前提下,要使四边形ABCD成为矩形,还需添加一个条件,这个条件可以是_________.三、解答题(共7小题,满分78分)19.(2009•上海)已知线段AC与BD相交于点O,连接AB、DC,E为OB的中点,F为OC的中点,连接EF(如图所示).(1)添加条件∠A=∠D,∠OEF=∠OFE,求证:AB=DC.(2)分别将“∠A=∠D”记为①,“∠OEF=∠OFE”记为②,“AB=DC”记为③,添加条件①、③,以②为结论构成命题1,添加条件②、③,以①为结论构成命题2.命题1是_________命题,命题2是_________命题(选择“真”或“假”填入空格).20.(2009•上海)在直角坐标平面内,O为原点,点A的坐标为(1,0),点C的坐标为(0,4),直线CM∥x轴(如图所示).点B与点A关于原点对称,直线y=x+b(b为常数)经过点B,且与直线CM相交于点D,连接OD.(1)求b的值和点D的坐标;(2)设点P在x轴的正半轴上,若△POD是等腰三角形,求点P的坐标;(3)在(2)的条件下,如果以PD为半径的圆P与圆O外切,求圆O的半径.21.(2009•上海)已知∠ABC=90°,AB=2,BC=3,AD∥BC,P为线段BD上的动点,点Q在射线AB上,且满足(如图1所示).(1)当AD=2,且点Q与点B重合时(如图2所示),求线段PC的长;(2)在图1中,连接AP.当AD=,且点Q在线段AB上时,设点B、Q之间的距离为x,,其中S△APQ 表示△APQ的面积,S△PBC表示△PBC的面积,求y关于x的函数解析式,并写出函数定义域;(3)当AD<AB,且点Q在线段AB的延长线上时(如图3所示),求∠QPC的大小.22.(2009•上海)为了了解某校初中男生的身体素质状况,在该校六年级至九年级共四个年级的男生中,分别抽取部分学生进行“引体向上”测试.所有被测试者的“引体向上”次数情况如表一所示;各年级的被测试人数占所有被测次数0 1 2 3 4 5 6 7 8 9 10人数 1 1 2 2 3 4 2 2 2 0 1(1)六年级的被测试人数占所有被测试人数的百分率是_________;(2)在所有被测试者中,九年级的人数是_________;(3)在所有被测试者中,“引体向上”次数不小于6的人数所占的百分率是_________;(4)在所有被测试者的“引体向上”次数中,众数是_________.23.(2009•上海)计算:24.(2009•上海)解方程组:25.(2009•上海)如图,在梯形ABCD中,AD∥BC,AB=DC=8,∠B=60°,BC=12,连接AC.(1)求tan∠ACB的值;(2)若M、N分别是AB、DC的中点,连接MN,求线段MN的长.2009年上海市中考数学试卷参考答案与试题解析一、选择题(共6小题,每小题4分,满分24分)1.(2009•上海)抛物线y=2(x+m)2+n(m,n是常数)的顶点坐标是()A.(m,n)B.(﹣m,n)C.(m,﹣n)D.(﹣m,﹣n)考点:二次函数的性质。

专题:配方法。

分析:本题比较容易,考查根据二次函数解析式确定抛物线的顶点坐标.解答:解:因为抛物线y=2(x+m)2+n是顶点式,根据顶点式的坐标特点,它的顶点坐标是(﹣m,n).故选B.点评:抛物线的顶点式定义的应用.2.(2009•上海)下列正多边形中,中心角等于内角的是()A.正六边形B.正五边形C.正四边形D.正三边形考点:多边形内角与外角。

分析:正n边形的内角和可以表示成(n﹣2)•180°,则它的内角是等于,n边形的中心角等于,根据中心角等于内角就可以得到一个关于n的方程,解方程就可以解得n的值.解答:解:根据题意,得=,解得:n=4,即这个多边形是正四边形.故选C.点评:本题比较容易,考查正多边形的中心角和内角和的知识,也可以对每个结果分别进行验证.3.(2009•上海)如图,已知AB∥CD∥EF,那么下列结论正确的是()A.B.C.D.考点:平行线分线段成比例。

分析:已知AB∥CD∥EF,根据平行线分线段成比例定理,对各项进行分析即可.解答:解:∵AB∥CD∥EF,∴.故选A.点评:本题考查平行线分线段成比例定理,找准对应关系,避免错选其他答案.4.计算(a3)2的结果是()A.a5B.a6C.a8D.a﹣1考点:幂的乘方与积的乘方。

分析:根据幂的乘方(a m)n=a mn,即可求解.解答:解:原式=a3×2=a6.故选B.点评:本题主要考查了幂的乘方法则,正确理解法则是解题关键.5.(2009•上海)不等式组的解集是()A.x>﹣1 B.x<3 C.﹣1<x<3 D.﹣3<x<1考点:解一元一次不等式组。

分析:本题比较容易,考查不等式组的解法.解答:解:解不等式①,得x>﹣1,解不等式②,得x<3,所以不等式组的解集为﹣1<x<3,故选C.点评:本题考查一元一次不等式组的解法,属于基础题.求不等式组的解集,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.6.(2009•上海)用换元法解分式方程﹣+1=0时,如果设=y,将原方程化为关于y的整式方程,那么这个整式方程是()A.y2+y﹣3=0 B.y2﹣3y+1=0 C.3y2﹣y+1=0 D.3y2﹣y﹣1=0考点:换元法解分式方程。

专题:换元法。

分析:换元法即是整体思想的考查,解题的关键是找到这个整体,此题的整体是,设=y,换元后整理即可求得.解答:解:把=y代入方程+1=0,得:y﹣+1=0.方程两边同乘以y得:y2+y﹣3=0.故选A.点评:用换元法解分式方程时常用方法之一,它能够把一些分式方程化繁为简,化难为易,对此应注意总结能用换元法解的分式方程的特点,寻找解题技巧.二、填空题(共12小题,每小题4分,满分48分)7.(2009•上海)某商品的原价为100元,如果经过两次降价,且每次降价的百分率都是m,那么该商品现在的价格是100(1﹣m)2元(结果用含m的代数式表示).考点:列代数式。

分析:现在的价格=第一次降价后的价格×(1﹣降价的百分率).解答:解:第一次降价后价格为100(1﹣m),第二次降价是在第一次降价后完成的,所以应为100(1﹣m)(1﹣m),即100(1﹣m)2.点评:本题难度中等,考查根据实际问题情景列代数式.根据降低率问题的一般公式可得:某商品的原价为100元,如果经过两次降价,且每次降价的百分率都是m,那么该商品现在的价格是100(1﹣m)2.8.(2009•上海)如果从小明等6名学生中任选1名作为“世博会”志愿者,那么小明被选中的概率是.考点:概率公式。

分析:本题考查了概率的简单计算能力,是一道列举法求概率的问题,属于基础题,可以直接应用求概率的公式.解答:解:因为从小明等6名学生中任选1名作为“世博会”志愿者,可能出现的结果有6种,选中小明的可能性有一种,所以小明被选中的概率是.点评:此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.9.(2009•上海)如图,在△ABC中,AD是边BC上的中线,设向量,如果用向量,表示向量,那么=.考点:*平面向量。

分析:此题主要用到了平行四边形法则,在向量AB,BC已知的情况下,可求出向量AC,又题中AD为中线,所以只要准确把CD表示出来,向量AD即可解决.解答:解:因为向量,根据平行四边形法则,可得:,,又因为在△ABC中,AD是BC边上的中线,所以,用向量a,b表示向量,那么=.故答案为:a+b.点评:本题难度中等,考查向量的知识.10.如图,在Rt△ABC中,∠BAC=90°,AB=3,M为BC上的点,连接AM,如果将△ABM沿直线AM翻折后,点B恰好落在边AC的中点处,求点M到AC的距离.考点:翻折变换(折叠问题)。

专题:操作型。

分析:利用图形翻折前后图形不发生变化,从而得出AB=AB′=3,DM=MN,再利用三角形面积分割前后不发生变化,求出点M到AC的距离即可.解答:解:∵△ABM沿直线AM翻折后,点B恰好落在边AC的中点处,假设这个点是B′,作MN⊥AC,MD⊥AB,垂足分别为N,D.又∵Rt△ABC中,∠BAC=90°,AB=3,∴AB=AB′=3,DM=MN,AB′=B′C=3,S△BAC=S△BAM+S△MAC=×3×6=×MD×3+×6×MN,∴解得:MD=2,所以点M到AC的距离是2.点评:此题主要考查了图形的翻折问题,发现DM=MN,以及AB=AB′=B′C=3,结合面积不变得出等式是解决问题的关键.11.(2009•上海)在圆O中,弦AB的长为6,它所对应的弦心距为4,那么半径OA=5.考点:垂径定理;勾股定理。

相关文档
最新文档