天气学原理

合集下载

天气学原理和方法

天气学原理和方法

天气学原理和方法天气学是研究大气现象及其规律的科学,它涉及到气象学、气候学、大气物理学等多个学科的知识,是一门综合性很强的学科。

天气学的研究对象是大气,它主要研究大气中的各种现象和规律,包括气压、温度、湿度、风、云、雨、雪等。

天气学的研究方法主要包括观测、实验、数学模型和统计分析等。

首先,观测是天气学的基本方法之一。

通过对大气中各种气象要素的观测,可以获取大气的基本信息,如气温、湿度、气压、风向风速等。

这些观测数据是天气预报的基础,也是天气学研究的重要数据来源。

观测可以通过地面观测站、卫星、雷达等多种手段进行,不同的观测手段可以获取不同的气象信息,相互补充,提高观测数据的准确性和全面性。

其次,实验是天气学研究的重要手段之一。

通过实验可以模拟大气中的各种气象现象,如风暴、降雨、云的形成等,从而深入研究大气中的物理、化学和动力过程。

实验可以在实验室中进行,也可以在自然环境中进行,通过对实验数据的分析和研究,可以揭示大气中的一些规律和机理。

另外,数学模型是天气学研究的重要工具之一。

大气是一个复杂的系统,包括了各种物理、化学和动力过程,这些过程相互作用,构成了复杂的大气现象。

通过建立数学模型,可以对大气中的各种过程进行模拟和预测,从而提高天气预报的准确性和可靠性。

数学模型可以采用不同的数学方法和计算手段进行建模和模拟,如常微分方程、偏微分方程、数值计算等。

最后,统计分析是天气学研究的重要手段之一。

通过对大气观测数据的统计分析,可以揭示大气中的一些规律和特征,如气象要素的变化规律、气象事件的频率分布等。

统计分析可以采用不同的统计方法和技术,如相关分析、回归分析、时间序列分析等,从而揭示大气中的一些规律和规律。

总之,天气学是一门综合性很强的学科,它涉及到多个学科的知识,研究大气中的各种现象和规律。

天气学的研究方法主要包括观测、实验、数学模型和统计分析等,这些方法相互补充,共同推动了天气学的发展和进步。

随着科学技术的不断发展,天气学的研究方法也在不断创新和完善,为我们更好地认识和理解大气提供了重要的手段和方法。

天气学原理-第一章

天气学原理-第一章
5
气压梯度力的讨论:
1.气压梯度力是由气压分布不均匀引起的。
2.气压压指G梯向 度 低力压Px的,x方垂yy向直z z指于向等–压1 线P的。方 向1 ,Px即i由 高Py
j
P z
k
3.气压梯度力的大小与气压梯度成正比,与空 气密度成反比,即等压线越密集,气压梯度 越大。 在同样的气压梯度下,高处的风就比低处 的风大,因为高空的密度小。
3.关于静力学方程,连续方程,热力学方程的方程式 和意义;速度散度的表达式和意义
4.大气运动系统的分类与尺度 5.地转风、梯度风、热成风的定义、表达式、意义 6.热成风与冷暖平流的关系 7.中纬度系统的温压场结构特点 8.地转偏差的定义 9.摩擦层中、自由大气中的地转偏差的概念、表达式和意义
0


1

p y

f u

0


1

p g z

39
大尺度运动系统的特征(中高纬):
1.准水平
ω→0
2.准静力平衡
3.准地转
地转偏向力与气压梯度力相平衡
4.自由大气
F→0
40
第4节 “P”坐标系中的基本方程组
P坐标系的运动方程
z坐标系:(x,y,z,t)来表示空间点的位置 p坐标系:(x,y,p,t)来表示空间点的位置
3、地转风风速大小与水平气压梯度成正比,等压线越密 集,地转风越大;与纬度成反比,相同的水平气压梯 度力,高纬风小,低纬风大。风速相同,在低纬的等 高线应比高纬的等高线分析得稀疏些。
4、
地转风散度为零
51
5、地转平衡只能看成是一种近似关系,绝对的地转 平衡并不存在。

天气预报的原理和方法

天气预报的原理和方法

天气预报的原理和方法天气预报是根据天气现象的变化规律和天气系统的运动规律,通过使用物理学、气象学、数学和计算机科学等方法对大气中各种气象因素的演变进行研究和模拟,从而预测未来一段时间内的天气状况。

下面将详细介绍天气预报的原理和方法。

1.大气动力学原理:大气动力学研究大气中的空气运动规律,如风的产生、变化和移动等。

大气运动的驱动力主要来自于地球的旋转、太阳辐射和地表的热能输送。

通过分析大气压力场、温度场和湿度场等因素,可以推导出大气中空气的运动规律,进而预测未来一段时间内的风向、风速和风力等。

2.大气热力学原理:大气热力学研究大气中热量的传递和分布规律。

太阳辐射是地球上气候和天气变化的主要驱动力,它使地表受热,产生对流运动和气候变化。

通过分析太阳辐射、地表温度、地表类型等因素,可以预测未来一段时间内的气温变化、日照时数和温度分布等。

3.大气湿热力学原理:大气湿热力学研究大气中水的状态和变化规律。

水循环是地球上气候和天气变化的重要组成部分,水蒸气的含量和分布对降水和云的形成有重要影响。

通过分析水蒸气含量、云量、降水量等因素,可以预测未来一段时间内的降水情况、云量变化和湿度分布等。

1.统计方法:统计方法是天气预报中最基本和常用的方法之一、它通过分析过去的气象数据,建立统计模型,并根据模型预测未来的气象状况。

例如,通过分析历史气温数据,可以建立一种关于温度变化的统计模型,从而预测未来的气温。

2.数值模拟方法:数值模拟方法是天气预报中较为复杂和准确的方法之一、它利用数学方程和计算机模拟大气运动的过程,通过对初始条件的输入和边界条件的设定,计算得到未来一段时间内大气的变化情况。

数值模拟方法需要大量的计算资源和实时的观测数据作为输入,能够提供比较准确的天气预报结果。

3.聚类方法:聚类方法是一种基于数据相似性的天气预报方法。

它通过将观测数据分成不同的群组或类别,然后将相似的群组或类别作为未来天气的模式进行预测。

天气学原理

天气学原理

天气学原理概述:天气学是研究大气现象和天气变化规律的一门科学。

它通过观测、实验和数学模型等方法,探索大气运动、热力学和水循环等因素对天气的影响。

天气学原理是天气学的基础,它涉及到大气的组成、结构、运动和能量传递等方面的知识。

一、大气的组成大气主要由氮气、氧气和少量的稀有气体组成。

其中,氮气占78%,氧气占21%,其他气体如氩气、二氧化碳等占1%左右。

这些气体的比例对于维持地球的气候和天气起着重要作用。

二、大气的结构大气可以分为不同的层次,从地球表面向上分别是对流层、平流层、中间层、热层和外层。

对流层是最接近地球的一层,其中发生了大部分的天气现象。

平流层以上的层次则较为稳定,很少发生天气变化。

三、大气的运动大气的运动是天气变化的重要因素。

大气通过对流、辐射和地球自转等方式进行运动。

其中,对流是主要的运动形式,通过热对流和冷对流的交替,形成了气压系统、风和降水等现象。

四、大气的能量传递大气中的能量主要来自太阳辐射。

太阳辐射进入大气后,一部分被地表吸收,一部分被大气层吸收或反射。

地表和大气层吸收的能量会引起温度的变化,从而影响着天气的产生和发展。

五、水循环与天气水循环是天气变化的重要机制之一。

当太阳辐射使水面蒸发后,水蒸气会上升到高空,形成云和降水。

降水又可以补充地表的水资源,维持生态系统的平衡。

水循环的变化会导致天气的多变,如降水量的增减和云量的变化等。

六、气象观测和预报天气学使用气象观测和预报技术来研究和预测天气变化。

气象观测通过测量气温、湿度、气压、风速和降水等参数来获取大气状态的信息。

而气象预报则利用观测数据和数值模型等方法,对未来天气进行推测和预测。

七、天气系统和气候带天气系统是指由气压系统、风和降水等要素组成的大气系统。

它们在全球范围内形成了不同的气候带,如赤道气候带、温带和寒带等。

这些气候带的存在使得地球上各地的天气具有一定的规律性和区别。

八、天气与人类活动天气对人类的生活和活动有着重要的影响。

对天气学原理的认识和理解

对天气学原理的认识和理解

对天气学原理的认识和理解天气学是研究大气的运动和变化规律,以及它们与地球其他部分之间的相互作用的科学学科。

它主要关注天气系统的发展和演变,以及不同因素对天气现象的影响。

天气学的研究范围涵盖了大气的成分和结构、气候变化、天气现象的观测和预测等方面。

以下是我对天气学原理的理解:1. 大气组成与结构:大气由气体、悬浮颗粒物、水汽等组成。

根据气体成分的不同,大气分为对流层、平流层和对流层顶部的平流层等层次。

不同层次的大气对太阳辐射、温度分布等具有不同的影响。

2. 大气运动:大气中的运动是天气变化的关键因素之一。

温度和压力的差异引起了空气的运动,形成了风。

风的产生和变化影响了气象系统的运动和演变,并对天气现象产生重要影响。

3. 热力学原理:热力学原理是解释气象现象的基础。

温度和压力是热力学原理的关键概念。

热传递机制如辐射、传导和对流,以及热平衡条件在大气中起着重要作用。

热力学原理帮助解释了温度、湿度、压强等气象要素的相互作用以及它们对天气变化的影响。

4. 水汽的循环:水汽是大气中重要的水分来源,也是天气现象的重要驱动力。

水汽的循环包括蒸发、凝结和降水等过程。

在大气中发生的这些过程对云的形成、降水的分布等天气现象产生重要影响。

5. 大气层的辐射平衡:太阳辐射是地球上大气和气候系统的主要能量来源。

大气反射、吸收和辐射这些能量,形成了辐射平衡。

辐射平衡的不稳定与变化是天气变化的重要原因。

6. 气象观测和预测:天气学依赖于对各种气象要素的观测和监测。

气象观测站点和卫星等技术手段提供了大量的气象数据。

通过对这些数据的分析和处理,天气学家可以预测天气变化,帮助人们做出合理的气象决策。

以上只是我对天气学原理的基本理解和认识,尽管涉及了一些关键概念和过程,但天气学作为一门复杂的学科,仍有很多深入和复杂的内容需要进一步学习和研究。

天气学对于人们的日常生活和各行各业都有重要的影响,了解天气学原理有助于我们更好地理解和适应天气变化。

天气学原理资料

天气学原理资料

天气学原理基础一、大气运动的基本特征1、真实力:气压梯度力、地心引力、摩擦力(1)气压梯度力:作用于单位质量气块上的净压力,由于气压分布不均匀而产生(2)地心引力:地球对单位质量空气的万有引力不变,指向地心。

(3)摩擦力:单位质量空气受到的净粘滞力一般只在行星边界层(摩擦层)考虑摩擦作用,自由大气中则忽略摩擦作用。

2、视示力:惯性离心力、地转偏向力惯性离心力:地球受到了向心力的作用却不作加速运动,违背牛顿第二定律,为了解释这种现象引入惯性离心力,其大小与向心力相等而方向相反地转偏向力(科氏力):观测者站在旋转地球上观测单位质量空气块运动,发现在北半球有一个向右偏的力,在南半球向左偏的力。

称此力为地转偏向力,又名科氏力。

由于坐标系的旋转导致物体没有受力却出现加速度,违背牛顿第二定律,从而引入,以使牛顿运动定律在旋转参考系中成立地转偏向力的特点:在纬圈平面内;只改变气块运动方向,不改变其速度大小;在北半球,地转偏向力指向运动方向右侧,在南半球,地转偏向力指向运动方向左侧;地转偏向力的大小与相对速度成正比重力:地心引力与惯性离心力的合力。

重力垂直于水平面,赤道最小,极地最大重力是垂直方向上的,而大气运动是准水平的;科氏力始终垂直于速度方向,故只改变方向,不作功;所以,引起大气运动的最重要作用是:由于压力分布不均匀而产生的压力梯度力(热力作用引起的)。

3、控制大气运动的基本规律:能量守恒、质量守恒、动量守恒牛顿第二运动定律——运动方程质量守恒定律——连续方程能量守恒定律——热力学能量方程气体实验定律——气体状态方程4、地转风地转风是自由大气中水平气压梯度力和地转偏向力相平衡时的空气的水平运动。

风沿等压线(等高线、等位势线)吹,背风而立低压在左高压在右地转风性质:1)地转关系是在无摩擦,不考虑加速度和垂直方向的地转偏向力的情况下近似成立的赤道上(φ=0)水平地转偏向力为零,地转风不存在2)地转风的大小与水平气压梯度力成正比3)地转风与等压线平行,在北半球,背风而立,低压在左高压在右,南半球,背风而立,低压在右高压在左(风压定律)4)地转风速大小与纬度成反比,但在赤道上 =0地转平衡不成立。

科普天气学了解天气背后的科学原理

科普天气学了解天气背后的科学原理

科普天气学了解天气背后的科学原理天气是我们日常生活中非常重要的一部分,它直接影响着我们的穿着、活动和出行。

然而,天气并非只是简单的晴雨预报,背后隐藏着许多科学原理。

本文将为您科普天气学,了解天气背后的科学原理。

一、大气压力与气压系统天气的变化与大气中的气压密切相关。

气压是指单位面积上气体对于所在面的垂直作用力。

通过气压的分布,我们可以了解天气系统的形态与发展。

1. 高压系统高压系统指的是大气中气压较高的区域。

在高压系统中,空气向四周辐散,使天气晴朗、干燥。

通常,高压天气为晴天或少云天气,空气稳定,降水几率较低。

2. 低压系统低压系统指的是大气中气压较低的区域。

在低压系统中,空气会由周围辐合向中心聚集,导致云量增多、天气多变。

低压天气通常伴随着云朵、风雨等天气现象。

二、湿度与降水湿度是指空气中所含水蒸气的含量,是天气预报中常重要的气象要素。

湿度的变化直接影响着降水的形成与发展。

1. 饱和与凝结当空气中的湿度达到一定饱和程度时,水蒸气会凝结成液态水或固态水。

冷却是导致水蒸气凝结的主要原因,例如空气的快速升高和冷却会形成云朵。

云朵进一步凝结形成水滴,当水滴足够大时,就会降落成雨、雪或雾等天气形式。

2. 相对湿度与露点温度相对湿度是指实际水蒸气含量与饱和水蒸气含量之间的比值,以百分比表示。

当相对湿度达到100%时,空气饱和,凝结就会发生。

而露点温度是指当空气冷却到饱和时的温度,是气温下降到露点温度时会出现露水、雾或冰霜的临界点。

三、气候与气象天气和气候是两个不同的概念,它们之间存在着密切的联系。

1. 天气天气是指短时间内大气的状态变化,通常是一天或几天的时间范围内。

天气的变化受到许多因素的影响,包括气压系统、湿度、风向风速等。

2. 气候气候是指长时间内特定地区的气象条件的统计结果。

气候的研究需要考虑长时间尺度上的气象数据,并结合地理环境、海洋等其他因素。

气候也受到许多因素的影响,包括纬度、海洋环流、地形等。

天气学原理和方法

天气学原理和方法

天气学原理和方法天气学是研究大气中各种气象现象及其规律的科学。

它不仅是一门理论性学科,也是一门应用性学科,对人类的生产、生活、科研等方面都有着重要的影响。

天气学的研究对象主要是大气中的各种气象现象,包括气温、气压、湿度、风向、风速、降水等。

天气学研究的方法主要包括观测、实验、数学模型和预报等。

观测是天气学研究的基础。

通过对大气中各种气象要素的观测,可以获取大气的基本信息,为天气学的研究提供数据支持。

观测的方法包括地面观测、高空观测、卫星遥感等。

地面观测主要通过气象站、气象雷达等设备进行,可以获取气温、气压、湿度、降水等信息。

高空观测主要通过气球、飞机等载体进行,可以获取大气垂直结构、风向、风速等信息。

卫星遥感主要通过卫星对大气进行遥感观测,可以获取大范围、全天候的气象信息。

实验是天气学研究的重要手段。

通过对大气中各种气象现象的模拟实验,可以深入了解气象现象的成因和规律。

实验的方法包括室内模拟实验、野外实验等。

室内模拟实验主要通过模拟大气环境,对气象现象进行实验研究。

野外实验主要通过在自然环境中进行实地观测和实验,获取真实的气象数据和现象。

数学模型是天气学研究的重要工具。

通过建立数学模型,可以模拟大气中各种气象现象的演变过程,为天气预报、气候预测等提供科学依据。

数学模型的建立需要考虑大气的动力学、热力学、水文等方面的因素,通过数学方程组的求解,可以模拟大气的运动、热量传递、水汽循环等过程。

天气预报是天气学研究的应用方向。

通过对大气中各种气象要素的观测、实验和数学模型的分析,可以对未来一段时间内的天气情况进行预测。

天气预报主要包括短期预报、中期预报和长期预报。

短期预报主要针对未来1-3天的天气情况,中期预报主要针对未来3-10天的天气情况,长期预报主要针对未来10天以上的气候情况。

总之,天气学是一门重要的气象学科,它通过观测、实验、数学模型和预报等方法,研究大气中的各种气象现象及其规律,为人类的生产、生活、科研等提供重要的科学依据。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

天气学原理Char1 大气运动的基本特征1、真实力:气压梯度力、地心引力、磨擦力( 1 ) 气压梯度力:作用于单位质量气块上的净压力,由于气压分布不均匀而产生( 2 ) 地心引力:地球对单位质量空气的万有引力( 3 ) 磨擦力:单位质量空气受到的净粘滞力2、视示力:惯性离心力、地转偏向力惯性离心力:地球受到了向心力的作用却不作加速运动,违背牛顿第二定律,为了解释这种现象引入惯性离心力,其大小与向心力相等而方向相反。

C= Ω2R地转偏向力:由于坐标系的旋转导致物体没有受力却浮现加速度,违背牛顿第二定律,从而引入,以使牛顿运动定律在旋转参考系中成立。

地转偏向力的特点: A= -2Ω×V( 1 )地转偏向力 A 与Ω相垂直,在纬圈平面内(2)地转偏向力 A 与风速 V 垂直,只改变气块运动方向,不改变其速度大小( 3)在北半球 A 在水平速度的右侧,在南半球 A 在水平速度的左侧( 4 )地转偏向力的大小与相对速度成正比,V=0 时,A=0 ;惟独在做相对运动时 A 才存在重力:地心引力与惯性离心力的合力。

重力垂直于水平面,赤道最小,极地最大。

3、地转偏向力与水平地转偏向力有何相同与不同?水平地转偏向力:大气中垂直运动普通比较小,气块的运动主要受 x 方向和 y 方向的影响。

通常情况下 w 很小,于是近似有Ax=2 Ωv 和Ay= -2Ωu。

对水平运动而言,北半球 Ax 、Ay 使运动向左偏,南半球右偏。

地转偏向力:包括垂直运动。

4、控制大气运动的基本规律:能量守恒、质量守恒、动量守恒牛顿第二运动定律——运动方程质量守恒定律——连续方程能量守恒定律——热力学能量方程气体实验定律——气体状态方程5、温度平流变化-V · hT 是气块在温度水平分布不均匀的区域内保持原有的温度作水平运动而对局地温度变化所提供的贡献,称为温度平流变化。

- T 温度梯度由高温指向低温。

当-V ·hT<0 时,有冷平流,夹角为钝角,风从冷区吹向暖区,使局地温度降低。

当-V ·hT>0 时,有暖平流,夹角为锐角,风从暖区吹向冷区,使局地温度升高。

对流变化:空气垂直运动引起的局地温度变化6、质量散度和速度散度质量散度:· (ρ)位体积流体的净流出量。

净流出时散度为正,净流入时散度为负。

速度散度:·V 流体在单位时间内的相对膨胀率。

·V >0 时,体积增大辐散。

不可压缩流体:速度散度为零水平散度:流体在单位时间内水平面积的相对膨胀率 7、热力学能量方程空气块的热力学能量的变化率=加热率+外力对空气块的作功率 8、用热力学方程解释引起固定点温度变化的原因由热力学能量方程的零级简化得,大尺度系统中的局地温度变化是由温度平流和非绝热作用造成的结果。

在非绝热作用很小的情况下,温度变化主要是由温度平流引起的。

9、等位势面当物体在等位势面上挪移时,位能不发生变化,不需要克服重力作功,等位势面处处与重力方向垂直,等位势面是水平面。

10、地转风地转风是自由大气中水平气压梯度力和地转偏向力相平衡时的空气的水平运动。

风沿等压线(等高线、等位势线) 吹,背风而立低压在左高压在右。

地转风性质:( 1 ) 地转关系是在无磨擦,不考虑加速度和垂直方向的地转偏向力的情况下近似成立的。

赤道上 ( φ=0) 水平地转偏向力为零,地转风不存在。

( 2 ) 地转风的大小与水平气压梯度力成正比 ( 3)地转风与等压线平行,在北半球,背风而立,低压在左高压在右,南半球,背风而立,低压在右高压在左(风压定律) ( 4 ) 地转风速大小与纬度成反比 11、梯度风水平气压梯度力、水平地转偏向力、惯性离心力平衡时,有效分力为零,风沿等压曲线作惯性等速曲线运动,这就是梯度风。

应用: (1)顺时针旋转对应高压中心,逆时针旋转对应低压中心。

(2)低压中心等压线可分析的密集些,高压中心附近等压线应分析的稀疏些。

( 3 )气旋中心气压梯度和风速可无极限,而在反气旋中则有极限,梯度风有极大值。

(4)气旋性环流中对风速估计过高,反气旋中V max=2Vg 对风速估计过低。

12、热成风:地转风随高度的改变量热成风与平均等温度线(或者等厚度线)平行,背风而立,低温在左高温在右。

热成风大小与平均温度梯度或者厚度梯度成正比,与纬度成反比。

热成风解释浅薄& 深厚系统:百度温压场对称系统地转风随高度顺转有暖平流,地转风随高度逆转有冷平流。

13、正压大气和斜压大气正压大气:大气中密度的分布仅仅随着气压而变,等压面和等密度面(等温面)重合,没有热成风。

斜压大气:大气中密度的分布不仅随气压变化,还随温度变化。

等压面和等密度面 (或者等温面)是相交的。

等压面上具有温度梯度,地转风随高度变化,就有热成风。

14、地转偏差实际风与地转风之差称为地转偏差。

D=V-Vg磨擦层中的地转偏差:( 1 )地转偏差垂直于磨擦力的方向,并指向磨擦力方向的右方。

摩擦力越大,实际风越小,左偏越多。

( 2 )风速比应有的梯度风风速小,风向偏向低压。

因此在北半球低压中的空气逆时针流动,但有向内流的分量;高压中的空气顺时针流动,但有向外流的分量。

磨擦作用使低压辐合上升,高压辐散下沉。

自由大气中的地转偏差:梯度力和地转偏向力不平衡时,产生加速度。

地转偏差垂直于加速度的方向,并指向加速度方向的左方。

D1 变压风:h V·= h ·(Vg+D)= h D·地转风的散度为 0,所以实际风散度取决于地转偏差的散度。

地面图上,负变压中心区,变压风辐合引起上升运动;正变压中心区,变压风辐散引起下沉运动。

高空图,槽前脊后必有负变压,有变压风辐合。

槽后脊前有正变压,变压风辐散。

D2 平流加速度(横向纵向地转偏差):槽前脊后有纵向、横向地转偏差辐散;槽后脊前有纵向横向地转偏差辐合。

低层以变压风辐散 (合)为主,高层以纵向、横向辐散 (合)为主:槽前脊后:变压风辐合,纵向、横向辐散槽后脊前:变压风辐散,纵向、横向辐合因此高层槽前脊后辐散槽后脊前辐合,低层槽前脊后辐合槽后脊前辐散。

Char2 气团与锋1、气团气象要素水平分布比较均匀的大范围的空气团。

形成条件:性质均匀的广阔的地球表面,下沉辐散,稳定的环流方式:各种尺度的湍流、系统性垂直运动、蒸发、凝结和辐射等物理过程冬季:极地大陆气团和热带海洋气团、北极气团夏季:西伯利亚气团、热带海洋气团、热带大陆气团、赤道气团春季:西伯利亚气团、热带海洋气团秋季:变性西伯利亚气团主导,热带海洋气团,秋高气爽。

2、锋锋:冷暖气流相遇所形成的狭窄过渡带锋区:天气图上温度水平梯度大而窄的区域,如果它又随高度向冷空气团一侧倾钭,这样的等温线密集带通常称为锋区。

实际上,锋区就是密度不同的两个气团之间的过渡区。

锋面:由于锋区的宽度同气团宽度相比显得很狭窄,于是常把锋区看成是空间一个面锋线:锋面与地面的交线3、锋面的坡度公式( 1 )其他条件不变,锋面坡度随纬度增高而增大 f。

赤道上 ( φ=0) ,没有锋面存在( 2 ) 锋两侧温差越大坡度越小,温差为零则不会有锋面△T( 3 ) 锋两侧风速差△Vg 为零时,锋面不存在;锋存在时,tgα>0,两侧平行于它的地转风分速应具有气旋式切变。

锋面坡度与锋面两侧风速差成正比( 4 ) 冷暖气团的平均温度越高坡度越大 Tm锋附近气流曲率很大时应用梯度风公式,即气旋曲率越大的气流中锋面平衡坡度越大4、锋面附近温度场的特征( 1 ) 水平方向:锋区内温度水平梯度大,等温线相对密集,越密集水平温度梯度越大,锋区越强。

锢囚锋在高空图上有暖舌,暖舌两侧等温线密集。

根据锋区内等温线密集度确定锋区强度、地面锋线位置;等压面上冷暖平流确定锋的类型。

( 2 ) 垂直方向:锋区内温度垂直梯度小,逆温或者温度直减率小。

冷暖气团内温度随高度递减。

冷暖气团温差越大,锋面逆温越强或者过渡区越窄,通过锋区时等温线弯折越厉害。

( 3 ) 等位温面随高度向冷区倾斜,与锋面倾斜方向一致,在绝热条件下雨锋面平行。

5、以密度的零级不连续面摹拟锋面时,锋面附近气压场、风场和变压场的特征气压场:锋面两侧气压连续,密度不连续,气压梯度不连续:冷气团中气压梯度大于暖气团中气压梯度(锋面必须为物质面)等压线过锋面有气旋性弯曲,锋面处等压线有折角,指向高压水平风场:锋面附近风场具有气旋性切变,地面磨擦作用可使风向偏离等压线向低值区吹,并导致锋线附近强的风场辐合垂直风场:暖锋附近风向随高度顺转;冷锋附近风向随高度逆转变压场:空间各点气压随时间的变化在某位面上的分布情况气压倾向方程:右边第一项为地面以上整个气柱中密度平流 (热力因子) :暖锋前地面减压,冷锋后地面加压;冷锋前暖锋后、静止锋附近变压不明显第二项为地面以上整个气柱中速度水平散度总和 (动力因子) :若整个气柱散度总和辐散则地面气压下降,散度总和辐合则地面气压上升。

冷锋、暖锋均是锋前变压代数值小于锋后变压代数值6、以密度的一级不连续面摹拟锋面时,锋面附近气压场、风场和变压场的特征锋区存在,锋区附近密度一级不连续,气压二级不连续气压场:锋区内等压线气旋式曲率比锋区外大得多,反气旋式曲率比锋区外小得多水平风场:锋区内气旋式切变比锋区外大得多,锋区外反气旋式切变比锋区外小得多垂直风场:锋区中温度水平梯度大于两侧,锋区中热成风比锋区外大得多风随高度顺转,暖平流最强且热成风最大的高度为高空暖锋区;风随高度逆转,冷平流最强且热成风最大的高度为高空冷锋区;热成风很大而无明显平流,可能是静止锋。

变压场:锋区边界变压梯度不连续,变压风也不连续;地面锋区中,等变压线密集,锋区外,等变压线稀疏,变压值比较小7、锋附近湿度场特征:普通暖空气湿度大,露点高;冷空气湿度小,露点低。

所以锋面附近露点差异显著8、锋面天气的输送带模式输送带是指以天气系统为坐标系的相对气流,它们是系统内产生云和雨区的主要气流。

分为暖输送带:向后上滑暖输送带、向前上滑暖输送带和冷输送带9、锋面分析的基本原则历史连续性原则结合高空锋区:锋随高度向冷区倾斜,地面锋线位于高空等压面上等温线相对密集区的偏暖一侧,根据冷暖平流确定锋的性质;分析地面天气图上各气象要素以确定锋的位置高空测风资料的应用(单站测风) :根据风向随高度的变化确定锋的性质,风随高度逆转有冷锋,风随高度顺转有暖锋11、锋生锋消概况锋生带概况: 南方锋生带: 华南到长江流域北方锋生带: 河西走廊到东北 锋生时的温压场形势:高空温压场——锋生区的上空有低槽移入和发展地面气压场——地面天气图上,锋生常发生在低压或者低槽中锋生时气象要素的变化:变压场——冷锋锋生前, 地面常有明显的正 3h 变压浮现; 暖锋锋生前, 地面常有明显 的负 3h 变压浮现风场—— 江南地区, 暖锋锋生前常有明显的气旋性风切变热成风方向大致代表锋线的走向原点与代表锋面的热成风的垂线代表锋的移向和速度10 、锋生、锋消锋生: 指密度不连续性形成的一种过程或者指已经有的一条锋面, 其温度或者位温水平梯度加大 的过程。

相关文档
最新文档