某水电站综合自动化系统设计

合集下载

水电站自动化系统设计

水电站自动化系统设计

水电站自动化系统设计摘要:水电站一般地处偏远地区,生活条件艰苦,为了达到增效扩容的目的,并改善水电站职工的劳动条件,水电站采用“微机自动化系统”将是一个重要的途经,也是降低水电站运行成本的重要举措。

本文将在如何对水电站自动化系统进行设计作一探讨。

关键词:增效扩容;水电站自动化系统;系统设计1 系统设计概述水电站自动化系统是通过控制机组(水轮机、发电机)、主阀、油系统、水系统、气系统、调速器系统、励磁系统、高压设备、大坝闸门等相关设备运行,实现稳定发电为目的。

整体可体现为六遥即遥控、遥调、遥测、遥信、遥脉和遥视。

水电站自动化系统通过遥信(开关量输入或DI)、遥测获得被控设备运行状态,根据既定策略进行遥控(如断路器的分合操作,前池闸门、进水阀门/闸门、各种电磁阀等的打开和关闭、机组开机、机组停机等)和遥调(如并网后的有功、无功调节等)。

通过遥视(即视频监控系统)完成重要设备的直观监视。

2 系统设计依据各种国家标准(GB、GBT)、行业标准、地方标准。

技术协议、供货清单等详细配置清单。

用户、设计院厂家提供的资料图纸。

技术部门现场勘测报告、照片等技术资料。

设计各阶段与用户、设计院沟通的邮件、函件、设联会会议纪要等都是很重要的设计依据。

3 自动化系统主要设备水电站自动化系统通过摆放于现场的各种屏柜、信号采集设备及硬件和软件通讯网络等,来控制与机组相关的设备有序运行,通过合理的监控,最终实现最小成本实现最大发电量的目标。

常见的高速单环行以太网网络形式可参看图1。

自动化系统由如下设备构成。

3.1后台监控设备如操作员工作站、工程师工作站、各种服务器、打印机、中控台、不间断电源等,运行人员通过工作站等对电站内的设备进行监控。

3.2网络通讯设备常用的网络通讯设备有:通讯管理装置、串口服务器、交换机、光纤设备(光纤交换机/光纤收发器设备等)、模拟量信号传输设备、通讯线缆等,该部分设备完成所有智能设备的通讯采集并上送到后台监控系统。

浅析水电站综合自动化监控系统设计与应用

浅析水电站综合自动化监控系统设计与应用

浅析水电站综合自动化监控系统设计与应用摘要:水电站自动化程度是水电站现代化建设的重要指标之一,也是水电站安全运行不可或缺的保证。

随着技术和信息技术的飞速发展,水电站自动化系统也得到了升级。

鉴于此,简单介绍水电站综合自动化监控系统,分析研究其具体应用情况,为相关工作者提供参考借鉴。

关键词:水电站;综合自动化;监控系统引言:电力资源作为人们日常生活离不开的重要能源,其重要性日渐突出。

为了确保电力资源的有效供应,我国兴建了很多水电设施。

但是经过长年的运转,水电站的很多设备都存在老化陈旧、故障频发等问题,不仅本身的电能供应质量较差,无法满足当今电力市场的需求,而且自动化水平较低,严重制约着水电企业的发展。

因此,对水电站进行综合自动化系统的改造具有重要的现实意义,不仅可以提升发电的电能质量,而且有助于帮助电力工作者及时发现电力生产过程中的安全问题,消除了电力生产隐患。

1水电站综合自动化监控系统概述1.1水电站综合自动化监控系统利用水流的作用,推动水力机械水轮机进行转动,从而将水流产生的机械能转化为电能,这就是水力发电的过程。

作为一项综合系统工程,水电站的最大作用就是实现水能转换成电能,实现为用电客户供应电力。

在水电站中设置综合自动化监控系统,借助计算机监控系统,以及一些相关的辅助监控设备、水文自动测报系统以及电气监控设备等,可以实现对整个水电站的水文测报、工程监视、负荷的合理分配,以及在输电线路运行全过程的自动监控,帮助水电站的工作人员对水电站的运行情况有全面的了解,提高其工作效率,确保水电站的正常运行,满足用电客户的用电需求。

1.2水电站自动化监控系统的组成根据计算机监控系统在水电站综合自动化监控系统中的作用不同,可以分为以下三种组成模式:(1)以计算机监控系统作为辅助监控的综合自动化监控系统,主要的操作均由常规的自动化装置来完成,而自动化监控系统仅用作对水电站运行情况进行相关数据的采集和处理工作。

在该种模式下,如果自动化监控系统出现了问题,无法正常运行时,水电站的其他自动化装置仍可以正常工作,确保水电站的正常运行。

水电站自动化监控系统的设计与实现

水电站自动化监控系统的设计与实现

水电站自动化监控系统的设计与实现随着社会的不断发展,人类对各种能源的需求越来越大。

而水电作为一种最为清洁、最为环保的能源,在当今的社会中有着越来越广泛的应用。

为了更好地利用水电资源,提高水电站的产能以及对其进行更加精细的管理,水电站自动化监控系统应运而生。

本文将从设计与实现两个方面对水电站自动化监控系统进行阐述。

一、水电站自动化监控系统的设计1. 系统需求分析在设计水电站自动化监控系统之前,首要的任务就是对系统进行需求分析。

这个过程中需要明确系统的功能、性能以及可靠性等方面的要求。

只有正确地确定这些要素,系统才能够符合实际的操作需求。

2. 系统架构设计在进行系统架构设计时需要考虑以下几点:首先,需要考虑到整个系统的运行效率。

在此前提下,应当尽量简单化整个系统的结构,使得系统的维护与管理更加容易。

其次,在设计系统时,应当尽量避免使用成熟的技术,以便于后期的升级与改进。

3. 系统模块设计在设计水电站自动化监控系统时,需要根据具体的需求将其划分为不同的模块。

具体模块功能可包括:数据采集模块、实时监控模块、预警模块、报警模块等等。

在设计系统模块时需要保持合理的分离,使得各个模块之间的影响可以最小化。

4. 系统接口设计在设计水电站自动化监控系统时,需要考虑整个系统的接口设计。

这个过程中需要考虑到使用者的实际情况,以及所连接的各个系统之间的数据交换关系。

而在进行接口设计时,需要综合考虑各方面因素,如接口协议、数据协议、数据格式、数据解析等等。

二、水电站自动化监控系统的实现1. 系统硬件的选型在实现水电站自动化监控系统时,需要选用合适的硬件设备。

这其中需要考虑到硬件设备的性能与稳定性。

一般来说,选用高性能的硬件设备可以保证监控系统更为稳定,更加可靠。

2. 软件方案的选取在实现水电站自动化监控系统时,需要选取合适的软件方案。

这其中需要考虑到软件的稳定性与可靠性。

一般来说,选用成熟的软件方案可以大幅提高监控系统的可靠性。

水电站综合自动化系统分析与设计

水电站综合自动化系统分析与设计
2 1 完成 对水 轮发 电机 组 的 自动 控制 .
上 叶 片 自觉 性 根 据 水 量 的 大 小来 调 节使 用 水 轮 机 的 动 行 水 头 范 围。转 轮 是 混流 式水 轮 机 将水 流 能 量转 换 为机 械 能 的核 心 部件 。
水 流通 过 导 水机 构进 入 转 轮 。混 流式 水 轮 机适 用 水 头范 围 极广 。 在 实 际情 况 中水 头 和流 量 的 不 同往 往是 不 同 的 ,所 以转 轮 形状 是
不 相 同 的 。通过 自动化 的调 节 ,水 头愈 高 转 轮 叶片 高度 减 小 ,能 够 自动 的使 长度 增 加 ,水 流 在转 轮 中也 能 更趋 于幅 向 。随 着工 作 水 头 降低 ,转轮 叶 片变 短 ,也能 自动化 的 高度 增 加 ,水 流 愈趋 于 轴 流方 向 。 32 P C 调节 水库式 电站调 速器 中的应 用 . L 在 水 库 式水 电站 的调 速 器 和开 度 的大 小 一般 会 根 据水 轮 机本 身 来 设 计水 头 变化 范 围 。 当水 电 站水 头 降低 的 时候 ,此 时水 轮机 中
全性 等 。
3 水 电站综合 自动化创 新设计的实际运用
当今 社 会 ,随 着综 合 水 电 站 自动 化水 平 的不 断 提 高 ,水 轮 发 电机 组 所 需 的部 件也 越来 越多 ,技术 要求 也 越 来越 高 。但 由于 当 前技 术 性 问题 ,很多 主机 部 件 自动化 元件 在 性 能方 面 存在 有 不 稳 定 、反 应度 差 等 制约 性 因 素 。而 且在 自动 化 设 计方 面 的不 完 整 性 也容 易 使水 电站 的 自动控 制不 同程度 的受 到 影 响 ,这 就要 求 我 们 对水 电 站综合 自动 化进 行不 断 的创新 。 31 水 电站 自动 化在 混流 式水 轮发 电机 中的应 用 . 混 流式 水 轮机 由美 国工 程 师弗 朗 西斯 于 14 年 发 明 的 ,所 以 89 也称 弗 朗 西斯 水 轮机 ,是 目前 世 界上 使用 最 广 泛 的一 种水 轮 机 。 与 轴 流 转 桨 式 相 比 ,这 类 水 轮发 电机 结 构 更 加 简单 ,效 率更 加 高效 。 混 流式 水 轮机 的工作 原 理 ,是 由水 流直 接 进人 到 导 水机 构 , 然后 轴 向流 出转 轮 ;混 流 式 的转 轮 的结 构特 点 ,一 般 用 是 由低 碳 钢 和合 金 铸造 而 成 ,有 的 也用 焊 接结 构 。有 的水 电站 为 了提 高 其 防腐 蚀 性 往往 外 层会 出现 镀层 或 者 直接 不 锈钢 ,更有 甚 的 水 电站 会 出 现 整 个 转 轮 采 用 不 锈 钢 。 在 这些 方 法 中 常 常 会 采 用 铸 焊 结 构 ,这 样 的 结构 往往 能 节 约 资本 ,流动 也 能更 加 准确 化 ,对 于 水 轮机 本 身 效 率 的提高 有 很 大 的帮 助 ,往 往也 会 用 不 同的 材料 制 造

水电站综合自动化系统设计

水电站综合自动化系统设计

水电站综合自动化系统设计一、引言水电站作为一种重要的能源发电设施,自动化程度和效率对于其正常运行和发电效果非常关键。

而水电站综合自动化系统的设计是实现水电站自动化的基础和核心。

本文将从控制层、监控层和管理层三个方面进行设计,以提高水电站的自动化程度和运行效率。

二、控制层设计1.控制层硬件设计:采用PLC(可编程逻辑控制器)作为主控制器,通过模数转换器(ADC)和数字信号处理器(DSP)对信号进行采集和处理,保证控制的准确性和即时性。

2.控制层软件设计:通过使用PLC编程软件对PLC进行编程,实现对水电站各个部分的控制,包括水泵、水轮发电机等。

同时,建立控制层与监控层的通信接口,实现实时监测和数据传输。

三、监控层设计1.监控层硬件设计:使用现场总线技术,将PLC和监控设备连接在同一总线上,形成一个统一的监控网络,通过监控器和触摸屏等设备对水电站进行远程监控和操作。

2.监控层软件设计:开发监控软件,实现对水电站各个部分的实时监测和数据采集,包括水位、水压、水量、电压、电流等。

通过设定阈值,实现对异常情况的报警和自动停机等措施。

四、管理层设计1.管理层硬件设计:建立一个中央服务器,用于存储和管理水电站的相关数据。

同时,设计一套网络架构,实现多个水电站之间的数据共享和统一管理。

2.管理层软件设计:开发管理软件,实现对水电站各个参数的监测和分析,包括发电量、耗电量、设备运行状态等。

通过数据分析,预测和优化水电站的运行效果,提高发电效率和降低运维成本。

五、总结水电站综合自动化系统的设计是实现水电站自动化的关键。

通过控制层、监控层和管理层的设计,可以实现对水电站各个部分的精确控制、实时监测和数据管理。

这将提高水电站的自动化程度和运行效率,提高发电效果和节约能源。

水电站发电运行方案的自动化控制系统

水电站发电运行方案的自动化控制系统

水电站发电运行方案的自动化控制系统随着科技的不断进步和发展,自动化控制系统在各个领域中扮演着越来越重要的角色。

对于水电站这种大型能源发电基地来说,自动化控制系统的应用可以提高发电效率和运行安全性。

本文将就水电站发电运行方案的自动化控制系统进行论述和讨论。

一、背景介绍水电站作为一种清洁、可再生的能源发电方式,受到越来越多的关注和推崇。

然而,水电站发电过程中的运行安全性、环保性以及经济性等方面的要求也越来越高。

在这样的背景下,自动化控制系统的应用势在必行。

二、自动化控制系统的作用和优势自动化控制系统的应用可以实现对水电站发电过程中各个环节的精细化控制,从而提高发电效率和减少能源浪费情况的发生。

其作用和优势主要体现在以下几个方面:1. 实时监测和数据采集:自动化控制系统可以对水电站各个工艺参数进行实时监测和数据采集,实现对整个发电过程的全面掌控。

2. 远程控制和调节:自动化控制系统可以实现对水电站各个设备的远程控制和调节,无需人工干预,降低了操作风险和人工成本。

3. 故障诊断和预警:自动化控制系统可以对水电站的设备状态进行故障诊断和预警,及时排除潜在的故障隐患,确保发电过程的安全性和可靠性。

4. 数据分析和优化调整:自动化控制系统可以对水电站的运行数据进行分析和优化调整,提供科学依据和指导,最大限度地提高发电效率和经济效益。

三、自动化控制系统的组成和实施水电站发电运行方案的自动化控制系统主要由以下几个模块组成:1. 控制中心:负责对整个自动化系统进行集中控制和监测,实现对发电过程的全面管理。

2. 传感器和执行器:负责对水电站各个设备的状态进行实时监测和数据采集,以及根据控制指令进行相应的执行动作。

3. 数据通信网络:负责传输和交换控制系统中各个模块之间的数据和信息,确保实时性和可靠性。

4. 数据处理和存储模块:负责对采集到的数据进行处理和存储,为后续的数据分析和优化调整提供支持。

5. 用户界面:提供用户友好的操作界面,方便用户对发电过程进行监测和调控。

花园水电站综合自动化系统的设计与应用

花园水电站综合自动化系统的设计与应用

ABSTRA CT :Ac c o r di n g t o t he de s i g n p in r c i p l e o f“ Un ma n ne d
o r f e w p e o p l e o n d u t y ’ ’ f o r h y d r o p o w e r s t a t i o n s o f or f t h e ma i n
St a t i o n.I n a s pe c t s o f t he s y s t e m s t r u c t ur e,ha d wa r r e d es i n g a n d
s o f t wa r e d e s i g n r e s p e c t i v e l y ,t h e p a p e r d i s c u s s e s i n d e t a i l t h e d e s i g n p r o c e s s o f t h e i n t e ra g t e d a u t o ma t i o n s y s t e m o f t h e h y d r — o p o w e r s t a t i o n . Th e i n t e ra g t e d a u t o ma t i o n s y s t e m o f t h e s t a t i o n
H ua y u a n Hy dr o po we r St a t i o n
W ANG J u n — h u i
( S h a a n x i P r o v i n c e I n s t i t u t e o f Wa t e r R e s o u r c e s a n d E l e c t i r c P o w e r I n v e s t i g a t i o n , X i ’ n i l 7 1 0 0 0 1 , S h a a n x i , C h i n a )

龙头桥水电站微机综合自动化系统

龙头桥水电站微机综合自动化系统
先进技术和设备 . 使电站监控 、 电保护及运行管理等全部实现了数字化 、 继 微机化, 并具有较高的性 能价格比 , 为小 型水电
站 的技 术 更 新 提供 了 实例 。
关键词
微机 自 动化系统 ; 小型水电站 ; 自动化模块{ 龙头桥水电站 文 献标 识 码 : A
中 图 分 类号 : v T7
龙 头挢水 电站 装设 2台立式 水 轮发 电机 组 , 机容 量 单
15 k 电机 出 口电 压 6 3V, 小 型 引水 式 电 站 。 电 站 主 20 W, .k 为
() 6 应用软件 : 操作员站应用软件及服务器应用 软件
各 1 套
接线 为两机一 变的扩 大单元接线 , 高压侧 6 出线 一 回联 6 网至 6k 6 V宝清变电所 。
其硬件平台采用高 性能微 控制器 M U( 17数 据处 理速度 C C6
电站控制级即 电站上位机系统 , 3台微机组成 , 中 2 由 其
台为操 作员工作站 , 两机 以主机 、 辅机 双机热备 方式工作 , 故 障 自动切换 另设 1 S L服务器 。3台微机 利用双绞线通 台 Q 过 1/ 0 U /WIC 0 1 H B S T H连成 星型 以太网。操 作员工作站主要 0 完成电站微机控 制 、 管理 、 系统 人机联 系及 显示 打 印、 障处 故
() 4 电源 : 山特 ul 0 A s ∞v 2
() 5 系统软件平 台: c sfWi o s 8N Mi o n w / r m t d 9
收稿 日期 :O l 1 —3 2O 1 0
2 1 现地 单元级 .
()完成全站设备的继电保护 和水机保护 。 1 ()电气量( 2 模拟量 、 开关量 、 脉冲量等 ) 非 电气 量 ( 及 水 位、 压力 、 温度 、 转速等 ) 的采集 处理 。 ()断路器及部分隔离开关的分合 闸控 制。 3
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

某水电站综合自动化系统设计摘要:对某水电站综合自动化监控系统的几个主要问题,包括系统硬件结构与配置,机组lcu配置主要功能、现地控制单元、开关站及公用控制单元等进行介绍。

可供中小型水电站综合自动化系统设计参考。

关键词:水电站自动化系统设计中图分类号:tv742 文献标识码:a 文章编号:1009-914x(2013)23-545-02一、工程概述某水电站装机3x1000kw,两台s11-2500主变(38.5/6.3kv),一台s11-800近区变(10.5/6.3kv),两台厂变, 35kv出线一回至某变电站。

水电站自动控制改造采用计算机综合自动化系统,按无人值班少人值守方式改造。

整个系统采用全开放的分层分布式系统结构,具备通讯调度的功能,同时预留远方调度、大坝测控系统、等通信接口。

可实现遥测、遥信、遥控、遥调功能。

二、系统结构及配置1、系统结构方案按照水电站计算机监控系统的改造原则和功能设置,为保证计算机监控系统具有安全可靠,经济实用、技术先进功能齐全和便于扩充等技术性能,实现电站无人值班(少人值守)运行的目标,水电站计算机监控系统采用分布式系统总线式网络结构,各单元采用标准模块,既便于功能和硬件的更新和扩展,又方便日常运行的维护。

2、厂站层结构及配置水电站计算机监控系统控制中心设备包括二台主机兼操作员工作站,二机互为冗余热备用,作为电站的控制中枢;一台通讯工作站;一台a4黑白激光打印机;一套网络设备;一套语音报警设备。

(1)主机兼操作员工作站电站控制级配置二台主机兼操作员工作站。

二台主机兼操作员工作站负责全厂的安全监视、控制操作、自动发电控制、自动电压调整、对各lcu及外部系统实时数据的采集和历史数据的处理(包括运行报表、设备档案、运行参数等)、人机对话(包括对运行设备的监视、事故和故障报警,对运行设备的人工干预及各种参数的修改和设置等)、时钟同步和通信管理功能。

(2)通讯工作站用于调度通讯和水情预报,具体配置同操作员工作站。

(3)网络设备,包括tp-link公司8口1000/100m网络交换机个、网络双绞线及配件、光纤电缆等,所有计算机设备都按ieee 802.3 标准连接到快速ethernet局域网络上,网络上每个节点的数据传输速率为100mbps,网络协议为tcp/ip。

(4)打印机计算机监控系统提供1台a4黑白激光打印机,打印机用于报表、操作及报警历史记录以及一些文件和图纸等资料的打印(5)语音报警、电话报警及查询系统语音报警装置,在电站设备发生事故或故障可实现各种事故及故障的语音报警,重要事件和操作命令的语音报警,同时可启动电话或传呼系统报警。

同时还具有电话查询功能,被呼叫的运行人员可通过电话查询当前电站设备的运行情况。

3、本地控制单元结构及配置根据系统的改造原则,按照功能分布的特性和要求,现地控制单元按电站设备分布设置,共设有4套现地控制单元(lcu),其中:3套机组lcu(lcu1-lcu3),每套配置机柜一个、1套开关站及公用设备lcu(lcu4),配置机柜一个。

现地控制单元完成监控系统与电站设备或装置的接口,数据采集与处理、控制与操作,实现人机接口、单元分布数据库,与现地智能装置和电站控制级节点计算机通信处理等功能,完成监控系统对电站设备的监控。

现地控制单元可以作为所属设备的独立监控装置运行,当现地控制单元与电站控制级失去联系时,由它独立完成对所属设备的监控,包括在现地由操作人员实行的监控以及由现地控制单元对设备的自动监控。

人机接口设备选用深圳威纶通工业标准的7寸彩色液晶触模屏。

plc采用日本三菱公司fx2n系列plc。

(1)现地控制单元现地控制单元控制级按控制对象性质分为机组lcu、开关站及公用lcu,实现对各生产对象的的监控。

每台机组配置一套lcu,全站共三套,每套配置机柜一个,分别布置于发电机层机组的机旁。

每套机组lcu配置一台通信管理机负责与本单元交流采样装置、同期装置、微机调速装置、微机励磁装置、微机保护装置及其它自动安全装置通讯,通讯采用光纤及profibus通讯协议。

机组控制以可编程控制器(plc)为核心,采用液晶触摸屏作为人机界面,监控界面采用菜单形式,并具有强度大的实时图形界面显示,可方便进行机组控制和参数设置,机组lcu主要完成机组及附属设备有关电流、电压、频率、有功无功、压力、流量、温度等实时运行数据的采集及预处理功能,同时也具有对机组的开停机、并网操作及监视功能。

当它与监控主机通讯断开以后仍然能独立的实现对机组实行正常的开、停机操作;机组有功、无功负荷的调整。

机组运行状况及参数的监视,而当其与监控主机恢复通讯后又能自动接受上位机系统的控制和管理。

①机组现地控制单元plc采用日本三菱公司fx2n系列plc。

包括有采集与处理、顺控、调节、过程输入/输出、数据处理和通信功能等。

现地控制单元设置一台通讯服务器,与电站控制级通过以太网连接。

②机组为保证机组电气量采集与处理的实时性、可靠性,机组电气量采用交流采样方式,现地控制单元配置一台交流采样微机电量监测仪测量机组的电气量参数,该交流采样微机电量监测仪配备有rs-485接口与机组通讯管理机交换信息,这样可提高机组控制的实时性。

③机组现地控制单元配置一台转速信号装置,用于测控发电机组的转速、转速百分比、频率。

④机组现地控制单元配置一台8路温度巡检装置。

⑤机组现地控制单元具有自检功能,对硬件和软件进行经常监视。

⑥机组现地控制单元设有输出闭锁的功能。

在维修、调试时,可将输出全部闭锁而不作用于外部设备。

当处于输出闭锁状态时,有相应信息上送电站控制中心,以反映现地控制单元的工作状态。

⑦机组电气保护的输出信号和机组其它事件顺序记录soe点中断量采集与处理, soe中断处理分辨率不大于2ms。

⑧机组现地控制单元的plc输出经中间继电器接至现场设备的执行元件。

为提高可编程序控制器的输出控制能力,现地控制单元lcu 的plc输出经驱动能力大、具有多对转换接点的中间继电器接至现场设备的执行元件,中间继电器的接点容量满足现场设备执行元件的容量要求。

⑨现地控制单元上设有远方/现地切换开关、自动控制/手动控制切换开关和现地控制操作按钮和开关、测量表计等。

所有转换开关的位置可显示。

⑩现地控制单元的电源采用交直流双供电电源供交流设备使用。

开关量输入和开关量输出所用24v电源分别采用s-100-24开关电源实现。

该装置电源端为220vac输入,24vdc/10a输出。

(2)开关站及公用控制单元(lcu4,共计1套)开关站及公用lcu监控范围包括35kv出线、主变压器、近区变压器、6.3kv母线、直流系统,厂用电系统,厂内通信系统,公用辅机系统、消防系统等。

开关站及公用地控制单元lcu4设置于中控室。

开关站及公用lcu向上通过快速以太网与厂站级上位机通讯,开关站lcu主要完成本单元的数据采集及预处理功能,同时也具有控制、操作及监视功能。

其改造必须能保证当它与系统脱离后仍然能实现对对象进行必要的监视和控制功能,这些功能包括对象的开、停操作、运行状况及参数的监视,而当其与系统恢复联系后又能自动地服从上位机系统的控制和管理。

①开关站现地控制单元plc采用日本三菱公司fx2n系列plc,包括有采集与处理、顺控、调节、过程输入/输出、数据处理和通信功能等。

现地控制单元plc采用以太网与电站控制级以太交换机接口,完成与电站控制级计算机联网。

②同机组现地控制单元一样具有自检功能,对硬件和软件进行经常监视。

控制单元设有输出闭锁的功能。

在维修、调试时,可将输出全部闭锁,而不作用于外部设备。

当处于输出闭锁状态时,有相应信息上送电站控制中心,以反映现地控制单元的工作状态。

③为保证电气量采集与处理的实时性、可靠性,电气量采用交流采样方式,现地控制单元配置4台交流采样微机电量监测仪测量35kv线路、主变和近区变的电气量参数。

该交流采样微机电量监测仪配备有rs-485接口。

④开关站现地控制单元共用一套多点微机自动准同期装置,完成35kv线路开关及主变开关的同期操作。

同时配置手动准同期一套作为备用。

⑤现地控制单元配置通讯转发装置,实现与35kv线路保护、主变保护、近区变保护、交流采样微机电量监测仪等智能设备的通信,同时通过以太网接口完成与电站控制级计算机通讯。

三、工程技术特点(1)水电站采用全计算机监控系统,电站按无人值班(少人值守)运行方式改造。

整个系统采用局部网的全分布式开方系统结构,主机操作员工作站实用开放的操作系统,主计算机工作站及lcu直接接入网络,可获得高速通讯和资源共享能力。

(2)系统冗余化的设计和开放式的系统结构,使系统可靠实用其本身的局部故障不应影响现场设备的正常运行。

(3)在保证整个系统可靠性、设备运行的安全稳定性、实时性、实用性和经济实用的前提下,在系统硬件及软件上充分考虑系统的开放性。

(4)为了满足系统实时性要求和保证系统具有良好的开放性和向后兼容性,系统硬件与软件平台采用现在具有成熟运行经验且严格遵守当今工业标准的具有较好资历的厂商的产品。

(5)软件采用模块化、结构化改造,保证系统的可扩性,满足功能增加及规模扩充的需要。

系统具有冗余容错改造,不会因局部的故障而引起系统误操作或降低系统性能。

各lcu能脱离电站控制级独立运行。

(6)电站监控系统将与机组联系紧密的辅机系统按功能直接接入监控系统,或具有与由独立控制器组成的辅机控制系统联网能力。

(7)电站监控系统将与励磁系统、调速器、保护装置、辅助设备等设备的通信,监控系统应充分考虑与这些设备的通信,并应主动配合。

(8)系统网络结构改造和设备选型满足电站现场特点和要求如抗干扰、防雷击、机旁高温环境,并保证监控设备所需电源的高可靠性和电压质量等。

(9)系统采用可靠性高、具有成熟应用和运行经验、抗病毒能力强的开放式unix技术工作站,运用动态多窗口图形显示技术,保证人机界面的友好;采用全分布开放式系统包括分布式功能与开放分布式数据库。

(10)各现地控制单元与现场设备的接口均采用抗干扰能力强、电站用经验成熟、实时性好、性能高、便于系统与功能扩充的高性能可编程序控制器(plc)。

(11)在水电站和上级调度中心计算机系统之间进行通信,实现四遥功能。

(12)采用统一规约,实现电站监控系统与电子式电能表的通信,实现全站电能表的精确采集、统计及管理。

结束语电站计算机监控系统的改造满足使运行值班人员可以通过监控系统对全厂各主要设备、公用设备、线路的运行状态和参数,厂用电运行方式,闸门的位置以及监控系统设备和通道状态进行实施监视,通过与大坝水情、水位的实时监控对数据的实时处理通过自动发电(agc)软件实现了电站经济、安全、可靠运行的要求。

相关文档
最新文档