2017版高考数学一轮复习 第九章 平面解析几何 第2讲 两直线的位置关系课件 理

合集下载

高中数学一轮复习课件:第九章 解析几何(必修2、选修1-1)9-3

高中数学一轮复习课件:第九章 解析几何(必修2、选修1-1)9-3

(2)①方程 x2+y2-6x-6y+14=0 可变形为(x-3)2+(y-3)2
=4.
yx表示圆上的点 P 与原点连线的斜率,显然当 PO(O 为原点)
与圆相切时,斜率最大或最小,如图①所示.
设切线方程为 y=kx,即 kx-y=0,
由圆心 C(3,3)到切线的距离等于半径 2,
可得|3kk2-+31|=2,解得 k=9±25 14,
y 轴交于 A,B 两点,点 P 在圆(x-2)2+y2=2 上,则△ABP 面积
ห้องสมุดไป่ตู้
的取值范围是( )
A.[2,6]
B.[4,8]
C.[ 2,3 2] D.[2 2,3 2]
(2)已知点 P(x,y)在圆 C:x2+y2-6x-6y+14=0 上.
①求yx的最大值和最小值;
②求 x+y 的最大值与最小值.
考点三 与圆有关的轨迹问题 【例 3】 设定点 M(-3,4),动点 N 在圆 x2+y2=4 上运动,
P 为线段 MN 的中点,求点 P 的轨迹方程.
[思路引导]
设所求点 Px,y

寻求与已知 点N的关系

用x,、y表 示点N

代入点N 满足方程
[解] 设 P(x,y),N(x0,y0),∵P 为 MN 的中点,
[答案] D
3.若点(1,1)在圆(x-a)2+(y+a)2=4 的内部,则实数 a 的取
值范围是( )
A.(-1,1)
B.(0,1)
C.(-∞,-1)∪(1,+∞) D.a=±1
[解析] 因为点(1,1)在圆的内部, 所以(1-a)2+(1+a)2<4,所以-1<a<1.故选 A.

北师大版版高考数学一轮复习第九章平面解析几何两直线的位置关系教学案理

北师大版版高考数学一轮复习第九章平面解析几何两直线的位置关系教学案理

一、知识梳理1.两条直线平行与垂直的判定(1)两条直线平行对于两条不重合的直线l1,l2,其斜率都存在且分别为k1,k2,则有l1∥l2⇔k1=k2;特别地,当直线l1,l2的斜率都不存在时,l1与l2平行.(2)两条直线垂直如果两条直线l1,l2斜率都存在,设为k1,k2,则l1⊥l2⇔k1·k2=—1,当一条直线斜率为零,另一条直线斜率不存在时,两条直线垂直.2.两直线相交直线l1:A1x+B1y+C1=0和l2:A2x+B2y+C2=0的公共点的坐标与方程组错误!的解一一对应.相交⇔方程组有唯一解,交点坐标就是方程组的解;平行⇔方程组无解;重合⇔方程组有无数个解.3.两种距离点点距点P1(x1,y1),P2(x2,y2)之间的距离|P1P2|=错误!点线距点P0(x0,y0)到直线l:Ax+By+C=0的距离d=错误!常用结论1.两个充要条件(1)两直线平行或重合的充要条件直线l1:A1x+B1y+C1=0与直线l2:A2x+B2y+C2=0平行或重合的充要条件是A1B2—A2B=0.1(2)两直线垂直的充要条件直线l1:A1x+B1y+C1=0与直线l2:A2x+B2y+C2=0垂直的充要条件是A1A2+B1B2=0.2.六种常见对称(1)点(x,y)关于原点(0,0)的对称点为(—x,—y).(2)点(x,y)关于x轴的对称点为(x,—y),关于y轴的对称点为(—x,y).(3)点(x,y)关于直线y=x的对称点为(y,x),关于直线y=—x的对称点为(—y,—x).(4)点(x,y)关于直线x=a的对称点为(2a—x,y),关于直线y=b的对称点为(x,2b—y).(5)点(x,y)关于点(a,b)的对称点为(2a—x,2b—y).(6)点(x,y)关于直线x+y=k的对称点为(k—y,k—x),关于直线x—y=k的对称点为(k +y,x—k).3.三种直线系方程(1)与直线Ax+By+C=0平行的直线系方程是Ax+By+m=0(m∈R且m≠C).(2)与直线Ax+By+C=0垂直的直线系方程是Bx—Ay+n=0(n∈R).(3)过直线l1:A1x+B1y+C1=0与l2:A2x+B2y+C2=0的交点的直线系方程为A1x+B1y +C1+λ(A2x+B2y+C2)=0(λ∈R),但不包括l2.二、教材衍化1.已知点(a,2)(a>0)到直线l:x—y+3=0的距离为1,则a=________.解析:由题意得错误!=1.解得a=—1+错误!或a=—1—错误!.因为a>0,所以a=—1+错误!.答案:错误!—12.已知P(—2,m),Q(m,4),且直线PQ垂直于直线x+y+1=0,则m=________.解析:由题意知错误!=1,所以m—4=—2—m,所以m=1.答案:1一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)当直线l1和l2的斜率都存在时,一定有k1=k2⇒l1∥l2.()(2)如果两条直线l1与l2垂直,则它们的斜率之积一定等于—1.()(3)若两直线的方程组成的方程组有唯一解,则两直线相交.()(4)已知直线l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0(A1,B1,C1,A2,B2,C2为常数),若直线l1⊥l2,则A1A2+B1B2=0.()(5)直线外一点与直线上一点的距离的最小值就是点到直线的距离.()答案:(1)×(2)×(3)√(4)√(5)√二、易错纠偏错误!错误!(1)判断两直线平行时,忽视两直线重合的情况;(2)判断两直线的位置关系时,忽视斜率不存在的情况;(3)求两平行线间的距离,忽视x,y的系数应对应相同.1.直线2x+(m+1)y+4=0与直线mx+3y—2=0平行,则m=________.解析:直线2x+(m+1)y+4=0与直线mx+3y—2=0平行,则有错误!=错误!≠错误!,故m=2或—3.答案:2或—32.若直线(3a+2)x+(1—4a)y+8=0与(5a—2)x+(a+4)y—7=0垂直,则a =________.解析:由两直线垂直的充要条件,得(3a+2)(5a—2)+(1—4a)(a+4)=0,解得a=0或a=1.答案:0或13.直线2x+2y+1=0,x+y+2=0之间的距离是________.解析:先将2x+2y+1=0化为x+y+错误!=0,则两平行线间的距离为d=错误!=错误!.答案:错误!两直线的位置关系(多维探究)角度一判断两直线的位置关系(2020·天津静海区联考)“a=1”是“直线ax+2y—8=0与直线x+(a+1)y+4=0平行”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件【解析】设直线l1:ax+2y—8=0,直线l2:x+(a+1)y+4=0.若l1与l2平行,则a(a +1)—2=0,即a2+a—2=0,解得a=1或a=—2.当a=—2时,直线l1的方程为—2x+2y—8=0,即x—y+4=0,直线l2的方程为x—y+4=0,此时两直线重合,则a≠—2.当a=1时,直线l1的方程为x+2y—8=0,直线l2的方程为x+2y+4=0,此时两直线平行.故“a=1”是“直线ax +2y—8=0与直线x+(a+1)y+4=0平行”的充要条件.故选A.【答案】A角度二由两直线的位置关系求参数(1)(2020·安徽芜湖四校联考)直线(2m—1)x+my+1=0和直线mx+3y+3=0垂直,则实数m的值为()A.1B.0C.2D.—1或0(2)(2020·陕西宝鸡中学二模)若直线x+(1+m)y—2=0与直线mx+2y+4=0平行,则m的值是()A.1B.—2C.1或—2D.—错误!【解析】(1)由两直线垂直可得m(2m—1)+3m=0,解得m=0或—1.故选D.(2)1当m=—1时,两直线方程分别为x—2=0和x—2y—4=0,此时两直线相交,不符合题意.2当m≠—1时,两直线的斜率都存在,由两直线平行可得错误!解得m=1.综上可得m=1.故选A.【答案】(1)D (2)A角度三由两直线的位置关系求直线方程(一题多解)经过两条直线2x+3y+1=0和x—3y+4=0的交点,并且垂直于直线3x +4y—7=0的直线的方程为________.【解析】法一:由方程组错误!解得错误!即交点为错误!,因为所求直线与直线3x+4y—7=0垂直,所以所求直线的斜率为k=错误!.由点斜式得所求直线方程为y—错误!=错误!错误!,即4x—3y+9=0.法二:由垂直关系可设所求直线方程为4x—3y+m=0,由方程组错误!可解得交点为错误!,代入4x—3y+m=0得m=9,故所求直线方程为4x—3y+9=0.法三:由题意可设所求直线的方程为(2x+3y+1)+λ(x—3y+4)=0,即(2+λ)x+(3—3λ)y+1+4λ=0,1又因为所求直线与直线3x+4y—7=0垂直,所以3(2+λ)+4(3—3λ)=0,所以λ=2,代入1式得所求直线方程为4x—3y+9=0.【答案】4x—3y+9=0错误!两直线平行、垂直的判断方法若已知两直线的斜率存在.(1)两直线平行⇔两直线的斜率相等且在坐标轴上的截距不等.(2)两直线垂直⇔两直线的斜率之积等于—1.[提醒] 判断两条直线的位置关系应注意:(1)注意斜率不存在的特殊情况.(2)注意x,y的系数不能同时为零这一隐含条件.1.求满足下列条件的直线方程.(1)过点P(—1,3)且平行于直线x—2y+3=0;(2)已知A(1,2),B(3,1),线段AB的垂直平分线.解:(1)设直线方程为x—2y+c=0,把P(—1,3)代入直线方程得c=7,所以直线方程为x—2y+7=0.(2)AB的中点为错误!,即错误!,直线AB的斜率k AB=错误!=—错误!,故线段AB的垂直平分线的斜率k=2,所以其方程为y—错误!=2(x—2),即4x—2y—5=0.2.(一题多解)已知直线l1:ax+2y+6=0和直线l2:x+(a—1)y+a2—1=0.(1)试判断l1与l2是否平行;(2)当l1⊥l2时,求a的值.解:(1)法一:当a=1时,l1:x+2y+6=0,l2:x=0,l1不平行于l2;当a=0时,l1:y=—3,l2:x—y—1=0,l1不平行于l2;当a≠1且a≠0时,两直线可化为l1:y=—错误!x—3,l2:y=错误!x—(a+1),l1∥l2⇔错误!解得a=—1,综上可知,当a=—1时,l1∥l2.法二:由A1B2—A2B1=0,得a(a—1)—1×2=0,由A1C2—A2C1≠0,得a(a2—1)—1×6≠0,所以l1∥l2⇔错误!⇔错误!可得a=—1,故当a=—1时,l1∥l2.(2)法一:当a=1时,l1:x+2y+6=0,l2:x=0,l1与l2不垂直,故a=1不成立;当a=0时,l1:y=—3,l2:x—y—1=0,l1不垂直于l2,故a=0不成立;当a≠1且a≠0时,l1:y=—错误!x—3,l2:y=错误!x—(a+1),由错误!·错误!=—1,得a=错误!.法二:由A1A2+B1B2=0,得a+2(a—1)=0,可得a=错误!.两条直线的交点和距离问题(典例迁移)(1)经过两直线l1:x—2y+4=0和l2:x+y—2=0的交点P,且与直线l3:3x—4y +5=0垂直的直线l的方程为__________________.(2)(2020·宿州模拟)已知点P(4,a)到直线4x—3y—1=0的距离不大于3,则a的取值范围是________.(3)(2020·厦门模拟)若两平行直线3x—2y—1=0,6x+ay+c=0之间的距离为错误!,则c的值是________.【解析】(1)由方程组错误!得错误!即P(0,2).因为l⊥l3,所以直线l的斜率k=—错误!,所以直线l的方程为y—2=—错误!x,即4x+3y—6=0.(2)由题意得,点P到直线的距离为错误!=错误!.又错误!≤3,即|15—3a|≤15,解得0≤a≤10,所以a的取值范围是[0,10].(3)依题意知,错误!=错误!≠错误!,解得a=—4,c≠—2,即直线6x+ay+c=0可化为3x—2y+错误!=0,又两平行线之间的距离为错误!,所以错误!=错误!,解得c=2或—6.【答案】(1)4x+3y—6=0 (2)[0,10] (3)2或—6【迁移探究】若将本例(1)中的“垂直”改为“平行”,如何求解?解:法一:由方程组错误!得错误!即P(0,2).因为l∥l3,所以直线l的斜率k=错误!,所以直线l的方程为y—2=错误!x,即3x—4y+8=0.法二:因为直线l过直线l1和l2的交点,所以可设直线l的方程为x—2y+4+λ(x+y—2)=0,即(1+λ)x+(λ—2)y+4—2λ=0.因为l与l3平行,所以3(λ—2)—(—4)(1+λ)=0,且(—4)(4—2λ)≠5(λ—2),所以λ=错误!,所以直线l的方程为3x—4y+8=0.错误!(1)求过两直线交点的直线方程的方法求过两直线交点的直线方程,先解方程组求出两直线的交点坐标,再结合其他条件写出直线方程.(2)利用距离公式应注意:1点P(x0,y0)到直线x=a的距离d=|x0—a|,到直线y=b的距离d=|y0—b|;2应用两平行线间的距离公式要把两直线方程中x,y的系数分别化为相等.1.已知A(2,0),B(0,2),若点C在函数y=x2的图象上,则使得△ABC的面积为2的点C 的个数为()A.4B.3C.2D.1解析:选A.设点C(t,t2),直线AB的方程是x+y—2=0,|AB|=2错误!.由于△ABC的面积为2,则这个三角形中AB边上的高h满足方程错误!×2错误!h=2,即h=错误!.由点到直线的距离公式得错误!=错误!,即|t+t2—2|=2,即t2+t—2=2或者t2+t—2=—2.因为这两个方程各有两个不相等的实数根,故这样的点C有4个.2.已知直线y=kx+2k+1与直线y=—错误!x+2的交点位于第一象限,则实数k的取值范围是________.解析:如图,已知直线y=—错误!x+2与x轴、y轴分别交于点A(4,0),B(0,2).而直线方程y=kx+2k+1可变形为y—1=k(x+2),表示这是一条过定点P(—2,1),斜率为k的动直线.因为两直线的交点在第一象限,所以两直线的交点必在线段AB上(不包括端点),所以动直线的斜率k需满足k PA<k<k PB.因为k PA=—错误!,k PB=错误!.所以—错误!<k<错误!.答案:错误!3.(一题多解)直线l过点P(—1,2)且到点A(2,3)和点B(—4,5)的距离相等,则直线l的方程为________.解析:法一:当直线l的斜率存在时,设直线l的方程为y—2=k(x+1),即kx—y+k+2=0.由题意知错误!=错误!,即|3k—1|=|—3k—3|,所以k=—错误!,所以直线l的方程为y—2=—错误!(x+1),即x+3y—5=0.当直线l的斜率不存在时,直线l的方程为x=—1,也符合题意.故所求直线l的方程为x+3y—5=0或x=—1.法二:当AB∥l时,有k=k AB=—错误!,直线l的方程为y—2=—错误!(x+1),即x+3y—5=0.当l过AB的中点时,AB的中点为(—1,4),所以直线l的方程为x=—1,故所求直线l的方程为x+3y—5=0或x=—1.答案:x+3y—5=0或x=—1对称问题(多维探究)角度一点关于点的对称过点P(0,1)作直线l,使它被直线l1:2x+y—8=0和l2:x—3y+10=0截得的线段被点P平分,则直线l的方程为________________.【解析】设l1与l的交点为A(a,8—2a),则由题意知,点A关于点P的对称点B(—a,2a—6)在l2上,把B点坐标代入l2的方程得—a—3(2a—6)+10=0,解得a=4,即点A(4,0)在直线l上,所以由两点式得直线l的方程为x+4y—4=0.【答案】x+4y—4=0角度二点关于线的对称如图所示,已知两点A(4,0),B(0,4),从点P(2,0)射出的光线经直线AB反射后再射到直线OB上,最后经直线OB反射后又回到P点,则光线所经过的路程是()A.2错误!B.6C.3错误!D.2错误!【解析】易得AB所在的直线方程为x+y=4,由于点P关于直线AB的对称点为A1(4,2),点P关于y轴对称的点为A2(—2,0),则光线所经过的路程即A1(4,2)与A2(—2,0)两点间的距离.于是|A1A2|=错误!=2错误!.【答案】A角度三线关于线的对称直线2x—y+3=0关于直线x—y+2=0对称的直线方程是()A.x—2y+3=0 B.x—2y—3=0C.x+2y+1=0 D.x+2y—1=0【解析】设所求直线上任意一点P(x,y),则P关于直线x—y+2=0的对称点为P′(x0,y0),由错误!得错误!由点P′(x0,y0)在直线2x—y+3=0上,所以2(y—2)—(x+2)+3=0,即x—2y+3=0.【答案】A错误!(1)中心对称问题的2个类型及求解方法1点关于点对称:若点M(x1,y1)及N(x,y)关于点P(a,b)对称,则由中点坐标公式得错误!进而求解;2直线关于点的对称,主要求解方法:(a)在已知直线上取两点,利用中点坐标公式求出它们关于已知点对称的两点坐标,再由两点式求出直线方程;(b)求出一个对称点,再利用两对称直线平行,由点斜式得到所求直线方程.(2)轴对称问题的2个类型及求解方法1点关于直线的对称:若两点P1(x1,y1)与P2(x2,y2)关于直线l:Ax+By+C=0对称,由方程组错误!可得到点P1关于l对称的点P2的坐标(x2,y2)(其中B≠0,x1≠x2).2直线关于直线的对称:一般转化为点关于直线的对称来解决,有两种情况:一是已知直线与对称轴相交;二是已知直线与对称轴平行.已知直线l:2x—3y+1=0,点A(—1,—2).求:(1)点A关于直线l的对称点A′的坐标;(2)直线m:3x—2y—6=0关于直线l的对称直线m′的方程;(3)直线l关于点A(—1,—2)对称的直线l′的方程.解:(1)设A′(x,y),由已知错误!解得错误!所以A′错误!.(2)在直线m上取一点,如M(2,0),则M(2,0)关于直线l的对称点M′必在直线m′上.设M′(a,b),则错误!解得M′错误!.设直线m与直线l的交点为N,则由错误!得N(4,3).又因为m′经过点N(4,3),所以由两点式得直线m′的方程为9x—46y+102=0.(3)设P(x,y)为l′上任意一点,则P(x,y)关于点A(—1,—2)的对称点为P′(—2—x,—4—y),因为P′在直线l上,所以2(—2—x)—3(—4—y)+1=0,即2x—3y—9=0.直线系方程的应用一、平行直线系由于两直线平行,它们的斜率相等或它们的斜率都不存在,因此两直线平行时,它们的一次项系数与常数项有必然的联系.求与直线3x+4y+1=0平行且过点(1,2)的直线l的方程.【解】依题意,设所求直线方程为3x+4y+C1=0(C1≠1),因为直线过点(1,2),所以3×1+4×2+C1=0,解得C1=—11.因此,所求直线方程为3x+4y—11=0.先设与直线Ax+By+C=0平行的直线系方程为Ax+By+C1=0(C1≠C),再由其他条件求C1. 错误!二、垂直直线系由于直线A1x+B1y+C1=0与A2x+B2y+C2=0垂直的充要条件为A1A2+B1B2=0,因此,当两直线垂直时,它们的一次项系数有必然的联系,可以考虑用直线系方程求解.求经过A(2,1),且与直线2x+y—10=0垂直的直线l的方程.【解】因为所求直线与直线2x+y—10=0垂直,所以设该直线方程为x—2y+C1=0,又直线过点A(2,1),所以有2—2×1+C1=0,解得C1=0,所以所求直线方程为x—2y=0.错误!先设与直线Ax+By+C=0垂直的直线系方程为Bx—Ay+C1=0,再由其他条件求出C1.三、过直线交点的直线系求经过直线l1:3x+2y—1=0和l2:5x+2y+1=0的交点,且垂直于直线l3:3x—5y+6=0的直线l的方程.【解】法一:将直线l1,l2的方程联立,得错误!解得错误!即直线l1,l2的交点为(—1,2).由题意得直线l3的斜率为错误!,又直线l⊥l3,所以直线l的斜率为—错误!,则直线l的方程是y—2=—错误!(x+1),即5x+3y—1=0.法二:由于l⊥l3,所以可设直线l的方程是5x+3y+C=0,将直线l1,l2的方程联立,得错误!解得错误!即直线l1,l2的交点为(—1,2),则点(—1,2)在直线l上,所以5×(—1)+3×2+C=0,解得C=—1,所以直线l的方程为5x+3y—1=0.法三:设直线l的方程为3x+2y—1+λ(5x+2y+1)=0,整理得(3+5λ)x+(2+2λ)y+(—1+λ)=0.由于l⊥l3,所以3(3+5λ)—5(2+2λ)=0,解得λ=错误!,所以直线l的方程为5x+3y—1=0.错误!本题中的法二、法三均是利用直线系设出直线l的方程,而法三是利用相交直线系设出方程,避免了求直线l1与l2的交点坐标,方便简捷,是最优解法.四、直线恒过定点已知λ∈R,求证直线l:(2λ+1)x+(3λ+1)y—7λ—3=0恒过定点,并求出该定点坐标.【解】将(2λ+1)x+(3λ+1)y—7λ—3=0化成(2x+3y—7)λ+(x+y—3)=0.要使直线恒过定点,必须错误!解得错误!即直线l恒过定点(2,1).错误!直线Ax+By+C=0恒过定点问题实际上是直线系方程问题.将问题转化为两直线的交点,即将Ax +By+C=0化为(a1x+b1y+c1)λ+(a2x+b2y+c2)=0.通过方程组错误!,即可求出直线恒过的定点.[基础题组练]1.已知直线l1:mx+y—1=0与直线l2:(m—2)x+my—2=0,则“m=1”是“l1⊥l2”的()A.充分不必要条件B.充要条件C.必要不充分条件D.既不充分也不必要条件解析:选A.由l1⊥l2,得m(m—2)+m=0,解得m=0或m=1,所以“m=1”是“l1⊥l2”的充分不必要条件,故选A.2.已知直线l1:(k—3)x+(4—k)y+1=0与l2:2(k—3)x—2y+3=0平行,则k 的值是()A.1或3B.1或5C.3或5D.1或2解析:选C.法一:由两直线平行得,当k—3=0时,两直线的方程分别为y=—1和y=错误!,显然两直线平行.当k—3≠0时,由错误!=错误!≠错误!,可得k=5.综上,k的值是3或5.法二:当k=3时,两直线平行,故排除B,D;当k=1时,两直线不平行,排除A.3.(2020·安徽江南十校二联)已知直线l1:mx—3y+6=0,l2:4x—3my+12=0,若l∥l2,则l1,l2之间的距离为()1A.错误!B.错误!C.错误!D.错误!解析:选A.由于两条直线平行,所以m·(—3m)—(—3)·4=0,解得m=±2,当m=2时,两直线方程都是2x—3y+6=0,故两直线重合,不符合题意.当m=—2时,l1:2x+3y—6=0,l2:2x+3y+6=0,故l1,l2之间的距离为错误!=错误!.故选A.4.若点P在直线3x+y—5=0上,且P到直线x—y—1=0的距离为错误!,则点P的坐标为()A.(1,2)B.(2,1)C.(1,2)或(2,—1)D.(2,1)或(—1,2)解析:选C.设P(x,5—3x),则d=错误!=错误!,化简得|4x—6|=2,即4x—6=±2,解得x=1或x=2,故P(1,2)或(2,—1).5.直线ax+y+3a—1=0恒过定点M,则直线2x+3y—6=0关于M点对称的直线方程为()A.2x+3y—12=0 B.2x—3y—12=0C.2x—3y+12=0 D.2x+3y+12=0解析:选D.由ax+y+3a—1=0,可得a(x+3)+(y—1)=0,令错误!可得x=—3,y =1,所以M(—3,1),M不在直线2x+3y—6=0上,设直线2x+3y—6=0关于M点对称的直线方程为2x+3y+c=0(c≠—6),则错误!=错误!,解得c=12或c=—6(舍去),所以所求方程为2x+3y+12=0,故选D.6.与直线l1:3x+2y—6=0和直线l2:6x+4y—3=0等距离的直线方程是________.解析:l2:6x+4y—3=0化为3x+2y—错误!=0,所以l1与l2平行,设与l1,l2等距离的直线l的方程为3x+2y+c=0,则:|c+6|=|c+错误!|,解得c=—错误!,所以l的方程为12x+8y—15=0.答案:12x+8y—15=07.l1,l2是分别经过A(1,1),B(0,—1)两点的两条平行直线,当l1,l2间的距离最大时,直线l1的方程是________.解析:当两条平行直线与A,B两点连线垂直时,两条平行直线间的距离最大.又k AB=错误!=2,所以两条平行直线的斜率为k=—错误!,所以直线l1的方程是y—1=—错误!(x—1),即x+2y—3=0.答案:x+2y—3=08.已知点A(—1,2),B(3,4).P是x轴上一点,且|PA|=|PB|,则△PAB的面积为________.解析:设AB的中点坐标为M(1,3),k AB=错误!=错误!,所以AB的中垂线方程为y—3=—2(x—1).即2x+y—5=0.令y=0,则x=错误!,即P点的坐标为(错误!,0),|AB|=错误!=2错误!.点P到AB的距离为|PM|=错误!=错误!.所以S△PAB=错误!|AB|·|PM|=错误!×2错误!×错误!=错误!.答案:错误!9.已知两直线l1:ax—by+4=0和l2:(a—1)x+y+b=0,求满足下列条件的a,b的值.(1)l1⊥l2,且直线l1过点(—3,—1);(2)l1∥l2,且坐标原点到这两条直线的距离相等.解:(1)因为l1⊥l2,所以a(a—1)—b=0.又因为直线l1过点(—3,—1),所以—3a+b+4=0.故a=2,b=2.(2)因为直线l2的斜率存在,l1∥l2,所以直线l1的斜率存在.所以错误!=1—a.1又因为坐标原点到这两条直线的距离相等,所以l1,l2在y轴上的截距互为相反数,即错误!=b.2联立12可得a=2,b=—2或a=错误!,b=2.10.已知直线l经过直线2x+y—5=0与x—2y=0的交点P.(1)点A(5,0)到直线l的距离为3,求直线l的方程;(2)求点A(5,0)到直线l的距离的最大值.解:(1)因为经过两已知直线交点的直线系方程为(2x+y—5)+λ(x—2y)=0,即(2+λ)x+(1—2λ)y—5=0,所以错误!=3,解得λ=错误!或λ=2.所以直线l的方程为x=2或4x—3y—5=0.(2)由错误!解得交点P(2,1),如图,过P作任一直线l,设d为点A到直线l的距离,则d≤|PA|(当l⊥PA时等号成立).所以d max=|PA|=错误!.[综合题组练]1.已知直线y=2x是△ABC中∠C的平分线所在的直线,若点A,B的坐标分别是(—4,2),(3,1),则点C的坐标为()A.(—2,4)B.(—2,—4)C.(2,4)D.(2,—4)解析:选C.设A(—4,2)关于直线y=2x的对称点为(x,y),则错误!解得错误!所以BC所在的直线方程为y—1=错误!(x—3),即3x+y—10=0.同理可得点B(3,1)关于直线y=2x 的对称点为(—1,3),所以AC所在的直线方程为y—2=错误!·(x+4),即x—3y+10=0.联立得错误!解得错误!则C(2,4).故选C.2.两条平行线l1,l2分别过点P(—1,2),Q(2,—3),它们分别绕P,Q旋转,但始终保持平行,则l1,l2之间距离的取值范围是()A.(5,+∞)B.(0,5]C.(错误!,+∞)D.(0,错误!]解析:选D.当直线PQ与平行线l1,l2垂直时,|PQ|为平行线l1,l2间的距离的最大值,为错误!=错误!,所以l1,l2之间距离的取值范围是(0,错误!].故选D.3.在平面直角坐标系xOy(O为坐标原点)中,不过原点的两直线l1:x—my+2m—1=0,l2:mx+y—m—2=0的交点为P,过点O分别向直线l1,l2引垂线,垂足分别为M,N,则四边形OMPN 面积的最大值为()A.3B.错误!C.5D.错误!解析:选D.将直线l1的方程变形得(x—1)+m(2—y)=0,由错误!,得错误!,则直线l1过定点A(1,2),同理可知,直线l2过定点A(1,2),所以,直线l1和直线l2的交点P的坐标为(1,2),易知,直线l1⊥l2,如图所示,易知,四边形OMPN为矩形,且|OP|=错误!=错误!,设|OM|=a,|ON|=b,则a2+b2=5,四边形OMPN的面积为S=|OM|·|ON|=ab≤错误!=错误!,当且仅当错误!,即当a=b=错误!时,等号成立,因此,四边形OMPN面积的最大值为错误!,故选D.4.如图,已知A(—2,0),B(2,0),C(0,2),E(—1,0),F(1,0),一束光线从F 点出发射到BC上的D点,经BC反射后,再经AC反射,落到线段AE上(不含端点),则直线FD的斜率的取值范围为________.解析:从特殊位置考虑.如图,因为点A(—2,0)关于直线BC:x+y=2的对称点为A1(2,4),所以kA1F=4.又点E(—1,0)关于直线AC:y=x+2的对称点为E1(—2,1),点E1(—2,1)关于直线BC:x+y=2的对称点为E2(1,4),此时直线E2F的斜率不存在,所以k FD>kA1F,即k FD∈(4,+∞).答案:(4,+∞)5.正方形的中心为点C(—1,0),一条边所在的直线方程是x+3y—5=0,求其他三边所在直线的方程.解:点C到直线x+3y—5=0的距离d=错误!=错误!.设与x+3y—5=0平行的一边所在直线的方程是x+3y+m=0(m≠—5),则点C到直线x+3y+m=0的距离d=错误!=错误!,解得m=—5(舍去)或m=7,所以与x+3y—5=0平行的边所在直线的方程是x+3y+7=0.设与x+3y—5=0垂直的边所在直线的方程是3x—y+n=0,则点C到直线3x—y+n=0的距离d=错误!=错误!,解得n=—3或n=9,所以与x+3y—5=0垂直的两边所在直线的方程分别是3x—y—3=0和3x—y+9=0.6.在直线l:3x—y—1=0上求一点P,使得:(1)P到A(4,1)和B(0,4)的距离之差最大;(2)P到A(4,1)和C(3,4)的距离之和最小.解:(1)如图,设B关于l的对称点为B′,AB′的延长线交l于P0,在l上另任取一点P,则|PA|—|PB|=|PA|—|PB′|<|AB′|=|P0A|—|P0B′|=|P0A|—|P0B|,则P0即为所求.易求得直线BB′的方程为x+3y—12=0,设B′(a,b),则a+3b—12=0,1又线段BB′的中点错误!在l上,故3a—b—6=0.2由12解得a=3,b=3,所以B′(3,3).所以AB′所在直线的方程为2x+y—9=0.由错误!可得P0(2,5).(2)设C关于l的对称点为C′,与(1)同理可得C′错误!.连接AC′交l于P1,在l上另任取一点P,有|PA|+|PC|=|PA|+|PC′|>|AC′|=|P1C′|+|P1A|=|P1C|+|P1A|,故P1即为所求.又AC′所在直线的方程为19x+17y—93=0,故由错误!可得P1错误!.。

【步步高】高考数学一轮复习第九章平面解析几何两条直线的位置关系文

【步步高】高考数学一轮复习第九章平面解析几何两条直线的位置关系文

【步步高】(江苏专用)2017版高考数学一轮复习第九章平面解析几何 9.2 两条直线的位置关系文1.两条直线的位置关系(1)两条直线平行与垂直①两条直线平行:(ⅰ)对于两条不重合的直线l1、l2,若其斜率分别为k1、k2,则有l1∥l2⇔k1=k2(k1,k2均存在).(ⅱ)当直线l1、l2不重合且斜率都不存在时,l1∥l2.②两条直线垂直:(ⅰ)如果两条直线l1、l2的斜率存在,设为k1、k2,则有l1⊥l2⇔k1·k2=-1 (k1,k2均存在). (ⅱ)当其中一条直线的斜率不存在,而另一条的斜率为0时,l1⊥l2.(2)两条直线的交点直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,则l 1与l 2的交点坐标就是方程组⎩⎪⎨⎪⎧A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0的解.2.几种距离(1)两点P 1(x 1,y 1),P 2(x 2,y 2)之间的距离P 1P 2=x 2-x 12+y 2-y 12.(2)点P 0(x 0,y 0)到直线l :Ax +By +C =0的距离d =A 2+B 2.(3)两条平行线Ax +By +C 1=0与Ax +By +C 2=0(其中C 1≠C 2)间的距离d =A 2+B 2.【知识拓展】1.一般地,与直线Ax +By +C =0平行的直线方程可设为Ax +By +m =0;与之垂直的直线方程可设为Bx -Ay +n =0.2.过直线l 1:A 1x +B 1y +C 1=0与l 2:A 2x +B 2y +C 2=0的交点的直线系方程为A 1x +B 1y +C 1+λ(A 2x +B 2y +C 2)=0 (λ∈R ),但不包括l 2.3.点到直线与两平行线间的距离的使用条件: (1)求点到直线的距离时,应先化直线方程为一般式.(2)求两平行线之间的距离时,应先将方程化为一般式且x ,y 的系数对应相等. 【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)当直线l 1和l 2斜率都存在时,一定有k 1=k 2⇒l 1∥l 2.( × ) (2)如果两条直线l 1与l 2垂直,则它们的斜率之积一定等于-1.( × )(3)已知直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0(A 1、B 1、C 1、A 2、B 2、C 2为常数),若直线l 1⊥l 2,则A 1A 2+B 1B 2=0.( √ )(4)点P (x 0,y 0)到直线y =kx +b 的距离为|kx 0+b |1+k2.( × ) (5)直线外一点与直线上一点的距离的最小值就是点到直线的距离.( √ )(6)若点A ,B 关于直线l :y =kx +b (k ≠0)对称,则直线AB 的斜率等于-1k,且线段AB 的中点在直线l 上.( √ )1.设a ∈R ,则“a =1”是“直线l 1:ax +2y -1=0与直线l 2:x +(a +1)y +4=0平行”的________条件. 答案 充分不必要解析 (1)充分性:当a =1时,直线l 1:x +2y -1=0与直线l 2:x +2y +4=0平行;(2)必要性:当直线l 1:ax +2y -1=0与直线l 2:x +(a +1)y +4=0平行时有a =-2或1. 所以“a =1”是“直线l 1:ax +2y -1=0与直线l 2:x +(a +1)y +4=0平行”的充分不必要条件.2.(教材改编)已知点(a,2)(a >0)到直线l :x -y +3=0的距离为1,则a =________. 答案2-1解析 依题意得|a -2+3|1+1=1.解得a =-1+2或a =-1- 2. ∵a >0,∴a =-1+ 2.3.已知直线l 1:(3+m )x +4y =5-3m ,l 2:2x +(5+m )y =8平行,则实数m 的值为________. 答案 -7解析 l 1的斜率为-3+m 4,在y 轴上的截距为5-3m4,l 2的斜率为-25+m ,在y 轴上的截距为85+m. 又∵l 1∥l 2,由-3+m 4=-25+m 得,m 2+8m +7=0,得m =-1或-7.m =-1时,5-3m 4=85+m =2,l 1与l 2重合,故不符合题意; m =-7时,5-3m 4=132≠85+m=-4,符合题意. 4.(2014·福建改编)已知直线l 过圆x 2+(y -3)2=4的圆心,且与直线x +y +1=0垂直,则l 的方程是________________________________________________________________. 答案 x -y +3=0解析 圆x 2+(y -3)2=4的圆心为点(0,3), 又因为直线l 与直线x +y +1=0垂直, 所以直线l 的斜率k =1.由点斜式得直线l :y -3=x -0,化简得x -y +3=0.5.(教材改编)若直线(3a +2)x +(1-4a )y +8=0与(5a -2)x +(a +4)y -7=0垂直,则a =________. 答案 0或1解析 由两直线垂直的充要条件,得(3a +2)(5a -2)+(1-4a )(a +4)=0,解得a =0或a =1.题型一 两条直线的平行与垂直例1 (1)已知两条直线l 1:(a -1)·x +2y +1=0,l 2:x +ay +3=0平行,则a =________. (2)已知两直线方程分别为l 1:x +y =1,l 2:ax +2y =0,若l 1⊥l 2,则a =________. 答案 (1)-1或2 (2)-2解析 (1)若a =0,两直线方程为-x +2y +1=0和x =-3,此时两直线相交,不平行,所以a ≠0.当a ≠0时,若两直线平行,则有a -11=2a ≠13,解得a =-1或a =2. (2)方法一 ∵l 1⊥l 2,∴k 1k 2=-1, 即a2=-1, 解得a =-2. 方法二 ∵l 1⊥l 2, ∴a +2=0,a =-2.思维升华 (1)当直线方程中存在字母参数时,不仅要考虑到斜率存在的一般情况,也要考虑到斜率不存在的特殊情况.同时还要注意x 、y 的系数不能同时为零这一隐含条件.(2)在判断两直线平行、垂直时,也可直接利用直线方程的系数间的关系得出结论.已知两直线l 1:x +y sin α-1=0和l 2:2x ·sin α+y +1=0,求α的值,使得: (1)l 1∥l 2; (2)l 1⊥l 2.解 (1)方法一 当sin α=0时,直线l 1的斜率不存在,l 2的斜率为0,显然l 1不平行于l 2.当sin α≠0时,k 1=-1sin α,k 2=-2sin α. 要使l 1∥l 2,需-1sin α=-2sin α,即sin α=±22.所以α=k π±π4,k ∈Z ,此时两直线的斜率相等.故当α=k π±π4,k ∈Z 时,l 1∥l 2.方法二 由A 1B 2-A 2B 1=0,得2sin 2α-1=0,所以sin α=±22.所以α=k π±π4,k ∈Z . 又B 1C 2-B 2C 1≠0,所以1+sin α≠0,即sin α≠-1. 故当α=k π±π4,k ∈Z 时,l 1∥l 2.(2)因为A 1A 2+B 1B 2=0是l 1⊥l 2的充要条件,所以2sin α+sin α=0,即sin α=0,所以α=k π,k ∈Z . 故当α=k π,k ∈Z 时,l 1⊥l 2. 题型二 两条直线的交点与距离问题例2 (1)已知直线y =kx +2k +1与直线y =-12x +2的交点位于第一象限,则实数k 的取值范围是________.(2)直线l 过点P (-1,2)且到点A (2,3)和点B (-4,5)的距离相等,则直线l 的方程为________________________________________________________________________.答案 (1)⎝ ⎛⎭⎪⎫-16,12 (2)x +3y -5=0或x =-1 解析 (1)方法一 由方程组⎩⎪⎨⎪⎧y =kx +2k +1,y =-12x +2,解得⎩⎪⎨⎪⎧x =2-4k2k +1,y =6k +12k +1.(若2k +1=0,即k =-12,则两直线平行)∴交点坐标为⎝⎛⎭⎪⎫2-4k 2k +1,6k +12k +1.又∵交点位于第一象限, ∴⎩⎪⎨⎪⎧2-4k 2k +1>0,6k +12k +1>0,解得-16<k <12.方法二 如图,已知直线y =-12x +2与x 轴、y 轴分别交于点A (4,0),B (0,2).而直线方程y =kx +2k +1可变形为y -1=k (x +2),表示这是一条过定点P (-2,1),斜率为k 的动直线.∵两直线的交点在第一象限,∴两直线的交点必在线段AB 上(不包括端点), ∴动直线的斜率k 需满足k PA <k <k PB . ∵k PA =-16,k PB =12.∴-16<k <12.(2)方法一 当直线l 的斜率存在时,设直线l 的方程为y -2=k (x +1),即kx -y +k +2=0.由题意知|2k -3+k +2|k 2+1=|-4k -5+k +2|k 2+1,即|3k -1|=|-3k -3|, ∴k =-13.∴直线l 的方程为y -2=-13(x +1),即x +3y -5=0.当直线l 的斜率不存在时,直线l 的方程为x =-1,也符合题意. 方法二 当AB ∥l 时,有k =k AB =-13,直线l 的方程为y -2=-13(x +1),即x +3y -5=0.当l 过AB 中点时,AB 的中点为(-1,4). ∴直线l 的方程为x =-1.故所求直线l 的方程为x +3y -5=0或x =-1. 思维升华 (1)求过两直线交点的直线方程的方法:求过两直线交点的直线方程,先解方程组求出两直线的交点坐标,再结合其他条件写出直线方程.(2)利用距离公式应注意:①点P (x 0,y 0)到直线x =a 的距离d =|x 0-a |,到直线y =b 的距离d =|y 0-b |;②两平行线间的距离公式要把两直线方程中x ,y 的系数化为相等.(1)如图,设一直线过点(-1,1),它被两平行直线l 1:x +2y -1=0,l 2:x +2y -3=0所截的线段的中点在直线l 3:x -y -1=0上,求其方程.解 与l 1、l 2平行且距离相等的直线方程为x +2y -2=0. 设所求直线方程为(x +2y -2)+λ(x -y -1)=0, 即(1+λ)x +(2-λ)y -2-λ=0.又直线过(-1,1), ∴(1+λ)(-1)+(2-λ)·1-2-λ=0. 解得λ=-13.∴所求直线方程为2x +7y -5=0.(2)正方形的中心为点C (-1,0),一条边所在的直线方程是x +3y -5=0,求其他三边所在直线的方程.解 点C 到直线x +3y -5=0的距离d =|-1-5|1+9=3105.设与x +3y -5=0平行的一边所在直线的方程是x +3y +m =0(m ≠-5), 则点C 到直线x +3y +m =0的距离d =|-1+m |1+9=3105,解得m =-5(舍去)或m =7,所以与x +3y -5=0平行的边所在直线的方程是x +3y +7=0.设与x +3y -5=0垂直的边所在直线的方程是 3x -y +n =0,则点C 到直线3x -y +n =0的距离d =|-3+n |1+9=3105,解得n =-3或n =9,所以与x +3y -5=0垂直的两边所在直线的方程分别是3x -y -3=0和3x -y +9=0. 题型三 对称问题命题点1 点关于点中心对称例3 过点P (0,1)作直线l ,使它被直线l 1:2x +y -8=0和l 2:x -3y +10=0截得的线段被点P 平分,则直线l 的方程为________________. 答案 x +4y -4=0解析 设l 1与l 的交点为A (a,8-2a ),则由题意知,点A 关于点P 的对称点B (-a,2a -6)在l 2上,代入l 2的方程得-a -3(2a -6)+10=0,解得a =4,即点A (4,0)在直线l 上,所以直线l 的方程为x +4y -4=0. 命题点2 点关于直线对称例4 已知直线l :2x -3y +1=0,点A (-1,-2),则点A 关于直线l 的对称点A ′的坐标为____________.答案 ⎝ ⎛⎭⎪⎫-3313,413 解析 设A ′(x ,y ),由已知得⎩⎪⎨⎪⎧y +2x +1×23=-1,2×x -12-3×y -22+1=0,解得⎩⎪⎨⎪⎧x =-3313,y =413,故A ′⎝ ⎛⎭⎪⎫-3313,413. 命题点3 直线关于直线的对称问题例5 已知直线l :2x -3y +1=0,求直线m :3x -2y -6=0关于直线l 的对称直线m ′的方程.解 在直线m 上任取一点,如M (2,0),则M (2,0)关于直线l 的对称点M ′必在直线m ′上. 设对称点M ′(a ,b ),则⎩⎪⎨⎪⎧2×⎝ ⎛⎭⎪⎫a +22-3×⎝ ⎛⎭⎪⎫b +02+1=0,b -0a -2×23=-1,解得⎩⎪⎨⎪⎧a =613,b =3013,∴M ′⎝ ⎛⎭⎪⎫613,3013. 设直线m 与直线l 的交点为N ,则由⎩⎪⎨⎪⎧2x -3y +1=0,3x -2y -6=0,得N (4,3).又∵m ′经过点N (4,3).∴由两点式得直线m ′的方程为9x -46y +102=0.思维升华 解决对称问题的方法 (1)中心对称①点P (x ,y )关于Q (a ,b )的对称点P ′(x ′,y ′)满足⎩⎪⎨⎪⎧x ′=2a -x ,y ′=2b -y .②直线关于点的对称可转化为点关于点的对称问题来解决. (2)轴对称①点A (a ,b )关于直线Ax +By +C =0(B ≠0)的对称点A ′(m ,n ),则有⎩⎪⎨⎪⎧n -b m -a ·⎝ ⎛⎭⎪⎫-A B =-1,A ·a +m 2+B ·b +n 2+C =0.②直线关于直线的对称可转化为点关于直线的对称问题来解决.在等腰直角三角形ABC 中,AB =AC =4,点P 是边AB 上异于A ,B 的一点,光线从点P 出发,经BC ,CA 发射后又回到原点P (如图).若光线QR 经过△ABC 的重心,则AP =________.答案 43解析 建立如图所示的坐标系:可得B (4,0),C (0,4),故直线BC 的方程为x +y =4, △ABC 的重心为⎝⎛⎭⎪⎫0+0+43,0+4+03,设P (a,0),其中0<a <4, 则点P 关于直线BC 的对称点P 1(x ,y ),满足⎩⎪⎨⎪⎧a +x 2+y +02=4,y -0x -a ·-1=-1,解得⎩⎪⎨⎪⎧x =4,y =4-a ,即P 1(4,4-a ),易得P 关于y 轴的对称点P 2(-a,0),由光的反射原理可知P 1,Q ,R ,P 2四点共线, 直线QR 的斜率为k =4-a -04--a =4-a4+a ,故直线QR 的方程为y =4-a4+a(x +a ),由于直线QR 过△ABC 的重心(43,43),代入化简可得3a 2-4a =0,解得a =43,或a =0(舍去),故P ⎝ ⎛⎭⎪⎫43,0,故AP =43.18.妙用直线系求直线方程一、平行直线系由于两直线平行,它们的斜率相等或它们的斜率都不存在,因此两直线平行时,它们的一次项系数与常数项有必然的联系.典例 求与直线3x +4y +1=0平行且过点(1,2)的直线l 的方程.思维点拨 因为所求直线与3x +4y +1=0平行,因此,可设该直线方程为3x +4y +c =0(c ≠1). 规范解答解 依题意,设所求直线方程为3x +4y +c =0(c ≠1), 又因为直线过点(1,2),所以3×1+4×2+c =0,解得c =-11. 因此,所求直线方程为3x +4y -11=0.温馨提醒 与直线Ax +By +C =0平行的直线系方程为Ax +By +C 1=0 (C 1≠C ),再由其他条件求C 1. 二、垂直直线系由于直线A 1x +B 1y +C 1=0与A 2x +B 2y +C 2=0垂直的充要条件为A 1A 2+B 1B 2=0.因此,当两直线垂直时,它们的一次项系数有必要的关系,可以考虑用直线系方程求解. 典例 求经过A (2,1),且与直线2x +y -10=0垂直的直线l 的方程. 思维点拨 依据两直线垂直的特征设出方程,再由待定系数法求解. 规范解答解 因为所求直线与直线2x +y -10=0垂直,所以设该直线方程为x -2y +C 1=0,又直线过点(2,1),所以有2-2×1+C 1=0,解得C 1=0,即所求直线方程为x -2y =0.温馨提醒 与直线Ax +By +C =0垂直的直线系方程为Bx -Ay +C 1=0,再由其他条件求出C 1.三、过直线交点的直线系典例 求经过两直线l 1:x -2y +4=0和l 2:x +y -2=0的交点P ,且与直线l 3:3x -4y +5=0垂直的直线l 的方程.思维点拨 可分别求出直线l 1与l 2的交点及直线l 的斜率k ,直接写出方程;也可以利用过交点的直线系方程设直线方程,再用待定系数法求解. 规范解答解 方法一 解方程组⎩⎪⎨⎪⎧x -2y +4=0,x +y -2=0,得P (0,2).因为l 3的斜率为34,且l ⊥l 3,所以直线l 的斜率为-43,由斜截式可知l 的方程为y =-43x +2,即4x +3y -6=0.方法二 设直线l 的方程为x -2y +4+λ(x +y -2)=0, 即(1+λ)x +(λ-2)y +4-2λ=0.又∵l ⊥l 3,∴3×(1+λ)+(-4)×(λ-2)=0, 解得λ=11.∴直线l 的方程为4x +3y -6=0.温馨提醒 本题方法一采用常规方法,先通过方程组求出两直线交点,再根据垂直关系求出斜率,由于交点在y 轴上,故采用斜截式求解;方法二则采用了过两直线A 1x +B 1y +C 1=0与A 2x +B 2y +C 2=0的交点的直线系方程:A 1x +B 1y +C 1+λ(A 2x +B 2y +C 2)=0,直接设出过两直线交点的方程,再根据垂直条件用待定系数法求解.[方法与技巧]1.两直线的位置关系要考虑平行、垂直和重合.对于斜率都存在且不重合的两条直线l 1、l 2,l 1∥l 2⇔k 1=k 2;l 1⊥l 2⇔k 1·k 2=-1.若有一条直线的斜率不存在,那么另一条直线的斜率一定要特别注意.2.对称问题一般是将线与线的对称转化为点与点的对称.利用坐标转移法. [失误与防范]1.在判断两条直线的位置关系时,首先应分析直线的斜率是否存在.若两条直线都有斜率,可根据判定定理判断,若直线无斜率,要单独考虑.2.在运用两平行直线间的距离公式d =|C 1-C 2|A 2+B 2时,一定要注意将两方程中x ,y 的系数化为相同的形式.A 组 专项基础训练 (时间:40分钟)1.若曲线f (x )=x sin x +1在x =π2处的切线与直线ax +3y +1=0互相垂直,则实数a =________. 答案 3解析 求导得f ′(x )=sin x +x cos x ,故f ′⎝ ⎛⎭⎪⎫π2=1, 所以直线的斜率k =-a3=-1,得a =3.2.设a ,b ,c 分别是△ABC 中角A ,B ,C 所对边的边长,则直线sin A ·x -ay -c =0与bx +sin B ·y +sin C =0的位置关系是________. 答案 垂直解析 方法一 因为直线sin A ·x -ay -c =0的斜率k 1=sin A a ,在y 轴上的截距b 1=-ca;直线bx +sin B ·y +sin C =0的斜率k 2=-b sin B ,在y 轴上的截距b 2=-sin Csin B ,由正弦定理a sin A =b sin B =c sin C ,得k 1·k 2=sin A a ·⎝ ⎛⎭⎪⎫-b sin B =-1,即直线sin A ·x -ay -c=0与bx +sin B ·y +sin C =0垂直.方法二 由正弦定理有a =2R sin A ,b =2R sin B (其中R 为△ABC 外接圆的半径),所以b sinA -a sinB =2R sin B sin A -2R sin A sin B =0,所以直线sin A ·x -ay -c =0与bx +sin B ·y+sin C =0垂直.3.当0<k <12时,直线l 1:kx -y =k -1与直线l 2:ky -x =2k 的交点在第________象限.答案 二解析 解方程组⎩⎪⎨⎪⎧kx -y =k -1,ky -x =2k 得两直线的交点坐标为⎝⎛⎭⎪⎫k k -1,2k -1k -1,因为0<k <12,所以kk -1<0,2k -1k -1>0,故交点在第二象限. 4.若直线l 1:y =k (x -4)与直线l 2关于点(2,1)对称,则直线l 2经过定点________. 答案 (0,2)解析 直线l 1:y =k (x -4)经过定点(4,0),其关于点(2,1)对称的点为(0,2),又直线l 1:y =k (x -4)与直线l 2关于点(2,1)对称,故直线l 2经过定点(0,2).5.从点(2,3)射出的光线沿与向量a =(8,4)平行的直线射到y 轴上,则反射光线所在的直线方程为__________. 答案 x +2y -4=0解析 由直线与向量a =(8,4)平行知:过点(2,3)的直线的斜率k =12,所以直线的方程为y-3=12(x -2),其与y 轴的交点坐标为(0,2),又点(2,3)关于y 轴的对称点为(-2,3),所以反射光线过点(-2,3)与(0,2),由两点式得直线方程为x +2y -4=0.6.(教材改编)与直线l 1:3x +2y -6=0和直线l 2:6x +4y -3=0等距离的直线方程是______________. 答案 12x +8y -15=0解析 l 2:6x +4y -3=0化为3x +2y -32=0,所以l 1与l 2平行,设与l 1,l 2等距离的直线l的方程为3x +2y +c =0,则|c +6|=|c +32|,解得c =-154,所以l 的方程为12x +8y -15=0.7.已知两直线l 1:ax -by +4=0和l 2:(a -1)x +y +b =0,若l 1∥l 2,且坐标原点到这两条直线的距离相等,则a +b =________. 答案 0或83解析 由题意得⎩⎪⎨⎪⎧a +b a -1=0,4a 2+-b2=|b |a -12+1.解得⎩⎪⎨⎪⎧a =2,b =-2或⎩⎪⎨⎪⎧a =23,b =2经检验,两种情况均符合题意, ∴a +b 的值为0或83.8.已知直线l 1:ax +y -1=0,直线l 2:x -y -3=0,若直线l 1的倾斜角为π4,则a =________;若l 1⊥l 2,则a =________;若l 1∥l 2,则两平行直线间的距离为________. 答案 -1 1 2 2 解析 若直线l 1的倾斜角为π4,则-a =k =tan 45°=1,故a =-1;若l 1⊥l 2,则a ×1+1×(-1)=0,故a =1;若l 1∥l 2,则a =-1,l 1:x -y +1=0,两平行直线间的距离d =|1--3|1+1=2 2.9.已知△ABC 的顶点A (5,1),AB 边上的中线CM 所在直线方程为2x -y -5=0,AC 边上的高BH 所在直线方程为x -2y -5=0,求直线BC 的方程.解 依题意知:k AC =-2,A (5,1), ∴l AC 为2x +y -11=0,联立l AC 、l CM 得⎩⎪⎨⎪⎧2x +y -11=0,2x -y -5=0,∴C (4,3).设B (x 0,y 0),AB 的中点M 为(x 0+52,y 0+12),代入2x -y -5=0,得2x 0-y 0-1=0,∴⎩⎪⎨⎪⎧2x 0-y 0-1=0,x 0-2y 0-5=0,∴B (-1,-3),∴k BC =65,∴直线BC 的方程为y -3=65(x -4),即6x -5y -9=0.10.已知直线l 经过直线l 1:2x +y -5=0与l 2:x -2y =0的交点.(1)若点A (5,0)到l 的距离为3,求l 的方程; (2)求点A (5,0)到l 的距离的最大值.解 (1)易知l 不可能为l 2,可设经过两已知直线交点的直线系方程为(2x +y -5)+λ(x -2y )=0,即(2+λ)x +(1-2λ)y -5=0, ∵点A (5,0)到l 的距离为3, ∴|10+5λ-5|2+λ2+1-2λ2=3,即2λ2-5λ+2=0,∴λ=2,或λ=12,∴l 的方程为x =2或4x -3y -5=0.(2)由⎩⎪⎨⎪⎧2x +y -5=0,x -2y =0,解得交点P (2,1),如图,过P 作任一直线l ,设d 为点A 到l 的距离,则d ≤PA (当l ⊥PA 时等号成立).∴d max =PA =5-22+0-12=10.B 组 专项能力提升 (时间:30分钟)11.若点(m ,n )在直线4x +3y -10=0上,则m 2+n 2的最小值是________. 答案 4解析 因为点(m ,n )在直线4x +3y -10=0上, 所以4m +3n -10=0.欲求m2+n2的最小值可先求m-02+n-02的最小值,而m-02+n-02表示4m+3n-10=0上的点(m,n)到原点的距离,如图.当过原点的直线与直线4m+3n-10=0垂直时,原点到点(m,n)的距离最小为2.所以m2+n2的最小值为4.12.如图,已知直线l1∥l2,点A是l1,l2之间的定点,点A到l1,l2之间的距离分别为3和2,点B是l2上的一动点,作AC⊥AB,且AC与l1交于点C,则△ABC的面积的最小值为________.答案 6解析以A为坐标原点,平行于l1的直线为x轴,建立如图所示的直角坐标系,设B(a,-2),C(b,3),且a<0,b<0.∵AC ⊥AB ,∴ab -6=0,ab =6,b =6a.Rt△ABC 的面积S =12a 2+4·b 2+9=12a 2+4·36a 2+9=1272+9a 2+144a2≥1272+72=6. 当且仅当9a 2=144a2,即a =-2时,等号成立.即△ABC 面积的最小值为6.13.在平面直角坐标系内,到点A (1,2),B (1,5),C (3,6),D (7,-1)的距离之和最小的点的坐标是________. 答案 (2,4) 解析如图,设平面直角坐标系中任一点P ,P 到点A (1,2),B (1,5),C (3,6),D (7,-1)的距离之和为PA +PB +PC +PD =PB +PD +PA +PC ≥BD +AC =QA +QB +QC +QD ,故四边形ABCD 对角线的交点Q 即为所求距离之和最小的点.∵A (1,2),B (1,5),C (3,6),D (7,-1),∴直线AC 的方程为y -2=2(x -1),直线BD 的方程为y -5=-(x -1).由⎩⎪⎨⎪⎧ y -2=2x -1,y -5=-x -1,得Q (2,4).14.已知直线l :y =12x -1, (1)求点P (3,4)关于l 对称的点Q ;(2)求l 关于点(2,3)对称的直线方程.解 (1)设Q (x 0,y 0),由于PQ ⊥l ,且PQ 中点在l 上,有⎩⎪⎨⎪⎧ y 0-4x 0-3=-2,y 0+42=12·x 0+32-1,解得⎩⎪⎨⎪⎧ x 0=295,y 0=-85,∴Q ⎝ ⎛⎭⎪⎫295,-85. (2)在l 上任取一点,如M (0,-1),则M 关于点(2,3)对称的点为N (4,7).∵当对称点不在直线上时,关于点对称的两直线必平行,∴所求直线过点N 且与l 平行,∴所求方程为y -7=12(x -4),即为x -2y +10=0. 15.已知三条直线:l 1:2x -y +a =0(a >0);l 2:-4x +2y +1=0;l 3:x +y -1=0,且l 1与l 2间的距离是7510. (1)求a 的值;(2)能否找到一点P ,使P 同时满足下列三个条件:①点P 在第一象限;②点P 到l 1的距离是点P 到l 2的距离的12; ③点P 到l 1的距离与点P 到l 3的距离之比是2∶ 5.若能,求点P 的坐标;若不能,说明理由.解 (1)直线l 2:2x -y -12=0,所以两条平行线l 1与l 2间的距离为d =⎪⎪⎪⎪⎪⎪a -⎝ ⎛⎭⎪⎫-1222+-12=7510, 所以⎪⎪⎪⎪⎪⎪a +125=7510,即⎪⎪⎪⎪⎪⎪a +12=72, 又a >0,解得a =3.(2)假设存在点P ,设点P (x 0,y 0).若P 点满足条件②,则P 点在与l 1,l 2平行的直线l ′:2x -y +c =0上,且|c -3|5=12⎪⎪⎪⎪⎪⎪c +125,即c =132或116, 所以2x 0-y 0+132=0或2x 0-y 0+116=0; 若P 点满足条件③,由点到直线的距离公式,有|2x 0-y 0+3|5=25|x 0+y 0-1|2, 即|2x 0-y 0+3|=|x 0+y 0-1|,所以x 0-2y 0+4=0或3x 0+2=0;由于点P 在第一象限,所以3x 0+2=0不可能.联立方程2x 0-y 0+132=0和x 0-2y 0+4=0,解得⎩⎪⎨⎪⎧ x 0=-3,y 0=12;(舍去)联立方程2x 0-y 0+116=0和x 0-2y 0+4=0, 解得⎩⎪⎨⎪⎧ x 0=19,y 0=3718.所以存在点P ⎝ ⎛⎭⎪⎫19,3718同时满足三个条件.。

高考一轮复习教案数学(理)新课标 第九篇 解析几何 2 两条直线的位置关系

高考一轮复习教案数学(理)新课标 第九篇 解析几何 2 两条直线的位置关系

第2讲 两条直线的位置关系【2013年高考会这样考】1.考查两直线的平行与垂直.2.考查两点间的距离公式、点到直线的距离公式、两平行直线间的距离公式.【复习指导】1.对两条直线的位置关系,求解时要注意斜率不存在的情况,注意平行、垂直时直线方程系数的关系.2.熟记距离公式,如两点之间的距离、点到直线的距离、两条平行线之间的距离.基础梳理1.两条直线平行与垂直的判定(1)两条直线平行对于两条不重合的直线l 1、l 2,其斜率分别为k 1、k 2,则有l 1∥l 2⇔k 1=k 2,特别地,当直线l 1、l 2的斜率都不存在时,l 1与l 2的关系为平行.(2)两条直线垂直①如果两条直线l 1、l 2的斜率存在,设为k 1、k 2,则l 1⊥l 2⇔k 1k 2=-1.②如果l 1、l 2中有一条直线的斜率不存在,另一条直线的斜率为0时,l 1与l 2的关系为垂直.2.两直线相交交点:直线l 1:A 1x +B 1y +C 1=0和l 2:A 2x +B 2y +C 2=0的公共点的坐标与方程组⎩⎨⎧A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0的解一一对应. 相交⇔方程组有唯一解,交点坐标就是方程组的解;平行⇔方程组无解;重合⇔方程组有无数个解.3.三种距离公式(1)平面上的两点P 1(x 1,y 1),P 2(x 2,y 2)间的距离公式|P 1P 2|=(x 1-x 2)2+(y 1-y 2)2. 特别地,原点O (0,0)与任一点P (x ,y )的距离|OP |=x 2+y 2.(2)点P 0(x 0,y 0)到直线l :Ax +By +C =0的距离d =|Ax 0+By 0+C |A 2+B2. (3)两条平行线Ax +By +C 1=0与Ax +By +C 2=0间的距离为d =|C 1-C 2|A 2+B 2.一条规律与直线Ax +By +C =0(A 2+B 2≠0)平行、垂直的直线方程的设法:一般地,平行的直线方程设为Ax +By +m =0;垂直的直线方程设为Bx -Ay +n =0.两个防范(1)在判断两条直线的位置关系时,首先应分析直线的斜率是否存在.两条直线都有斜率,可根据判定定理判断,若直线无斜率时,要单独考虑. (2)在运用两平行直线间的距离公式d =|C 1-C 2|A 2+B 2时,一定要注意将两方程中的x ,y 系数化为分别相等.三种对称(1)点关于点的对称点P (x 0,y 0)关于A (a ,b )的对称点为P ′(2a -x 0,2b -y 0).(2)点关于直线的对称设点P (x 0,y 0)关于直线y =kx +b 的对称点P ′(x ′,y ′), 则有⎩⎪⎨⎪⎧ y ′-y 0x ′-x 0·k =-1,y ′+y 02=k ·x ′+x 02+b ,可求出x ′,y ′.(3)直线关于直线的对称①若已知直线l 1与对称轴l 相交,则交点必在与l 1对称的直线l 2上,然后再求出l 1上任一个已知点P 1关于对称轴l 对称的点P 2,那么经过交点及点P 2的直线就是l 2;②若已知直线l 1与对称轴l 平行,则与l 1对称的直线和l 1分别到直线l 的距离相等,由平行直线系和两条平行线间的距离即可求出l 1的对称直线.双基自测1.(人教A 版教材习题改编)直线ax +2y -1=0与直线2x -3y -1=0垂直,则a的值为( ).A .-3B .-43C .2D .3解析 由⎝ ⎛⎭⎪⎫-a 2×23=-1,得:a =3. 答案 D2.原点到直线x +2y -5=0的距离为( ).A .1 B. 3 C .2 D. 5解析 d =|-5|1+22= 5. 答案 D3.(2012·银川月考)过点(1,0)且与直线x -2y -2=0平行的直线方程是( ).A .x -2y -1=0B .x -2y +1=0C .2x +y -2=0D .x +2y -1=0 解析 ∵所求直线与直线x -2y -2=0平行,∴所求直线斜率k =12,排除C 、D.又直线过点(1,0),排除B ,故选A.答案 A4.点(a ,b )关于直线x +y +1=0的对称点是( ).A .(-a -1,-b -1)B .(-b -1,-a -1)C .(-a ,-b )D .(-b ,-a )解析 设对称点为(x ′,y ′),则⎩⎪⎨⎪⎧ y ′-b x ′-a ×(-1)=-1,x ′+a 2+y ′+b 2+1=0,解得:x ′=-b -1,y ′=-a -1.答案 B5.平行线l 1:3x -2y -5=0与l 2:6x -4y +3=0之间的距离为________.解析 直线l 2变为:3x -2y +32=0,由平行线间的距离公式得:d =⎪⎪⎪⎪⎪⎪-5-3232+22=132.答案13 2考向一两条直线平行与垂直的判定及应用【例1】►(1)已知两条直线y=ax-2和y=(a+2)x+1互相垂直,则实数a=________.(2)“ab=4”是直线2x+ay-1=0与直线bx+2y-2=0平行的().A.充分必要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件[审题视点] (1)利用k1·k2=-1解题.(2)抓住ab=4能否得到两直线平行,反之两直线平行能否一定得ab=4.解析(1)由题意知(a+2)a=-1,所以a2+2a+1=0,则a=-1.(2)直线2x+ay-1=0与直线bx+2y-2=0平行的充要条件是-2a=-b2且-1a≠-1,即ab=4且a≠1,则“ab=4”是“直线2x+ay-1=0与直线bx+2y-2=0平行”的必要而不充分条件.答案(1)-1(2)C(1)充分掌握两直线平行与垂直的条件是解决本题的关键,对于斜率都存在且不重合的两条直线l1和l2,l1∥l2⇔k1=k2,l1⊥l2⇔k1·k2=-1.若有一条直线的斜率不存在,那么另一条直线的斜率是多少一定要特别注意.(2)①若直线l1和l2有斜截式方程l1:y=k1x+b1,l2:y=k2x+b2,则:直线l1⊥l2的充要条件是k1·k2=-1.②设l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0.则:l1⊥l2⇔A1A2+B1B2=0.(3)注意转化与化归思想的应用.【训练1】已知直线l1:x+my+6=0,l2:(m-2)x+3y+2m=0,求m的值,使得:(1)l1与l2相交;(2)l1⊥l2;(3)l1∥l2;(4)l1,l2重合.解(1)由已知1×3≠m(m-2),即m2-2m-3≠0,解得m≠-1且m≠3.故当m ≠-1且m ≠3时,l 1与l 2相交.(2)当1·(m -2)+m ·3=0,即m =12时,l 1⊥l 2.(3)当1×3=m (m -2)且1×2m ≠6×(m -2)或m ×2m ≠3×6,即m =-1时,l 1∥l 2.(4)当1×3=m (m -2)且1×2m =6×(m -2),即m =3时,l 1与l 2重合.考向二 两直线的交点【例2】►求经过直线l 1:3x +2y -1=0和l 2:5x +2y +1=0的交点,且垂直于直线l 3:3x -5y +6=0的直线l 的方程.[审题视点] 可先求出l 1与l 2的交点,再用点斜式;也可利用直线系方程求解.解 法一 先解方程组⎩⎨⎧3x +2y -1=0,5x +2y +1=0, 得l 1、l 2的交点坐标为(-1,2),再由l 3的斜率35求出l 的斜率为-53,于是由直线的点斜式方程求出l :y -2=-53(x +1),即5x +3y -1=0.法二 由于l ⊥l 3,故l 是直线系5x +3y +C =0中的一条,而l 过l 1、l 2的交点(-1,2),故5×(-1)+3×2+C =0,由此求出C =-1,故l 的方程为5x +3y -1=0.法三 由于l 过l 1、l 2的交点,故l 是直线系3x +2y -1+λ(5x +2y +1)=0中的一条,将其整理,得(3+5λ)x +(2+2λ)y +(-1+λ)=0.其斜率-3+5λ2+2λ=-53,解得λ=15, 代入直线系方程即得l 的方程为5x +3y -1=0.运用直线系方程,有时会给解题带来方便,常见的直线系方程有:(1)与直线Ax +By +C =0平行的直线系方程是:Ax +By +m =0(m ∈R 且m ≠C );(2)与直线Ax +By +C =0垂直的直线系方程是Bx -Ay +m =0(m ∈R );(3)过直线l 1:A 1x +B 1y +C 1=0与l 2:A 2x +B 2y +C 2=0的交点的直线系方程为A 1x +B 1y +C 1+λ(A 2x +B 2y +C 2)=0(λ∈R ),但不包括l 2.【训练2】 直线l 被两条直线l 1:4x +y +3=0和l 2:3x -5y -5=0截得的线段的中点为P (-1,2),求直线l 的方程.解 法一 设直线l 与l 1的交点为A (x 0,y 0),由已知条件,得直线l 与l 2的交点为B (-2-x 0,4-y 0),并且满足⎩⎨⎧ 4x 0+y 0+3=0,3(-2-x 0)-5(4-y 0)-5=0, 即⎩⎨⎧ 4x 0+y 0+3=0,3x 0-5y 0+31=0,解得⎩⎨⎧ x 0=-2,y 0=5,因此直线l 的方程为y -25-2=x -(-1)-2-(-1),即3x +y +1=0. 法二 设直线l 的方程为y -2=k (x +1),即kx -y +k +2=0.由⎩⎨⎧ kx -y +k +2=0,4x +y +3=0,得x =-k -5k +4. 由⎩⎨⎧kx -y +k +2=0,3x -5y -5=0,得x =-5k -155k -3. 则-k -5k +4+-5k -155k -3=-2,解得k =-3. 因此所求直线方程为y -2=-3(x +1),即3x +y +1=0.法三 两直线l 1和l 2的方程为(4x +y +3)(3x -5y -5)=0,①将上述方程中(x ,y )换成(-2-x,4-y ),整理可得l 1与l 2关于(-1,2)对称图形的方程:(4x +y +1)(3x -5y +31)=0.②①-②整理得3x +y +1=0.考向三 距离公式的应用【例3】►(2011·北京东城模拟)若O (0,0),A (4,-1)两点到直线ax +a 2y +6=0的距离相等,则实数a =________.[审题视点] 由点到直线的距离公式列出等式求a .解析 由题意,得6a 2+a 4=|4a -a 2+6|a 2+a4,即4a -a 2+6=±6,解之得a =0或-2或4或6.检验得a =0不合题意,所以a =-2或4或6.答案 -2或4或6用点到直线的距离公式时,直线方程要化为一般式,还要注意公式中分子含有绝对值的符号,分母含有根式的符号.而求解两平行直线的距离问题也可以在其中一条直线上任取一点,再求这一点到另一直线的距离.【训练3】 已知直线l 1:mx +8y +n =0与l 2:2x +my -1=0互相平行,且l 1,l 2之间的距离为 5,求直线l 1的方程. 解 ∵l 1∥l 2,∴m 2=8m ≠n -1,∴⎩⎨⎧ m =4,n ≠-2或⎩⎨⎧m =-4,n ≠2. (1)当m =4时,直线l 1的方程为4x +8y +n =0,把l 2的方程写成4x +8y -2=0.∴|n +2|16+64=5,解得n =-22或n =18. 所以,所求直线的方程为2x +4y -11=0或2x +4y +9=0.(2)当m =-4时,直线l 1的方程为4x -8y -n =0,l 2的方程为2x -4y -1=0,∴|-n +2|16+64=5,解得n =-18或n =22. 所以,所求直线的方程为2x -4y +9=0或2x -4y -11=0.考向四 对称问题【例4】►光线从A (-4,-2)点射出,到直线y =x 上的B 点后被直线y =x 反射到y 轴上C 点,又被y 轴反射,这时反射光线恰好过点D (-1,6),求BC 所在的直线方程.[审题视点] 设A 关于直线y =x 的对称点为A ′,D 关于y 轴的对称点为D ′,则直线A ′D ′经过点B 与C .解 作出草图,如图所示.设A 关于直线y =x 的对称点为A ′,D 关于y 轴的对称点为D ′,则易得A ′(-2,-4),D ′(1,6).由入射角等于反射角可得A ′D ′所在直线经过点B 与C .故BC 所在的直线方程为y -66+4=x -11+2,即10x -3y +8=0.解决这类对称问题要抓住两条:一是已知点与对称点的连线与对称轴垂直;二是以已知点和对称点为端点的线段的中点在对称轴上.【训练4】 已知直线l :x -y -1=0,l 1:2x -y -2=0.若直线l 2与l 1关于l 对称,则l 2的方程是( ).A .x -2y +1=0B .x -2y -1=0C .x +y -1=0D .x +2y -1=0解析 l 1与l 2关于l 对称,则l 1上任一点关于l 的对称点都在l 2上,故l 与l 1的交点(1,0)在l 2上.又易知(0,-2)为l 1上一点,设其关于l 的对称点为(x ,y ),则⎩⎪⎨⎪⎧ x +02-y -22-1=0,y +2x ×1=-1,得⎩⎨⎧x =-1,y =-1.即(1,0)、(-1,-1)为l 2上两点,可得l 2方程为x -2y -1=0. 答案 B难点突破19——两直线平行与垂直问题的求解策略从近两年新课标高考试题可看出高考主要以选择题、填空题的形式考查两直线的平行和垂直问题,往往是直线方程中一般带有参数,问题的难点就是确定这些参数值,方法是根据两直线平行、垂直时所满足的条件列关于参数的方程(组),通过解方程(组)求出参数值,但要使参数符合题目本身的要求,解题时注意直线方程本身的限制.【示例1】►(2011·浙江)若直线x-2y+5=0与直线2x+my-6=0互相垂直,则实数m=________.【示例2】►(2010·上海)已知直线l1:(k-3)x+(4-k)y+1=0与l2:2(k-3)x-2y+3=0平行,则k的值是().A.1或3 B.1或5 C.3或5 D.1或2。

2017版高考数学北师大版(理)一轮复习第9章平面解析几何9.2两条直线的位置关系文档

2017版高考数学北师大版(理)一轮复习第9章平面解析几何9.2两条直线的位置关系文档

1.两条直线的位置关系 (1)两条直线平行与垂直 ①两条直线平行:(ⅰ)对于两条不重合的直线l 1、l 2,若其斜率分别为k 1、k 2,则有l 1∥l 2⇔k 1=k 2. (ⅱ)当直线l 1、l 2不重合且斜率都不存在时,l 1∥l 2. ②两条直线垂直:(ⅰ)如果两条直线l 1、l 2的斜率存在,设为k 1、k 2,则有l 1⊥l 2⇔k 1·k 2=-1. (ⅱ)当其中一条直线的斜率不存在,而另一条的斜率为0时,l 1⊥l 2. (2)两条直线的交点直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,则l 1与l 2的交点坐标就是方程组⎩⎪⎨⎪⎧A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0的解. 2.几种距离(1)两点P1(x 1,y 1),P 2(x 2,y 2)之间的距离|P 1P 2|=(x 2-x 1)2+(y 2-y 1)2. (2)点P 0(x 0,y 0)到直线l :Ax +By +C =0的距离 d =|Ax 0+By 0+C |A 2+B 2.(3)两条平行线Ax +By +C 1=0与Ax +By +C 2=0(其中C 1≠C 2)间的距离d =|C 1-C 2|A 2+B 2.【知识拓展】1.一般地,与直线Ax +By +C =0平行的直线方程可设为Ax +By +m =0;与之垂直的直线方程可设为Bx -Ay +n =0.2.过直线l 1:A 1x +B 1y +C 1=0与l 2:A 2x +B 2y +C 2=0的交点的直线系方程为A 1x +B 1y +C 1+λ(A 2x +B 2y +C 2)=0 (λ∈R ),但不包括l 2. 3.点到直线与两平行线间的距离的使用条件: (1)求点到直线的距离时,应先化直线方程为一般式.(2)求两平行线之间的距离时,应先将方程化为一般式且x ,y 的系数对应相等. 【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”) (1)当直线l 1和l 2斜率都存在时,一定有k 1=k 2⇒l 1∥l 2.( × ) (2)如果两条直线l 1与l 2垂直,则它们的斜率之积一定等于-1.( × )(3)已知直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0(A 1、B 1、C 1、A 2、B 2、C 2为常数),若直线l 1⊥l 2,则A 1A 2+B 1B 2=0.( √ )(4)点P (x 0,y 0)到直线y =kx +b 的距离为|kx 0+b |1+k 2.( × )(5)直线外一点与直线上一点的距离的最小值就是点到直线的距离.( √ )(6)若点A ,B 关于直线l :y =kx +b (k ≠0)对称,则直线AB 的斜率等于-1k ,且线段AB 的中点在直线l 上.( √ )1.设a ∈R ,则“a =1”是“直线l 1:ax +2y -1=0与直线l 2:x +(a +1)y +4=0平行”的 ( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件答案 A解析 (1)充分性:当a =1时,直线l 1:x +2y -1=0与直线l 2:x +2y +4=0平行;(2)必要性:当直线l 1:ax +2y -1=0与直线l 2:x +(a +1)y +4=0平行时有a =-2或1. 所以“a =1”是“直线l 1:ax +2y -1=0与直线l 2:x +(a +1)y +4=0平行”的充分不必要条件,故选A.2.(教材改编)已知点(a,2)(a >0)到直线l :x -y +3=0的距离为1,则a 等于( ) A. 2 B .2- 2 C.2-1 D.2+1答案 C解析 依题意得|a -2+3|1+1=1.解得a =-1+2或a =-1- 2. ∵a >0,∴a =-1+ 2.3.已知直线l 1:(3+m )x +4y =5-3m ,l 2:2x +(5+m )y =8平行,则实数m 的值为( ) A .-7 B .-1 C .-1或-7 D.133答案 A解析 l 1的斜率为-3+m 4,在y 轴上的截距为5-3m4,l 2的斜率为-25+m ,在y 轴上的截距为85+m .又∵l 1∥l 2,由-3+m 4=-25+m 得,m 2+8m +7=0,得m =-1或-7.m =-1时,5-3m 4=85+m =2,l 1与l 2重合,故不符合题意;m =-7时,5-3m 4=132≠85+m=-4,符合题意.4.(2015·蚌埠模拟)已知a ,b 为正数,且直线ax +by -6=0与直线2x +(b -3)y +5=0互相平行,则2a +3b 的最小值为________. 答案 25解析 由于直线ax +by -6=0与直线2x +(b -3)y +5=0互相平行,所以a (b -3)=2b ,即2a +3b=1(a ,b 均为正数),所以2a +3b =(2a +3b )⎝⎛⎭⎫2a +3b =13+6⎝⎛⎭⎫b a +a b ≥13+6×2b a ·ab=25(当且仅当b a =ab,即a =b =5时取等号).5.(教材改编)若直线(3a +2)x +(1-4a )y +8=0与(5a -2)x +(a +4)y -7=0垂直,则a =________. 答案 0或1解析 由两直线垂直的充要条件,得(3a +2)(5a -2)+(1-4a )(a +4)=0,解得a =0或a =1.题型一 两条直线的平行与垂直例1 (1)已知两条直线l 1:(a -1)·x +2y +1=0,l 2:x +ay +3=0平行,则a 等于( ) A .-1 B .2 C .0或-2D .-1或2(2)已知两直线方程分别为l 1:x +y =1,l 2:ax +2y =0,若l 1⊥l 2,则a =________. 答案 (1)D (2)-2解析 (1)若a =0,两直线方程为-x +2y +1=0和x =-3,此时两直线相交,不平行,所以a ≠0.当a ≠0时,若两直线平行,则有a -11=2a ≠13,解得a =-1或a =2,选D.(2)方法一 ∵l 1⊥l 2, ∴k 1k 2=-1, 即a2=-1, 解得a =-2. 方法二 ∵l 1⊥l 2, ∴a +2=0,a =-2.思维升华 (1)当直线方程中存在字母参数时,不仅要考虑到斜率存在的一般情况,也要考虑到斜率不存在的特殊情况.同时还要注意x 、y 的系数不能同时为零这一隐含条件. (2)在判断两直线平行、垂直时,也可直接利用直线方程的系数间的关系得出结论.已知两直线l 1:x +y sin α-1=0和l 2:2x ·sin α+y +1=0,求α的值,使得:(1)l 1∥l 2; (2)l 1⊥l 2.解 (1)方法一 当sin α=0时,直线l 1的斜率不存在,l 2的斜率为0,显然l 1不平行于l 2. 当sin α≠0时,k 1=-1sin α,k 2=-2sin α.要使l 1∥l 2,需-1sin α=-2sin α,即sin α=±22.所以α=k π±π4,k ∈Z ,此时两直线的斜率相等.故当α=k π±π4,k ∈Z 时,l 1∥l 2.方法二 由A 1B 2-A 2B 1=0,得2sin 2α-1=0, 所以sin α=±22.所以α=k π±π4,k ∈Z .又B 1C 2-B 2C 1≠0,所以1+sin α≠0,即sin α≠-1. 故当α=k π±π4,k ∈Z 时,l 1∥l 2.(2)因为A 1A 2+B 1B 2=0是l 1⊥l 2的充要条件, 所以2sin α+sin α=0,即sin α=0,所以α=k π,k ∈Z . 故当α=k π,k ∈Z 时,l 1⊥l 2.题型二 两条直线的交点与距离问题例2 (1)已知直线y =kx +2k +1与直线y =-12x +2的交点位于第一象限,则实数k 的取值范围是________.(2)直线l 过点P (-1,2)且到点A (2,3)和点B (-4,5)的距离相等,则直线l 的方程为________________________________________________________________________. 答案 (1)⎝⎛⎭⎫-16,12 (2)x +3y -5=0或x =-1 解析 (1)方法一 由方程组⎩⎪⎨⎪⎧y =kx +2k +1,y =-12x +2,解得⎩⎪⎨⎪⎧x =2-4k 2k +1,y =6k +12k +1.(若2k +1=0,即k =-12,则两直线平行)∴交点坐标为⎝ ⎛⎭⎪⎫2-4k 2k +1,6k +12k +1.又∵交点位于第一象限,∴⎩⎪⎨⎪⎧2-4k2k +1>0,6k +12k +1>0,解得-16<k <12.方法二 如图,已知直线y =-12x +2与x 轴、y 轴分别交于点A (4,0),B (0,2).而直线方程y =kx +2k +1可变形为y -1=k (x +2),表示这是一条过定点P (-2,1),斜率为k 的动直线.∵两直线的交点在第一象限,∴两直线的交点必在线段AB 上(不包括端点), ∴动直线的斜率k 需满足k P A <k <k PB . ∵k P A =-16,k PB =12.∴-16<k <12.(2)方法一 当直线l 的斜率存在时,设直线l 的方程为 y -2=k (x +1),即kx -y +k +2=0. 由题意知|2k -3+k +2|k 2+1=|-4k -5+k +2|k 2+1,即|3k -1|=|-3k -3|, ∴k =-13.∴直线l 的方程为y -2=-13(x +1),即x +3y -5=0.当直线l 的斜率不存在时,直线l 的方程为x =-1,也符合题意. 方法二 当AB ∥l 时,有k =k AB =-13,直线l 的方程为y -2=-13(x +1),即x +3y -5=0.当l 过AB 中点时,AB 的中点为(-1,4). ∴直线l 的方程为x =-1.故所求直线l 的方程为x +3y -5=0或x =-1. 思维升华 (1)求过两直线交点的直线方程的方法求过两直线交点的直线方程,先解方程组求出两直线的交点坐标,再结合其他条件写出直线方程.(2)利用距离公式应注意:①点P (x 0,y 0)到直线x =a 的距离d =|x 0-a |,到直线y =b 的距离d =|y 0-b |;②两平行线间的距离公式要把两直线方程中x ,y 的系数化为相等.(1)如图,设一直线过点(-1,1),它被两平行直线l 1:x +2y -1=0,l 2:x +2y -3=0所截的线段的中点在直线l 3:x -y -1=0上,求其方程.解 与l 1、l 2平行且距离相等的直线方程为x +2y -2=0. 设所求直线方程为(x +2y -2)+λ(x -y -1)=0, 即(1+λ)x +(2-λ)y -2-λ=0.又直线过(-1,1), ∴(1+λ)(-1)+(2-λ)·1-2-λ=0.解得λ=-13.∴所求直线方程为2x +7y -5=0.(2)正方形的中心为点C (-1,0),一条边所在的直线方程是x +3y -5=0,求其他三边所在直线的方程.解 点C 到直线x +3y -5=0的距离d =|-1-5|1+9=3105.设与x +3y -5=0平行的一边所在直线的方程是x +3y +m =0(m ≠-5), 则点C 到直线x +3y +m =0的距离 d =|-1+m |1+9=3105,解得m =-5(舍去)或m =7,所以与x +3y -5=0平行的边所在直线的方程是x +3y +7=0. 设与x +3y -5=0垂直的边所在直线的方程是3x -y +n =0, 则点C 到直线3x -y +n =0的距离 d =|-3+n |1+9=3105,解得n =-3或n =9,所以与x +3y -5=0垂直的两边所在直线的方程分别是3x -y -3=0和3x -y +9=0. 题型三 对称问题命题点1 点关于点中心对称例3 过点P (0,1)作直线l ,使它被直线l 1:2x +y -8=0和l 2:x -3y +10=0截得的线段被点P 平分,则直线l 的方程为________________. 答案 x +4y -4=0解析 设l 1与l 的交点为A (a,8-2a ),则由题意知,点A 关于点P 的对称点B (-a,2a -6)在l 2上,代入l 2的方程得-a -3(2a -6)+10=0,解得a =4,即点A (4,0)在直线l 上,所以直线l 的方程为x +4y -4=0. 命题点2 点关于直线对称例4 (2015·日照模拟)已知直线l :2x -3y +1=0,点A (-1,-2),则点A 关于直线l 的对称点A ′的坐标为____________. 答案 ⎝⎛⎭⎫-3313,413 解析 设A ′(x ,y ),由已知得⎩⎨⎧y +2x +1×23=-1,2×x -12-3×y -22+1=0,解得⎩⎨⎧x =-3313,y =413,故A ′⎝⎛⎭⎫-3313,413. 命题点3 直线关于直线的对称问题例5 已知直线l :2x -3y +1=0,求直线m :3x -2y -6=0关于直线l 的对称直线m ′的方程.解 在直线m 上任取一点,如M (2,0),则M (2,0)关于直线l 的对称点M ′必在直线m ′上. 设对称点M ′(a ,b ),则⎩⎨⎧2×⎝⎛⎭⎪⎫a +22-3×⎝ ⎛⎭⎪⎫b +02+1=0,b -0a -2×23=-1,解得⎩⎨⎧a =613,b =3013,∴M ′⎝⎛⎭⎫613,3013.设直线m 与直线l 的交点为N ,则由⎩⎪⎨⎪⎧2x -3y +1=0,3x -2y -6=0,得N (4,3).又∵m ′经过点N (4,3).∴由两点式得直线m ′的方程为9x -46y +102=0. 思维升华 解决对称问题的方法(1)中心对称①点P (x ,y )关于Q (a ,b )的对称点P ′(x ′,y ′)满足⎩⎪⎨⎪⎧x ′=2a -x ,y ′=2b -y .②直线关于点的对称可转化为点关于点的对称问题来解决. (2)轴对称①点A (a ,b )关于直线Ax +By +C =0(B ≠0)的对称点A ′(m ,n ),则有⎩⎨⎧n -bm -a ×⎝⎛⎭⎫-AB =-1,A ·a +m 2+B ·b +n2+C =0.②直线关于直线的对称可转化为点关于直线的对称问题来解决.在等腰直角三角形ABC 中,AB =AC =4,点P 是边AB 上异于A ,B 的一点,光线从点P 出发,经BC ,CA 发射后又回到原点P (如图).若光线QR 经过△ABC 的重心,则AP 等于()A .2B .1 C.83 D.43答案 D解析 建立如图所示的坐标系:可得B (4,0),C (0,4),故直线BC 的方程为x +y =4, △ABC 的重心为⎝ ⎛⎭⎪⎫0+0+43,0+4+03,设P (a,0),其中0<a <4, 则点P 关于直线BC 的对称点P 1(x ,y ),满足⎩⎨⎧a +x 2+y +02=4,y -0x -a ·(-1)=-1,解得⎩⎪⎨⎪⎧x =4,y =4-a ,即P 1(4,4-a ),易得P 关于y 轴的对称点P 2(-a,0),由光的反射原理可知P 1,Q ,R ,P 2四点共线, 直线QR 的斜率为k =4-a -04-(-a )=4-a 4+a ,故直线QR 的方程为y =4-a4+a(x +a ),由于直线QR 过△ABC 的重心(43,43),代入化简可得3a 2-4a =0,解得a =43,或a =0(舍去),故P ⎝⎛⎭⎫43,0,故AP =43.18.妙用直线系求直线方程一、平行直线系由于两直线平行,它们的斜率相等或它们的斜率都不存在,因此两直线平行时,它们的一次项系数与常数项有必然的联系.典例 求与直线3x +4y +1=0平行且过点(1,2)的直线l 的方程.思维点拨 因为所求直线与3x +4y +1=0平行,因此,可设该直线方程为3x +4y +c =0 (c ≠1). 规范解答解 依题意,设所求直线方程为3x +4y +c =0 (c ≠1), 又因为直线过点(1,2),所以3×1+4×2+c =0,解得c =-11. 因此,所求直线方程为3x +4y -11=0.温馨提醒 与直线Ax +By +C =0平行的直线系方程为Ax +By +C 1=0 (C 1≠C ),再由其他条件求C 1. 二、垂直直线系由于直线A 1x +B 1y +C 1=0与A 2x +B 2y +C 2=0垂直的充要条件为A 1A 2+B 1B 2=0.因此,当两直线垂直时,它们的一次项系数有必要的关系.可以考虑用直线系方程求解. 典例 求经过A (2,1),且与直线2x +y -10=0垂直的直线l 的方程. 思维点拨 依据两直线垂直的特征设出方程,再由待定系数法求解. 规范解答解 因为所求直线与直线2x +y -10=0垂直,所以设该直线方程为x -2y +C 1=0,又直线过点(2,1),所以有2-2×1+C 1=0,解得C 1=0,即所求直线方程为x -2y =0.温馨提醒 与直线Ax +By +C =0垂直的直线系方程为Bx -Ay +C 1=0,再由其他条件求出C 1.三、过直线交点的直线系典例 求经过两直线l 1:x -2y +4=0和l 2:x +y -2=0的交点P ,且与直线l 3:3x -4y +5=0垂直的直线l 的方程.思维点拨 可分别求出直线l 1与l 2的交点及直线l 的斜率k ,直接写出方程;也可以利用过交点的直线系方程设直线方程,再用待定系数法求解. 规范解答解 方法一 解方程组⎩⎪⎨⎪⎧x -2y +4=0,x +y -2=0,得P (0,2).因为l 3的斜率为34,且l ⊥l 3,所以直线l 的斜率为-43,由斜截式可知l 的方程为y =-43x +2,即4x +3y -6=0.方法二 设直线l 的方程为x -2y +4+λ(x +y -2)=0, 即(1+λ)x +(λ-2)y +4-2λ=0.又∵l ⊥l 3,∴3×(1+λ)+(-4)×(λ-2)=0, 解得λ=11.∴直线l 的方程为4x +3y -6=0.温馨提醒本题方法一采用常规方法,先通过方程组求出两直线交点,再根据垂直关系求出斜率,由于交点在y轴上,故采用斜截式求解;方法二则采用了过两直线A1x+B1y+C1=0与A2x+B2y+C2=0的交点的直线系方程:A1x+B1y+C1+λ(A2x+B2y+C2)=0,直接设出过两直线交点的方程,再根据垂直条件用待定系数法求解.[方法与技巧]1.两直线的位置关系要考虑平行、垂直和重合.对于斜率都存在且不重合的两条直线l1、l2,l1∥l2⇔k1=k2;l1⊥l2⇔k1·k2=-1.若有一条直线的斜率不存在,那么另一条直线的斜率一定要特别注意.2.对称问题一般是将线与线的对称转化为点与点的对称.利用坐标转移法.[失误与防范]1.在判断两条直线的位置关系时,首先应分析直线的斜率是否存在.若两条直线都有斜率,可根据判定定理判断,若直线无斜率,要单独考虑.2.在运用两平行直线间的距离公式d=|C1-C2|A2+B2时,一定要注意将两方程中x,y的系数化为相同的形式.A 组 专项基础训练 (时间:40分钟)1.已知点O (0,0),A (0,b ),B (a ,a 3).若△OAB 为直角三角形,则必有 ( ) A .b =a 3 B .b =a 3+1aC .(b -a 3)⎝⎛⎭⎫b -a 3-1a =0 D .|b -a 3|+⎪⎪⎪⎪b -a 3-1a =0 答案 C解析 若以O 为直角顶点,则B 在x 轴上,则a 必为0,此时O ,B 重合,不符合题意;若∠A =π2,则b =a 3≠0.若∠B =π2,根据垂直关系可知a 2·a 3-b a=-1,所以a (a 3-b )=-1,即b -a 3-1a=0.以上两种情况皆有可能,故只有C 满足条件. 2.已知过点A (m +1,0),B (-5,m )的直线与过点C (-4,3),D (0,5)的直线平行,则m 的值为( ) A .-1 B .-2 C .2 D .1答案 B解析 由题意得:k AB =m -0-5-(m +1)=m-6-m,k CD =5-30-(-4)=12.由于AB ∥CD ,即k AB =k CD ,所以m -6-m =12,所以m =-2.3.当0<k <12时,直线l 1:kx -y =k -1与直线l 2:ky -x =2k 的交点在 ( )A .第一象限B .第二象限C .第三象限D .第四象限答案 B解析 解方程组⎩⎪⎨⎪⎧kx -y =k -1,ky -x =2k 得两直线的交点坐标为⎝ ⎛⎭⎪⎫k k -1,2k -1k -1,因为0<k <12,所以kk -1<0,2k -1k -1>0,故交点在第二象限. 4.若直线l 1:y =k (x -4)与直线l 2关于点(2,1)对称,则直线l 2经过定点 ( ) A .(0,4) B .(0,2) C .(-2,4) D .(4,-2)答案 B解析 直线l 1:y =k (x -4)经过定点(4,0),其关于点(2,1)对称的点为(0,2),又直线l 1:y =k (x -4)与直线l 2关于点(2,1)对称,故直线l 2经过定点(0,2).5.从点(2,3)射出的光线沿与向量a =(8,4)平行的直线射到y 轴上,则反射光线所在的直线方程为( ) A .x +2y -4=0 B .2x +y -1=0 C .x +6y -16=0 D .6x +y -8=0答案 A解析 由直线与向量a =(8,4)平行知:过点(2,3)的直线的斜率k =12,所以直线的方程为y -3=12(x -2),其与y 轴的交点坐标为(0,2),又点(2,3)关于y 轴的对称点为(-2,3),所以反射光线过点(-2,3)与(0,2),由两点式知A 正确.6.已知M =⎩⎨⎧⎭⎬⎫(x ,y )|y -3x -2=3,N ={(x ,y )|ax +2y +a =0}且M ∩N =∅,则a =________. 答案 -2或-6解析 由题可知,集合M 表示过点(2,3)且斜率为3的直线,但除去(2,3)点,而集合N 表示一条直线,该直线的斜率为-a2,且过(-1,0)点,若M ∩N =∅,则有两种情况:①集合M 表示的直线与集合N 所表示的直线平行,即-a2=3,解得a =-6;②集合N 表示的直线过(2,3)点,即2a +2×3+a =0,解得a =-2,综上,a =-2或-6.7.已知两直线l 1:ax -by +4=0和l 2:(a -1)x +y +b =0,若l 1∥l 2,且坐标原点到这两条直线的距离相等,则a +b =________. 答案 0或83解析 由题意得⎩⎨⎧a +b (a -1)=0,4a 2+(-b )2=|b |(a -1)2+1.解得⎩⎪⎨⎪⎧a =2,b =-2或⎩⎪⎨⎪⎧a =23,b =2经检验,两种情况均符合题意,∴a +b 的值为0或83.8.已知直线l 1:ax +y -1=0,直线l 2:x -y -3=0,若直线l 1的倾斜角为π4,则a =________;若l 1⊥l 2,则a =________;若l 1∥l 2,则两平行直线间的距离为________. 答案 -1 1 2 2解析 若直线l 1的倾斜角为π4,则-a =k =tan45°=1,故a =-1;若l 1⊥l 2,则a ×1+1×(-1)=0,故a =1;若l 1∥l 2,则a =-1,l 1:x -y +1=0,两平行直线间的距离d =|1-(-3)|1+1=2 2.9.已知△ABC 的顶点A (5,1),AB 边上的中线CM 所在直线方程为2x -y -5=0,AC 边上的高BH 所在直线方程为x -2y -5=0,求直线BC 的方程. 解 依题意知:k AC =-2,A (5,1), ∴l AC 为2x +y -11=0,联立l AC 、l CM 得⎩⎪⎨⎪⎧2x +y -11=0,2x -y -5=0,∴C (4,3).设B (x 0,y 0),AB 的中点M 为(x 0+52,y 0+12),代入2x -y -5=0,得2x 0-y 0-1=0,∴⎩⎪⎨⎪⎧2x 0-y 0-1=0,x 0-2y 0-5=0,∴B (-1,-3), ∴k BC =65,∴直线BC 的方程为y -3=65(x -4),即6x -5y -9=0.10.已知直线l 经过直线l 1:2x +y -5=0与l 2:x -2y =0的交点. (1)若点A (5,0)到l 的距离为3,求l 的方程;(2)求点A (5,0)到l 的距离的最大值.解 (1)易知l 不可能为l 2,可设经过两已知直线交点的直线系方程为(2x +y -5)+λ(x -2y )=0,即(2+λ)x +(1-2λ)y -5=0, ∵点A (5,0)到l 的距离为3, ∴|10+5λ-5|(2+λ)2+(1-2λ)2=3,即2λ2-5λ+2=0,∴λ=2,或λ=12,∴l 的方程为x =2或4x -3y -5=0.(2)由⎩⎪⎨⎪⎧2x +y -5=0,x -2y =0,解得交点P (2,1),如图,过P 作任一直线l ,设d 为点A 到l 的距离,则d ≤P A (当l ⊥P A 时等号成立).∴d max =P A =(5-2)2+(0-1)2=10.B 组 专项能力提升 (时间:25分钟)11.若点(m ,n )在直线4x +3y -10=0上,则m 2+n 2的最小值是 ( ) A .2 B .2 2 C .4 D .2 3答案 C解析 因为点(m ,n )在直线4x +3y -10=0上, 所以4m +3n -10=0. 欲求m 2+n 2的最小值可先求(m -0)2+(n -0)2的最小值,而(m -0)2+(n -0)2表示4m +3n -10=0上的点(m ,n )到原点的距离,如图.当过原点的直线与直线4m +3n -10=0垂直时,原点到点(m ,n )的距离最小为2.所以m 2+n 2的最小值为4.12.如图,已知直线l 1∥l 2,点A 是l 1,l 2之间的定点,点A 到l 1,l 2之间的距离分别为3和2,点B 是l 2上的一动点,作AC ⊥AB ,且AC 与l 1交于点C ,则△ABC 的面积的最小值为________.答案 6解析以A 为坐标原点,平行于l 1的直线为x 轴,建立如图所示的直角坐标系,设B (a ,-2),C (b,3).∵AC ⊥AB ,∴ab -6=0,ab =6,b =6a .Rt △ABC 的面积S =12a 2+4·b 2+9=12a 2+4·36a 2+9=1272+9a 2+144a2≥1272+72=6.13.在平面直角坐标系内,到点A (1,2),B (1,5),C (3,6),D (7,-1)的距离之和最小的点的坐标是________. 答案 (2,4)解析 如图,设平面直角坐标系中任一点P ,P 到点A (1,2),B (1,5),C (3,6),D (7,-1)的距离之和为P A +PB +PC +PD =PB +PD +P A +PC ≥BD +AC =QA +QB +QC +QD ,故四边形ABCD 对角线的交点Q 即为所求距离之和最小的点.∵A (1,2),B (1,5),C (3,6),D (7,-1),∴直线AC 的方程为y -2=2(x -1),直线BD 的方程为y -5=-(x -1).由⎩⎪⎨⎪⎧y -2=2(x -1),y -5=-(x -1),得Q (2,4). 14.已知直线l :y =12x -1,(1)求点P (3,4)关于l 对称的点Q ; (2)求l 关于点(2,3)对称的直线方程.解 (1)设Q (x 0,y 0),由于PQ ⊥l ,且PQ 中点在l 上,有⎩⎨⎧y 0-4x 0-3=-2,y 0+42=12·x 0+32-1,解得⎩⎨⎧x 0=295,y 0=-85,∴Q ⎝⎛⎭⎫295,-85. (2)在l 上任取一点,如M (0,-1),则M 关于点(2,3)对称的点为N (4,7).∵当对称点不在直线上时,关于点对称的两直线必平行, ∴所求直线过点N 且与l 平行,∴所求方程为y -7=12(x -4),即为x -2y +10=0.15.已知三条直线:l 1:2x -y +a =0(a >0);l 2:-4x +2y +1=0;l 3:x +y -1=0,且l 1与l 2间的距离是7510.(1)求a 的值;(2)能否找到一点P ,使P 同时满足下列三个条件: ①点P 在第一象限;②点P 到l 1的距离是点P 到l 2的距离的12;③点P 到l 1的距离与点P 到l 3的距离之比是2∶ 5. 若能,求点P 的坐标;若不能,请说明理由.解 (1)直线l 2:2x -y -12=0,所以两条平行线l 1与l 2间的距离为d =⎪⎪⎪⎪a -⎝⎛⎭⎫-1222+(-1)2=7510, 所以⎪⎪⎪⎪a +125=7510,即⎪⎪⎪⎪a +12=72, 又a >0,解得a =3.(2)假设存在点P ,设点P (x 0,y 0). 若P 点满足条件②,则P 点在与l 1, l 2平行的直线l ′:2x -y +c =0上,且|c -3|5=12⎪⎪⎪⎪c +125,即c =132或116,所以2x 0-y 0+132=0或2x 0-y 0+116=0;若P 点满足条件③,由点到直线的距离公式, 有|2x 0-y 0+3|5=25|x 0+y 0-1|2,即|2x 0-y 0+3|=|x 0+y 0-1|, 所以x 0-2y 0+4=0或3x 0+2=0;由于点P 在第一象限,所以3x 0+2=0不可能. 联立方程2x 0-y 0+132=0和x 0-2y 0+4=0,解得⎩⎪⎨⎪⎧x 0=-3,y 0=12;(舍去)联立方程2x 0-y 0+116=0和x 0-2y 0+4=0, 解得⎩⎨⎧ x 0=19,y 0=3718.所以存在点P ⎝⎛⎭⎫19,3718同时满足三个条件.。

2017高考数学(理)一轮复习配套课件:第九章平面解析几何9.4

2017高考数学(理)一轮复习配套课件:第九章平面解析几何9.4
第十二页,编辑于星期六:二十一点 四十七分。
(1)在同一坐标系下,直线 ax+by=ab 和圆(x-a)2 +(y-b)2=r2(ab≠0,r>0)的图象可能是( )
解:直线方程可化为bx+ay=1,且由 A,B,C,D 选项知
a>0,b<0,满足圆心(a,b)(a>0,b<0)的只有选项 D.故选 D.
(1)圆 C1 和圆 C2 相外切? (2)圆 C1 和圆 C2 内含?
第二十四页,编辑于星期六:二十一点 四十七 分。
解:易知圆 C1,C2 的标准方程分别为 C1:(x-m)2+(y+2)2 =9,C2:(x+1)2+(y-m)2=4,
(1)如果圆 C1 与圆 C2 相外切,则两圆圆心距等于两圆半径之 和,即有 (m+1)2+(m+2)2=3+2,解得 m=-5 或 2.
解:∵圆心(2,-1)到直线 x+2y-3=0 的距离 d=
|2+2×(-1)-3| = 12+22
3 ,∴直线被圆截得的弦长为 5
l=
2 22- 352=2 555.故填2 555.
第二十二页,编辑于星期六:二十一点 四十七 分。
(2)(2013·北京模拟)已知圆的方程为 x2+y2-6x-8y=0,设该圆
第十三页,编辑于星期六:二十一点 四十七分。
(2)(2014·安徽)过点 P(- 3,-1)的直线 l 与圆 x2+y2=1
有公共点,则直线 l 的倾斜角的取值范围是( )
A.0,π6
B.0,3π
C.0,6π
D.0,π3
解:由题意可知直线 l 的斜率存在,设其为 k,则直线 l 的方 程为 y=k(x+ 3)-1,要使直线 l 与圆 x2+y2=1 有公共点,只须 圆心(0,0)到直线 l 的距离 d=| 3kk2+-11|≤1,解得 0≤k≤ 3.∴直

浙江新高考数学一轮复习第九章平面解析几何2第2讲两直线的位置关系高效演练分层突破2

2021-4-29 20XX年复习资料教学复习资料班级:科目:第2讲 两直线的位置关系[基础题组练]1.(2020·富阳市场口中学高三质检)已知直线l 1:x +ay +1=0与直线l 2:y =12x +2垂直,则a 的值是( )A .2B .-2 C.12D .-12解析:选C.因为直线l 2的斜率为12,直线l 1:x +ay +1=0与直线l 2:y =12x +2垂直,所以直线l 1的斜率等于-2,即-1a=-2,所以a =12,故选C.2.(2020·金华十校联考)“C =5”是“点(2,1)到直线3x +4y +C =0的距离为3”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件解析:选B.点(2,1)到直线3x +4y +C =0的距离为3等价于|3×2+4×1+C |32+42=3,解得C =5或C =-25,所以“C =5”是“点(2,1)到直线3x +4y +C =0的距离为3”的充分不必要条件,故选B.3.(2020·义乌模拟)直线x -2y +1=0关于直线x =1对称的直线方程是( ) A .x +2y -1=0 B .2x +y -1=0 C .2x +y -3=0D .x +2y -3=0解析:选D.由题意得直线x -2y +1=0与直线x =1的交点坐标为(1,1).又直线x -2y +1=0上的点(-1,0)关于直线x =1的对称点为(3,0),所以由直线方程的两点式,得y -01-0=x -31-3,即x +2y -3=0.4.已知点A (-1,2),B (3,4),P 是x 轴上一点,且|PA |=|PB |,则△PAB 的面积为( ) A .15 B.552 C .6 5D.152解析:选D.设AB 的中点坐标为M (1,3),k AB =4-23-(-1)=12,所以AB 的中垂线方程为y -3=-2(x -1). 即2x +y -5=0.令y =0,则x =52,即P 点的坐标为⎝ ⎛⎭⎪⎫52,0, |AB |=(-1-3)2+(2-4)2=2 5.P 到AB 的距离为|PM |=⎝ ⎛⎭⎪⎫1-522+32=352.所以S △PAB =12|AB |·|PM |=12×25×352=152.5.已知点P (x 0,y 0)是直线l :Ax +By +C =0外一点,则方程Ax +By +C +(Ax 0+By 0+C )=0表示( )A .过点P 且与l 垂直的直线B .过点P 且与l 平行的直线C .不过点P 且与l 垂直的直线D .不过点P 且与l 平行的直线解析:选D.因为点P (x 0,y 0)不在直线Ax +By +C =0上,所以Ax 0+By 0+C ≠0,所以直线Ax +By +C +(Ax 0+By 0+C )=0不经过点P ,排除A 、B ;又直线Ax +By +C +(Ax 0+By 0+C )=0与直线l :Ax +By +C =0平行,排除C ,故选D.6.两条平行线l 1,l 2分别过点P (-1,2),Q (2,-3),它们分别绕P ,Q 旋转,但始终保持平行,则l 1,l 2之间距离的取值范围是( )A .(5,+∞)B .(0,5]C .(34,+∞)D .(0,34 ]解析:选D.当PQ 与平行线l 1,l 2垂直时,|PQ |为平行线l 1,l 2间的距离的最大值,为(-1-2)2+[2-(-3)]2=34,所以l 1,l 2之间距离的取值范围是(0,34 ].故选D.7.已知坐标平面内两点A (x ,2-x )和B ⎝ ⎛⎭⎪⎫22,0,那么这两点之间距离的最小值是________.解析:由题意可得两点间的距离d =⎝ ⎛⎭⎪⎫x -222+(2-x )2=2⎝⎛⎭⎪⎫x -3242+14≥12,即最小值为12.答案:128.直线x +2y -3=0与直线ax +4y +b =0关于点A (1,0)对称,则b =________. 解析:在直线x +2y -3=0上取两点P 1(1,1)、P 2(3,0),则P 1、P 2关于点A 的对称点P ′1、P ′2都在直线ax +4y +b =0上.因为易知P ′1(1,-1)、P ′2(-1,0),所以⎩⎪⎨⎪⎧a -4+b =0,-a +b =0,所以b =2.答案:29.(2020·瑞安四校联考)若将一张坐标纸折叠一次,使得点(0,2)与点(4,0)重合,点(7,3)与点(m ,n )重合,则m +n =________.解析:由题可知纸的折痕垂直平分点(0,2)与点(4,0)的连线,可得折痕所在直线为y =2x -3,又折痕也垂直平分点(7,3)与点(m ,n )的连线,于是⎩⎪⎨⎪⎧3+n 2=2×7+m2-3,n -3m -7=-12,解得⎩⎪⎨⎪⎧m =35,n =315,所以m +n =345.答案:34510.(2020·浙江新高考冲刺卷)已知m ∈R ,若点M (x ,y )为直线l 1:my =-x 和l 2:mx =y +m -3的交点,l 1和l 2分别过定点A 和B ,则|MA |·|MB |的最大值为________.解析:动直线l 1:my =-x 过定点A (0,0),动直线l 2:mx =y +m -3化为m (x -1)-(y -3)=0,得x =1,y =3,过定点B (1,3). 因为此两条直线互相垂直, 所以|MA |2+|BM |2=|AB |2=10, 所以10≥2|MA |·|MB |, 所以|MA |·|BM |≤5,当且仅当|MA |=|MB |时取等号. 答案:511.已知直线l 1:x +a 2y +1=0和直线l 2:(a 2+1)x -by +3=0(a ,b ∈R ). (1)若l 1∥l 2,求b 的取值范围; (2)若l 1⊥l 2,求|ab |的最小值.解:(1)因为l 1∥l 2,所以-b -(a 2+1)a 2=0,即b =-a 2(a 2+1)=-a 4-a 2=-⎝⎛⎭⎪⎫a 2+122+14,因为a 2≥0,所以b ≤0. 又因为a 2+1≠3,所以b ≠-6.故b 的取值范围是(-∞,-6)∪(-6,0]. (2)因为l 1⊥l 2,所以(a 2+1)-a 2b =0, 显然a ≠0,所以ab =a +1a,|ab |=⎪⎪⎪⎪⎪⎪a +1a ≥2,当且仅当a =±1时等号成立,因此|ab |的最小值为2. 12.已知直线l 经过直线2x +y -5=0与x -2y =0的交点P . (1)点A (5,0)到直线l 的距离为3,求直线l 的方程; (2)求点A (5,0)到直线l 的距离的最大值. 解:(1)因为经过两已知直线交点的直线系方程为 (2x +y -5)+λ(x -2y )=0, 即(2+λ)x +(1-2λ)y -5=0, 所以|10+5λ-5|(2+λ)2+(1-2λ)2=3,解得λ=12或λ=2. 所以直线l 的方程为x =2或4x -3y -5=0.(2)由⎩⎪⎨⎪⎧2x +y -5=0,x -2y =0,解得交点P (2,1),如图,过P 作任一直线l ,设d 为点A 到直线l 的距离,则d ≤|PA |(当l ⊥PA 时等号成立). 所以d max =|PA |=10.[综合题组练]1.(2020·温州八校联考)已知M =⎩⎨⎧⎭⎬⎫(x ,y )|y -3x -2=3,N ={(x ,y )|ax +2y +a =0},且M ∩N =∅,则a =( )A .-6或-2B .-6C .2或-6D .-2解析:选A.集合M 表示去掉一点A (2,3)的直线3x -y -3=0,集合N 表示恒过定点B (-1,0)的直线ax +2y +a =0,因为M ∩N =∅,所以两直线要么平行,要么直线ax +2y +a =0与直线3x -y -3=0相交于点A (2,3).因此-a2=3或2a +6+a =0,即a =-6或a =-2.2.设两条直线的方程分别为x +y +a =0,x +y +b =0,已知a ,b 是方程x 2+x +c =0的两个实根,且0≤c ≤18,则这两条直线之间的距离的最大值和最小值分别是( )A.22,12B.2,22C.2,12D.24,14解析:选A.由题意知a ,b 是方程x 2+x +c =0的两个实根,所以ab =c ,a +b =-1. 又直线x +y +a =0,x +y +b =0的距离d =|a -b |2,所以d 2=⎝ ⎛⎭⎪⎫|a -b |22=(a +b )2-4ab 2=(-1)2-4c 2=12-2c , 而0≤c ≤18,所以12-2×18≤12-2c ≤12-2×0,得14≤12-2c ≤12,所以12≤d ≤22.3.(2020·浙江省名校协作体高三联考)在平面直角坐标系xOy 中,将直线l 沿x 轴正方向平移3个单位,沿y 轴正方向平移5个单位,得到直线l 1.再将直线l 1沿x 轴正方向平移1个单位,沿y 轴负方向平移2个单位,又与直线l 重合.若直线l 与直线l 1关于点(2,3)对称,则直线l 的方程是________.解析:由题意知直线l 的斜率存在,设直线l 的方程为y =kx +b ,将直线l 沿x 轴正方向平移3个单位,沿y 轴正方向平移5个单位,得到直线l 1:y =k (x -3)+5+b ,再将直线l 1沿x 轴正方向平移1个单位,沿y 轴负方向平移2个单位,则平移后的直线方程为y =k (x -3-1)+b +5-2,即y =kx +3-4k +b .所以b =3-4k +b ,解得k =34.所以直线l的方程为y =34x +b ,直线l 1为y =34x +114+b ,设直线l 上的一点P ⎝ ⎛⎭⎪⎫m ,b +3m 4,则点P 关于点(2,3)的对称点为⎝ ⎛⎭⎪⎫4-m ,6-b -34m ,所以6-b -34m =34(4-m )+b +114,解得b =18.所以直线l 的方程是y =34x +18,即6x -8y +1=0.答案:6x -8y +1=04.(2020·宁波效实中学高三月考)著名数学家华罗庚曾说过:“数形结合百般好,割裂分家万事休.”事实上,有很多代数问题可以转化为几何问题加以解决,如:(x -a )2+(y -b )2可以转化为平面上点M (x ,y )与点N (a ,b )的距离.结合上述观点,可得f (x )=x 2+4x +20+x 2+2x +10的最小值为________.解析:因为f (x )=x 2+4x +20+x 2+2x +10=(x +2)2+(0-4)2+(x +1)2+(0-3)2,所以f (x )的几何意义为点M (x ,0)到两定点A (-2,4)与B (-1,3)的距离之和,设点A (-2,4)关于x 轴的对称点为A ′,则A ′为(-2,-4).要求f (x )的最小值,可转化为|MA |+|MB |的最小值,利用对称思想可知|MA |+|MB |≥|A ′B |=(-1+2)2+(3+4)2=52,即f (x )=x 2+4x +20+x 2+2x +10的最小值为5 2.答案:5 25.设直线l 1:y =k 1x +1,l 2:y =k 2x -1,其中实数k 1,k 2满足k 1k 2+2=0. (1)证明:l 1与l 2相交;(2)证明:l 1与l 2的交点在椭圆2x 2+y 2=1上.证明:(1)反证法.假设l 1与l 2不相交,则l 1与l 2平行,有k 1=k 2,代入k 1k 2+2=0,得k 21+2=0.此与k 1为实数的事实相矛盾,从而k 1≠k 2,即l 1与l 2相交.(2)由方程组⎩⎪⎨⎪⎧y =k 1x +1,y =k 2x -1,解得交点P 的坐标(x ,y )为⎩⎪⎨⎪⎧x =2k 2-k 1,y =k 2+k 1k 2-k 1,而2x 2+y 2=2⎝ ⎛⎭⎪⎫2k 2-k 12+⎝ ⎛⎭⎪⎫k 2+k 1k 2-k 12=k 21+k 22+4k 21+k 22+4=1.即P (x ,y )在椭圆2x 2+y 2=1上.6.在平面直角坐标系xOy 中,点B 与点A (-1,1)关于原点O 对称,P 是动点,且直线AP 与BP 的斜率之积等于-13.(1)求动点P 的轨迹方程;(2)设直线AP 和BP 分别与直线x =3交于点M ,N ,问:是否存在点P ,使得△PAB 与△PMN 的面积相等?若存在,求出点P 的坐标;若不存在,说明理由.解:(1)因为点B 与A (-1,1)关于原点O 对称,所以点B 的坐标为(1,-1). 设点P 的坐标为(x ,y ). 由题意,得y -1x +1·y +1x -1=-13, 化简,得x 2+3y 2=4(x ≠±1).故动点P 的轨迹方程为x 2+3y 2=4(x ≠±1).(2)法一:设点P 的坐标为(x 0,y 0),点M ,N 的坐标分别为(3,y M ),(3,y N ). 则直线AP 的方程为y -1=y 0-1x 0+1(x +1), 直线BP 的方程为y +1=y 0+1x 0-1(x -1).令x =3,得y M =4y 0+x 0-3x 0+1,y N =2y 0-x 0+3x 0-1.于是△PMN 的面积S △PMN =12|y M -y N |(3-x 0)=|x 0+y 0|(3-x 0)2|x 20-1|. 又直线AB 的方程为x +y =0,|AB |=22, 点P 到直线AB 的距离d =|x 0+y 0|2.于是△PAB 的面积S △PAB =12|AB |·d =|x 0+y 0|.当S △PAB =S △PMN 时,得|x 0+y 0|=|x 0+y 0|(3-x 0)2|x 20-1|. 又|x 0+y 0|≠0.所以(3-x 0)2=|x 20-1|,解得x 0=53.因为x 20+3y 20=4,所以y 0=±339. 故存在点P ,使得△PAB 与△PMN 的面积相等,此时点P 的坐标为⎝ ⎛⎭⎪⎫53,±339.法二:若存在点P 使得△PAB 与△PMN 的面积相等,设点P 的坐标为(x 0,y 0), 则12|PA |·|PB |sin ∠APB =12|PM |·|PN |·sin ∠MPN . 因为sin ∠APB =sin ∠MPN ,所以|PA ||PM |=|PN ||PB |,所以|x 0+1||3-x 0|=|3-x 0||x 0-1|,即(3-x 0)2=|x 20-1|,解得x 0=53.因为x 20+3y 20=4,所以y 0=±339. 故存在点P ,使得△PAB 与△PMN 的面积相等,此时点P 的坐标为⎝ ⎛⎭⎪⎫53,±339.结束语同学们,相信梦想是价值的源泉,相信成功的信念比成功本身更重要,相信人生有挫折没有失败,相信生命的质量来自决不妥协的信念。

2017高考数学(理)一轮复习配套课件:第九章平面解析几何9.9

________;当圆锥曲线是抛物线时,直线 l 与抛物线的对称轴的位置 关系是________.
(3)直线方程涉及斜率 k 要考虑其不存在的情形.
第三页,编辑于星期六:二十一点 四十七分。
2.直线与圆锥曲线相交的弦长问题 (1)直线 l:y=kx+m 与二次曲线 C:f(x,y)=0 交于 A,B 两点,设 A(x1, y1),B(x2,y2),由yf(=xk,x+y)m,=0得 ax2+bx+c=0(a≠0),则 x1+x2=________,
错的地方,切记),即kΔ≠=0,(2k2-4)2-4k4>0,解得 k∈(-1,
0)∪(0,1),而当 k=±1 时,直线 l 恰好与抛物线相切,似与题 意不符.本节课时作业第 8 题对本题已知条件数据作了修改, 使满足题意的直线 l 是存在的,进而可求得直线 l 的斜率.
第十四页,编辑于星期六:二十一点 四十七分。
Q-1+k22,2k,又 F(1,0),∴|FQ|= -1+k22-12+2k2=2,
解得 k=±1.故填±1.
第十三页,编辑于星期六:二十一点 四十七分。
【点拨】(1)本题的三种解法很经典,各有特色,解法一思 路直接,但计算量大,解法三计算简捷,所列式子“整齐、美 观,对称性强”,但消去 x1,x2,y1,y2 时,要求灵活性高,整 体意识强.(2)本题解答看似正确,但细想会发现:缺少对“直 线与抛物线相交于 A,B 两点”这一几何条件的检验(这是易出
x1+x2=2x0,③ y1+y2=2y0,④
∵M,N 关于直线 y=x+m 对称,
∴kMN=-1,∴y0=-3x0.
又∵y0=x0+m,∴P-m4 ,34m, 代入抛物线方程得196m2=18·-m4 ,
解得 m=0 或-8,经检验都符合.故填 0 或-8.

【步步高】2017版高考数学一轮复习 第九章 平面解析几何 9.4 直线与圆、圆与圆的位置关系课件 文

>0⇔ 相交 ; 判别式 =0⇔ 相切 ; (2)代数法: ――――→ 2 Δ=b -4ac <0⇔ 相离 .
答案
2.圆与圆的位置关系
设圆 O1:(x-a1)2+(y-b1)2=r2 1(r1>0), 圆 O2:(x-a2)2+(y-b2)2=r2 2(r2>0).
方法
位置关系 外离 外切 相交 内切 内含 几何法:圆心距d与r1,r2的关系 d>r1+r2
(2)过圆(x-a)2+(y-b)2=r2上一点P(x0,y0)的圆的切线方程为(x0-a)(x-a)
+(y0-b)(y-b)=r2.
(3)过圆x2+y2=r2外一点M(x0,y0)作圆的两条切线,则两切点所在直线方
程为x0x+y0y=r2.
2.圆与圆的位置关系的常用结论 (1)两圆的位置关系与公切线的条数:①内含:0条;②内切:1条;③相 交:2条;④外切:3条;⑤外离:4条. (2)当两圆相交时,两圆方程(x2,y2项系数相同)相减便可得公共弦所在直 线的方程.
由 题 意 知 圆 心 (1 , - 2) 到 直 线 2x + y - 5 = 0 的 距 离 d =
|2×1-2-5| = 5< 6且 2×1+(-2)-5≠0, 2 2 +1
所以直线与圆相交但不过圆心.
1 2 3 4 5
解析答案
2.若直线x-y+1=0与圆(x-a)2+y2=2有公共点,则实数a的取值范围是 [-3,1] __________.
题型三
直线与圆的综合问题
命题点1 求弦长问题
例3 (2015· 课标全国 Ⅱ)过三点A(1,3),B(4,2),C(1,-7)的圆交y轴于M、
N两点,则MN=________.

高考数学总复习 第九篇 解析几何 第2讲 两条直线的位置关系课件 理


(2)两条直线垂直
① 如 果 两 条 直 线 l1 , l2 的 斜 率 存 在 , 设 为 k1 , k2 , 则 l1⊥l2⇔
k1k2=-1
.
②如果l1,l2中有一条直线的斜率不存在,另一条直线的斜率 为0时,l1与l2的关系为垂直 .
2.两直线的交点 直线l1:A1x+B1y+C1=0和l2:A2x+B2y+C2=0的公共 点的坐标与方程组AA12xx+ +BB12yy+ +CC12= =00, 的解一一对应. 相交⇔方程组有 唯一解 ,交点坐标就是方程组的解; 平行⇔方程组 无解 ; 重合⇔方程组有 无数个解 .
(2)过点A与原点O距离最大的直线是过点A与AO垂直的直
线,由l⊥AO,得klkOA=-1,所以kl=-k1OA=2, 由直线的点斜式得y+1=2(x-2),即2x-y-5=0,
即直线2x-y-5=0是过点A且与原点距离最大的直线l
的方程,最大距离是|-5|= 5
5.
(3)不存在.由(2)可知,过点A不存在到原点距离超过 5 的
3.距离公式
(1)两点间的距离公式
平面上任意两点P1(x1,y1),P2(x2,y2)间的距离公式为|P1P2|= x2-x12+y2-y12 .
特别地,原点O(0,0)与任一点P(x,y)的距离|OP|= x2+y2 .
(2)点到直线的距离公式
平面上任意一点P0(x0,y0)到直线l:Ax+By+C=0(A,B不同时
故所求直线的方程为y-2=-13(x+1),即x+3y-5=0. 当过点A的直线的斜率不存在时,由点A的坐标为(-1,2) 知,过点A的直线为x=-1.易得P1,P2到直线x=-1的距离 相等,故x=-1符合题意. 综上,所求直线的方程为x+3y-5=0或x=-1.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档