高等数学考试大纲

合集下载

《高等数学》考试大纲

《高等数学》考试大纲

《高等数学》考试大纲一、考试目标及要求要求考生了解或理解“高等数学”中函数、极限和连续、一元函数微分学、一元函数积分学、无穷级数、常微分方程的基本概念与基本理论;学会、掌握上述各部分的基本方法。

应具有一定的抽象思维能力、逻辑推理能力、运算能力;有运用基本方法准确地计算;能综合运用所学知识分析并解决简单的实际问题。

二、考试内容及要求(一)函数、极限、连续1.考试内容(1)函数的概念及表示法、函数的有界性、单调性、周期性和奇偶性、复合函数、反函数的概念、基本初等函数的性质及其图形。

(2)数列极限与函数极限的概念、无穷小和无穷大的概念及其关系、无穷小的性质及无穷小的比较、极限的四则运算、两个重要极限:0sin lim 1x x x→=,()10lim 11x x x →+=。

(3)函数连续的概念、 函数间断点的类型、初等函数的连续性、闭区间上连续函数的性质2.考试要求(1)理解函数概念,知道函数的表示法;会求函数的定义域及函数值。

(2)掌握函数的奇偶性、单调性、周期性、有界性。

(3)理解复合函数与反函数的定义。

(4)掌握基本初等函数的性质与图像,了解初等函数的概念。

(5)理解极限概念及性质,掌握极限的运算法则。

(6)理解无穷小量与无穷大量的概念及两者的关系,掌握无穷小量的性质和无穷小量的比较。

(7)掌握两个重要极限:0sin lim 1x x x→=,()10lim 11x x x →+=。

(8)理解函数连续与间断的定义,理解函数间断点的分类,会利用连续性求极限,会判别函数间断点的类型。

(9)理解闭区间上连续函数的有界性定理、最值定理、介值定理,并会用上述定理推证一些简单命题。

(二)一元函数微分学1.考试内容导数的概念、导数的几何意义、函数的可导性与连续性之间的关系、平面曲线的切线和法线、基本初等函数的导数、导数的四则运算、复合函数、反函数、隐函数的导数的求法、高阶导数的概念和计算、微分的概念、函数可微与可导的关系、微分的运算法则及函数微分的求法、微分中值定理、洛必达(L’Hospital)法则、函数单调性、函数图形的凹凸性和拐点、函数的极值、函数最值。

《高等数学(二)》专升本考试大纲

《高等数学(二)》专升本考试大纲

高等数学(二)专升本考试大纲一、考试内容本次高等数学(二)专升本考试内容主要包括以下几个方面:1.函数的连续性与一致连续性2.曲线的切线与法线3.微分学的应用4.不定积分5.定积分与应用6.微分方程二、考试要求1.掌握函数的连续性与一致连续性的判定方法,并能灵活应用于解题过程中。

2.理解曲线的切线与法线的概念,并能运用导数的定义和性质求解切线和法线的方程。

3.了解微分学的基本概念,并能应用微分学知识解决实际问题。

4.掌握不定积分的定义和基本性质,并能进行常见函数的积分运算。

5.熟悉定积分的定义和基本性质,并能运用定积分求解简单的几何问题。

6.理解微分方程的概念,并能根据给定的微分方程解决实际问题。

三、考试形式本次高等数学(二)专升本考试采取闭卷形式,包括选择题和解答题。

1.选择题:共计50道选择题,每题2分,满分100分。

选择题主要测试考生对基本概念和理论的理解程度。

2.解答题:共计3道解答题,每题30分,满分90分。

解答题主要测试考生的问题分析和解决能力。

四、复习重点1.函数的连续性与一致连续性–连续函数的定义–连续函数的性质–一致连续函数的定义和判定方法2.曲线的切线与法线–切线的概念和性质–法线的概念和性质–切线和法线的方程求解方法3.微分学的应用–极值与最值–函数的增减与凹凸性–求解最值和极值问题4.不定积分–不定积分的定义和基本性质–常见函数的积分运算方法–积分表的使用技巧5.定积分与应用–定积分的定义和基本性质–定积分的计算方法–几何应用和物理应用6.微分方程–微分方程的基本概念和分类–解微分方程的一般步骤–常微分方程的应用五、备考建议1.提前制定复习计划,合理安排学习时间。

2.多做习题,加强对知识点的理解和应用。

3.注意整理复习笔记,方便日后的复习和回顾。

4.多参考往年的真题和模拟试卷,了解考试形式和难度。

5.针对考试要求的不同部分,进行有针对性的复习和训练。

六、考前注意事项1.睡眠充足,保持良好的精神状态。

2024山东专升本高数二大纲

2024山东专升本高数二大纲

2024山东专升本高数二大纲2024年山东专升本高等数学II考试大纲主要包括以下内容:一、考试形式与试卷结构1.考试形式:闭卷、笔试。

2.试卷满分:100分。

3.考试时间:120分钟。

4.题型结构:选择题、填空题、判断题、计算题、解答题、证明题、应用题等。

二、考试内容与要求1.函数、极限与连续(1)理解函数的概念,掌握函数的性质及其表示法。

(2)理解极限的概念,掌握极限的运算法则。

(3)理解连续性的概念,掌握函数连续性的判定方法。

2.导数与微分(1)理解导数的概念及其几何意义,掌握导数的基本运算法则和求导方法。

(2)理解微分的概念,掌握微分的运算法则和应用。

3.积分学(1)理解不定积分的概念与性质,掌握不定积分的计算方法。

(2)理解定积分的概念与性质,掌握定积分的计算方法及其应用。

4.向量与空间解析几何(1)理解向量的概念及其运算,掌握向量的坐标表示法。

(2)理解空间直角坐标系的概念,掌握空间点的坐标表示法。

(3)理解平面与直线的方程,掌握平面与直线的性质及其应用。

5.多元函数微分学(1)理解多元函数的概念及其性质,掌握多元函数的偏导数与全微分。

(2)理解极值与最值的概念,掌握极值与最值的求法及其应用。

6.常微分方程(1)理解微分方程的概念及其阶、解、通解、初始条件和特解等概念。

(2)掌握可分离变量微分方程的解法。

(3)掌握一阶线性微分方程的解法。

(4)掌握二阶常系数齐次线性微分方程的解法。

以上是2024年山东专升本高等数学II考试大纲的主要内容,供考生参考。

在复习过程中,考生应重点掌握各章节的基本概念、基本方法和基本题型,注重理论与实践相结合,提高解题能力和综合应用能力。

同时,也要注意关注考试动态和最新政策,确保备考方向正确。

高等数学》考试大纲word

高等数学》考试大纲word

《高等数学》考试大纲一、考试基本要求:1. 熟练掌握:1)函数与极限;2)一元函数微积分学;3)微分方程;4)向量代数与空间解析几何;5)多元函数微积分学;6)无穷级数等方面的基本概念、基本理论和基本运算;2. 初步具备综合运用数学知识去分析问题和解决问题的能力;具备一定的抽象思维能力、逻辑推理能力、空间想象能力、运算能力和自学能力。

二、考核知识范围及考核要求:第一章函数与极限(一)函数1.知识范围(1)函数的概念:函数的定义函数的表示法分段函数(2)函数的简单性质:单调性奇偶性有界性周期性(3)反函数:反函数的定义反函数的图象(4)函数的四则运算与复合运算(5)基本初等函数:幂函数指数函数对数函数三角函数反三角函数(6)初等函数2. 要求(1)理解函数的概念,会求函数的定义域、表达式及函数值。

会求分段函数的定义域、函数值,并会作出简单的分段函数图像。

(2)理解和掌握函数的单调性、奇偶性、有界性和周期性,会判断所给函数的类别。

(3)了解函数y=ƒ(x)与其反函数y=ƒ-1(x)之间的关系(定义域、值域、图象),会求单调函数的反函数。

(4)理解和掌握函数的四则运算与复合运算,熟练掌握复合函数的复合过程。

(5)掌握基本初等函数的简单性质及其图象。

(6)了解初等函数的概念。

(7)会建立简单实际问题的函数关系式。

(二)极限1. 知识范围(1)数列极限的概念:数列数列极限的定义(2)数列极限的性质:唯一性有界性四则运算定理夹逼定理单调有界数列极限存在定理(3)函数极限的概念函数在一点处极限的定义左、右极限及其与极限的关系 x趋于无穷(x→∞,x→+∞,x→-∞)时函数的极限函数极限的几何意义(4)函数极限的定理:唯一性定理夹逼定理四则运算定理(5)无穷小量和无穷大量无穷小量与无穷大量的定义无穷小量与无穷大量的关系无穷小量与无穷大量的性质两个无穷小量阶的比较(6)两个重要极限sinx 1lim = 1 lim(1 + )x = e x→0 x x→∞ x2. 要求(1)理解极限的概念(对极限定义中“ε- N”、“ε- δ”、“ε- M”的描述不作要求),能根据极限概念分析函数的变化趋势。

高等数学乙考试大纲

高等数学乙考试大纲

高等数学乙考试大纲一、考试目的与要求本考试旨在测试学生对高等数学基础知识的掌握程度以及运用这些知识解决实际问题的能力。

考试要求学生能够熟练掌握高等数学的基本理论、概念、性质和计算方法,能够运用数学工具进行逻辑推理和证明,以及解决工程和科学问题。

二、考试内容1. 函数、极限与连续性- 函数的概念、性质和分类- 极限的定义、性质和运算法则- 无穷小量的比较- 函数的连续性及其判断2. 导数与微分- 导数的定义、几何意义和物理意义- 基本初等函数的导数公式- 高阶导数- 隐函数和参数方程的导数- 微分的概念和运算3. 微分中值定理与导数的应用- 罗尔定理、拉格朗日中值定理和柯西中值定理- 泰勒公式- 导数在几何上的应用:切线、法线、弧长等- 导数在物理上的应用:速度、加速度等4. 不定积分- 不定积分的概念和性质- 基本积分公式- 换元积分法和分部积分法- 有理函数和三角函数的积分5. 定积分- 定积分的定义和性质- 微积分基本定理- 定积分的计算方法:数值积分法、换元法和分部积分法 - 定积分在几何和物理上的应用:面积、体积、功等6. 多元函数微分学- 多元函数的概念和极限- 偏导数和全微分- 多元函数的极值问题- 多元函数的泰勒展开7. 重积分- 二重积分和三重积分的概念- 重积分的性质和计算方法- 重积分在几何和物理上的应用8. 曲线积分与曲面积分- 曲线积分的概念和计算方法- 曲面积分的概念和计算方法- 格林公式、高斯公式和斯托克斯公式9. 无穷级数- 级数的概念和性质- 正项级数的收敛性判别- 幂级数、泰勒级数和傅里叶级数- 级数在函数逼近中的应用10. 常微分方程- 一阶微分方程的解法:分离变量法、变量替换法等- 高阶微分方程的解法:常数变易法、降阶法等- 线性微分方程组的解法- 微分方程在物理和工程上的应用三、考试形式与题型本考试采用闭卷形式,题型包括选择题、填空题、计算题、证明题和应用题。

601高等数学考试大纲

601高等数学考试大纲

601高等数学考试大纲一、课程概述高等数学是理工科专业学生的一门基础课程,旨在培养学生的数学思维和分析问题的能力。

本课程内容广泛,涵盖了微积分、线性代数、常微分方程等数学分支,为学生进一步学习专业课程打下坚实的数学基础。

二、考试目标通过本课程的学习和考核,学生应能够:1. 掌握微积分的基本理论、方法和应用。

2. 理解线性代数的基本概念和运算规则。

3. 熟悉常微分方程的求解技巧和实际应用。

4. 培养解决实际问题时的数学建模能力。

三、考试内容1. 微积分部分- 极限与连续性:理解极限的概念,掌握极限的运算法则,理解函数的连续性。

- 导数与微分:掌握导数的定义、几何意义及物理意义,理解高阶导数,掌握微分法则。

- 微分中值定理及其应用:理解罗尔定理、拉格朗日中值定理和柯西中值定理,掌握洛必达法则。

- 积分学:掌握不定积分和定积分的计算方法,理解积分的几何意义和物理意义,掌握换元积分法和分部积分法。

- 级数:理解级数的收敛性,掌握几何级数、调和级数等常见级数的求和方法。

2. 线性代数部分- 矩阵理论:理解矩阵的运算规则,掌握矩阵的转置、逆矩阵和行列式。

- 线性方程组:掌握高斯消元法和克拉默法则,理解线性方程组的解的结构。

- 向量空间:理解向量空间的概念,掌握基、维数和坐标变换。

3. 常微分方程部分- 一阶微分方程:掌握可分离变量方程、齐次方程和非齐次方程的解法。

- 高阶微分方程:理解特征方程法、降阶法和常系数线性微分方程的解法。

- 微分方程的应用:理解微分方程在物理、工程等领域的应用。

四、考试形式考试将采用闭卷笔试的形式,题型包括选择题、填空题、计算题、证明题和应用题。

考试将全面考察学生对高等数学知识的掌握程度和应用能力。

五、评分标准1. 选择题和填空题:主要考察学生对基本概念和基本运算的掌握。

2. 计算题:考察学生的计算能力和对公式的熟练运用。

3. 证明题:考察学生的逻辑思维能力和数学推理能力。

4. 应用题:考察学生将数学知识应用于实际问题的能力。

高等数学(一)考试大纲

高等数学(一)考试大纲一、考试性质二、考试目标《高等数学》专升本入学考试注重考察学生基础知识、基本技能和思维能力、运算能力、以及分析问题和解决问题的能力。

三、考试内容和基本要求一、函数、极限与连续(一)考试内容函数的概念与基本特性;数列、函数极限;极限的运算法则;两个重要极限;无穷小的概念与阶的比较;函数的连续性和间断点;闭区间上连续函数的性质。

(二)考试要求1.理解函数的概念,了解函数的奇偶性、单调性、周期性、有界性。

了解反函数的概念;理解复合函数的概念。

理解初等函数的概念。

会建立简单实际问题的函数关系。

2.理解数列极限、函数极限的概念(不要求做给出ε,求N或δ的习题);了解极限性质(唯一性、有界性、保号性)和极限的两个存在准则(夹逼准则和单调有界准则)。

3.掌握函数极限的运算法则;熟练掌握极限计算方法。

掌握两个重要极限,并会用两个重要极限求极限。

4.了解无穷小、无穷大、高阶无穷小、等价无穷小的概念,会用等价无穷小求极限。

5.理解函数连续的概念;了解函数间断点的概念,会判别间断点的类型(第一类与第二类)。

6.了解初等函数的连续性;了解闭区间上连续函数的性质,会用性质证明一些简单结论。

二、导数与微分(一)考试内容导数概念及求导法则;隐函数与参数方程所确定函数的导数;高阶导数;微分的概念与运算法则。

(二)考试要求1.理解导数的概念及几何意义,了解函数可导与连续的关系,会求平面曲线的切、法线方程;2.掌握导数的四则运算法则和复合函数的求导法则;掌握基本初等函数的求导公式,会熟练求函数的导数。

3.掌握隐函数与参数方程所确定函数的求导方法(一阶);掌握取对数求导法。

3.了解高阶导数的概念,掌握初等函数的一阶、二阶导数的求法。

会求简单函数的n 阶导数。

4.理解微分的概念,了解微分的运算法则和一阶微分形式不变性,会求函数的微分。

三、中值定理与导数应用(一)考试内容罗尔中值定理、拉格朗日中值定理;洛必达法则;函数单调性与极值、曲线凹凸性与拐点。

《高等数学》考试大纲

《高等数学》考试大纲一、考试目的高等数学是理工科院校各专业学生的一门重要基础课程。

本考试旨在考察学生对高等数学的基本概念、基本理论和基本方法的掌握程度,以及运用所学知识解决问题的能力。

二、考试内容(一)函数、极限与连续1、理解函数的概念,掌握函数的表示方法,会求函数的定义域、值域。

2、理解函数的单调性、奇偶性、周期性和有界性。

3、掌握基本初等函数的性质及其图形。

4、理解数列极限和函数极限的概念,掌握极限的四则运算法则和两个重要极限。

5、了解无穷小量和无穷大量的概念,掌握无穷小量的性质和比较方法。

6、理解函数连续的概念,会判断函数的连续性,掌握闭区间上连续函数的性质。

(二)一元函数微分学1、理解导数的概念,掌握导数的几何意义和物理意义,会求平面曲线的切线方程和法线方程。

2、掌握基本初等函数的导数公式,掌握导数的四则运算法则和复合函数的求导法则。

3、会求隐函数和由参数方程所确定的函数的导数。

4、了解高阶导数的概念,会求函数的二阶导数。

5、理解函数的微分概念,掌握微分的运算法则和一阶微分形式的不变性。

6、掌握罗尔定理、拉格朗日中值定理和柯西中值定理,会用中值定理证明简单的不等式和等式。

7、掌握函数单调性的判别方法,会求函数的单调区间。

8、掌握函数极值和最值的求法,会解决简单的实际应用问题。

9、会用导数判断函数图形的凹凸性和拐点,会求函数图形的水平渐近线和垂直渐近线。

(三)一元函数积分学1、理解原函数和不定积分的概念,掌握不定积分的基本性质和基本积分公式。

2、掌握不定积分的换元积分法和分部积分法。

3、理解定积分的概念和几何意义,掌握定积分的基本性质。

4、掌握牛顿莱布尼茨公式,会用定积分计算平面图形的面积、旋转体的体积和曲线的弧长。

5、了解广义积分的概念,会计算简单的广义积分。

(四)向量代数与空间解析几何1、理解向量的概念,掌握向量的坐标表示和向量的线性运算。

2、掌握向量的数量积和向量积的计算方法,了解向量的混合积。

高等数学考试大纲(适合专升本考生)

《高等数学I 》课程考试大纲一、课程基本信息1.课程性质:公共基础课2.适用对象:怀化学院专升本考生二、课程考试目的《高等数学》课程考试旨在考察学生对知识的掌握情况以及运用知识解决实际问题的能力.三、考试内容与要求第一章 函数极限与连续(一)考试内容一元函数的概念,函数的性质(有界性、单调性、奇偶性、周期性),反函数,基本初等函数的概念、性质及其图形,复合函数,初等函数,数列极限,函数极限,无穷小与无穷大,无穷小与极限之间的关系,无穷小与无穷大之间的关系,极限的运算法则,极限存在准则,两个重要极限,无穷小的比较,函数的连续性,函数的间断点及其类型,连续函数的运算定理,初等函数的连续性,闭区间上连续函数的基本性质.(二)考试要求1.理解函数、初等函数的概念;2.了解函数的性质以及反函数的概念;3.掌握基本初等函数的性质及其图形;4.理解极限的概念,思想方法;5.了解极限的,,N X εεδε---定义;6.掌握左、右极限的概念,左、右极限与双边极限的关系;7.掌握极限四则运算法则;8.了解两个极限存在准则,熟练掌握两个重要极限;9.理解无穷小的概念及与极限的关系;10.了解无穷小的比较;11.理解连续的两种定义,掌握连续性的证明方法、连续函数的运算性质,会判定间断点的类型;12.知道闭区间上连续函数的性质,会用零点定理判别方程的根。

第二章 导数与微分(一)考试内容导数的概念,基本初等函数的导数,函数的和,差、积、商的导数,反函数和复合函数的导数,高阶导数,由隐函数、参数方程确定的函数的导数,微分的基本公式,微分形式不变性,微分在近似计算中的应用.(二)考试要求1.理解导数的概念,掌握利用概念求某些特殊极限的方法;2.掌握导数的几何意义,掌握求切线和法线方程的方法,明确可导与连续的关系;2.熟练掌握导数的运算;3.理解微分的概念、几何意义、微分形式不变性,明确可导与可微的关系;4.掌握微分在近似计算中的应用;第三章中值定理与导数的应用。

高等数学(甲)考试大纲

高等数学(甲)考试大纲一、函数、极限、连续考试内容函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 复合函数、反函数、分段函数和隐函数 基本初等函数的性质及其图形数列极限与函数极限的概念 无穷小和无穷大的概念及其关系 无穷小的性质及无穷小的比较 极限的四则运算 极限存在的单调有界准则和夹逼准则 两个重要极限:1sin lim 0=→x x x ,e x x x =⎪⎭⎫ ⎝⎛+→11lim 0函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质 函数的一致连续性概念考试要求1. 理解函数的概念,掌握函数的表示法,并会建立简单应用问题中的函数关系式。

2. 理解函数的有界性、单调性、周期性和奇偶性。

掌握判断函数这些性质的方法。

3. 理解复合函数的概念,了解反函数及隐函数的概念。

会求给定函数的复合函数和反函数。

4. 掌握基本初等函数的性质及其图形。

5. 理解极限的概念,理解函数左极限与右极限的概念,以及函数极限存在与左、右极限之间的关系。

6. 掌握极限的性质及四则运算法则,会运用它们进行一些基本的判断和计算。

7. 掌握极限存在的两个准则,并会利用它们求极限。

掌握利用两个重要极限求极限的方法。

8. 理解无穷小、无穷大的概念,掌握无穷小的比较方法,会用等价无穷小求极限。

9. 理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。

10. 掌握连续函数的运算性质和初等函数的连续性,熟悉闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理等),并会应用这些性质。

11.理解函数一致连续性的概念。

二、一元函数微分学考试内容导数的概念导数的几何意义和物理意义函数的可导性与连续性之间的关系平面曲线的切线和法线基本初等函数的导数导数的四则运算复合函数、反函数、隐函数的导数的求法参数方程所确定的函数的求导方法高阶导数的概念高阶导数的求法微分的概念和微分的几何意义函数可微与可导的关系微分的运算法则及函数微分的求法一阶微分形式的不变性微分在近似计算中的应用微分中值定理洛必达(L’Hospital)法则泰勒(Taylor)公式函数的极值函数最大值和最小值函数单调性函数图形的凹凸性、拐点及渐近线函数图形的描绘弧微分及曲率的计算考试要求1. 理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,掌握函数的可导性与连续性之间的关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高等数学考试大纲
2011年5月
1.函数极限与连续
函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质初等函数
数列极限与函数极限的定义及其性质函数的左右极限无穷小与无穷大的概念及其关系无穷小的性质及无穷小的比较极限的四则运算极限存在的单调有界准则和夹逼准则两个重要极限函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质
2. 一元函数微分学
导数与微分的概念导数的物理意义与几何意义函数的可导性与连续性的关系平面曲线的切线和法线基本初等函数的导数导数与微分的四则运算复合函数﹑反函数、隐函数以及参数方程所确定的函数的微分法高阶导数的概念罗尔定理拉格朗日中值定理泰勒公式洛必达法则函数单调性的判定函数的极值求法及其应用函数图形的凸凹性﹑拐点及水平和垂直渐近线
3. 一元函数积分学
原函数和不定积分的概念不定积分的基本性质基本积分公式定积分的概念和性质变上限定积分及其导数牛顿-莱布尼兹公式不定积分和定积分的换元积分法和分部积分法定积分的几何应用
4. 线性代数基础
行列式的概念和性质行列式的计算矩阵的概念和性质矩阵的计算矩阵的初等变换矩阵的秩矩阵可逆的充分必要条件逆矩阵的计算向量的概念向量组的线性相关和线性无关向量组的秩线性方程组解的结构齐次和非齐次线性方程组的求解矩阵特征值和特征向量的计算。

相关文档
最新文档