材料科学基础 名词解释

合集下载

材料科学基础名词解释

材料科学基础名词解释

1、晶体:原子按一定方法在三维空间内周期性地规矩重复分列,有固定熔点,各向异性.之羊若含玉创作2、中间相:两组元A和B组成合金时,除了形成以A为基或以B为基的固溶体外,还可能形成晶体构造与A、B两组员均不相同的新相.由于它们在二元相图上的位置总是位于中间,故通常把这些相称为中间相.3、亚稳相:亚稳相指的是热力学上不克不及稳定存在,但在快速冷却或加热进程中,由于热力学能垒或动力学的因素造成其未能转变成稳定相而暂时稳定存在的一种相.4、配位数:晶体构造中任一原子周围最近邻且等距离的原子数.5、再结晶:冷变形后的金属加热到一定温度之后,在原变形组织中重新产生了无畸变的新晶粒,而性能也产生了显著的变更并恢复到变形前的状态,这个进程称为再结晶(指出现无畸变的等轴新晶粒逐步取代变形晶粒的进程).6、伪共晶:在非平衡凝固条件下,某些亚共晶或过共晶成分的合金也能得到全部的共晶组织,这种由非共晶成分的合金得到的共晶组织称为共晶组织.7、交滑移:当某一螺型位错在原滑移面上滑移受阻时,有可能从原滑移面转移到与之相交的另一滑移面上去持续滑移,这一进程称为交滑移.8、过时效:铝合金经固溶处理后,在加热保温进程中将先后析出GP的硬度强度将下降,这种现象称为过时效.9、形变强化:金属经冷塑性变形后,其强度硬度上升,塑性和韧性下降,这种现象称为形变强化.10、固溶强化:由于合金元素(杂质)的参加,导致的以金属为基体的强度得到增强的现象.11、弥散强化:许多资料由两相或多相组成,如果其中一相为细小的颗粒并弥散散布在资料内,这种资料的强度往往会增加,称为弥散强化.12、不全位错:柏氏矢量不等于点阵矢量整数倍的位错称为不全位错.13、扩大位错:通常指一个全位错分化为两个不全位错,中间搀杂着一个堆垛层错的整个位错形态.14、螺型位错:位错邻近的原子按螺旋形分列的位错称为螺型位错.15、包晶转变:包晶转变就是以结晶的固相与剩余液相反响形成另一固相的恒温转变.16、共晶转变:由一个液相转变成两个不合固相的转变.17、共析转变:由一种固相转变成其他两个不合固相的转变.18、上坡扩散:溶质原子从低浓度向高浓度处扩散的进程称为上坡扩散,标明扩散的驱动力是化学位梯度,而非浓度梯度.19、间隙扩散:这是原子扩散的一种机制,对于间隙原子来说,由于其原子尺寸小,处于晶格间隙中,在扩散时,间隙原子从一个间隙位置跳到相邻的另一个位置,形成原子的移动.20、成分过冷:界面前沿液体中的实际温度,低于由溶质散布所决议的凝固温度时产生的过冷.21、一级相变:凡新旧两相化学位相等,化学位的一次偏导不相等的相变.22、二级相变:从相变热力学上讲,相变前后两相的自由能(焓)相等,自由能(焓)的一阶偏导数相等,但二阶偏导数不等的相变称为二级相变,如磁性转变,有序-无序转变,常导-超导转变.23、共格相界:如果两相界面上的所有原子均成-对应的完全匹配关系,即界面上的原子处于两相晶格的节点上,为相邻两晶体所共有,这种相界面称为共格界面.24、调幅分化:过饱和固溶体在一定温度下分化成构造相同,成分不合的两个相的进程.25、回火脆性:淬火钢在回火进程中,一般情况下随回火的温宿的提高,其塑性、韧性提高,但在特定的回火温度规模内,反而形成韧性下降的现象称为回火脆性.对于钢铁资料存在第一类和第二类回火脆性.他们的温度规模,影响因素和特征不合.26、再结晶退火:所谓再结晶退火工艺,一般是指将冷变形后的金属加热到再结晶温度以上,保温一段时间后,迟缓冷却到室温的进程.27、回火索氏体:淬火钢在在加热到400-600ºC温度回火后形成的回火组织,其由等轴状的铁素体和细小的颗粒状(蠕虫状)渗碳体组成.28、有序固溶体:当一种组元溶解在另一组元中时,各组元原子分别占据各自的布拉维点阵的一种固溶体,形成一种各组元原子有序分列的固溶体,溶质在晶格完全有序分列.29、非平均形核:新相优先在母相中存在的异质处形核,即依附于液相中的杂质或外来概况形核.30、马氏体相变:钢中加热至奥氏体后快速淬火所形成的高硬度的针片状组织的相变进程.31、贝氏体相变:钢在珠光体转变温度以下,马氏体转变温度以上规模内(550ºC-230ºC)的转变称为贝氏体相变.32、铝合金的时效:经淬火后的铝合金强度、硬度随时间延长而产生显著提高的现象称之为时效,也称为铝合金的时效. 33、热弹性马氏体:马氏体相变造成弹性应变,而当外加弹性变形后可以使马氏体相变产生逆转变,这种马氏体称为热弹性马氏体.或马氏体相变由弹性变形来协调.这种马氏体称为热弹性马氏体.34、柯肯达尔效应:反应了置换原子的扩散机制,两个纯组元组成扩散偶,界面将向扩散速率快的组元一侧移动.35、热弹性马氏体相变:当马氏体相变形状的变更是通过弹性变形来协调时,称为热弹性马氏体相变.36、非晶体:原子没有长程的周期分列,无固定的熔点,各向异性等.37、致密度:晶体构造中原子体积占总体积的百分数.38、多滑移:当外力在几个滑移系上的分切应力相等并同时达到了临界分切应力时产生同时滑移的现象.39、过冷度:相变进程中冷却到相变温度以下某个温度后产生转变,平衡相变温度与该实际转变温度只差称为过冷度.40、间隙相:当非金属(X)和金属(M)原子半径的比值. 41、全位错:把柏氏矢量等于点阵矢量或其整数倍的位错称为全位错.42、滑移系:晶体中的一个滑移面及该面上一个滑移偏向的组合称为一个滑移系.43、仳离共晶:共晶体中的α相依附于初生α相生长,将共晶体中另一相β相推到最后凝固的晶界处,从而使共晶体两组成相相间的组织特点消失,这种两相分别的共晶体称为仳离共晶.44、平均形核:新相晶核是在母相中平均生长的,即晶核由液相中的一些原子团直接形成,不受杂质粒子或外概况的影响.45、刃型位错:晶体中的某一晶面,在其上半部有过剩的半排原子面,似乎一把刀刃拔出晶体中,使这一晶面上下两部分晶体之间产生了原子错排,称为刃型位错.46、细晶强化:晶粒越细小,晶界总长度愈长,对位错滑移的阻碍愈大,资料的屈服强度愈高,晶粒细化导致晶界增加,位错的滑移受阻,因此提高了资料的强度.47、双交滑移:如果交滑移后的位错再转回和原滑移面平行的滑移面上持续运动,则称为双交滑移.48、单位位错:把柏氏矢量等于单位点阵矢量的位错称为单位位错.49、反响扩散:陪同随化学反响而形成新相的扩散称为反响扩散.50、晶界偏聚:由于晶内与晶界上的畸变能不同或由于空位的存在使得溶质原子或杂质原子在晶界上富集的现象.51、柯氏气团:通常把溶质原子与位错交互作用后,在位错周围偏聚的现象称为气团,是由柯垂尔首先提出,又称柯氏气团.52、形变织构:多晶体形变进程中出现的晶体学取向择优的现象叫做形变织构.53、点阵畸变:在局部规模内,原子偏离其正常的点阵平衡位置,造成点阵畸变.54、稳态扩散:在稳态扩散进程中,扩散组元的浓度只随距离变更,而不随时间变更.55、包析反响:两个固相反响得到一个固相的进程为包析反响.56、非共格晶界:当两相在相界处的原子分列相差很大时,即.同大角度晶界相似,可算作由原子不规矩分列的很薄的过渡层组成.57、置换固溶体:当溶质原子溶入溶剂中形成固溶体时,溶质原子占据溶剂点阵的阵点,或者说溶质原子置换了溶剂点阵的部分溶剂原子这种固溶体称为置换固溶体.58、间隙固溶体:溶质原子散布于溶剂晶格间隙而形成的固溶体称为间隙固溶体.59、二次再结晶:再结晶停止后正常长大被抑制而产生的少数晶粒异常长大的现象.60、伪共析转变:非平衡转变进程中,处在共析成分点邻近的亚共析,、过共析合金,转变终了组织全部呈共析组织形态.61、肖脱基空位:在个别晶体中,当某一原子具有足够大的振动能而使振幅增大到一定程度时就可能战胜周围原子对它的制约作用,跳离其原来位置,迁移到晶体概况或内概况的正常节点位置上而使晶体内部留下空位,称为肖脱基空位.62、弗兰克尔空位:分开平衡位置的原子挤入点阵中的间隙位置,而在晶体中同时形成相等数目标空位和间隙原子.63、非稳态扩散:扩散组元的浓度不但随距离x变更,也随时间变更的扩散称为非稳态扩散.64、时效:过饱和固溶体后续在室温或高于室温的溶质原子脱溶进程.65、答复:指新的无畸变晶粒出现之前所产生的亚构造和性能变更的阶段.66、相律:相律给出了平衡状态下体系中存在的相数与组元数.67、合金:两种或两种以上的金属或金属与非金属经熔炼、烧结或其他办法组合而成并具有金属特性的物质.68、孪晶:孪晶是指两个晶体(或一个晶体的两部分)沿一个公共晶面组成镜面临称的位向关系,这两个晶体就称为孪晶,此公共晶面就称为孪晶面.69、相图:描写各相存在条件或共存关系的图解,也可称为平衡时热力学参量的几何轨迹.70、孪生:晶体受力后,以孪晶的方法进行的切变进程称叫孪生.71、晶界:晶界是成分构造相同的同种晶粒间的界面.72、晶胞:在点阵中取出一个具有代表性的根本单元(最小平行六面体)作为点阵的组成单元,称为晶胞.73、位错:是晶体内的一种线缺陷,其特点是沿一条线偏向原子有纪律地产生错排,这种缺陷用一个线偏向和柏氏矢量合营描写.74、偏析:合金中化学成分的不平均性.75、金属键:自由电子与原子核间之间静电作用产生的键合力.76、固溶体:以某一组元为溶剂,在其晶体点阵中溶入其他组元原子(溶质原子)所形成的平均混杂的固溶体,它保持溶剂的晶体构造类型.77、亚晶粒:一个晶粒中若干个位向稍有差别的晶粒称为亚晶粒.78、亚晶界:相邻亚晶粒间的界面称为亚晶界.79、晶界能:无论是小角度晶界或大角度晶界,这里的原子或多或少地偏离了平衡位置,所以相对于晶体内部,晶界处于较高的能量状态,凌驾的那部分能量称为晶界能,或称晶界自由能.80、概况能:概况原子处于不平均的力场之中,所以其能量大大升高,凌驾的能量称为概况自由能(或概况能).81、界面能:界面上的原子处在断键状态,具有逾额能量.平均在界面单位面积上的逾额能量叫界面能.82、淬透性:淬透性是指合金淬成马氏体的才能,主要与临界冷速有关,大小用淬透层深度暗示.83、淬硬性:淬硬性是指钢在淬火后所能达到的最高硬度,主要与钢的含碳量有关.84、惯习面:固态相变时,新相往往在母相的一定晶面上开端形成,这个晶面称为惯习面.85、索氏体:中温段珠光体转变产品,由片状铁素体渗碳体组成,片层间距较小,片层较薄.86、珠光体:铁碳合金共析转变得产品,是共析铁素体和共析渗碳体层片状混杂物.87、莱氏体:铁碳相图共晶转变的产品,是共晶奥氏体和共晶渗碳体的机械混杂物.88、柏氏矢量:描写位错特征的一个重要矢量,它集中反应了位错区域内畸变总量的大小和偏向,也是位错扫事后晶体相对滑动的量.89、空间点阵:指几何点在三维空间做周期性的规矩分列所形成的三维阵列,是人为的对晶体构造的抽象.90、范德华键:又瞬间偶极矩和诱导偶极矩产生的分子间引力所组成的物理键.91、位错滑移:在一定应力作用下,位错线沿滑移面移动的位错运动.92、异质形核:晶核在液态金属中依靠外来物质概况或在温度不平均处择优形成.93、构造起伏:液态构造的原子分列为长程无序,短程有序,并且短程有序原子团不是固定不变的,它是此消彼长,瞬息万变,尺寸不稳定的构造,这种现象称为构造起伏.94、重心轨则:处于三相平衡的合金,其成分点必位于共轭三角形的重心位置.95、应变时效:第一次拉伸后,再立刻进行第二次拉伸,拉伸曲线上不出现屈服阶段.但第一次拉伸后的低碳钢试样在室温下放置一段时间后,再进行第二次拉伸,则拉伸曲线上又会出现屈服阶段.不过,再次屈服的强度要高于初次屈服的强度.这个实验现象就称为应变时效.96、枝晶偏析:固溶体在非平衡冷却条件下,匀晶转变后新得的固溶体晶粒内部的成分是不平均的,先结晶的内核含较多的高熔点的组元原子,后结晶的外缘含较多的低熔点组元原子,而通常固溶体晶体以树枝晶方法长大,这样,枝干含高熔点组元多,枝间含低熔点组元较多,造成同一晶粒内部成分不平均的现象.97、临界变形度:给定温度下金属产生再结晶所需的最小预先冷变形量.98、电子化合物:电子化合物是指由主要电子浓度决议其晶体构造的一类化合物,又称休姆-罗赛里相,凡具有相同的电子浓度,则相的晶体构造类型相同.99、同质异构体:化学组成相同,由于热力学条件不合而形成不合的晶体构造.100、再结晶温度:形变金属在一准时间(一般1h)内刚好完成再结晶的最低温度.101、布拉菲点阵:除斟酌晶胞外形外,还斟酌阵点位置所组成的点阵.102、配位多面体:原子或离子周围与它直接相邻联合的原子或离子的中心连线所组成的多面体,称为原子或离子的配位多面体.103、施密特因子外力F F的夹角.104、拓扑密堆相:由两种大小不合的金属原子所组成的一类中间相,其中大小原子通过适当的合营组成空间应用率和配位数都很高的庞杂构造,由于这类构造具有拓扑特征,故称这些相为拓扑密堆相.105、间隙化合物:当非金属(X)和金属(M)原子半径的比合物.106、大角度晶界:多晶资估中各晶粒之间的晶界称为大角度晶界,即相邻晶粒的大角度晶界的位相差大于10度的晶界. 107、小角度晶界:相邻亚晶粒之间的位向差小于10度,这种亚晶粒间的晶界称为小角度晶界,一般小于2度,可分为倾斜晶界、扭转晶界、重合晶界等.108、临界分切应力:滑移系开动所需的最小分切应力;它是一个定值,与资料自己性质有关,与外力取向无关.。

材料科学基础名词解释

材料科学基础名词解释

1、晶体:原子按一定方式在三维空间内周期性地规则重复排列,有固定熔点,各向异性.之迟辟智美创作2、中间相:两组元A和B组成合金时,除形成以A为基或以B为基的固溶体外,还可能形成晶体结构与A、B两组员均不相同的新相.由于它们在二元相图上的位置总是位于中间,故通常把这些相称为中间相.3、亚稳相:亚稳相指的是热力学上不能稳定存在,但在快速冷却或加热过程中,由于热力学能垒或动力学的因素造成其未能转酿成稳定相而暂时稳定存在的一种相.4、配位数:晶体结构中任一原子周围最近邻且等距离的原子数.5、再结晶:冷变形后的金属加热到一定温度之后,在原变形组织中重新发生了无畸变的新晶粒,而性能也发生了明显的变动并恢复到变形前的状态,这个过程称为再结晶(指呈现无畸变的等轴新晶粒逐步取代变形晶粒的过程).6、伪共晶:在非平衡凝固条件下,某些亚共晶或过共晶成份的合金也能获得全部的共晶组织,这种由非共晶成份的合金获得的共晶组织称为共晶组织.7、交滑移:当某一螺型位错在原滑移面上滑移受阻时,有可能从原滑移面转移到与之相交的另一滑移面上去继续滑移,这一过程称为交滑移.8、过时效:铝合金经固溶处置后,在加热保温过程中将先后析出GP料的硬度强度将下降,这种现象称为过时效.9、形变强化:金属经冷塑性变形后,其强度硬度上升,塑性和韧性下降,这种现象称为形变强化.10、固溶强化:由于合金元素(杂质)的加入,招致的以金属为基体的强度获得加强的现象.11、弥散强化:许多资料由两相或多相构成,如果其中一相为细小的颗粒并弥散分布在资料内,这种资料的强度往往会增加,称为弥散强化.12、不全位错:柏氏矢量不即是点阵矢量整数倍的位错称为不全位错.13、扩展位错:通常指一个全位错分解为两个不全位错,中间夹杂着一个堆垛层错的整个位错形态.14、螺型位错:位错附近的原子按螺旋形排列的位错称为螺型位错.15、包晶转变:包晶转变就是以结晶的固相与剩余液相反应形成另一固相的恒温转变.16、共晶转变:由一个液相转酿成两个分歧固相的转变.17、共析转变:由一种固相转酿成其他两个分歧固相的转变.18、上坡扩散:溶质原子从低浓度向高浓度处扩散的过程称为上坡扩散,标明扩散的驱动力是化学位梯度,而非浓度梯度.19、间隙扩散:这是原子扩散的一种机制,对间隙原子来说,由于其原子尺寸小,处于晶格间隙中,在扩散时,间隙原子从一个间隙位置跳到相邻的另一个位置,形成原子的移动.20、成份过冷:界面前沿液体中的实际温度,低于由溶质分布所决定的凝固温度时发生的过冷.21、一级相变:凡新旧两相化学位相等,化学位的一次偏导不相等的相变.22、二级相变:从相变热力学上讲,相变前后两相的自由能(焓)相等,自由能(焓)的一阶偏导数相等,但二阶偏导数不等的相变称为二级相变,如磁性转变,有序-无序转变,常导-超导转变.23、共格相界:如果两相界面上的所有原子均成-对应的完全匹配关系,即界面上的原子处于两相晶格的节点上,为相邻两晶体所共有,这种相界面称为共格界面.24、调幅分解:过饱和固溶体在一定温度下分解成结构相同,成份分歧的两个相的过程.25、回火脆性:淬火钢在回火过程中,一般情况下随回火的温宿的提高,其塑性、韧性提高,但在特定的回火温度范围内,反而形成韧性下降的现象称为回火脆性.对钢铁资料存在第一类和第二类回火脆性.他们的温度范围,影响因素和特征分歧.26、再结晶退火:所谓再结晶退火工艺,一般是指将冷变形后的金属加热到再结晶温度以上,保温一段时间后,缓慢冷却到室温的过程.27、回火索氏体:淬火钢在在加热到400-600ºC温度回火后形成的回火组织,其由等轴状的铁素体和细小的颗粒状(蠕虫状)渗碳体构成.28、有序固溶体:当一种组元溶解在另一组元中时,各组元原子分别占据各自的布拉维点阵的一种固溶体,形成一种各组元原子有序排列的固溶体,溶质在晶格完全有序排列.29、非均匀形核:新相优先在母相中存在的异质处形核,即依附于液相中的杂质或外来概况形核.30、马氏体相变:钢中加热至奥氏体后快速淬火所形成的高硬度的针片状组织的相变过程.31、贝氏体相变:钢在珠光体转变温度以下,马氏体转变温度以上范围内(550ºC-230ºC)的转变称为贝氏体相变. 32、铝合金的时效:经淬火后的铝合金强度、硬度随时间延长而发生显著提高的现象称之为时效,也称为铝合金的时效.33、热弹性马氏体:马氏体相变造成弹性应变,而当外加弹性变形后可以使马氏体相变发生逆转变,这种马氏体称为热弹性马氏体.或马氏体相变由弹性变形来协调.这种马氏体称为热弹性马氏体.34、柯肯达尔效应:反映了置换原子的扩散机制,两个纯组元构成扩散偶,界面将向扩散速率快的组元一侧移动.35、热弹性马氏体相变:当马氏体相变形状的变动是通过弹性变形来协调时,称为热弹性马氏体相变.36、非晶体:原子没有长程的周期排列,无固定的熔点,各向异性等.37、致密度:晶体结构中原子体积占总体积的百分数.38、多滑移:当外力在几个滑移系上的分切应力相等并同时到达了临界分切应力时发生同时滑移的现象.39、过冷度:相变过程中冷却到相变温度以下某个温度后发生转变,平衡相变温度与该实际转变温度只差称为过冷度.40、间隙相:当非金属(X)和金属(M)原子半径的比值. 41、全位错:把柏氏矢量即是点阵矢量或其整数倍的位错称为全位错.42、滑移系:晶体中的一个滑移面及该面上一个滑移方向的组合称为一个滑移系.43、离异共晶:共晶体中的α相依附于初生α相生长,将共晶体中另一相β相推到最后凝固的晶界处,从而使共晶体两组成相相间的组织特点消失,这种两相分离的共晶体称为离异共晶.44、均匀形核:新相晶核是在母相中均匀生长的,即晶核由液相中的一些原子团直接形成,不受杂质粒子或外概况的影响.45、刃型位错:晶体中的某一晶面,在其上半部有过剩的半排原子面,好像一把刀刃拔出晶体中,使这一晶面上下两部份晶体之间发生了原子错排,称为刃型位错.46、细晶强化:晶粒越细小,晶界总长度愈长,对位错滑移的阻碍愈年夜,资料的屈服强度愈高,晶粒细化招致晶界增加,位错的滑移受阻,因此提高了资料的强度.47、双交滑移:如果交滑移后的位错再转回和原滑移面平行的滑移面上继续运动,则称为双交滑移.48、单位位错:把柏氏矢量即是单位点阵矢量的位错称为单位位错.49、反应扩散:陪陪伴化学反应而形成新相的扩散称为反应扩散.50、晶界偏聚:由于晶内与晶界上的畸变能分歧或由于空位的存在使得溶质原子或杂质原子在晶界上富集的现象.51、柯氏气团:通常把溶质原子与位错交互作用后,在位错周围偏聚的现象称为气团,是由柯垂尔首先提出,又称柯氏气团.52、形变织构:多晶体形变过程中呈现的晶体学取向择优的现象叫做形变织构.53、点阵畸变:在局部范围内,原子偏离其正常的点阵平衡位置,造成点阵畸变.54、稳态扩散:在稳态扩散过程中,扩散组元的浓度只随距离变动,而不随时间变动.55、包析反应:两个固相反应获得一个固相的过程为包析反应.56、非共格晶界:当两相在相界处的原子排列相差很年夜.同年夜角度晶界相似,可看成由原子不规则排列的很薄的过渡层构成.57、置换固溶体:当溶质原子溶入溶剂中形成固溶体时,溶质原子占据溶剂点阵的阵点,或者说溶质原子置换了溶剂点阵的部份溶剂原子这种固溶体称为置换固溶体.58、间隙固溶体:溶质原子分布于溶剂晶格间隙而形成的固溶体称为间隙固溶体.59、二次再结晶:再结晶结束后正常长年夜被抑制而发生的少数晶粒异常长年夜的现象.60、伪共析转变:非平衡转变过程中,处在共析成份点附近的亚共析,、过共析合金,转变终了组织全部呈共析组织形态.61、肖脱基空位:在个体晶体中,当某一原子具有足够年夜的振动能而使振幅增年夜到一定水平时就可能克服周围原子对它的制约作用,跳离其原来位置,迁移到晶体概况或内概况的正常节点位置上而使晶体内部留下空位,称为肖脱基空位.62、弗兰克尔空位:离开平衡位置的原子挤入点阵中的间隙位置,而在晶体中同时形成相等数目的空位和间隙原子. 63、非稳态扩散:扩散组元的浓度不单随距离x变动,也随时间变动的扩散称为非稳态扩散.64、时效:过饱和固溶体后续在室温或高于室温的溶质原子脱溶过程.65、回复:指新的无畸变晶粒呈现之前所发生的亚结构和性能变动的阶段.66、相律:相律给出了平衡状态下体系中存在的相数与组元.67、合金:两种或两种以上的金属或金属与非金属经熔炼、烧结或其他方法组合而成并具有金属特性的物质.68、孪晶:孪晶是指两个晶体(或一个晶体的两部份)沿一个公共晶面构成镜面对称的位向关系,这两个晶体就称为孪晶,此公共晶面就称为孪晶面.69、相图:描述各相存在条件或共存关系的图解,也可称为平衡时热力学参量的几何轨迹.70、孪生:晶体受力后,以孪晶的方式进行的切变过程称叫孪生.71、晶界:晶界是成份结构相同的同种晶粒间的界面.72、晶胞:在点阵中取出一个具有代表性的基本单位(最小平行六面体)作为点阵的组成单位,称为晶胞.73、位错:是晶体内的一种线缺陷,其特点是沿一条线方向原子有规律地发生错排,这种缺陷用一个线方向和柏氏矢量共同描述.74、偏析:合金中化学成份的不均匀性.75、金属键:自由电子与原子核间之间静电作用发生的键合力.76、固溶体:以某一组元为溶剂,在其晶体点阵中溶入其他组元原子(溶质原子)所形成的均匀混合的固溶体,它坚持溶剂的晶体结构类型.77、亚晶粒:一个晶粒中若干个位向稍有差此外晶粒称为亚晶粒.78、亚晶界:相邻亚晶粒间的界面称为亚晶界.79、晶界能:无论是小角度晶界或年夜角度晶界,这里的原子或多或少地偏离了平衡位置,所以相对晶体内部,晶界处于较高的能量状态,高出的那部份能量称为晶界能,或称晶界自由能.80、概况能:概况原子处于不均匀的力场之中,所以其能量年夜年夜升高,高出的能量称为概况自由能(或概况能).81、界面能:界面上的原子处在断键状态,具有逾额能量.平均在界面单位面积上的逾额能量叫界面能.82、淬透性:淬透性是指合金淬成马氏体的能力,主要与临界冷速有关,年夜小用淬透层深度暗示.83、淬硬性:淬硬性是指钢在淬火后所能到达的最高硬度,主要与钢的含碳量有关.84、惯习面:固态相变时,新相往往在母相的一定晶面上开始形成,这个晶面称为惯习面.85、索氏体:中温段珠光体转变产物,由片状铁素体渗碳体组成,片层间距较小,片层较薄.86、珠光体:铁碳合金共析转变得产物,是共析铁素体和共析渗碳体层片状混合物.87、莱氏体:铁碳相图共晶转变的产物,是共晶奥氏体和共晶渗碳体的机械混合物.88、柏氏矢量:描述位错特征的一个重要矢量,它集中反映了位错区域内畸变总量的年夜小和方向,也是位错扫过后晶体相对滑动的量.89、空间点阵:指几何点在三维空间做周期性的规则排列所形成的三维阵列,是人为的对晶体结构的笼统.90、范德华键:又瞬间偶极矩和诱导偶极矩发生的分子间引力所构成的物理键.91、位错滑移:在一定应力作用下,位错线沿滑移面移动的位错运动.92、异质形核:晶核在液态金属中依靠外来物质概况或在温度不均匀处择优形成.93、结构起伏:液态结构的原子排列为长程无序,短程有序,而且短程有序原子团不是固定不变的,它是此消彼长,瞬息万变,尺寸不稳定的结构,这种现象称为结构起伏.94、重心法则:处于三相平衡的合金,其成份点必位于共轭三角形的重心位置.95、应变时效:第一次拉伸后,再立即进行第二次拉伸,拉伸曲线上不呈现屈服阶段.但第一次拉伸后的低碳钢试样在室温下放置一段时间后,再进行第二次拉伸,则拉伸曲线上又会呈现屈服阶段.不外,再次屈服的强度要高于初度屈服的强度.这个实验现象就称为应变时效.96、枝晶偏析:固溶体在非平衡冷却条件下,匀晶转变后新得的固溶体晶粒内部的成份是不均匀的,先结晶的内核含较多的高熔点的组元原子,后结晶的外缘含较多的低熔点组元原子,而通常固溶体晶体以树枝晶方式长年夜,这样,枝干含高熔点组元多,枝间含低熔点组元较多,造成同一晶粒内部成份不均匀的现象.97、临界变形度:给定温度下金属发生再结晶所需的最小预先冷变形量.98、电子化合物:电子化合物是指由主要电子浓度决定其晶体结构的一类化合物,又称休姆-罗赛里相,凡具有相同的电子浓度,则相的晶体结构类型相同.99、同质异构体:化学组成相同,由于热力学条件分歧而形成份歧的晶体结构.100、再结晶温度:形变金属在一按时间(一般1h)内刚好完成再结晶的最高温度.101、布拉菲点阵:除考虑晶胞外形外,还考虑阵点位置所构成的点阵.102、配位多面体:原子或离子周围与它直接相邻结合的原子或离子的中心连线所构成的多面体,称为原子或离子的配位多面体.103、施密特因子与外力F F的夹角. 104、拓扑密堆相:由两种年夜小分歧的金属原子所构成的一类中间相,其中年夜小原子通过适当的配合构成空间利用率和配位数都很高的复杂结构,由于这类结构具有拓扑特征,故称这些相为拓扑密堆相.105、间隙化合物:当非金属(X)和金属(M)原子半径的隙化合物.106、年夜角度晶界:多晶资料中各晶粒之间的晶界称为年夜角度晶界,即相邻晶粒的年夜角度晶界的位相差年夜于10度的晶界.107、小角度晶界:相邻亚晶粒之间的位向差小于10度,这种亚晶粒间的晶界称为小角度晶界,一般小于2度,可分为倾斜晶界、扭转晶界、重合晶界等.108、临界分切应力:滑移系开动所需的最小分切应力;它是一个定值,与资料自己性质有关,与外力取向无关.。

材料科学基础名词解释汇总

材料科学基础名词解释汇总

材料科学基础名词解释晶体原子按一定方式在三维空间内周期性地规则重复排列,有固定熔点、各向异性。

中间相两组元A 和B 组成合金时,除了形成以A 为基或以B 为基的固溶体外,还可能形成晶体结构与A,B 两组元均不相同的新相。

由于它们在二元相图上的位置总是位于中间,故通常把这些相称为中间相。

配位数晶体结构中任一原子周围最近邻且等距离的原子数。

有序固溶体当一种组元溶解在另一组元中时,各组元原子分别占据各自的布拉维点阵的一种固溶体,形成一种各组元原子有序排列的固溶体,溶质在晶格完全有序排列。

非晶体原子没有长程的周期排列,无固定的熔点,各向同性等。

致密度晶体结构中原子体积占总体积的百分数。

间隙相当非金属(X)和金属(M)原子半径的比值rX/rM<0.59 时,形成的具有简单晶体结构的相,称为间隙相。

点阵畸变在局部范围内,原子偏离其正常的点阵平衡位置,造成点阵畸变。

置换固溶体当溶质原子溶入溶剂中形成固溶体时,溶质原子占据溶剂点阵的阵点,或者说溶质原子置换了溶剂点阵的部分溶剂原子,这种固溶体就称为置换固溶体。

间隙固溶体溶质原子分布于溶剂晶格间隙而形成的固溶体称为间隙固溶体。

晶胞在点阵中取出一个具有代表性的基本单元(最小平行六面体)作为点阵的组成单元,称为晶胞。

金属键自由电子与原子核之间静电作用产生的键合力。

固溶体是以某一组元为溶剂,在其晶体点阵中溶入其他组元原子(溶剂原子)所形成的均匀混合的固态溶体,它保持溶剂的晶体结构类型。

空间点阵指几何点在三维空间作周期性的规则排列所形成的三维阵列,是人为的对晶体结构的抽象。

范德华键由瞬间偶极矩和诱导偶极矩产生的分子间引力所构成的物理键。

同质异构体化学组成相同由于热力学条件不同而形成的不同晶体结构。

布拉菲点阵除考虑晶胞外形外,还考虑阵点位置所构成的点阵。

配位多面体原子或离子周围与它直接相邻结合的原子或离子的中心连线所构成的多面体,称为原子或离子的配位多面体。

拓扑密堆相由两种大小不同的金属原子所构成的一类中间相,其中大小原子通过适当的配合构成空间利用率和配位数都很高的复杂结构。

材料科学基础名词解释

材料科学基础名词解释

《材料科学基础》名词解释晶体原子、分子或离子按照一定的规律周期性排列组成的固体。

非晶体原子没有长程的周期排列,无固定的熔点,各向同性等。

空间点阵指几何点在三维空间作周期性的规则排列所形成的三维阵列,是人为的对晶体结构的抽象。

晶族依据晶体结构中高次轴(n>2)的数目,将晶体划分为低级(无高次轴)、中级(一个高次轴)和高级(多于一个高次轴)晶族。

晶带轴定律所有平行于同一方向的晶面(hkl)构成的一个晶带,该方向[uvw]就称为晶带轴,则有hu+kv+lw=0,这就是晶带轴定律。

空间群晶体结构中所有对称要素(含微观对称要素)的组合所构成的对称群。

布拉菲点阵除考虑晶胞外形外,还考虑阵点位置所构成的点阵。

晶胞在点阵中取出一个具有代表性的基本单元(最小平行六面体)作为点阵的组成单元,称为晶胞。

中间相两组元A和B组成合金时,除了形成以A为基或以B为基的固溶体外,还可能形成晶体结构与A,B两组元均不相同的新相。

由于它们在二元相图上的位置总是位于中间,故通常把这些相称为中间相。

配位数晶体结构中任一原子周围最近邻且等距离的原子数。

致密度晶体结构中原子体积占总体积的百分数。

金属键自由电子与原子核之间静电作用产生的键合力。

共价键相邻原子由于共享电子对所形成的价键,具有饱和性和方向性。

固溶体是以某一组元为溶剂,在其晶体点阵中溶入其他组元原子(溶剂原子)所形成的均匀混合的固态溶体,它保持溶剂的晶体结构类型。

间隙相当非金属(X)和金属(M)原子半径的比值r /r <0.59 时,形成的具有简单晶体结构的相,称为间隙相。

肖脱基空位(肖脱基缺陷)在个体中晶体中,当某一原子具有足够大的振动能而使振幅增大到一定程度时,就可能克服周围原子对它的制约作用,跳离其原来位置,迁移到晶体表面或内表面的正常结点位置上而使晶体内部留下空位,称为肖脱基空位。

弗兰克尔空位(弗兰克尔缺陷)当晶格热振动时,一些能量足够大的原子离开其平衡位置,而挤到晶格的间隙中,形成间隙原子,并在原正常格点上留下空位。

材料科学基础名词解释

材料科学基础名词解释

1、晶体:原子按一定方式在三维空间内周期性地规则重复排列,有固定熔点,各向异性。

之阿布丰王创作2、中间相:两组元A和B组成合金时,除了形成以A为基或以B 为基的固溶体外,还可能形成晶体结构与A、B两组员均不相同的新相。

由于它们在二元相图上的位置总是位于中间,故通常把这些相称为中间相。

3、亚稳相:亚稳相指的是热力学上不克不及稳定存在,但在快速冷却或加热过程中,由于热力学能垒或动力学的因素造成其未能转变成稳定相而暂时稳定存在的一种相。

4、配位数:晶体结构中任一原子周围最近邻且等距离的原子数。

5、再结晶:冷变形后的金属加热到一定温度之后,在原变形组织中重新发生了无畸变的新晶粒,而性能也发生了明显的变更并恢复到变形前的状态,这个过程称为再结晶(指出现无畸变的等轴新晶粒逐步取代变形晶粒的过程)。

6、伪共晶:在非平衡凝固条件下,某些亚共晶或过共晶成分的合金也能得到全部的共晶组织,这种由非共晶成分的合金得到的共晶组织称为共晶组织。

7、交滑移:当某一螺型位错在原滑移面上滑移受阻时,有可能从原滑移面转移到与之相交的另一滑移面上去继续滑移,这一过程称为交滑移。

8、过时效:铝合金经固溶处理后,在加热保温过程中将先后析出GP降,这种现象称为过时效。

9、形变强化:金属经冷塑性变形后,其强度硬度上升,塑性和韧性下降,这种现象称为形变强化。

10、固溶强化:由于合金元素(杂质)的加入,导致的以金属为基体的强度得到加强的现象。

11、弥散强化:许多资料由两相或多相构成,如果其中一相为细小的颗粒并弥散分布在资料内,这种资料的强度往往会增加,称为弥散强化。

12、不全位错:柏氏矢量不等于点阵矢量整数倍的位错称为不全位错。

13、扩展位错:通常指一个全位错分解为两个不全位错,中间夹杂着一个堆垛层错的整个位错形态。

14、螺型位错:位错附近的原子按螺旋形排列的位错称为螺型位错。

15、包晶转变:包晶转变就是以结晶的固相与剩余液相反应形成另一固相的恒温转变。

材料科学基础名词解释

材料科学基础名词解释

原子结构与结合键 + 材料的结构1、第一电离能气态原子失去一个电子成为气态一价正离子所需要的最低能量称为第一电离能。

2、第二电离能气态A+再失去一个电子成为气态二价正离子所需要的最低能量称为第二电离能。

3、结合键原子间的结合力,主要表现为原子间的吸引力和排斥力的合力结果。

4、离子键通过两个或多个原子失去或获得电子而成为离子后形成,本质上可以归结为静电吸引作用,主要存在于晶体化合物中。

5、共价键由两个或多个电负性相差不大的原子共用电子对所形成的化学键,有方向性、饱和性。

6、金属键金属正离子和自由电子之间的相互作用所构成的结合力,无方向性、饱和性7、范德华键由瞬间偶极矩和诱导偶极矩产生的分子间引力所构成的物理键,属于分子间作用力,无方向性和饱和性。

8、氢键已经与电负性很强的原子形成共价键的氢原子与另一分子中电负性很强的原子之间的作用力,具有方向性和饱和性。

9、晶体指内部质点(原子、分子或离子)在三维空间按周期性重复排列的固体,即晶体是具有格子构造的固体。

10、晶胞能充分反映晶体的晶体结构特征的最小体积单位(平行六面体)。

11、阵胞在三维方向上两两平行且相等的六面体,是空间点阵中的体积单元。

12、晶格原子在晶体中排列规律的空间格架。

13、空间点阵由一系列在三维空间按周期性排列的几何点称为一个空间点阵。

空间点阵四要素:阵点、阵列、阵面、阵胞)14、晶族依据晶体中高次轴(n>2)的数目,将晶体分为低级(无高次轴),中级(一个高次轴)和高级(多于一个高次轴)晶族。

15、空间群晶体结构中所有对称要素的组合所构成的对称群,晶体微观结构中共存在230种空间群。

16、晶面/晶向在晶体内部构造中,由物质质点所组成的平面/穿过物质质点所组成的直线方向。

17、晶带所有相交于某一直线或平行于此直线的所有晶面的组合(此直线称为晶带轴)。

18、晶面间距一组平行晶面中,最近邻的两个晶面间距称为晶面间距。

晶面间距越大,晶面上原子排列的密度越大,反之越小。

材科基名词解释

材科基名词解释

《材料科学基础》名词解释晶体原子、分子或离子按照一定的规律周期性排列组成的固体。

非晶体原子没有长程的周期排列,无固定的熔点,各向同性等。

空间点阵指几何点在三维空间作周期性的规则排列所形成的三维阵列,是人为的对晶体结构的抽象。

晶族依据晶体结构中高次轴(n>2)的数目,将晶体划分为低级(无高次轴)、中级(一个高次轴)和高级(多于一个高次轴)晶族。

晶带轴定律所有平行于同一方向的晶面(hkl)构成的一个晶带,该方向[uvw]就称为晶带轴,则有hu+kv+lw=0,这就是晶带轴定律。

空间群晶体结构中所有对称要素(含微观对称要素)的组合所构成的对称群。

布拉菲点阵除考虑晶胞外形外,还考虑阵点位置所构成的点阵。

晶胞在点阵中取出一个具有代表性的基本单元(最小平行六面体)作为点阵的组成单元,称为晶胞。

中间相两组元A和B组成合金时,除了形成以A为基或以B为基的固溶体外,还可能形成晶体结构与A,B两组元均不相同的新相。

由于它们在二元相图上的位置总是位于中间,故通常把这些相称为中间相。

配位数晶体结构中任一原子周围最近邻且等距离的原子数。

致密度晶体结构中原子体积占总体积的百分数。

金属键自由电子与原子核之间静电作用产生的键合力。

共价键相邻原子由于共享电子对所形成的价键,具有饱和性和方向性。

固溶体是以某一组元为溶剂,在其晶体点阵中溶入其他组元原子(溶剂原子)所形成的均匀混合的固态溶体,它保持溶剂的晶体结构类型。

间隙相当非金属(X)和金属(M)原子半径的比值rX/rM<0.59 时,形成的具有简单晶体结构的相,称为间隙相。

肖脱基空位(肖脱基缺陷)在个体中晶体中,当某一原子具有足够大的振动能而使振幅增大到一定程度时,就可能克服周围原子对它的制约作用,跳离其原来位置,迁移到晶体表面或内表面的正常结点位置上而使晶体内部留下空位,称为肖脱基空位。

弗兰克尔空位(弗兰克尔缺陷)当晶格热振动时,一些能量足够大的原子离开其平衡位置,而挤到晶格的间隙中,形成间隙原子,并在原正常格点上留下空位。

武汉理工材料科学基础考研名词解释

武汉理工材料科学基础考研名词解释

1 材料引言玻璃——玻璃是由熔体过冷所制得的非晶态材料。

水泥——水泥是指加入适量水后可成塑性浆体,既能在空气中硬化又能在水中硬化,并能够将砂,石等材料牢固地胶结在一起的细粉状水硬性材料。

耐火材料——耐火材料是指耐火度不低于1580 摄氏度的无机非金属材料。

硅质耐火材料,镁质耐火材料,熔铸耐火材料,轻质耐火材料,不定形耐火材料。

高聚物——高聚物是由一种或几种简单低分子化合物经聚合而组成的分子量很大的化合物。

胶粘剂——胶粘剂是指在常温下处于粘流态,当受到外力作用时,会产生永久变形,外力撤去后又不能恢复原状的高聚物。

合金——合金是由两种或两种以上的金属元素,或金属元素与非金属元素形成的具有金属特性的新物质固溶体——当合金的晶体结构保持溶质组元的晶体结构时,这种合金成为一次固溶体或端际固溶体,简称固溶体。

电子化合物——电子化合物是指具有一定〔或近似一定〕的电子浓度值,且结构相同或密切相关的相。

间隙化合物——由原子半径较大的过渡金属元素〔Fe,Cr,Mn,Mo,W,V 等〕和原子半径较小的非〔准〕金属元素〔H,B,C,N,Si,等〕形成的金属间化合物。

传统无机非金属材料——主要是指由SiO2 及其硅酸盐化合物为主要成分制成的材料,包括陶瓷,玻璃,水泥和耐火材料等。

新型无机非金属材料——是用氧化物,氮化物,碳化物,硼化物,硫化物,硅化物以及各种无机非金属化合物经特殊的先进工艺制成的材料。

2 晶体结构晶体——晶体是离子,原子或分子按一定的空间结构排列所组成的固体,其质点在空间的分布具有周期性和对称性,因而,晶体具有规则的外形。

晶胞——晶胞是从晶体结构中取出来的反应晶体周期性和对称性的重复单元。

晶体结构——晶体结构是指晶体中原子或分子的排列情况,由空间点阵+结构基元而构成,晶体结构的形式是无限多的。

空间点阵——空间点阵是把晶体结构中原子或分子等结构基元抽象为周围环境相同的阵点之后,描述晶体结构的周期性和对称性的图像。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一部分名词解释第二章晶体学基础1、晶体结构:反映晶体中全部基元之间关联特征的整体。

晶体结构有4种结构要素,质点、行列、面网、晶胞。

晶体:原子按一定方式在三维空间内周期性地规则重复排列,有固定熔点、各向异性。

非晶体:原子没有长程的周期排列,无固定的熔点,各向同性等。

空间点阵:指几何点在三维空间作周期性的规则排列所形成的三维阵列,是人为的对晶体结构的抽象。

晶胞:在点阵中取出一个具有代表性的基本单元(最小平行六面体)作为点阵的组成单元,称为晶胞。

空间格子:为便于描述空间点阵的图形,可用许多平行的直线将所有阵点连接起来,于是就构成一个三维几何构架,称为空间格子。

2、晶带定律:晶带轴[uvw]与该晶带的晶面(hkl)之间存在以下关系:hu+kv+lw=0。

凡满足此关系的晶面都属于以[uvw]为晶带轴的晶带,故该关系式也称为晶带定律。

布拉格定律:布拉格定律用公式表示为:2dsinx=nλ(d为平行原子平行平面的间距,λ为入射波长,x为入射光与晶面的夹角)。

晶面间距:两相邻平行晶面间的平行距离。

晶带轴:所有平行或相交于某一晶向直线的的晶面构成一个晶带,该直线称为晶带轴,属此晶带的晶面称为共带面。

3、合金:两种或两种以上的金属或金属与非金属经熔炼、烧结或其他方法组合而成并具有金属特性的物质。

固溶体:是以某一组元为溶剂,在其晶体点阵中溶入其他组元原子(溶剂原子)所形成的均匀混合的固态溶体,它保持溶剂的晶体结构类型。

固溶强化:由于合金元素(杂质)的加入,导致的以金属为基体的合金的强度得到加强的现象。

中间相:两组元A 和B 组成合金时,除了形成以A 为基或以B 为基的固溶体外,还可能形成晶体结构与A,B 两组元均不相同的新相。

由于它们在二元相图上的位置总是位于中间,故通常把这些相称为中间相。

置换固溶体:当溶质原子溶入溶剂中形成固溶体时,溶质原子占据溶剂点阵的阵点,或者说溶质原子置换了溶剂点阵的部分溶剂原子,这种固溶体就称为置换固溶体。

间隙固溶体:溶质原子分布于溶剂晶格间隙而形成的固溶体称为间隙固溶体。

有序固溶体:当一种组元溶解在另一组元中时,各组元原子分别占据各自的布拉维点阵的一种固溶体,形成一种各组元原子有序排列的固溶体,溶质在晶格完全有序排列。

4、致密度:晶体结构中原子体积占总体积的百分数。

配位数:晶体结构中任一原子周围最近邻且等距离的原子数。

间隙相:当非金属(X)和金属(M)原子半径的比值r X/r M<0.59 时,形成的具有简单晶体结构的相,称为间隙相。

间隙化合物:当非金属(X)和金属(M)原子半径的比值rX/rM>0.59 时,形成具有复杂晶体结构的相。

5、单晶体:是指在整个晶体内部原子都按照周期性的规则排列。

多晶体:是指在晶体内每个局部区域里原子按周期性的规则排列,但不同局部区域之间原子的排列方向并不相同,因此多晶体也可看成由许多取向不同的小单晶体(晶粒)组成。

点阵畸变:在局部范围内,原子偏离其正常的点阵平衡位置,造成点阵畸变。

金属键:自由电子与原子核之间静电作用产生的键合力。

范德华键:由瞬间偶极矩和诱导偶极矩产生的分子间引力所构成的物理键。

同质异构体:化学组成相同由于热力学条件不同而形成的不同晶体结构。

布拉菲点阵:除考虑晶胞外形外,还考虑阵点位置所构成的点阵。

配位多面体:原子或离子周围与它直接相邻结合的原子或离子的中心连线所构成的多面体,称为原子或离子的配位多面体。

拓扑密堆相:由两种大小不同的金属原子所构成的一类中间相,其中大小原子通过适当的配合构成空间利用率和配位数都很高的复杂结构。

由于这类结构具有拓扑特征,故称这些相为拓扑密堆相。

大角度晶界:多晶材料中各晶粒之间的晶界称为大角度晶界,即相邻晶粒的位相差大于10º的晶界。

电子化合物:电子化合物是指由主要电子浓度决定其晶体结构的一类化合物,又称休姆-罗塞里相。

凡具有相同的电子浓度,则相的晶体结构类型相同。

第三章晶体缺陷1、点缺陷(Point defects):最简单的晶体缺陷,在结点上或邻近的微观区域内偏离晶体结构的正常排列。

在空间三维方向上的尺寸都很小,约为一个、几个原子间距,又称零维缺陷。

包括空位、间隙原子、杂质、溶质原子等。

线缺陷(Linear defects):在一个方向上的缺陷扩展很大,其它两个方向上尺寸很小,也称为一维缺陷。

主要为位错dislocations。

面缺陷(Planar defects):在两个方向上的缺陷扩展很大,其它一个方向上尺寸很小,也称为二维缺陷。

包括晶界、相界、孪晶界、堆垛层错等。

空位:晶体中点阵结点上的原子以其平衡位置为中心作热振动,当振动能足够大时,将克服周围原子的制约,跳离原来的位置,使得点阵中形成空结点,称为空位。

肖脱基(Schottky)空位:迁移到晶体表面或内表面的正常结点位置,使晶体内部留下空位。

弗兰克尔(Frenkel)缺陷:挤入间隙位置,在晶体中形成数目相等的空位和间隙原子。

晶格畸变:点缺陷破坏了原子的平衡状态,使晶格发生扭曲,称晶格畸变。

从而使强度、硬度提高,塑性、韧性下降;电阻升高,密度减小等。

热平衡缺陷:由于热起伏促使原子脱离点阵位置而形成的点缺陷称为热平衡缺陷,这是晶体内原子的热运动的内部条件决定的。

过饱和的点缺陷:通过改变外部条件形成点缺陷,包括高温淬火、冷变形加工、高能粒子辐照等,这时的点缺陷浓度超过了平衡浓度,称为过饱和的点缺陷。

2、位错:当晶格中一部分晶体相对于另一部分晶体发生局部滑移时,滑移面上滑移区与未滑移区的交界线称作位错柏氏矢量:描述位错特征的一个重要矢量,它集中反映了位错区域内畸变总量的大小和方向,也使位错扫过后晶体相对滑动的量。

螺型位错:位错线附近的原子按螺旋形排列的位错称为螺型位错。

刃型位错:晶体中的某一晶面,在其上半部有多余的半排原子面,好像一把刀刃插入晶体中,使这一晶面上下两部分晶体之间产生了原子错排,称为刃型位错。

混合位错:一种更为普遍的位错形式,其滑移矢量既不平行也不垂直于位错线,而与位错线相交成任意角度。

可看作是刃型位错和螺型位错的混合形式。

单位位错:把柏氏矢量等于单位点阵矢量的位错称为单位位错。

全位错:把柏氏矢量等于点阵矢量或其整数倍的位错称为全位错。

不全位错:柏氏矢量不等于点阵矢量整数倍的位错称为不全位错。

扩展位错:通常指一个全位错分解为两个不全位错,中间夹着一个堆垛层错的整个位错形态。

部分位错:柏氏矢量小于点阵矢量的位错。

堆垛层错:实际晶体结构中,密排面的正常堆垛顺序有可能遭到破坏和错排,称为堆垛层错,简称层错。

3、位错的滑移(守恒运动):在外加切应力作用下,位错中心附近的原子沿柏氏矢量b方向在滑移面上不断作少量位移(小于一个原子间距)而逐步实现。

位错的攀移(非守恒运动):刃型位错在垂直于滑移面方向上的运动,主要是通过原子或空位的扩散来实现的(滑移过程基本不涉及原子的扩散)。

位错反应:位错线之间可以合并或分解,称为位错反应。

位错密度:单位体积内所包含的位错线总长度ρ = L / V (cm-2)。

一般,位错密度也定义为单位面积所见到的位错数目ρ = n / A (cm-2) 。

交滑移:由于螺型位错可有多个滑移面,螺型位错在原滑移面上运动受阻时,可转移到与之相交的另一个滑移面上继续滑移。

双交滑移:如果交滑移后的位错再转回到和原滑移面平行的滑移面上继续运动,则称为双交滑移。

多滑移:当外力在几个滑移系上的分切应力相等并同时达到了临界分切应力时,产生同时滑移的现象。

滑移系:晶体中一个滑移面及该面上一个滑移方向的组合称一个滑移系。

扭折:位错交割形成的曲折线段在位错的滑移面上时,称为扭折。

割阶:若该曲折线段垂直于位错的滑移面时,称为割阶。

位错在某一滑移面上运动时,对穿过滑移面的其它位错(林位错)的交割包括扭折和割阶。

位错滑移的特点1) 刃型位错滑移的切应力方向与位错线垂直,而螺型位错滑移的切应力方向与位错线平行;2) 无论刃型位错还是螺型位错,位错的运动方向总是与位错线垂直的;3) 刃型位错引起的晶体的滑移方向与位错运动方向一致,而螺型位错引起的晶体的滑移方向与位错运动方向垂直;4) 位错滑移的切应力方向与柏氏矢量一致;位错滑移后,滑移面两侧晶体的相对位移与柏氏矢量一致。

5) 对螺型位错,如果在原滑移面上运动受阻时,有可能转移到与之相交的另一滑移面上继续滑移,这称为交滑移(双交滑移)位错交割的特点1) 运动位错交割后,在位错线上可能产生一个扭折或割阶,其大小和方向取决于另一位错的柏氏矢量,但具有原位错线的柏氏矢量(指扭折或割阶的长度和方向)2) 所有的割阶都是刃型位错,而扭折可以是刃型也可是螺型的。

3) 扭折与原位错线在同一滑移面上,可随位错线一道运动,几乎不产生阻力,且在线张力的作用下易于消失;4)割阶与原位错不在同一滑移面上,只能通过攀移运动,所以割阶是位错运动的障碍--- 割阶硬化。

4、孪晶:孪晶是指两个晶体(或一个晶体的两部分)沿一个公共晶面构成镜面对称的位向关系,这两个晶体就称为孪晶,此公共晶面就称孪晶面。

孪生:晶体受力后,以产生孪晶的方式进行的切变过程叫孪生。

晶界:晶界是成分结构相同的同种晶粒间的界面。

相界:具有不同结构的两相之间的分界面称为“相界”。

晶界偏聚:由于晶内与晶界上的畸变能差别或由于空位的存在使得溶质原子或杂质原子在晶界上的富集现象。

亚晶界:相邻亚晶粒间的界面称为亚晶界。

亚晶粒:一个晶粒中若干个位相稍有差异的晶粒称为亚晶粒。

界面:通常包含几个原子层厚的区域,其原子排列及化学成分不同于晶体内部,可视为二维结构分布,也称为晶体的面缺陷,包括外表面和内界面。

外表面:指固体材料与气体或液体的分界面。

内界面:分为晶粒界面、亚晶界、孪晶界、层错、相界面等。

小角度晶界:相邻晶粒的位相差小于10º亚晶界一般为2º左右。

对称倾斜晶界:晶界两侧晶体互相倾斜晶界的界面对于两个晶粒是对称的,其晶界视为一列平行的刃型位错组成。

大角度晶界:相邻晶粒的位相差大于10º。

5、表面能:晶体表面单位面积自由能的增加,可理解为晶体表面产生单位面积新表面所作的功γ= dW/ds 。

晶界能:不论是小角度晶界或大角度晶界,这里的原子或多或少地偏离了平衡位置,所以相对于晶体内部,晶界处于较高的能量状态,高出的那部分能量称为晶界能,或称晶界自由能。

界面能:界面上的原子处在断键状态,具有超额能量。

平均在界面单位面积上的超额能量叫界面能。

位错的应变能:位错周围点阵畸变引起的弹性应力场,导致晶体能量的增加,称为位错的应变能或位错的能量。

派-纳力:晶体滑移需克服晶体点阵对位错的阻力,即点阵阻力。

位错的塞积:当位错运动到晶界附近时,受到晶界的阻碍而堆积起来,称位错的塞积。

晶界特性1)晶粒的长大和晶界的平直化能减少晶界面积和晶界能,在适当的温度下是一个自发的过程;须原子扩散实现2) 晶界处原子排列不规则,常温下对位错的运动起阻碍作用,宏观上表现出提高强度和硬度;而高温下晶界由于起粘滞性,易使晶粒间滑动;3) 晶界处有较多的缺陷,如空穴、位错等,具有较高的动能,原子扩散速度比晶内高;4) 固态相变时,由于晶界能量高且原子扩散容易,所以新相易在晶界处形核;5) 由于成分偏析和内吸附现象,晶界容易富集杂质原子,晶界熔点低,加热时易导致晶界先熔化; 过热6)由于晶界能量较高、原子处于不稳定状态,以及晶界富集杂质原子的缘故,晶界腐蚀比晶内腐蚀速率快。

相关文档
最新文档