第3讲 光的折射 全反射

合集下载

光的折射、全反射、干涉、衍射、偏振

光的折射、全反射、干涉、衍射、偏振

光的折射一、知识点梳理1. 光的反射定律:光从一种介质射到另一种介质的分界面时发生反射。

反射光线与入射光线、法线处在同一平面内,反射光线与入射光分别位于法线的两侧。

2. 光的折射现象,光的折射定律:折射光线与入射光线、法线处于同一平面内,折射光线与入射光线分别位于法线两侧,入射角的正弦与折射角的正弦成正比。

注意两角三线的含义折射率 (光线从介质Ⅰ——介质Ⅱ)12sin sin v v r i n ==折射现象的光路可逆性3.折射率:入射角的正弦与折射角的正弦的比。

(1)折射率的物理意义:表示介质折射光的本领大小的物理量 (2)折射率大小的决定因素——介质、光源(频率)在其它介质中的速度vcn ,式中n 为介质的折射率,n >1,故v <c 注意:(1)介质的折射率rin sin sin =是反映介质光学性质的物理量,它的大小由介质本身决定,同时光的频率越高,折射率越大,而与入射角、折射角的大小无关。

(2)某一频率的光在不同介质中传播时,频率不变但折射率不同,所以光速不同,波长也不同(与机械波相同);不同频率的光在同一介质中传播时,折射率不同,所以光速不同,波长也不同(与机械波的区别).频率越高,折射率越大。

4.折射时的色散:含有多种颜色的光被分解为单色光的现象叫光的色散。

(1)光通过棱镜时将向棱镜的横截面的底边方向偏折 (2)通过棱镜成像偏向顶点(3)实验表面,一束白光进入棱镜而被折射后,在屏上的光斑是彩色的,说明光在折射时发生了色散。

(4)光的色散规律:红光通过棱镜后偏折的程度比其他颜色的光的要小,而紫光的偏折程度比其他颜色的光要大。

说明透明物质对于波长不同的光的折射率是不同的。

波长越长,折射 率越小。

5.应用(一般方法):分析光的折射时,一般需作出光路图,以便应用折射规律及光路图中提供的几何关系来解答。

在实际应用中,常见方法是:①三角形边角关系法;②近似法,即利用小角度时,θ≈tanθ≈sinθⅠ Ⅱ的近似关系求解。

光的折射与全反射现象

光的折射与全反射现象

光的折射与全反射现象折射是光线通过两种不同介质界面时,由于光速在不同介质中的传播速度不同而引起的偏折现象。

而全反射是指光从光密度较大的介质射向光密度较小的介质时,入射角大于临界角时,光线完全被反射回原介质的现象。

这两种光的现象在自然界和各个领域都有广泛的应用。

本文将从光的折射和全反射的基本原理、相关实验以及应用方面进行探讨。

一、光的折射原理光的折射现象是光从一种介质传播到另一种介质时发生的。

其原理可以通过斯涅耳定律来描述,即入射光线、折射光线和法线所成的角度满足下列关系式:\[\dfrac{\sin\theta_1}{\sin\theta_2}=\dfrac{v_1}{v_2}\]其中,\(\theta_1\)为入射角,\(\theta_2\)为折射角,\(v_1\)和\(v_2\)分别为两种介质中的光速。

二、光的折射实验为了观察和研究光的折射现象,科学家们进行了大量的实验。

其中一种经典的实验是朗伯-布鲁斯特实验。

在朗伯-布鲁斯特实验中,一个光束正入射到一个平面玻璃板的表面上,观察到光束被玻璃板折射后的现象。

实验结果表明,当入射角等于特定的角度时,折射光束的折射角为90°,这个特定的角度被称为布鲁斯特角。

布鲁斯特角的大小与入射光线的波长有关,可以通过表达式\(\tan\theta_B=\dfrac{n_2}{n_1}\)计算,其中\(n_1\)和\(n_2\)分别为两种介质的折射率。

三、全反射现象当光从光密度较大的介质射向光密度较小的介质时,如果入射角大于临界角,就会发生全反射现象。

临界角是指入射角等于折射角的特定角度。

\(\sin\theta_c=\dfrac{n_2}{n_1}\)。

在临界角之内,光线会发生折射;而在临界角之外,光线则会被完全反射回原介质。

全反射现象在光纤通信中得到了广泛应用。

光纤是一种可以将光信号进行传输的细长光导纤维。

当光从一段光纤的末端射入时,光在光纤的芯部垂直射入,然后通过光纤的全反射现象不断传播,最终到达另一端。

12.3光的折射-全反射.

12.3光的折射-全反射.

第3单元光的折射__全反射光的折射定律和折射率[想一想]如图12-3-1所示,光线以入射角θ1从空气射向折射率n =2的玻璃表面。

图12-3-1(1)当入射角θ1=45°时,反射光线与折射光线间的夹角θ为多少? (2)当入射角θ1为何值时,反射光线与折射光线间的夹角θ=90°? [提示] (1)设折射角为θ2,由折射定律sin θ1sin θ2=n 得sin θ2=sin θ1n =sin 45°2=12,所以,θ2=30°。

因为θ1′=θ1=45°,所以θ=180°-45°-30°=105°。

(2)因为θ1′+θ2=90°,所以,sin θ2=sin(90°-θ1′)=cos θ1′,由折射定律得tan θ1=2,θ1=arctan 2。

[记一记] 1.光的折射光从一种介质进入另一种介质时,传播方向发生改变的现象称为光的折射现象。

2.光的折射定律图12-3-2(1)内容:折射光线与入射光线、法线处在同一平面内,折射光线与入射光线分别位于法线的两侧;入射角的正弦与折射角的正弦成正比。

(2)表达式:sin θ1sin θ2=n 12,式中n 12是比例常数。

(3)光的折射现象中,光路是可逆的。

3.折射率(1)定义:光从真空射入某种介质发生折射时,入射角的正弦与折射角的正弦之比,叫做这种介质的折射率。

(2)定义式:n =sin θ1sin θ2。

折射率由介质本身的光学性质和光的频率决定。

(3)折射率和光速的关系:折射率与光在介质中传播的速度有关,当c 为真空中光速,v 为介质中光速时:n =cv 。

式中c =3×108 m/s ,n 为介质的折射率,总大于1,故光在介质中的传播速度必小于真空中的光速。

[试一试]1.如图12-3-3所示,有一束平行于等边三棱镜截面ABC 的单色光从空气射向E 点,并偏折到F 点。

光学中的光的折射与全反射知识点总结

光学中的光的折射与全反射知识点总结

光学中的光的折射与全反射知识点总结光学是研究光的传播和相互作用的学科,其中折射和全反射是光在介质中传播时常见的现象。

本文将就光的折射和全反射的相关知识点进行总结,以加深对光学原理的理解。

一、光的折射光的折射是指光线在从一种介质进入另一种介质时的方向改变。

根据斯涅尔定律,光的折射遵循折射定律,即入射角和折射角之间的关系可以由下式表示:n₁sinθ₁ = n₂sinθ₂其中,n₁和n₂分别为两种介质的折射率,θ₁为入射角,θ₂为折射角。

该定律表明了光线在两种介质之间传播时的路径和方向的关系。

除了折射定律,还有一些光的折射规律需要了解:1. 光从光疏介质透过到光密介质时,入射角大于折射角,光线向法线偏离,折射角变小;2. 光从光密介质透过到光疏介质时,入射角小于折射角,光线离开法线,折射角变大;3. 光从光密介质透过到光密介质时,入射角等于折射角,光线不改变方向。

光的折射现象可以观察到很多实际应用中,比如光在水面上的折射现象,照相机镜头的设计等。

二、全反射全反射是在光从一种光密介质射向一种光疏介质时,入射角大于临界角时发生的现象。

当入射角等于临界角时,出射角为90度,光线沿界面传播。

如果入射角大于临界角,光将会被完全反射回光密介质中,不会传播到光疏介质中。

全反射的发生是因为光在在光密介质和光疏介质的传播速度不同,当光从快速传播的光密介质射向传播速度较慢的光疏介质时,光线会被界面反射回光密介质。

全反射也有一些重要规律需要了解:1. 全反射只在入射角大于临界角时发生;2. 临界角和介质的折射率有关,临界角越大,折射率越小。

全反射在光纤通信中有着重要的应用,利用全反射原理可以将光信号在光纤中进行传输,实现远距离的通信。

三、应用与实例在现实生活中,光的折射和全反射有着广泛的应用。

下面列举几个常见的实例:1. 鱼眼镜头:鱼眼镜头利用全反射的原理,使得光线以较大的视场角进入相机镜头,从而实现了广角效果。

2. 光纤通信:光纤通信是利用光在光纤中的全反射传输信号。

高中物理光的折射和全反射的计算方法

高中物理光的折射和全反射的计算方法

高中物理光的折射和全反射的计算方法光的折射和全反射是高中物理中的重要内容,也是学生们经常遇到的难题。

本文将介绍光的折射定律及其计算方法,并通过具体题目的解析,帮助读者掌握解题技巧。

一、光的折射定律光的折射是指光线从一种介质进入另一种介质时,由于介质的光密度不同,光线的传播方向发生改变的现象。

根据光的折射定律,光线在两种介质的交界面上的入射角和折射角之间存在以下关系:\(\frac{{\sin i}}{{\sin r}}=\frac{{v_1}}{{v_2}}\)其中,i为入射角,r为折射角,v1为光在第一种介质中的传播速度,v2为光在第二种介质中的传播速度。

二、光的折射计算方法1. 已知入射角和折射率,求折射角当已知入射角i和第二种介质的折射率n2时,可以通过以下公式求解折射角r:\(\sin r=\frac{{n_1}}{{n_2}}\sin i\)其中,n1为第一种介质的折射率。

例如,一个光线从空气(折射率为1)射入水中(折射率为1.33),入射角为30°,求折射角。

根据公式,可得:\(\sin r=\frac{{1}}{{1.33}}\sin 30°=0.675\)利用反正弦函数,可得折射角r≈42.5°。

2. 已知入射角和折射角,求折射率当已知入射角i和折射角r时,可以通过以下公式求解第二种介质的折射率n2:\(\frac{{n_1}}{{n_2}}=\frac{{\sin i}}{{\sin r}}\)例如,一个光线从空气射入水中,入射角为30°,折射角为42.5°,求水的折射率。

根据公式,可得:\(\frac{{1}}{{n_2}}=\frac{{\sin 30°}}{{\sin 42.5°}}=0.675\)利用倒数,可得n2≈1.48。

三、光的全反射计算方法全反射是指光线从光密介质射入光疏介质时,入射角大于临界角时发生的现象。

光的折射和全反射

光的折射和全反射

光的折射和全反射光的折射和全反射是光在不同介质中传播时常见的现象。

了解光的折射和全反射,能够帮助我们理解光的传播规律以及光在光纤通信等领域的应用。

一、光的折射光的折射指的是光射入不同介质时,由于介质的光密度不同,光线的传播方向发生改变的现象。

根据斯涅尔(Snell)定律,光在两种不同介质之间传播时,入射角和折射角之间的关系为:n₁sinθ₁ =n₂sinθ₂。

其中,n₁和n₂分别为两种介质的折射率,θ₁为入射角,θ₂为折射角。

根据这个定律,当光从光密度较大的介质(高折射率)射入光密度较小的介质(低折射率)时,光线向法线方向偏离;而当光从光密度较小的介质射入光密度较大的介质时,光线朝法线方向靠拢。

光的折射现象在我们生活中随处可见,比如光通过玻璃、水等介质时会发生折射。

这一现象也是为什么在水中看到的物体会有折断的视觉效果。

二、全反射全反射是指光射入光密度较小的介质时,折射角大于90度,无法从介质中传播到光密度较大的介质中的现象。

当光从光密度较大的介质射入光密度较小的介质时,若入射角超过临界角,光将完全被反射,无法透过界面。

临界角的大小与两种介质的折射率有关,公式为:θc =arcsin(n₂/n₁)。

其中,θc为临界角,n₁和n₂分别为两种介质的折射率。

全反射在光纤通信中起着重要作用。

光纤的工作原理便是基于光的全反射。

光信号在光纤中通过多次全反射进行传播,从而实现信息的传输。

光纤的高速传输和远距离传输能力得益于光的全反射特性。

除了光纤通信,全反射还应用于显微镜、光导板等光学仪器中。

在显微镜中,通过目镜和物镜的组合,利用全反射的原理使得显微镜能够放大微小物体的图像。

光导板则是利用全反射将光线从一侧引导到另一侧,可以实现光的聚光和分光效果。

总结:光的折射和全反射是光在不同介质中传播时所呈现出的现象。

光的折射遵循斯涅尔定律,表示光线在入射介质和折射介质之间传播时,入射角和折射角之间的关系。

全反射则是当光从光密度较大的介质射入光密度较小的介质时,折射角大于90度,无法透过介质传播的现象。

光学重点知识总结光的折射和全反射现象

光学重点知识总结光的折射和全反射现象光学重点知识总结——光的折射和全反射现象在光学中,折射和全反射是重要的现象和理论,对于我们理解光的行为和应用具有重要意义。

本文将对光的折射和全反射进行总结,帮助读者更好地理解这些光学现象。

一、光的折射现象光的折射是指当光线从一种介质进入到另一种介质时,由于两种介质的光速不同,光线发生偏离原来的传播方向的现象。

这种现象是由于光在不同介质中传播速度的差异所导致的。

根据折射定律,我们可以得出以下结论:入射光线、折射光线和介质分界面上的法线所在的平面三者共面。

此外,根据斯涅尔定律,我们可以得出:折射光线的入射角和折射角满足一个固定的比例关系,即$$\frac{{\sin{\theta_1}}}{{\sin{\theta_2}}}=\frac{{v_1}}{{v_2}}$$,其中$$\theta_1$$为入射角,$$\theta_2$$为折射角,$$v_1$$为光在第一种介质中的传播速度,$$v_2$$为光在第二种介质中的传播速度。

二、光的全反射现象光的全反射是指当光线从光密介质射入光疏介质时,入射角大于临界角时,光线无法从光疏介质传播到光密介质,而被完全反射的现象。

临界角可以通过折射定律进行计算:当光线从光密介质射入光疏介质时,令入射角等于临界角,此时折射角为90度,即$$\sin{\theta_c}=\frac{{v_1}}{{v_2}}$$,其中$$\theta_c$$为临界角,$$v_1$$为光在光密介质中的传播速度,$$v_2$$为光在光疏介质中的传播速度。

三、应用举例1. 光纤通信光纤通信是利用光的全反射现象来进行信号传输的技术。

光纤中的光通过全反射在纤芯内部传播,从而实现将信号从发送端传输到接收端。

由于全反射的特性,光信号能够在光纤中长距离传输而几乎不损耗,提供了高速、大带宽的通信方式。

2. 光学棱镜光学棱镜是利用光的折射现象进行光线的偏折和分光的光学元件。

第15章 第3课时 光的折射 全反射

基础知识落实
多维课堂突破 课时规范训练
大一轮复习 ·物理
2.(多选)若某一介质的折射率较大,那么( BD ) A.光由空气射入该介质时折射角较大 B.光由空气射入该介质时折射角较小 C.光在该介质中的速度较大 D.光在该介质中的速度较小
sin θ1 1 解析:选 BD.由 =n,且 n>1,可得 sin θ2=nsin θ1,A sin θ2 c 1 错误,B 正确;又因为 n=v,得 v=nc,C 错误、D 正确.
大一轮复习 ·物理
第 3 课时
光的折射
全反射
基础知识落实
多维课堂突破
课时规范训练ຫໍສະໝຸດ 大一轮复习 ·物理知识梳理 一、光的折射与折射率 1.折射 光从一种介质斜射进入另一种介质时传播方向改变的现象. 2.折射定律(如图) (1)内容:折射光线与入射光线、法线处在同 一平面内,折射光线与入射光线分别位于法线的
基础知识落实
多维课堂突破 课时规范训练
大一轮复习 ·物理
自我诊断 1.判断下列说法是否正确 (1)光的传播方向发生改变的现象叫光的折射. ( × ) (2)折射率跟折射角的正弦成正比.( × ) (3)入射角足够大,也不一定能发生全反射. ( √ ) (4)若光从空气中射入水中,它的传播速度一定增大. ( × ) (5)已知介质对某单色光的临界角为 C, 则该介质的折射率等 1 于 .(√ ) sin C (6)密度大的介质一定是光密介质.( × )
基础知识落实
多维课堂突破
课时规范训练
大一轮复习 ·物理
解析:选 ADE.由几何知识得到激光束在 C 点的折射角 r= sin α 3 30° , 由 n= 得, sin α=nsin r= , 得 α=60° , 故 A 正确. 激 sin r 2 光束从 C 点进入玻璃球时, 无论怎样改变入射角 α, 在 D 点的入 射角等于 C 点的折射角,根据光路可逆性原理得知,光束不可能 在 D 点发生全反射, 一定能从 D 点折射出玻璃球, 故 B 错误. 光 的频率由光源决定, 则激光束穿越玻璃球时频率不变, 选项 C 错 c c 误.激光束在玻璃球中传播的速度为 v=n= ,由 v=λf 得 λ 3 3c = ,选项 D 正确.当光束沿玻璃球直径方向射入,路程最长, 3f 2R 2 3R 传播时间最长为 t= v ,可得 t= c ,选项 E 正确.

光的折射与光的全反射

光的折射与光的全反射光的折射和全反射是光学中非常重要的现象,它们与光的传播和介质的特性密切相关。

本文将从光的折射和光的全反射的定义、原理以及应用等方面进行讨论。

一、光的折射光的折射是指光线从一种介质进入另一种介质时,光线会发生偏折的现象。

光的折射遵循斯涅尔定律,即入射角与折射角之间满足一个固定的关系。

光的折射可以通过以下公式表示:n1*sin(θ1) = n2*sin(θ2)其中,n1和n2分别代表两种介质的折射率,θ1和θ2分别代表入射角和折射角。

根据斯涅尔定律,当光线从光密介质(折射率较大)进入光疏介质(折射率较小)时,光线将向法线弯曲减小,折射角将小于入射角;反之,当光线从光疏介质进入光密介质时,光线将背离法线弯曲增大,折射角将大于入射角。

光的折射在现实生活中有广泛的应用,如光学仪器中的透镜、光纤通信中的光纤等。

二、光的全反射光的全反射是指光线从光密介质射向光疏介质时,当入射角超过一定临界角时,光线将完全反射回光密介质内部,并不发生折射的现象。

全反射只在折射率较大的介质到折射率较小的介质发生。

当入射角等于临界角时,光线的折射角为90度,此时光线与分界面垂直,呈现完全反射的状态。

当入射角大于临界角时,光线将不会穿过分界面,而是全部反射回光密介质。

光的全反射在光纤通信、显微镜等领域有广泛的应用。

利用全反射的原理,光纤能够将光信号传输至较远的地方,而且信号不容易衰减。

三、实验验证为了验证光的折射和全反射,我们可以进行一些简单的实验。

首先,我们可以使用透明的直杯,倒入透明的水,然后轻轻在杯子里放入一支铅笔。

当我们从杯子上方往里面注视时,我们会发现铅笔的部分是看不到的,这是因为光线在铅笔与水之间发生了折射。

接下来,我们可以使用一根光纤,将一端放入水中,用另一端照射光线。

当光线的入射角小于临界角时,我们能够看到光线从光纤的另一端传输出来;而当入射角大于临界角时,光线将完全反射在光纤内部,我们就无法看到光线传输出来。

光的折射全反射现象教案

光的折射全反射现象教案第一章:光的折射现象1.1 教学目标:了解光的折射现象及其产生原因。

掌握折射定律及其应用。

能够计算光线在介质间的折射角。

1.2 教学内容:光的折射现象的定义及产生原因。

折射定律:n1sinθ1 = n2sinθ2。

折射现象的应用:眼镜、透镜、光纤等。

1.3 教学方法:采用讲授法,讲解光的折射现象及其产生原因。

通过示例和练习,让学生掌握折射定律及其应用。

1.4 教学评估:通过课堂提问,检查学生对光的折射现象的理解。

通过练习题,检查学生对折射定律的掌握程度。

第二章:全反射现象2.1 教学目标:了解全反射现象及其产生条件。

掌握全反射定律及其应用。

能够判断光线在介质界面的全反射情况。

2.2 教学内容:全反射现象的定义及其产生条件。

全反射定律:θc = arcsin(n2/n1)。

全反射现象的应用:光纤通信、水底照明等。

2.3 教学方法:采用讲授法,讲解全反射现象及其产生条件。

通过示例和练习,让学生掌握全反射定律及其应用。

2.4 教学评估:通过课堂提问,检查学生对全反射现象的理解。

通过练习题,检查学生对全反射定律的掌握程度。

第三章:折射现象的实验研究3.1 教学目标:能够进行折射现象的实验操作。

能够观察和记录实验结果。

能够分析实验结果,验证折射定律。

3.2 教学内容:折射现象实验的原理和步骤。

实验仪器和材料:透镜、光具、测量尺等。

实验结果的观察和记录。

3.3 教学方法:采用实验法,引导学生进行折射现象的实验操作。

通过实验观察和记录,让学生分析实验结果,验证折射定律。

3.4 教学评估:通过实验报告,检查学生对实验操作和实验结果的理解。

通过讨论和提问,检查学生对折射定律的验证情况。

第四章:全反射现象的实验研究4.1 教学目标:能够进行全反射现象的实验操作。

能够观察和记录实验结果。

能够分析实验结果,验证全反射定律。

4.2 教学内容:全反射现象实验的原理和步骤。

实验仪器和材料:光纤、光源、光具等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档