储量计算方法.doc

合集下载

资源储量估算方法

资源储量估算方法

资源储量估算
(一)资源储量估算采用的方法
1、垂直平行断面法
利用相邻山垂直纵剖面进行资源储量估算的方法。

2、水平平行断面法
利用相邻的水平投影面积进行资源储量估算的方法。

3、两种方法对比
两种方法没有本质的区别,只是采用的投影方法不同,所用计算公式完全相同,这两种方法统称平行断面法。

平行断面法中所用的计算公式为:梯形公式、截锥公式、楔形公式、锥形公式及矩形公式。

(二)平行断面法计算公式
1、梯形公式
V=(S1+S2)L/2
V——矿体面积
S1——较大的截面积
S2——较小的截面积
L——两面积间的间距
其中(S1-S2)/S1<40%
2、截锥公式
(S1-S2)/S1>40%
V=(S1+S2+2
s )L/3
1s
3、楔形公式(梯形公式的特例)
只有一边有面积,另一边为一条线,矿体为楔形。

V=SL/2
4、锥形公式(截锥公式的特例)
一边有面积,另一边为一个点,矿体为锥形。

V=SL/3
5、矩形面积(梯形公式的特例)
相邻两剖面间矿体为规则的矩形柱体。

V=SL。

储量计算方法

储量计算方法

露天开采储量计算公式
1、各分段矿体体积计算公式:
(1)当上、下两水平层矿体面积相差<40%时
S1+S2
Ⅴ= .H
2
(2)当上、下两水平层矿体面积相差>40%时
S1+S2+√S1.S2
Ⅴ= .H
3
当矿体作楔形尖灭时
S
Ⅴ= .H
2
当矿体作锥形尖灭时
S
Ⅴ= .H
3
式中:V:分段矿体体积(m3)
S1、S2:分段上下两水平层矿体面积(m2)
H:分段高(m)
2矿体各矿石类型体积计算以该矿石类型上、下水平层的面积和占分段矿体上、上两水平总面积的比例乘以分段矿体总体积求得。

S1i+S2i
Ⅴi= .V
S1+S2
式中:V i:分段某矿石类型体积
S1i:S2i:分段某矿石类型上、下两水平层面积
S1、S2:分段矿体上、下两水平层总面积
V:分段矿体总体积
3矿石储量计算公式
Q=V.(1-G).D
式中:Q:矿石储量
V:某矿石类型体积(m3)
G: 矿体平均夹石率(%)(≤0.5~1.99m夹石厚度占矿体总厚度比例)
D:矿石类型体重值(t/m3)。

2_矿山常用的传统的储量计算方法

2_矿山常用的传统的储量计算方法

V = L⋅a⋅m
⑤开采块段 法
= L ⋅ h ⋅ m'
Q =V ⋅D
方法名称
计算公式
简要说明
用于面积差>40%时 Q:矿石储量 1 V:矿体体积 V = (S1 + S 2 + S1 ⋅ S 2 )L ②截锥公式法 3 S1、S2:断面上矿体的面积 Q =V ⋅D L:两断面之间的距离 D:矿石体重
方法名称
计算公式
简要说明
用于相邻剖面形状不相似, 面积相差悬殊情况下 Q:矿石储量 1 V = ( S 1 + S 2 + 4 Sm) L V:矿体体积 ③似柱体公式 6 S1、S2:断面上矿体的面积 法a Q =V ⋅D Sm:断面之间的断面积,由 内插法求得 L:两断面之间的距离 D:矿石体重
1 1 2 2
方法名称
计算公式
简要说明
Q:矿石储量 V:矿体体积 S:块段面积 M :块段矿体的平均厚度 D:矿石体重
②地质块段法
V = S ⋅M Q =V ⋅D
方法名称
计算公式
简要说明
Q:矿石储量 V:多角柱体的体积 S:多角柱体的底面积 m:每个工程中见矿厚度 D:矿石体重
③最近地区法
V = S ⋅M Q =V ⋅D
矿山地质学_实习 矿山地质学 实习1_2 实习
矿山常用的储量计算方法
传统的几何法
1.平行断面法 平行断面法 2.不平行断面法 不平行断面法
1.平行面法 平行断面法
方法名称 计算公式 简要说明
①梯形公式法
用于面积差<40%时 Q:矿石储量 V:矿体体积 1 V = ( S 1 + S 2) L S 、S :断面上矿体的面积 1 2 2 L:两断面之间的距离 Q =V ⋅D D:矿石体重

容积法储量计算公式

容积法储量计算公式

容积法储量计算公式容积法储量计算公式1. 原始油储量计算公式原始油储量是指油田中可采储量的总和。

根据容积法,原始油储量可以用以下公式计算:原始油储量(OOIP) = 面积× 厚度× 孔隙度× 饱和度× 体积系数其中, - 面积:指油藏的地面范围面积,通常以平方米(m²)为单位; - 厚度:指油藏的有效厚度,通常以米(m)为单位; - 孔隙度:指油藏中的孔隙空间所占的百分比,常用百分比表示; - 饱和度:指孔隙空间中被油填充的百分比,常用百分比表示; - 体积系数:指原油的体积增加系数,常用表示。

例如,某个油田的面积为1000平方米,厚度为15米,孔隙度为10%,饱和度为80%,体积系数为,则该油田的原始油储量可计算为:原始油储量= 1000m² × 15m × 10% × 80% × = 120,000立方米2. 可采油储量计算公式可采油储量是指在当前技术条件下可以提取出的原始油储量。

可采油储量可以用以下公式计算:可采油储量(OIIP) = 储量导数× 原始油储量其中, - 储量导数:指对原始油储量进行调整,考虑开采效率、油藏压力等因素得到的调整系数,通常为~之间。

例如,某个油田的原始油储量为100,000立方米,储量导数为,则该油田的可采油储量可计算为:可采油储量= × 100,000立方米 = 30,000立方米3. 采收率计算公式采收率是指油藏中可采集的油与原始油储量的比例。

采收率可以用以下公式计算:采收率 = 可采油储量 / 原始油储量例如,某个油田的原始油储量为200,000立方米,可采油储量为60,000立方米,则该油田的采收率可计算为:采收率 = 60,000立方米 / 200,000立方米 =总结容积法是一种常用的储量计算方法,通过考虑油藏的面积、厚度、孔隙度、饱和度和体积系数等因素来估算油田的原始油储量。

储量计算

储量计算
(1)、计算单元内有岩芯分析资料,且代表性较好,其 有效孔隙度取岩芯分析值。
(2)、计算单元内无岩芯分析资料,有效孔隙度采用经 验公式计算值。
目前均借用最新储量报告取值。
4、原始含油饱和度---So, %(取整)
(1)、利用油基泥浆取芯实验室获得。 (2)、若无油基泥浆取芯,采用阿尔奇经验公式法和半 渗透隔板法等。
1、含油边界圈定---A, Km2 :
根据钻井、测井和试油等资料,在平面构造图上圈定含油面 积。圈定原则如下:
(1)、断块油藏按相应层位的构造图圈定பைடு நூலகம்断层线控制含 油边界;
(2)、以构造为主要因素的含油边界圈定原则: 一是当含油边界有油水同层井点控制时,含油边界线
可通过构造最低部位的油水同层井点,并平行于构造等高线圈 定含油面积。
尖灭井
含油边界线
油井 尖灭线
干井
2、平均有效厚度---h ,m
有效厚度划分: 顶底界面的确定---采用以自然伽玛、微电极、深浅 侧向测井曲线为主,参考微球等其它曲线划分有效厚 度。以自然伽玛、深浅侧向半幅点和微电极幅度差的 异常点,结合微球电阻率下降对应点确定油层顶底界 面,起划厚度0.4m。
夹层扣除:夹层有两种,即泥岩夹层和灰质夹层。
石油地质储量计算
一、储量计算公式 :
采用容积法进行储量计算:
N=100×A×h×Φ×So×ρ。/Boi
A --- 含油面积,Km2 h --- 平均有效厚度,m Φ--- 平均有效孔隙度,% So--- 含油饱和度,%(取整) ρ。— 地面原油密度,g/cm3 Boi— 原油体积系数 N — 石油地质储量,104t
二是含油边界无油水同层井点控制时,含油(气)边 界线可通过相距最近的油井与水井间距之半处或外推一根等高 线(50m),并平行于构造等高线圈定。

储量计算方法

储量计算方法

储量计算方法目前已有的储量计算方法很多,下面着重介绍找矿,评价阶段常用的算术平均法和地质块段法。

(一)算术平均法该法的实质就是把形态圆形的矿体,发生改变为一个理想的具备同等厚度的板状体,其周边就是矿体的边界。

计算方法就是先根据探矿工程平面图(或投影图)上纸壳矿体边界,测量其面积(若为投影面积,须要折算成真面积。

见到后面块段法的面积折算)。

然后用算术平均法求出来矿体的平均值厚度、平均值品位、平均值体重。

最后按下面公式排序:矿体体积:v=sxm式中:v一矿体体积(萨兰勒班县);s一矿体面积;m一矿体平均值厚度。

矿石储量:q=vxd式中:q一矿石储量(萨兰勒班县;d一矿石平均值体重。

矿体金属储量:p=qxc式中:p一金属储量:c一矿石平均值品位。

(二)地质块段法地质块段法实际上就是算术平均法的一种,其不同之处就是将矿体按照相同的勘探程度、储量级别、矿床的采矿顺序等分割成数个块段,然后按块段分别排序储量,整个矿体储量即是各块段储量之和。

具体计算方法是首先根据矿体产状,选用矿体水平投影图(缓倾斜矿体)或矿体垂直纵投影图,在图上圈出矿体可采边界线,按要求划分块段。

然后分别测定各块段面积s(系矿块投影面积),根据各探矿工程所获得的资料,用算术平均法计算每个块段的平均品位c,平均体重d和平均厚度m(为平均视厚度,即垂直或水平厚度)。

因为矿体的真面积与真厚度之乘积等于投影面积与投影面之法线厚度之积具体按下面步骤计算:1.块段体积:v=sxm如果测定的面积为块段的垂直投影面积,则块段平均厚度m为块段的水平厚度;若测定的面积为块段的水平投影面积,则块段平均厚度为矿块的垂直厚度。

2.块段的矿石量:q=vxd3.块段的金属量:p=qxc矿体的总储量即为各块段储量之和。

如果计算时采用的矿体平均厚度为真厚度,而面积是测定的投影面积,这时应把真厚度换算成视厚度(即水平或垂直厚度)。

或者将投形面积换算成矿体的真面积。

面积换算公式如下:s=sˊ/sinβ式中:s一矿块真面积;sˊ一矿块投影面积;β一矿体倾角。

储量计算

储量计算

储量计算储量(包括资源量,下同)计算方法的种类很多,有几何法(包括算术平均法、地质块段法、开采块段法、断面法、等高线法、线储量法、三角形法、最近地区法/多角形法),统计分析法(包括距离加权法、克里格法),以及SD法等等。

(一)地质块段法计算步骤:1.首先,在矿体投影图上,把矿体划分为需要计算储量的各种地质块段,如根据勘探控制程度划分的储量类别块段,根据地质特点和开采条件划分的矿石自然(工业)类型或工业品级块段或被构造线、河流、交通线等分割成的块段等;2.然后,主要用算术平均法求得各块段储量计算基本参数,进而计算各块段的体积和储量;3.所有的块段储量累加求和即整个矿体(或矿床)的总储量。

地质块段法储量计算参数表格式如表下所列。

表地质块段法储量计算表需要指出,块段面积是在投影图上测定。

一般来讲,当用块段矿体平均真厚度计算体积时,块段矿体的真实面积S需用其投影面积S′及矿体平均倾斜面与投影面间的夹角α进行校正。

在下述情况下,可采用投影面积参加块段矿体的体积计算:①急倾斜矿体,储量计算在矿体垂直纵投影图上进行,可用投影面积与块段矿体平均水平(假)厚度的乘积求得块段矿体体积。

图在矿体垂直投影图上划分开采块段(a)、(b)—垂直平面纵投影图; (c)、(d)—立体图1—矿体块段投影; 2—矿体断面及取样位置②水平或缓倾斜矿体,在水平投影图上测定块段矿体的投影面积后,可用其与块段矿体的平均铅垂(假)厚度的乘积求得块段矿体体积。

优点:适用性强。

地质块段法适用于任何产状、形态的矿体,它具有不需另作复杂图件、计算方法简单的优点,并能根据需要划分块段,所以广泛使用。

当勘探工程分布不规则,或用断面法不能正确反映剖面间矿体的体积变化时,或厚度、品位变化不大的层状或脉状矿体,一般均可用地质块段法计算资源量和储量。

缺点:误差较大。

当工程控制不足,数量少,即对矿体产状、形态、内部构造、矿石质量等控制严重不足时,其地质块段划分的根据较少,计算结果也类同其他方法误差较大。

可采储量计算方法

可采储量计算方法
国际化合作
全球能源市场的不断变化将促使国内外学者和企业加强合作,共同推 动可采储量计算方法的创新和发展。
对行业影响及意义
提高决策水平
准确的可采储量计算能够为油田开发决策提供科学依据,避免盲目投资和浪费,提高经 济效益和社会效益。
促进技术创新
可采储量计算方法的不断创新将推动石油勘探开发技术的进步,提高油气资源的利用效 率和可持续性。
是指油田投入开发后,可采储量 与累计采出量之差。
储量分类及特点
01
探明储量
经过详细勘探,在预期的当地经济条件下,可用现有技术开采的储量。
02 03
控制储量
经过预探井钻探获得工业油气流、油气层钻遇率和油气藏圈闭预测较可 靠、或油源条件较落实的情况下,根据区域地质条件相似对比所计算的 储量。
预测储量
在地震详查以及其它方法提供的圈闭内,经过预探井钻探获得油气流或 综合解释有油气层存在时,对有进一步勘探价值的、可能存在的油藏 (田)所估算的储量。
容积法
01
02
03
原理
利用储层有效孔隙度和储 层有效厚度计算储层中油 气的体积。
优点
方法简单,适用于不同类 型的油气藏。
缺点
需要准确的孔隙度和含油 饱和度数据,对于非均质 储层误差较大。
压降法
原理
根据油藏压力变化和采出程度之间的关系,推算可采储量。
优点
适用于具有稳定压力系统的油气藏。
缺点
对于压力变化不稳定的油气藏误差较大,且需要长期的生产数据。
优点
该方法考虑了注水开发对油田产量的影响,能够更准确地反映油田的实际开发情况。
缺点
水驱曲线法对数据的要求较高,需要较长时间的注水开发历史数据才能得到较准确的预测结果。此外, 该方法假设油田水驱规律在未来保持不变,而实际上可能会受到多种因素的影响而发生变化。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

油、气储量是油、气油气勘探开发的成果的综合反应,是发展石油工业和国家经济建设决策的基础。

油田地质工作这能否准确、及时的提供油、气储量数据,这关系到国民经济计划安排、油田建设投资的重大问题。

油、气储量计算的方法主要有容积法、类比法、概率法、物质平衡法、压降法、产量递减曲线法、水驱特征曲线法、矿场不稳定试井法等,这些方法应用与不同的油、气田勘探和开发阶段以及吧同的地质条件。

储量计算分为静态法和动态法两类。

静态法用气藏静态地质参数,按气体所占孔隙空间容积算储量的方法,简称容积法;动态法则是利用气压力、产量、累积产量等随时间变化的生产动态料计算储量的方法,如物质平衡法(常称压降法)、弹性二相法(也常称气藏探边测试法)、产量递法、数学模型法等等。

容积法:在评价勘探中应用最多的容积法,适用于不同勘探开发阶段、不同圈闭类型、储集类型和驱动方式的油、气藏。

容积法计算储量的实质是确定油(气)在储层孔隙中所占的体积。

按照容积的基本计算公式,一定含气范围内的、地下温压条件下的气体积可表达为含气面积、有效厚度。

有效孔隙度和含气饱和度的乘积。

对于天然气藏储量计算与油藏不同,天然气体积严重地受压力和温度变化的影响,地下气层温度和眼里比地面高得多,因而,当天然气被采出至地面时,由于温压降低,天然气体积大大的膨胀(一般为数百倍)。

如果要将地下天然气体积换算成地面标准温度和压力条件下的体积,也必须考虑天然气体积系数。

容积法是计算油气储量的基本方法,但主要适用与孔隙性气藏(及油藏气顶)。

对与裂缝型与裂缝-溶洞型气藏,难于应用容积法计算储量纯气藏天然气地质储量计算G = 0.01A ·h ·φ(1-Swi )/ Bgi= 0.01A ·h ·φ(1-Swi )Tsc·pi/ (T ·Psc·Zi)式中,G----气藏的原始地质储量,108m3;A----含气面积, km2;h----平均有效厚度, m;φ ----平均有效孔隙度,小数;Swi ----平均原始含水饱和度,小数;Bgi ----平均天然气体积系数Tsc ----地面标准温度,K;(Tsc = 20ºC)Psc ----地面标准压力, MPa; (Psc = 0.101 MPa) T ----气层温度,K;pi ----气藏的原始地层压力, MPa;Zi ----原始气体偏差系数,无因次量。

凝析气藏天然气地质储量计算Gc = Gfgf g = ng/(ng+ no)= GOR / ( GOR + 24056γo/Mo)式中,Gc ----天然气的原始地质储量, 108m3;G----凝析气藏的总原始地质储量, 108m3;fg----天然气的摩尔分数;ng ----天然气的摩尔数, kmol;no ----凝析油的摩尔数, kmpl;GOR ----凝析气井的生产气油比, m3/ m3;o ----凝析油的相对密度;Mo ----凝析油的相对分子质量,可由经验关系式确定:储量参数的确定容积法储量计算公式中,含气面积、有效厚度、有效孔隙度、含油饱和度、原油密度、原油体积系数、天然气体积系数为重要的油、气藏地质参数确定有效储层的关键,是对有效储层的下限标准进行研究。

下限标准分为岩性、物性、含油气性和电性“四性”标准。

其中,电性标准是划分有效储层厚度的操作标准,即通过测井多参数判别法(如孔隙度、饱和度与泥质含量的多参数费歇尔判别法)与试油资料相结合建立的气、水、干层判别标准;物性标准主要包括孔隙度、渗透率和原始含水饱和度3个参数。

而这些参数下限只有当转换成电性标准后,才有广泛的应用价值,因为从地层中取得信息最多、且具连续性,非测井资料莫属。

在确定有效储层下限标准时,必须重视储层岩性、物性和孔隙结构及裂缝发育程度对产气能力的影响。

当裂缝发育时,即便是储层基质孔隙很低,一旦被裂缝沟通,产能将大大提高。

这时,要合理地确定基质孔隙的有效下限,就必须对储层的裂缝发育程度与分布规律进行综合研究与描述。

当有效储层的下限确定之后,容积法计算储量的关键,是对含气面积、有效厚度、有效孔隙度、原始含气饱和度、原始天然气体积系数等参数的确定。

其中,最重要的参数是含气面积、有效厚度、有效孔隙度。

1.1对于孔隙型或裂缝~孔隙型层状构造圈闭气藏,主要是通过圈定气水界面的方法确定含气面积1.2对于地层(岩性)—符合圈闭气藏,由于圈闭较前一种复杂,除需要确定气水界面外,还要确定岩性及地层的变化与缺失,综合圈定气藏含气面积1.3岩性圈闭气藏,主要是通过地震圈定岩性边界、试井探边测试法确定含气面积2 有效厚度应以气水界面或气层识别为基础,综合测试成果,用测井“四性”关系划分。

通常采用在整个储集岩剖面中截去不具备产气能力的部分,即得有效厚度。

主要有如下方法:2.1 岩性物性分析方法:ΦSwiK、ΦSwi气藏高度组合法、J函数法、Kh法2.2 测井统计图版法:统计图版法、参数判别法2.3 测井多参数判别法:孔隙度、饱和度与泥质含量的多参数费歇尔判别法有效孔隙度储量计算中所用的有效孔隙度是指有效厚度层段内的地下有效孔隙度。

有效孔隙度可直接用岩心分析资料,一般要作压实校正;也可用测井解释确定,关键是要用岩心孔隙度进行标定,并作相关分析。

测井解释孔隙度与岩心分析孔隙度的相对误差不得超过±8%。

裂缝~孔隙型储层,必要时应分别确定基质孔隙度和裂缝、溶洞孔隙度。

4 原始含气饱和度及其他参数根据新的储量规范,①大型以上气藏,用测井解释资料确定含气饱和度时,应有油基泥浆取心或密闭取心分析验证,绝对误差<±5个百分点(特殊情况除外);②中型以上气藏应有实测的岩电实验数据及合理的地层水电阻率资料;③用毛管压力资料时,应取得有代表性的岩心分析资料进行J函数等处理;④裂缝~孔隙型储层可分别确定基质含气饱和度和裂缝、溶洞含气饱和度;⑤低渗透储层水基泥浆取心分析的含水饱和度,可作为计算含气饱和度的依据。

在天然气储量计算中,天然气体积系数及其他相关参数,由原始地层压力、地层温度、原始天然气偏差系数、地面标准压力和标准温度及天然气流体性质参数等综合确定的,因此要在完井及试油中取全取准这些相关资料。

在勘探评价时期,探井较少时,不足以对储量参数的分布进行平面成图或三位建模,因而主要应用参数平均值计算储量。

而在井资料较多,特别是开发井网完成后,有条件研究储量参数的平面或三维分布,应该建立相应的油藏地质模型,并给予模型计算储量,这样可大大提高计算精度。

所谓储量参数平面模型,是指网格化的储量参数平面分布图,即按一定的间隔将研究区划分成众多的网格,每个网格赋予一个储量参数值,这样,在储量计算中,就不是应用计算单元的平均值计算储量,二是按网格计算储量,计算精度可大为提高。

在基于二维模型的储量计算中,要求编绘有效厚度分布图、有效孔隙度分布图、含油饱和度分布图等,一般还需要编制渗透率分布图。

∑=⋅⋅Φ⋅⋅=nioioiiiBShAN1/ρN---原油地质储量,tAi---含油网格大小,m2;hi---含油网格大小有效厚度,m;Φi---含油网格大小有效孔隙度,小数;n--- 含油网格数So---平均原始含油饱和度,小数;ρ---平均地面脱气原油密度,g/cm3;Boi---平均地层原油体积系数,无量纲。

基于三维储量参数计算三位模型的储量计算,是要建立三维储量参数分布图模型。

与基于平均值和二维模型的储量计算方法不同的是,在基于三位模型的储量计算方法中,没有含有面积和有效厚度的概念,而代之以有效体积,即有效含油体积。

有效体积则用有效网格来表达,即为对工业行油流有贡献的网格,有效网格可通过有效厚度截止值进行判别。

对于三位模型中的任意网格,若网格参数值大于或等于截止值则为有效网格,取值为以,否则为无效网格,取值为0。

物质平衡法该储量计算方法的基本原理是根据气藏采过程中的体积守衡。

对于这种有限封闭的局限体气藏,当气藏从原始地层压力Pi,降至某一采时期的压力P时,综合考虑地下流体和岩石架对气藏能量驱动的贡献,此时气藏产出流体占的孔隙体积应等于整个连通系统范围内的流和岩石的膨胀体积之和[6, 7],据此建立封隔有气藏的物质平衡方程为建立物质平衡方程式的假设条件(1)整个油气藏的储层物性是均一的;(2)整个储层中的流体(油、气、水)性质是不变的;(3)整个油气藏的压力基本保持平衡状态;(4)整个油气藏的温度保持不变;(5)不考虑毛管力、重力和润湿性的影响。

气藏物质平衡方程式气藏大体上可分为封闭型气藏与不封闭的弹性水压驱动气藏两种类型。

(1)正常压力条件下的封闭型气藏正常压力条件下的封闭型气藏的驱气动力是天然气本身的弹性膨胀力。

根据气层孔隙体积守恒原理,当气藏从原始地层压力Pi降至某以开采时期的压力P是,气藏内流体所占孔隙体积的变化等于考法一段时间后地下天然气所占的孔隙体积G Bgi = (G - Gp) BgG = (Gp Bg)/(Bg- Bgi)式中G ---气藏地质储量, 108m3 ;Gp----气藏的累积采气量, 108m3 ;(2)不封闭型气藏随着气藏的开采,地层压力不断下降,必然引起边水或底水的不断侵入,气藏开采前、后,从孔隙体积守恒原理出发,原始气藏中天然气所占体积等于气藏中剩余的天然气体积脚上水侵入后所占的体积,即GBgi =(G-Gp)Bg+We-WpBw式中:We-累积天然水侵量,108m3;Wp-累积产水量,108m3;压降法(压力降落法或压力图解法)压降法是物质平衡法在封闭型气藏的应用特例基本原理:利用由气藏压力(p/Z)与累积产气量( Gp)所构成的“压降图”来确定气藏的储量。

G = (GpBg)/(Bg- Bgi)G = [Gp (pi/Zi)]/[(pi/Zi) - (p/Z)](p/Z) = (pi /Zi) [1- (Gp/ G) ]当(p/Z) = 0时, Gp= G(2)正常压力条件下弹性水压驱动气藏G Bgi = (G - Gp) Bg + We – WpBwG = (GpBg - We + WpBw)/(Bg - Bgi)4. 物质平衡方程式中各参数的确定(1)生产统计数据Np----累计采油量, 104m3 ;Wp----累积产水量, 104m3 ;Gp----天然气的累计产气量, 104m3 ;R p ----累积生产气油比, m3/ m3;p i ----原始地层压力,MPa ;p ----目前地层压力,MPa 。

2)高压物性数据R si ----在pi 压力下天然气的溶解气油比, m3/ m3;R s ----在p 压力下天然气的溶解气油比,m3/ m3;B oi ----在pi 压力下地层原油的体积系数;B o ----在p 压力下地层原油的体积系数;B gi ----在pi 压力下天然气的体积系数;B g ----在p 压力下天然气的体积系数;B w ----在p 压力下地层水的体积系数;Ct ----总压缩系数,Mpa-1;(3)其它数据m----油藏气顶体积与含油体积之比。

相关文档
最新文档