传感器原理PPT课件
合集下载
《传感器介绍》课件

压力传感器
用于测量液体或气体的压力, 广泛应用于汽车、工业和医疗 设备。
光线传感器
测量光的强度和光谱,用于照 明、自动化和电子设备。
位置传感器
检测物体的位置和运动,用于 机器人、船舶和航空航天领域。
传感器如何工作?
1
传感器的基本原理
传感器利用物理、化学或其他原理感知并测量外部量,如电阻、电流或频率。
什么是传感器?
传感器是一种能够感知并测量外部物理量、化学量或其他特定信息的器件。 它们可靠地将这些信息转换为与之相关的电信号或数字信号,用于监测、控 制和应用。
传感器的应用
温度传感器
用于监测和控制温度,广泛应 用于工业、医疗和家居领域。
湿度传感器
测量空气中的湿度,用于气象、 农业和建筑领域的监测和控制。
1 传感器的作用
2 传感器的应用
传感器起着感知和测量外部信息的关键作用, 为现实世界与数字世界的交互提供基础。
传感器应用广泛,涵盖温度、湿度、压力、 光线等多个领域,为各行各业提供关键数据。
3 传感器的原理
传感器基于不同的物理或化学原理工作,将 外部信息转换为电信号或数字信号。
4 传感器的未来
传感器的发展将继续创新和突破,促进科技 和社会的进步与发展。
传感器的未来发展
传感器的发展趋势
新型传感器技术的出现,如纳 米传感器和柔性传感器,将拓 展传感器应用的边界。
传感器的应用前景
智能城市、医疗健康、工业自 动化等领域将成为传感器应用 的重点开发方向。
传感器的未来发展方向
传感器将更加小型化、智能化, 并融合其他技术,实现更广泛 的应用和更高的性能。
总结
Байду номын сангаас
《认识常见的传感器》课件

传感器在物联网中的应用
物联网传感器
物联网的发展离不开传感器技术的支持,传感器在智能家居、智能交通、智能农业等领 域的应用越来越广泛,为人们的生活和工作带来了便利。
物联网传感器发展趋势
随着物联网技术的不断进步,传感器将朝着更低功耗、更小体积、更高可靠性和更低成 本的方向发展。
传感器与其他技术的融合发展
详细描述
传感器可以监测人体的血压、血糖、 血氧饱和度等生理参数,以及检测癌 症标志物、病毒等,为医生提供快速 准确的诊断结果。
智能家居
总结词
在智能家居领域,传感器用于实现智能化控制和提升居住体验。
详细描述
传感器可以检测室内温度、湿度、光照、空气质量等环境参数,以及家庭成员的行动和习惯,实现智能化的家居 环境调节和节能控制。
《认识常见的传感器 》ppt课件
目录
• 传感器概述 • 常见传感器介绍 • 传感器的工作原理与特性 • 传感器的应用领域 • 未来传感器技术展望
01 传感器概述
传感器的定义与分类
定义
传感器是一种检测装置,能感受到被测量的信息,并能将感 受到的信息,按一定规律变换成为电信号或其他所需形式的 信息输出,以满足信息的传输、处理、存储、显示、记录和 控制等要求。
03 传感器的工作原理与特性
传感器的转换原理
电阻式传感器
利用电阻随环境变化而 变化的特性,将非电量 转换为电信号。
电容式传感器
利用电容器极板间电容 随环境变化而变化的特 性,将非电量转换为电 信号。
电感式传感器
利用线圈的电感随环境 变化而变化的特性,将 非电量转换为电信号。
磁电式传感器
利用磁电感应原理,将 非电量转换为电信号。
总结词
光电式传感器的组成原理ppt课件

光线强弱 影响放大倍数
光线增强 PN导通 负电压输入
I
光线增强 短路电路
增大
U0 2I RF
应用
光学量:光强、光照度、辐射、气体成分 几何量:形状、尺寸、位移、距离、表面粗糙度、形位误 差 力学量:应变、速度、加速度、振动、流量、密度 生化量:离子浓度、荧光、电泳、染色体、分子标记
光电管研究光电效应
1.在光源灯固定L的情况下,画出光电管的伏安特性曲线 2.光源灯距离为L’( L’>L)时的伏安特性曲线
光电式数字转速表
c ZTN 60
光电比色计
用于溶液的颜色、成分、浑浊度等化学分析。
受检样品
凸透镜 光源 凸透镜 标准样品
光电池
滤色
差值
滤色
差动放大器 显示仪表
光电池
光电式带材跑偏检测器
烟尘浊度监测仪
BG4
+12V
光电池触发电路
C2 C1 R1
+12V W
R4
R2
18 7
2 5G23
6
3 R3 4
5 C3 R5
-12V
光电池放大电路
路灯自动控制器
220V
CJD-10
路灯
8V C1 200μF
200Cμ2 F
R7 10kΩ
R1 470kΩ
R2 200kΩ
R3 10kΩ
R4
R5
100μF
4.3kΩ
平行 光源
烟道
光电 探测
放大
显示
刻度 校正
报警器
太阳能电池
调节控制器
阻塞二极管
太阳 电池 方阵
直 流 负 载
逆 变 器
传感器原理及应用PPT教程课件专用

湿度传感器
湿度传感器能够监测室内湿度变化,与加湿器、除湿器等设备配合,保持室内湿度在适宜 范围内,避免潮湿或干燥对家居环境和人体健康的影响。
光照传感器
光照传感器能够感知室内光线强弱,与照明设备联动,实现室内光线的自动调节。同时, 还可用于窗帘、百叶窗等设备的自动控制,提高室内采光效果。
未来发展趋势预测
传感器应用领域
医疗领域
用于监测人体生理参数,如体 温、血压、心率等,以及医疗 设备中的控制和检测。
智能家居
用于实现家庭环境的智能化控 制,如温度控制、照明控制等。
工业自动化
用于检测和控制生产过程中的 各种参数,如温度、压力、流 量等。
环保领域
用于监测大气、水质等环境参 数,为环境保护提供数据支持。
传感器与通信接口的电路 设计
介绍传感器与通信接口之间的 电路设计,包括信号调制、解 调、编码、解码等。
接口电路设计的实例分析
通过具体案例,分析接口电路 设计的实现过程及效果。
06 传感器在物联网和智能家 居中应用展望
物联网中传感器作用及发展趋势
物联网中传感器的作用
物联网中的传感器是实现万物互联的基础, 它们能够感知和测量各种物理量,如温度、 湿度、压力、光照等,并将这些数据转换为 可处理和传输的数字信号,为物联网应用提 供实时、准确的数据支持。
新型传感器的研发
针对特定应用场景和需求,未来将研发更多新型传感器。例如,柔性传感器、生物传感器、化学传感器 等,它们将具有更高的灵敏度、选择性和稳定性,为物联网和智能家居等领域的发展提供有力支持。
THANKS FOR WATCHING
感谢您的观看
牌和型号。
注意传感器的尺寸、重量、 安装方式等是否符合应用场
湿度传感器能够监测室内湿度变化,与加湿器、除湿器等设备配合,保持室内湿度在适宜 范围内,避免潮湿或干燥对家居环境和人体健康的影响。
光照传感器
光照传感器能够感知室内光线强弱,与照明设备联动,实现室内光线的自动调节。同时, 还可用于窗帘、百叶窗等设备的自动控制,提高室内采光效果。
未来发展趋势预测
传感器应用领域
医疗领域
用于监测人体生理参数,如体 温、血压、心率等,以及医疗 设备中的控制和检测。
智能家居
用于实现家庭环境的智能化控 制,如温度控制、照明控制等。
工业自动化
用于检测和控制生产过程中的 各种参数,如温度、压力、流 量等。
环保领域
用于监测大气、水质等环境参 数,为环境保护提供数据支持。
传感器与通信接口的电路 设计
介绍传感器与通信接口之间的 电路设计,包括信号调制、解 调、编码、解码等。
接口电路设计的实例分析
通过具体案例,分析接口电路 设计的实现过程及效果。
06 传感器在物联网和智能家 居中应用展望
物联网中传感器作用及发展趋势
物联网中传感器的作用
物联网中的传感器是实现万物互联的基础, 它们能够感知和测量各种物理量,如温度、 湿度、压力、光照等,并将这些数据转换为 可处理和传输的数字信号,为物联网应用提 供实时、准确的数据支持。
新型传感器的研发
针对特定应用场景和需求,未来将研发更多新型传感器。例如,柔性传感器、生物传感器、化学传感器 等,它们将具有更高的灵敏度、选择性和稳定性,为物联网和智能家居等领域的发展提供有力支持。
THANKS FOR WATCHING
感谢您的观看
牌和型号。
注意传感器的尺寸、重量、 安装方式等是否符合应用场
《霍尔传感器原理》课件

检测碰撞程度,决定是否触发安全气囊。
03
02
01
电机控制
检测电机转子的位置,实现无接触式控制。
位置控制
在机器人和自生产过程的监控。
通过霍尔传感器检测门的状态,实现自动锁定和解锁。
智能门锁
根据光线强度自动调节窗帘的开合。
智能窗户
与其它传感器结合,实现家电的远程控制和智能管理。
《霍尔传感器原理》PPT课件
目录
CONTENTS
霍尔传感器简介霍尔效应原理霍尔传感器的分类与特性霍尔传感器的应用实例霍尔传感器的未来展望参考文献
霍尔传感器简介
1
2
3
霍尔传感器广泛应用于自动化控制、电机控制、汽车电子、安防监控、智能家居等领域。
在自动化控制领域,霍尔传感器用于检测电机转子位置和转速,实现电机精准控制。
霍尔效应原理
洛伦兹力
当带电粒子在磁场中运动时,会受到洛伦兹力的作用,导致粒子运动轨迹发生偏转。
描述霍尔元件性能的一个重要参数,与载流子浓度、迁移率等有关。
霍尔常数
指单位体积内载流子的数目,对霍尔常数有直接影响。
载流子浓度
指载流子在电场作用下的平均漂移速度与电场强度的比值,也影响霍尔常数的大小。
迁移率
03
优点
霍尔元件具有测量精度高、线性度好、稳定性强、耐高温等特点。
01
材料
常用的霍尔元件材料包括半导体、金属、陶瓷等。
02
结构
霍尔元件通常由N型或P型半导体材料制成,其结构包括电极、基片、电极引脚等部分。
霍尔传感器的分类与特性
线性型霍尔传感器主要用于测量磁场,其输出电压与所处环境的磁场强度成正比。
由于其线性输出特性,线性型霍尔传感器常用于精确测量磁场,如电流检测、磁通量测量等。
03
02
01
电机控制
检测电机转子的位置,实现无接触式控制。
位置控制
在机器人和自生产过程的监控。
通过霍尔传感器检测门的状态,实现自动锁定和解锁。
智能门锁
根据光线强度自动调节窗帘的开合。
智能窗户
与其它传感器结合,实现家电的远程控制和智能管理。
《霍尔传感器原理》PPT课件
目录
CONTENTS
霍尔传感器简介霍尔效应原理霍尔传感器的分类与特性霍尔传感器的应用实例霍尔传感器的未来展望参考文献
霍尔传感器简介
1
2
3
霍尔传感器广泛应用于自动化控制、电机控制、汽车电子、安防监控、智能家居等领域。
在自动化控制领域,霍尔传感器用于检测电机转子位置和转速,实现电机精准控制。
霍尔效应原理
洛伦兹力
当带电粒子在磁场中运动时,会受到洛伦兹力的作用,导致粒子运动轨迹发生偏转。
描述霍尔元件性能的一个重要参数,与载流子浓度、迁移率等有关。
霍尔常数
指单位体积内载流子的数目,对霍尔常数有直接影响。
载流子浓度
指载流子在电场作用下的平均漂移速度与电场强度的比值,也影响霍尔常数的大小。
迁移率
03
优点
霍尔元件具有测量精度高、线性度好、稳定性强、耐高温等特点。
01
材料
常用的霍尔元件材料包括半导体、金属、陶瓷等。
02
结构
霍尔元件通常由N型或P型半导体材料制成,其结构包括电极、基片、电极引脚等部分。
霍尔传感器的分类与特性
线性型霍尔传感器主要用于测量磁场,其输出电压与所处环境的磁场强度成正比。
由于其线性输出特性,线性型霍尔传感器常用于精确测量磁场,如电流检测、磁通量测量等。
电阻应变式传感器的工作原理PPT课件可编辑全文

图为 应变片敏感栅半
圆弧部分的形状。沿 轴向应变为ε,沿横向 应变为εr 。
θ
dθ
dl
20丝21绕式应变片敏感栅半圆弧形部分
若敏感栅有n根纵栅,每根长为l,半径为r,在轴
向应变ε作用下,全部纵栅的变形视为ΔL1
ΔL1= n lε 半圆弧横栅同时受到ε和εr的作用,在任一微小段长度 d l = r dθ上的应变εθ可由材料力学公式求得
1 2r1 2rco 2s
每个圆弧形横栅的变形量Δl为
l 0 rd l0 rd 2 r r
纵栅为n根的应变片共有n-1个半圆弧横栅,全部横栅
的变形量为 L2n20 212 1rr
应变片敏感栅的总变形为
L L 1 L 2 2 n 2 n l 1 r n 2 1 rr
敏感栅栅丝的总长为L,敏感栅的灵敏系数为KS,则 电阻相对变化为
2021
2.箔式应变片 它是利用照相制版或光刻技术将厚约0.003~0.01mm的金
属箔片制成所需图形的敏感栅,也称为应变花。 优点:①.可制成多种复杂形状尺寸准确的敏感栅,其栅长l可 做0.2mm,以适应不同的测量要求;②.与被测件粘贴结面积 大; ③.散热条件好,允许电流大,提高了输出灵敏 度; ④.横向效应小。
中给出了为1/10和1/20时δ的数值。
误差δ的计算结果
l
δ(%)
1/10
1.62
1/20
0.52
2021
由表可知,应变片栅长与正弦应变波的波长之比愈
小,相对误差δ愈小。当选中的应变片栅长为应变波长
的(1/10~1/20)时,δ将小于2%。
因为
f
式中 υ——应变波在试件中的传播速度; f——应变片的可测频率。
电容式传感器原理及其应用PPT课件
2.1 变面积式电容传感器
变面积式电容式传感器通常分为线位移型 和角位移型两大类。
〔1〕线位移变面积型
常用的线位移变面积型电容式传感器可分 为平面线位移型和柱面线位移型两种结 构。
➢ 对于平板状结构,在图4-2〔a〕中,两极板有效覆盖面积就发生变化,电容 量也随之改变,其值为:
➢
➢ 式中,
,为初始电容值。
➢ 当电容式传感器的电介质改变时,其介电常数变化, 也会引起电容量发生变化。
➢ 变介电常数式电容传感器就是通过介质的改变来实 现对被测量的检测,并通过传感器的电容量的变化 反映出来。它通常可以分为柱式和平板式两种,如 下图。
〔a〕柱式
〔b〕平板式
变介电常数式电容传感器
➢ 变介电常数式电容传感器的两极板间假设存在导电 物质,还应该在极板外表涂上绝缘层,防止极板短 路,如涂上聚四氟乙烯薄膜。
➢ 电桥的输出电压为:
2.2 变压器电桥电路
电容式传感器接入变压器电桥测量电路如下图,它可 分为单臂接法和差动接法两种。
〔a〕单臂接法
〔b〕差动接法
〔1〕单臂接法
图4-8(a)所示为单臂接法的变压器桥式测量电路,高 频电源经变压器接到电容桥的一个对角线上,电容 构成电桥的四个臂,其中 为电容传感器。
〔a〕电容器的边缘效应
〔b〕带有等位环的平板式电容器
图4-14 等位环消除电容边缘效应原理图
〔2〕保证绝缘材料的绝缘性能 ① 温度、湿度等环境的变化是影响传感器中绝缘材料
性能的主要因素。 ②传感器的电极外表不便清洗,应加以密封,可防尘、
防潮。 ③ 尽量采用空气、云母等介电常数的温度系数几乎为
零的电介质作为电容式传感器的电介质。 ④ 传感器内所有的零件应先进行清洗、烘干后再装配。
传感器工作原理ppt课件
ppt精选版
14
ppt精选版
15
ppt精选版
16
ppt精选版
17
• 以上所列传感器分类有较大的概括性,但由于传
感器的分类不统一,而这种分类很难完备,例如 有的学者将传感器作了如下分类:1)压力:2) 力/荷重;3)位移(厚度);4)力矩;5)角度; 6)角速度(转速);7)速度;8)加速度;9) 角加速度;10)倾斜角;11)编码器;12)震动; 13)气体/烟雾;14)温度;15)热能;16)湿 度;17)水分;18)露点;19)液位;20)料位; 21)流量;22)流速;23)风速;24)电流;25) 电压;26)电功率;27)电频率;28)接近开关; 29)磁性开关;30)pH值;31)光电开关;32) 电阻率;33)电导率;34)水域氧;35)生物; 36)红外线;37)紫外线;38)光纤;39)离子; 40)激光;41)超声波;42)声音/噪声;43) 触觉;44)图像/颜色;45)密度/粘度;46)混 浊度。
额定开关距离(sn)是用来表示开关距离名义量值,他不考虑制造误差和参数
变化(温度、电压)。在技术特征表中只列出额定开关距离
实际开关距离(sr)时值在固定的温度和电流条件下的开关距离。实际开关距 离要考虑制造误差,它与额定开关距离之间的关系是0.9sn≤sr≤1.1sn
有效开关距离(su)是在所允许的温度及电压范围内得到的可靠实用的开关距 离 。它与额定开关距离之间的关系是0.81sn≤su≤1.21sn
图1.3是这种现象稍微夸张了的曲线。一般来说输入增加到某值时的输出要比输入下降 到某值时的输出小,正如图1.3所示。如存在迟滞差,则输入和输出的关系就不是一一 对应了,因此必须尽量减少这个差值。
各种材料的物理性质是产生迟滞现象的原因。如把应力加于某弹性材料时,弹性材料产
《传感器教程》课件
03
微型化和智能化传感器的结合 将为物联网、智能家居等领域 提供更加便捷和高效的数据采 集解决方案。
多功能与复合型传感器的研发
多功能传感器将集成多种传感元件,实现多参数、多维度的测量,提高测 量效率和精度。
复合型传感器将结合不同传感原理,实现优势互补,提高传感器的综合性 能。
多功能与复合型传感器的研发将推动传感器在智能制造、机器人等领域的 应用,促进产业升级和转型。
详细描述
电容式传感器利用电容器原理,通过检测电容量变化来检测物理量的变化,如压力、位 移、液位等。
电容式传感器
总结词
测量范围大
详细描述
电容式传感器的测量范围较大,能够 检测较大的位移和压力等物理量,同 时具有较好的线性度。
电容式传感器
总结词
温度稳定性好
VS
详细描述
电容式传感器通常采用陶瓷或聚四氟乙烯 等材料制作,具有良好的温度稳定性,能 够在较宽的温度范围内工作。
总结词
频率响应高
要点二
详细描述
压电式传感器的频率响应较高,能够在高频振动和冲击等 快速变化的物理量中实现实时检测和反馈控制。
压电式传感器
总结词
耐腐蚀性好
详细描述
压电式传感器通常采用特殊的材料制 作,具有较强的耐腐蚀性,能够在恶 劣的环境条件下工作。
03
传感器的特性参数
线性度
总结词
线性度是衡量传感器输出与输入之间线性关系的参数。
THANKS
监测控制
传感器可以监测设备的运行 状态和环境参数,及时发现 异常情况,实现远程控制和 智能调节。
决策支持
传感器采集的数据可以为决 策者提供科学依据,帮助决 策者做出更加科学、合理的 决策。
传感器简介PPT课件
传感器简介PPT课件
目录
• 传感器基本概念与原理 • 常见类型传感器介绍 • 传感器性能指标评价方法 • 传感器应用领域探讨 • 传感器技术发展趋势预测
01
传感器基本概念与原理
传感器定义及作用
传感器定义
能够感受规定的被测量并按照一 定规律转换成可用输出信号的器 件或装置。
传感器作用
将被测量转换为与之有确定关系 的、便于应用的某种物理量,以 满足信息传输、处理、存储、显 示、记录和控制等要求。
多功能、复合型方向
利用新材料、新工艺和新技术, 开发具有多种功能的复合型传感 器,如同时检测温度、湿度、压
力等多种参数的传感器。
发展可穿戴传感器技术,实现人 体生理参数和环境参数的实时监
测和评估。
结合柔性电子技术,开发可弯曲 、可折叠的传感器,拓展其在可 穿戴设备、医疗器械等领域的应
用。
生物医学传感器方向
转换过程
敏感元件将被测量转换为电参量(如电阻、电容、电感等),经过转换电路转 换为标准输出信号(如电压、电流等)。转换过程中可能涉及信号调理和校准 等环节,以确保输出信号的准确性和稳定性。
02
常见类型传感器介绍
温度传感器
01
02
03
热电偶
利用热电效应测量温度, 具有测量范围宽、稳定性 好等特点。
电容式压力传感器
利用电容器原理将压力转 换为电容变化,具有精度 高、稳定性好等特点。
位移传感器
电感式位移传感器
光电式位移传感器
利用电磁感应原理将位移转换为电感 量变化,具有测量精度高、响应速度 快等优点。
利用光电转换原理将位移转换为光信 号变化,具有测量精度高、抗干扰能 力强等优点。
电容式位移传感器
目录
• 传感器基本概念与原理 • 常见类型传感器介绍 • 传感器性能指标评价方法 • 传感器应用领域探讨 • 传感器技术发展趋势预测
01
传感器基本概念与原理
传感器定义及作用
传感器定义
能够感受规定的被测量并按照一 定规律转换成可用输出信号的器 件或装置。
传感器作用
将被测量转换为与之有确定关系 的、便于应用的某种物理量,以 满足信息传输、处理、存储、显 示、记录和控制等要求。
多功能、复合型方向
利用新材料、新工艺和新技术, 开发具有多种功能的复合型传感 器,如同时检测温度、湿度、压
力等多种参数的传感器。
发展可穿戴传感器技术,实现人 体生理参数和环境参数的实时监
测和评估。
结合柔性电子技术,开发可弯曲 、可折叠的传感器,拓展其在可 穿戴设备、医疗器械等领域的应
用。
生物医学传感器方向
转换过程
敏感元件将被测量转换为电参量(如电阻、电容、电感等),经过转换电路转 换为标准输出信号(如电压、电流等)。转换过程中可能涉及信号调理和校准 等环节,以确保输出信号的准确性和稳定性。
02
常见类型传感器介绍
温度传感器
01
02
03
热电偶
利用热电效应测量温度, 具有测量范围宽、稳定性 好等特点。
电容式压力传感器
利用电容器原理将压力转 换为电容变化,具有精度 高、稳定性好等特点。
位移传感器
电感式位移传感器
光电式位移传感器
利用电磁感应原理将位移转换为电感 量变化,具有测量精度高、响应速度 快等优点。
利用光电转换原理将位移转换为光信 号变化,具有测量精度高、抗干扰能 力强等优点。
电容式位移传感器
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章、传感器测量原理
3.3 电容式传感器
变换原理:将被测量的变化转化为电容量变化
两平行极板组成的电
+
A
容器,它的电容量为:
+
+
C
0A
δ、A或ε发生变
化时,都会引起
1
电容的9/1变8/20化19 。
3.3 电容式传感器
a)极距δ变化型
+
+
43;
+ +
2
9/18/2019
c) 介质变化型
C
0A
8
9/18/2019
3.3 电容式传感器
产品.
9
电容式液位传感器(液9位/18/2计019/料位计)
3.3 电容式传感器 电容式接近开关
被测物体 感应电极
测量头构成电容器的一个极板,另一个极 板是物体本身,当物体移向接近开关时, 物体和接近开关的介电常数发生变化,使 得和测量头相连的电路状态也随之发生变 化.接近开关的检测物体,并不限于金属导 体,也可以是绝缘的液体或粉状物体。
3.3 电容式传感器
驻极体电容传声器
它采用聚四氟乙烯材料作为振动膜片。这种材 料经特殊电处理后,表面永久地驻有极化电荷,取 代了电容传声器极板,故名为驻极体电容传声器。 特点是体积小、性能优越、使用方便。
3
9/18/2019
3.3 电容式传感器
b)面积变化型
C
0A
角位移型
+ + +
4
2 涡流式
原理:涡流效应
18
9/18/2019
3.4 电感式传感器 原线圈的等效阻抗Z变化:
Z Z ( , , ,)
19
9/18/2019
3.4 电感式传感器
20
9/18/2019
3.4 电感式传感器 产品:
21
9/18/2019
3.4 电感式传感器 案例:连续油管的椭圆度测量
Eddy Sensor
3.4 电感式传感器
单螺管线圈型
双螺管线圈差动型 传感器测量电路
~
25
螺管线圈差动
9/18/2019
3.4 电感式传感器 差动变压器测量电路
26
9/18/2019
3.4 电感式传感器 差动变压器位移传感器
27
9/18/2019
3.4 电感式传感器 案例:板的厚度测量
~
28
9/18/2019
29 2019/9/18
Reference
Coiled
Circle
Tube
22
9/18/2019
3.4 电感式传感器 案例:无损探伤
火车轮检测
原理
裂纹检测,缺陷造成涡流变化。
油管检测
23
9/18/2019
3.4 电感式传感器
2 互感型--差动变压器
工作原理:互感现象.
Eout Ew
24
W1 W W2
Es
-x
x
9/18/2019
振荡电路
被测电容
10
9/18/2019
3.3 电容式传感器
3 测量电路
a)电桥电路
11
9/18/2019
3.3 电容式传感器 b) 谐振电路
f0
2π
1 LC
12
9/18/2019
3.3 电容式传感器 d) 运算放大器电路
13
9/18/2019
第三章、传感器测量原理
3.4 电感式传感器
电感式传感器是基于电磁感应原理,它是把被 测量转化为电感量的一种装置。
分类:
电感式传感器
自感型
可变磁阻型
涡流式
互感型
14
9/18/2019
15 2019/9/18
3.4 电感式传感器
1 自感型--可变磁阻式
原理:电磁感应
L N 20 A0 2
16
可变导磁面积型
差动型
9/18/2019
3.4 电感式传感器 电感式接近传感器(金属)
17
9/18/2019
3.4 电感式传感器
9/18/2019
3.3 电容式传感器
平面线位移型
C
0A
5
9/18/2019
3.3 电容式传感器
柱面线位移型.
C
0A
6
9/18/2019
3.3 电容式传感器
产品.
液体压力 作用在陶 瓷膜片的 表面,使 膜片产生 位移。
压力变送器
7
陶瓷电容压力传感器 9/18/2019
3.3 电容式传感器
3.3 电容式传感器
变换原理:将被测量的变化转化为电容量变化
两平行极板组成的电
+
A
容器,它的电容量为:
+
+
C
0A
δ、A或ε发生变
化时,都会引起
1
电容的9/1变8/20化19 。
3.3 电容式传感器
a)极距δ变化型
+
+
43;
+ +
2
9/18/2019
c) 介质变化型
C
0A
8
9/18/2019
3.3 电容式传感器
产品.
9
电容式液位传感器(液9位/18/2计019/料位计)
3.3 电容式传感器 电容式接近开关
被测物体 感应电极
测量头构成电容器的一个极板,另一个极 板是物体本身,当物体移向接近开关时, 物体和接近开关的介电常数发生变化,使 得和测量头相连的电路状态也随之发生变 化.接近开关的检测物体,并不限于金属导 体,也可以是绝缘的液体或粉状物体。
3.3 电容式传感器
驻极体电容传声器
它采用聚四氟乙烯材料作为振动膜片。这种材 料经特殊电处理后,表面永久地驻有极化电荷,取 代了电容传声器极板,故名为驻极体电容传声器。 特点是体积小、性能优越、使用方便。
3
9/18/2019
3.3 电容式传感器
b)面积变化型
C
0A
角位移型
+ + +
4
2 涡流式
原理:涡流效应
18
9/18/2019
3.4 电感式传感器 原线圈的等效阻抗Z变化:
Z Z ( , , ,)
19
9/18/2019
3.4 电感式传感器
20
9/18/2019
3.4 电感式传感器 产品:
21
9/18/2019
3.4 电感式传感器 案例:连续油管的椭圆度测量
Eddy Sensor
3.4 电感式传感器
单螺管线圈型
双螺管线圈差动型 传感器测量电路
~
25
螺管线圈差动
9/18/2019
3.4 电感式传感器 差动变压器测量电路
26
9/18/2019
3.4 电感式传感器 差动变压器位移传感器
27
9/18/2019
3.4 电感式传感器 案例:板的厚度测量
~
28
9/18/2019
29 2019/9/18
Reference
Coiled
Circle
Tube
22
9/18/2019
3.4 电感式传感器 案例:无损探伤
火车轮检测
原理
裂纹检测,缺陷造成涡流变化。
油管检测
23
9/18/2019
3.4 电感式传感器
2 互感型--差动变压器
工作原理:互感现象.
Eout Ew
24
W1 W W2
Es
-x
x
9/18/2019
振荡电路
被测电容
10
9/18/2019
3.3 电容式传感器
3 测量电路
a)电桥电路
11
9/18/2019
3.3 电容式传感器 b) 谐振电路
f0
2π
1 LC
12
9/18/2019
3.3 电容式传感器 d) 运算放大器电路
13
9/18/2019
第三章、传感器测量原理
3.4 电感式传感器
电感式传感器是基于电磁感应原理,它是把被 测量转化为电感量的一种装置。
分类:
电感式传感器
自感型
可变磁阻型
涡流式
互感型
14
9/18/2019
15 2019/9/18
3.4 电感式传感器
1 自感型--可变磁阻式
原理:电磁感应
L N 20 A0 2
16
可变导磁面积型
差动型
9/18/2019
3.4 电感式传感器 电感式接近传感器(金属)
17
9/18/2019
3.4 电感式传感器
9/18/2019
3.3 电容式传感器
平面线位移型
C
0A
5
9/18/2019
3.3 电容式传感器
柱面线位移型.
C
0A
6
9/18/2019
3.3 电容式传感器
产品.
液体压力 作用在陶 瓷膜片的 表面,使 膜片产生 位移。
压力变送器
7
陶瓷电容压力传感器 9/18/2019
3.3 电容式传感器