材料成型原理问答及名词解释
材料成型基础及参考答案

作业1一、思考题1.什么是机械性能?(材料在载荷作用下所表现出来的性能)它包含哪些指标?(强度、塑性、硬度、韧性、疲劳强度)2.名词解释:过冷度(理论结晶温度与实际结晶温度之差),晶格(把每一个原子假想为一个几何原点,并用直线从其中心连接起来,使之构成空间格架),晶胞(在晶格中存在能代表晶格几何特征的最小几何单元),晶粒(多晶体由许多位向不同,外形不规则的小晶体构成的,这些小晶体称为晶粒),晶界(晶粒与晶粒之间不规则的界面),同素异晶转变固溶体(合金在固态下由组元间相互溶解而形成的相),金属化合物(若新相得晶体结构不同于任一组元,则新相师相元间形成的化合物),机械混合物3.过冷度与冷却速度有什么关系?对晶粒大小有什么影响?冷却速度越大过冷度越大,晶粒越细。
4.晶粒大小对金属机械性能有何影响?常见的细化晶粒的方法有哪些?晶粒越细,金属的强度硬度越高,塑韧性越好。
孕育处理、提高液体金属结晶时的冷却速度、压力加工、热处理等5.含碳量对钢的机械性能有何影响? 第38-39页6说明铁素体、奥氏体、渗碳体和珠光体的合金结构和机械性能。
二、填表说明下列符号所代表的机械性能指标符号名称单位σs屈服强度σb强度极限ε应变 1δ伸展率%HB 布氏硬度HBHRC 洛氏硬度HRCak 冲击硬度σ—1 疲劳强度以相和组织组成物填写简化的铁碳相图此题新增的此题重点L+AL+Fe3CF+ Fe3CF图1--1 简化的铁碳合金状态图三、填空1.碳溶解在体心立方的α-Fe中形成的固溶体称铁素体,其符号为 F ,晶格类型是体心立方晶格,性能特点是强度低,塑性好。
2.碳溶解在面心立方的γ-Fe中形成的固溶体称奥氏体,其符号为 A ,晶格类型是面心立方晶格,性能特点是强度低,塑性不好。
3.渗碳体是铁与碳的金属化合物,含碳量为 6.69 %,性能特点是硬度很高,脆性很差。
4.ECF称共晶转变线,所发生的反应称共晶反应,其反应式是得到的组织为 L(4.3% 1148℃)=A(2.11%)+Fe3C 。
材料成型原理

1、什么是缩孔和缩松?请分别简述这两种铸造缺陷产生的条件和基本原因?
答:铸造合金在凝固过程中,由于液态收缩和凝固收缩的产生,往往在铸件最后凝固的部位出现孔洞,称为缩孔;其中尺寸细小而且分散的孔洞称为分散性缩孔,简称缩松。
缩孔产生的条件是:铸件由表及里逐层凝固;其产生的基本原因是:合金的液态收缩和凝固收缩值之和大于固态收缩值。
缩松产生的条件是:合金的结晶温度范围较宽,倾向于体积凝固。
其产生的基本原因是:合金的液态收缩和凝固收缩值之和大于固态收缩值。
2.简述提高金属塑性的主要途径。
答:一、提高材料的成分和组织的均匀性
二、合理选择变形温度和变形速度
三、选择三向受压较强的变形方式
四、减少变形的不均匀性。
材料成型原理复习题答案

《材料成形原理》复习题(铸)第二章液态金属的结构和性质1.粘度。
影响粘度大小的因素?粘度对材料成形过程的影响?1)粘度:是液体在层流情况下,各液层间的摩擦阻力。
其实质是原子间的结合力。
2)粘度大小由液态金属结构决定与温度、压力、杂质有关:(1)粘度与原子离位激活能U成正比,与相邻原子平衡位置的平均距离的三次方成反比。
(2)温度:温度不高时,粘度与温度成反比;当温度很高时,粘度与温度成正比。
(3)化学成分:杂质的数量、形状和分布影响粘度;合金元素不同,粘度也不同,接近共晶成分,粘度降低。
(4)材料成形过程中的液态金属一般要进行各种冶金处理,如孕育、变质、净化处理等对粘度有显著影响。
3)粘度对材料成形过程的影响(1)对液态金属净化(气体、杂质排出)的影响。
(2)对液态合金流动阻力与充型的影响,粘度大,流动阻力也大。
(3)对凝固过程中液态合金对流的影响,粘度越大,对流强度G越小。
2.表面张力。
影响表面张力的因素?表面张力对材料成形过程及部件质量的影响?1)表面张力:是金属液表面质点因受周围质点对其作用力不平衡,在表面液膜单位长度上所受的紧绷力或单位表面积上的能量。
其实质是质点间的作用力。
2)影响表面张力的因素(1)熔点:熔沸点高,表面张力往往越大。
(2)温度:温度上升,表面张力下降,如Al、Mg、Zn等,但Cu、Fe相反。
(3)溶质元素(杂质):正吸附的表面活性物质表面张力下降(金属液表面);负吸附的表面非活性物质表面张力上升(金属液内部)。
(4)流体性质:不同的流体,表面张力不同。
3)表面张力影响液态成形整个过程,晶体成核及长大、机械粘砂、缩松、热裂、夹杂及气泡等铸造缺陷都与表面张力关系密切。
3.液态金属的流动性。
影响液态金属的流动性的因素?液态金属的流动性对铸件质量的影响?1)液态金属的流动性是指液态金属本身的流动能力。
2)影响液态金属的流动性的因素有:液态金属的成分、温度、杂质含量及物理性质有关,与外界因素无关。
(完整word版)材料成型技术基础--名词解释

名词解释一、二章(绪论+铸造成型):1缩孔、缩松:液态金属在凝固的过程中,由于液态收缩和凝固收缩,因而在铸件最后凝固部位出现大而集中的孔洞,这种孔洞称为缩孔,细小而分散的孔洞称为缩松.2顺序凝固:指采用各种措施保证铸件结构各部分,从远离冒口部分到冒口之间建立一个逐渐递增的温度梯度,实现由远离冒口的部分最先凝固再向冒口方向顺序凝固的凝固方式。
3同时凝固:由顺序凝固的定义可得。
4偏析:铸件凝固后截面上不同部位晶粒内部化学成分不均匀的现象称为偏析。
5:宏观偏析:其成分不均匀现象表现在较大尺寸范围,也称为区域偏析.6微观偏析:指微小范围内的化学成分不均匀现象。
7流动性:液态金属自身的流动能力称为“流动性”.8充型能力:液态金属充满铸型型腔,获得形状完整、轮廓清晰的铸件的能力叫充型能力。
9正偏析:当溶质的分配系数K〉1的合金进行凝固时,越是后来结晶的固相,溶质的浓度越低,这种成分偏析称之为正偏析.10逆偏析:当溶质的分配系数K〈1的合金进行凝固时,越是后来结晶的固相,溶质的浓度越高,这种成分偏析称之为逆偏析。
11:自由收缩:铸件在铸型中收缩仅受到金属表面与铸型表面的摩擦阻力时,为自由收缩. 12:受阻收缩:如果铸件在铸型中的收缩除了受到金属表面与铸型表面的摩擦阻力,还受到其他阻碍,则为受阻收缩。
13:析出性气孔:溶解于熔融金属中的气体在冷却和凝固的过程中,由于溶解度的下降而从合金中析出,当铸件表面已凝固,气泡来不及排除而保留在铸件中形成的气孔.14:反应性气孔:浇入铸型的熔融金属与铸型材料、芯撑、冷铁或熔渣之间发生化学反应所产生的气体在、铸件中形成的孔洞,称为反应气孔。
15:侵入性气孔:浇注过程中熔融金属和铸型之间的热作用,使型砂和型芯中的挥发物挥发生成,以及型腔中原有的空气,在界面上超过临界值时,气体就会侵入金属液而不上浮逸出而形成的气孔。
三章(固态材料塑性成型)1金属塑性变形:是指在外力作用下,使金属材料产生预期的变形,以获得所需形状、尺寸和力学性能的毛坯或零件的加工方法。
材料成型原理 名词解释

滑移线场:当方形压头加载于均质、各向同性的塑性材料(土壤)时,最大剪应力轨迹在材料中的空间分布称为滑移线场。
滑移线场实际上就是一个剪切构造网络真实应力:拉伸(或压缩)试验时,变形力与当时实际截面积(而不是初始截面积)之比。
其数值是随变形量、温度与应变速率而变化的。
理想塑性:材料在常应力并不显示加工硬化,而只做塑性流动应力球张量:由一点处三个线应变(见应变)的平均应变所组成的应变张量。
金属充型能力:液态金属充满铸型型腔,获得尺寸精确、轮廓清晰的成型件的能力。
金属材料的焊接性:—定焊接技术条件下,获得优质焊接接头的难易程度,即金属材料对焊接加工的适应性称为金属材料的焊接性平衡凝固:指凝固过程中的每个阶段都能达到平衡,即在相变过程中有充分时间进行组元间的扩散,以达到平衡相的成分。
偏析:合金中各组成元素在结晶时分布不均匀的现象称为偏析滑移线:在塑性力学中,变形体塑变区最大切应力的迹线。
冷变形:在再结晶温度以下(通常是指室温)的变形。
热变形:在再结晶温度以上的变形。
温变形:在再结晶温度以下,高于室温的变形熔渣的碱度焊接熔渣中碱性氧化物质量分数的总和与酸性氧化物质量分数总和的比值,叫焊接熔渣的碱度焊接热循环:在焊接热源作用下,焊件上某点的温度随时间变化的过程。
简单加载:加载过程中各应力分量按同一比例单调增长,应力主轴方向固定不变应力偏张量:应力偏张量是塑性变形时物体内一点的应力张量的分量随坐标变化而改变,但其应力张量不变量却是固定不变的,因此应力张量不变量可以反映物体变形状态的实质。
溶质再分配系数:凝固过程中固-液界面固相侧溶质质量分数与液相中溶质质量分数之比,称为溶质再分配系数。
焊接热影响区:在焊接热循环作用下,焊缝两侧处于固态的母材发生明显的组织和性能变化的区域,称为焊接热影响区。
最小阻力定律:塑性变形体内有可能沿不同方向流动的质点只选择阻力最小方向流动的规律。
超塑性:是指材料在一定的内部条件和外部条件下,呈现出异常低的流变抗力、异常高的流变性能的现象。
金属材料成型加工复习资料(名词解释、简答、论述)

塑性变形包括晶内变形和晶间变形。
通过各种位错运动而实现的晶内一部分相对于另一部分的剪切运动就是晶内变形,常温下有滑移和孪生,当T>0.5TR时,可能出现晶间变形,高温时扩散机理起重要作用。
孪生。
孪生后结构没有变化,取向发生了变化,滑移取向不变,一般孪生比滑移困难,所以形变时首先发生滑移,当切变应力升高到一定数值时才发生孪生,密排六方金属由于滑移系统少,可能开始就形成孪晶。
扩散对变形的作用:一方面它对剪切塑性变形机理可以有很大影响,另一方面扩散可以独立产生塑性流动。
扩散变形机理包括:扩散-位错机理;溶质原子定向溶解机理;定向空位流机理。
扩散-位错机理:扩散对刃位错的攀移和螺位错的割阶运动产生影响;扩散对溶质气团对位错运动的限制作用随温度的变化而不同。
溶质原子定向溶解机理:晶体没有受力作用时,溶质原子在晶体中的分布是随机的,无序的,如碳原子在α-Fe,加上弹性应力σ(低于屈服应力的载荷)时,碳原子通过扩散优先聚集在受拉棱边,在晶体点阵的不同方向上产生了溶解碳原子能力的差别,称之为定向溶解,是可逆过程。
定向空位机理则是由扩散引起的不可逆的塑性流动机理。
屈服强度是指金属抵抗塑性变形的抗力,定量来说是指金属发生塑性变形时的临界应力。
金属的实际屈服强度由开动位错源所需的应力和位错在运动过程中遇到的各种阻力。
实际晶体的切屈服强度=开动位错源所必须克服的阻力+点阵阻力+位错应力场对运动位错的阻力+位错切割穿过其滑移面的位错林所引起的阻力+割阶运动所引起的阻力。
面心立方金属单晶体的应力-应变曲线。
1.硬化系数θ较小,一般认为在此阶段只有一个滑移系统起作用,强化作用不大,称位易滑移阶段。
2.硬化系数θ最大且大体上是常数,对于各种面心立方金属具有相同的数量级,故称为线性硬化阶段。
3.硬化系数θ随变形量的增加而逐渐减小,故称为抛物线强化阶段。
面心立方金属形变单晶体的表面现象。
1.除了照明特别好(暗场),用光学显微镜一般看不到滑移线。
材料成型原理课后答案

材料成型原理课后答案材料成型原理是指通过不同的成型工艺,将原料加工成所需形状和尺寸的零部件或制品的原理。
在工程制造领域中,材料成型是非常重要的一环,它直接影响着制品的质量和性能。
下面就材料成型原理的相关问题进行解答。
1. 什么是材料成型原理?材料成型原理是指将原料加工成所需形状和尺寸的零部件或制品的原理。
它是通过对原料进行加工,使其发生形状、尺寸和性能的改变,从而得到符合要求的制品。
材料成型原理是工程制造中的重要环节,它直接关系到制品的质量和性能。
2. 材料成型的基本过程是什么?材料成型的基本过程包括原料的预处理、成型工艺和制品的后处理。
首先,原料需要进行预处理,包括清洁、除杂、干燥等工序,以保证原料的质量和加工的顺利进行。
然后,根据制品的要求,选择合适的成型工艺,如锻造、压铸、注塑等,对原料进行加工成型。
最后,对成型后的制品进行后处理,包括去除余渣、表面处理、热处理等工序,以提高制品的质量和性能。
3. 材料成型原理的影响因素有哪些?材料成型原理的影响因素包括原料的性能、成型工艺、成型设备和操作技术等。
首先,原料的性能直接影响着成型的难易程度和制品的质量。
其次,成型工艺的选择和设计对成型效果起着决定性的作用。
成型设备的性能和精度也会影响成型的质量和效率。
操作技术则是保证成型过程顺利进行的重要因素。
4. 材料成型原理的发展趋势是什么?随着科学技术的不断发展,材料成型原理也在不断创新和完善。
未来,材料成型将更加注重节能环保、智能化和数字化。
新材料、新工艺、新设备的不断涌现,将推动材料成型原理朝着高效、精密、绿色的方向发展。
同时,数字化技术的应用将使成型过程更加智能化和可控化,提高生产效率和产品质量。
5. 如何提高材料成型的质量和效率?要提高材料成型的质量和效率,首先需要加强对原料的质量控制,保证原料的质量稳定。
其次,要优化成型工艺和设备,提高成型的精度和效率。
同时,加强操作技术的培训和管理,确保成型过程的稳定和可控。
材料成型试题及答案

材料成型试题及答案 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】材料成型复习题(样卷)一、名词解释1落料和冲孔:落料和冲孔又称冲裁,是使坯料按封闭轮廓分离。
落料是被分离的部分为所需要的工件,而留下的周边是废料;冲孔则相反。
2 焊接:将分离的金属用局部加热或加压,或两者兼而使用等手段,借助于金属内部原子的结合和扩散作用牢固的连接起来,形成永久性接头的过程。
3顺序凝固:是采用各种措施保证铸件结构各部分,从远离冒口的部分到冒口之间建立一个逐渐递增的温度梯度,实现由远离冒口的部分最先凝固,在向冒口方向顺序凝固,使缩孔移至冒口中,切除冒口即可获得合格零件的铸造工艺同时凝固:是指采取一些工艺措施,使铸件个部分温差很小,几乎同时进行凝固获得合格零件的铸造工艺。
4.缩孔、缩松:液态金属在凝固过程中,由于液态收缩和凝固收缩,因而在铸件最后凝固部位出现大而集中的孔洞,这种孔洞称为缩孔,而细小而分散的孔洞称为分散性缩孔,简称缩松。
5.直流正接:将焊件接电焊机的正极,焊条接其负极;用于较厚或高熔点金属的焊接。
6 自由锻造:利用冲击力或压力使金属材料在上下两个砧铁之间或锤头与砧铁之间产生变形,从而获得所需形状、尺寸和力学性能的锻件的成形过程。
7模型锻造:它包括模锻和镦锻,它是将加热或不加热的坯料置于锻模模膛内,然后施加冲击力或压力使坯料发生塑性变形而获得锻件的锻造成型过程。
8.金属焊接性:金属在一定条件下,获得优质焊接接头的难易程度,即金属材料对焊接加工的适应性。
9,粉末冶金:是用金属粉末做原料,经压制后烧结而制造各种零件和产品的方法。
10钎焊:利用熔点比钎焊金属低的钎料作填充金属,适当加热后,钎料熔化将处于固态的焊件连接起来的一种方法。
11直流反接:将焊件接电焊机的负极,焊条接其正极;用于轻薄或低熔点金属的焊接。
二、判断题(全是正确的说法)1、铸件中可能存在的气孔有侵入气孔、析出气孔、反应气孔三种。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、凝固原则分为同时凝固和顺序凝固两种。
2、定向凝固技术中的最重要的两个工艺参数分别为温度梯度和抽拉速度。
3、从原子尺度看,合金固-液界面的微观结构可分为两大类,即粗糙界面和光滑界面。
4、铸件中的气孔分为析出性和反应性气孔。
5、通过激冷法和深过冷两种途径可实现合金的快速凝固。
6、铸件内部柱状晶区的范围取决于稳定凝固壳层和内部等轴晶区的出现。
1.液态金属本身的流动能力主要由液态金属的成分、温度和杂质含量等决定。
2.液态金属或合金凝固的驱动力由过冷度提供。
3.晶体的宏观生长方式取决于固液界面前沿液相中的温度梯度,当温度梯度为正时,晶体的宏观生长方式为平面长大方式,当温度梯度为负时,晶体的宏观生长方式为树枝晶长大方式。
5.液态金属凝固过程中的液体流动主要包括自然对流和强迫对流。
6.液态金属凝固时由热扩散引起的过冷称为热过冷。
7.铸件宏观凝固组织一般包括表层细晶粒区、中间柱状晶区和内部等轴晶区三个不同形态的晶区。
8.内应力按其产生的原因可分为热应力、相变应力和机械应力三种。
9.铸造金属或合金从浇铸温度冷却到室温一般要经历液态收缩、凝固收缩和固态收缩三个收缩阶段。
10.铸件中的成分偏析按范围大小可分为微观偏析和宏观偏析二大类。
2.晶体结晶时,有时会以枝晶生长方式进行,此时固液界面前液体中的温度梯度为负。
3.灰铸铁凝固时,其收缩量远小于白口铁或钢,其原因在于碳的石墨化膨胀作用。
4.孕育和变质处理是控制金属(或合金)铸态组织的主要方法,两者的主要区别在于孕育主
要影响生核过程,而变质则主要改变晶体生长方式。
5.液态金属成形过程中在固相线附近产生的裂纹称为热裂纹,而在室温附近产生的裂纹称为冷裂纹。
9.铸件凝固方式有逐层凝固、体积凝固、中间凝固,其中逐层凝固方式容易产生集中性缩孔,一般采用同时凝固原则可以消除;体积凝固方式易产生分散性缩松,采用顺序凝固原则可以消除此缺陷。
10.金属塑性加工就是在外力作用下使金属产生塑性变形加工方法。
11.塑性反映了材料产生塑性变形的能力,可以用最大变形程度来表示。
12.塑性变形时,由于外力所作的功转化为热能,从而使物体的温度升高的现象称为温度效应。
13.在完全不产生回复和再结晶温度以下进行的塑性变形称为冷变形。
14.多晶体塑性变形时,除了晶内的滑移和产生,还包括晶界的滑动和转动。
15.单位面积上的内力称为应力。
16.物体在变形时,如果只在一个平面内产生变形,在这个平面称为塑性流平面。
17.细晶超塑性时要求其组织超细化、等轴化和稳定化。
1、凝固区域的补缩边界:凝固区域中固相占优势的固液部分中两个带的边界叫补缩边界
2、液固相变驱动力:液相和固相两相自由能之差称为相变驱动力
3、热应力:铸件在凝固和其后的冷却过程中,由于各部分冷却速度不同,造成同一时刻收缩量的不一致,导致内部彼此制约而产生的应力
4、成分过冷:由溶质再分配导致界面前方熔体成分及其凝固温度发生变化而引起的过冷度称为成分过冷
5.晶体择优生长:在树枝晶生长过程中,那些与热流方向相平行的枝晶较之取向不利的相邻枝晶会生长得更为迅速,其优先向内伸展并抑制相邻枝晶的生长,这种相互竞争淘汰的晶体生长过程称为晶体的择优生长。
6.定向凝固原则:定向凝固原则是采取各种措施,保证铸件结构上各部分按距离冒口的距离由远及近,朝冒口方向凝固,冒口本身最后凝固。
7.灰铸铁的“自补缩能力”:灰铸铁共晶团中的片状石墨,与枝晶间的共晶液体直接接触,片状石墨长大时产生的体积膨胀大部分作用在所接触的晶间液体上,迫使液体通过枝晶间通
道去充填奥氏体枝晶间由于液态收缩和凝固收缩所产生的小孔洞,从而大大降低了灰铸铁产生缩松的严重程度。
8.偏析:一般情况下,铸件凝固后,从微观晶粒内部到宏观上各部位,化学成分都是不均匀的,这种现象称为偏析。
9.点的应力状态:是受力物体内一点应力的完整描述,是用过受力物体内一点互相正交的三个微分面上的九个应力分量来表示该点的应力,由于切应力互等,故一点的应力状态取决于六个独立的应力分量。
10.加工硬化:金属的变形抗力随着塑性变形程度增加而增加的现象。
11.静态再结晶:当变形金属加热到较高温度时,将形成一些位错密度很低的新晶粒,这些晶粒不断增加和扩大,逐渐取代已变形的高位错密度的晶粒。
这一过程称为静态再结晶。
12.过冷度:金属的理论结晶温度与实际结晶温度的差,称为过冷度。
13.液态成形:将液态金属浇入铸型后,凝固后获得一定形状和性能的铸件或铸锭的加工法。
14.复合材料:有两种或两种以上物理和化学性质不同的物质复合组成的一种多相固体。
15.定向凝固;定向凝固是使金属或合金在熔体中定向生长晶体的一种工艺方法。
16.溶质再分配系数:凝固过程中固-液界面固相侧溶质质量分数与液相中溶质质量分数之比,称为溶质再分配系数。
(9)解释枝晶缩颈现象产生的原因及其对晶粒游离作用的影响?
由于在枝晶的根部,富集的溶质最不易排出,使该部位偏析程度最为严重,生长受到强烈抑制;同时,远离根部的其他部位则由于界面前方的溶质易于通过扩散和对流而均化,因此面临较大的过冷,其生长速度要快得多。
故在晶体生长过程中将产生根部缩颈现象,生成头大根小的枝晶。
在液态金属的机械冲刷和温度波动的作用下,熔点最低而又最脆弱的缩颈极易断开,晶粒自型壁或枝晶干脱落,使枝晶破碎,然后在低温下各自生长成为新的游离晶。
(11)简述提高金属塑性的主要途径。
提高材料的成分和组织的均匀性;合理选择变形温度和变形速度;选择三向受压较强的变形方式;减少变形的不均匀性。
(1)影响液态金属凝固过程的因素有哪些?
影响液态金属凝固的过程的主要因素是化学成分;冷却速率是影响凝固过程的主要工艺因素;液态合金的结构和性质等对液态金属的凝固也具有重要影响。
(2)热过冷与成分过冷有什么本质区别?
热过冷完全由热扩散控制。
成分过冷由固-液界前方溶质的再分配引起的,成分过冷不仅受热扩散控制,更受溶质扩散控制。
(3)简述铸件(锭)典型宏观凝固组织的三个晶区
表面细晶粒区是紧靠型壁的激冷组织,由无规则排列的细小等轴晶组成;中间柱状晶区由垂直于型壁彼此平行排列的柱状晶粒组成;内部等轴晶区由各向同性的等轴晶组成。
(4)对于厚大金属型钢锭如何获得细等轴晶组织?
降低浇注温度,有利于游离晶粒的残存和产生较多的游离晶粒;对金属液处理,向液态金属中添加生核剂,强化非均质形核;浇注系统的设计要考虑到低温快速浇注,使游离晶不重熔;引起铸型内液体流动,游离晶增多,获得等轴晶。
(5)简述铸锭典型宏观凝固组织的三个晶区及其组成
表面细晶粒区是紧靠型壁的激冷组织,由无规则排列的细小等轴晶组成;中间柱状晶区由垂直于型壁彼此平行排列的柱状晶粒组成;内部等轴晶区由各向同性的等轴晶组成。
(6)产生成分过冷必须具备哪两个条件?
第一是固-液界面前沿溶质的富集而引起成分再分配;第二是固-液界面前方液相的实际温度分布,或温度分布梯度GL必须达到一定的值。
(7)厚大铸件(在干砂型中浇注)欲获得细等轴晶组织,应采取哪些措施?
降低浇注温度,有利于游离晶粒的残存和产生较多的游离晶粒;对金属液处理,向液态金属中添加生核剂,强化非均质形核;浇注系统的设计要考虑到低温快速浇注,使游离晶不重熔;引起铸型内液体流动,游离晶增多,获得等轴晶。
(8)什么是缩孔和缩松?请分别简述这两种铸造缺陷产生的条件和基本原因?
铸造合金在凝固过程中,由于液态收缩和凝固收缩的产生,往往在铸件最后凝固的部位
出现孔洞,称为缩孔;其中尺寸细小而且分散的孔洞称为分散性缩孔,简称缩松。
缩孔产生的条件是:铸件由表及里逐层凝固;其产生的基本原因是:合金的液态收缩和凝固收缩值之和大于固态收缩值。
缩松产生的条件是:合金的结晶温度范围较宽,倾向于体积凝固。
其产生的基本原因是:合金的液态收缩和凝固收缩值之和大于固态收缩值。
(10)多晶体的塑性变形有哪些方式?
多晶体的塑性变形有晶内变形和晶间变形两种。
晶内变形的主要方式是滑移和孪生;晶间变形主要表现为晶粒之间的相互作用和转动。
(12)铸件凝固过程产生集中缩孔的基本原因是什么?为什么灰铸铁具有“自补缩能力”?
液态收缩和凝固收缩是铸件产生缩孔和缩松的基本原因。
液态收缩和凝固收缩值大于固态收缩值,若液态收缩和凝固收缩所缩减的体积得不到补充,往往在铸件最后凝固的地方出现孔洞。
灰铸铁共晶团中的片状石墨,与枝晶间的共晶液体直接接触,片状石墨长大时产生的体积膨胀大部分作用在所接触的晶间液体上,迫使液体通过枝晶间通道去充填奥氏体枝晶间由于液态收缩和凝固收缩所产生的小孔洞,从而大大降低了灰铸铁产生缩松的严重程度。