1.5.1 平行关系的判定
平行线和垂直线的判定技巧

平行线和垂直线的判定技巧平行线和垂直线是几何学中非常重要的概念,它们在我们的日常生活和工作中都有广泛的应用。
在解决几何问题时,正确判定平行线和垂直线的关系是非常关键的。
本文将介绍一些判定平行线和垂直线的技巧,帮助读者更好地理解和应用这些概念。
一、平行线的判定技巧1. 同位角相等法则同位角相等法则是判定平行线的常用方法之一。
当两条直线被一条横线切割时,如果同位角相等,那么这两条直线就是平行的。
例如,在一张纸上画一条横线,然后在横线上方和下方分别画两条直线,如果这两条直线与横线所形成的角度相等,那么它们就是平行的。
2. 交叉角相等法则交叉角相等法则是另一种判定平行线的方法。
当两条直线被一条横线切割时,如果交叉角相等,那么这两条直线就是平行的。
这个方法与同位角相等法则相似,但是需要注意的是,交叉角是指两条直线之间的夹角,而不是直线与横线之间的夹角。
3. 平行线的性质平行线的性质也可以用来判定平行线。
如果一条直线与另外两条平行线相交,那么这两条平行线与第三条直线所形成的内角和外角是相等的。
这个性质可以用来判断是否存在平行线。
二、垂直线的判定技巧1. 垂直线的性质垂直线的判定方法主要是根据垂直线的性质。
如果两条直线相交,并且相交处的四个角都是直角,那么这两条直线就是垂直的。
这个方法是最常见和最直观的判定垂直线的方法。
2. 垂直线的倾斜角另一种判定垂直线的方法是通过计算直线的倾斜角。
如果两条直线的倾斜角乘积为-1,那么这两条直线就是垂直的。
例如,一条直线的倾斜角为2/3,那么与它垂直的直线的倾斜角就是-3/2。
3. 垂直线的斜率垂直线的判定还可以通过计算直线的斜率来进行。
如果两条直线的斜率乘积为-1,那么这两条直线就是垂直的。
斜率的计算公式是直线上两点的纵坐标之差除以横坐标之差。
三、应用实例为了更好地理解和应用平行线和垂直线的判定技巧,下面将给出一些实际应用的例子。
1. 建筑设计在建筑设计中,平行线和垂直线的判定非常重要。
5.1平行关系的关系

反思~领悟:
1.线面平行,通常可以转化为线线平行来处理.
2.寻找平行直线可以通过三角形的中位线、 梯形的中位线、平行线的判定等来完成。 3、证明的书写三个条件“内”、“外”、“平 行”,缺一不可。
第一步:在一个平面内找出两条相交直线; 第二步:证明两条相交直线分别平行于另一个平 面。 第三步:利用判定定理得出结论。
归纳结论
直线与平面平行的判定定理:
平面外的一条直线与此平面内的一条直 线平行,则该直线与此平面平行 . (线线平行 线面平行) a
符号表示:
a b a // a // b
b
两个平面平行的判定定理:
如果一个平面内有两条相交直线都平行 于另一个平面,那么这两个平面平行
5.1平行关系的判定
学习目标: 掌握线面平行、面面平行判定 定理,并会运用.
自学指导: 请认真看课本P28-P30练习前的内容, 注意以下几个方面: 1.理解线面平行、面面平行判定定理, 会用图形语言、符号语言 文字语言准确 描述. 2.学习例1、例2怎样判定线面平行? 3.学习例3如何用面面判定定理证明 面面平行? 8分钟后检测,比谁能用本节知识 做对检测题。
判断下列命题是否正确,并说明理由. (1)若平面 内的两条直线分别与平面 平行,则 与 平行; × (2)若平面 内有无数条直线分别与平面 平行,则 与 平行; × (3)平行于同一直线的两个平面平行; × (4)过已知平面外一条直线,必能作出与已知平面平 行的平面. ×
检测题: 2.课本P31 练习 3、4幻灯片 10
△ABE的中位线,所以得体ABCD-A1B1C1D1中,E 为DD1的中点,求证:BD1//平面AEC.
D1
A1 C
平行线的判定及性质 例题及练习

平行线的判定及性质一、【基础知识精讲】1、平行线的判定(1)平行公理:经过直线外一点,有且只有一条直线与已知直线平行. (2)平行公理的推论:平行于同一条直线的两条直线. (3)在同一平面内,垂直于同一条直线的两条直线. (4)同位角相等,两直线平行. (5)内错角相等,两直线平行.(6)同旁内角互补,两直线平行.3、平行线的性质(1)两直线平行,同位角相等. (2)两直线平行,内错角相等.(3)两直线平行,同旁内角互补.二、【例题精讲】专题一:余角、补角、对顶角与三线八角例题1:∠A的余角与∠A的补角互为补角,那么2∠A是()A.直角 B.锐角 C.钝角 D.以上三种都有可能【活学活用1】如图2-79中,下列判断正确的是()A.4对同位角,2对内错角,4对同旁内角B.4对同位角,2对内错角,2对同旁内角C.6对同位角,4对内错角,4对同旁内角D.6对同位角,4对内错角,2对同旁内角【活学活用2】如图2-82,下列说法中错误的是( )A.∠3和∠5是同位角B.∠4和∠5是同旁内角C.∠2和∠4是对顶角D.∠1和∠2是同位角【活学活用3】如图,直线AB与CD交于点O,OE⊥AB于O,图中∠1与∠2的关系是()A.对顶角B.互余C.互补D相等例题2:如果两个角的两边分别平行,而其中一个角比另一个角的4倍少30°,那么这两个角分别是_______.【活学活用4】如图,∠AOC +∠DOE +∠BOF = .专题二:平行线的判定例题3:如图,已知∠EFB+∠ADC=180°,且∠1=∠2,试说明DG ∥AB.1 2A BCDF E G【活学活用】1、长方体的每一对棱相互平行,那么这样的平行棱共有 ( )A .9对B .16对 C.18对 D .以上答案都不对2、已知:如图2-96,DE ⊥AO 于E,BO ⊥AO,FC ⊥AB 于C ,∠1=∠2,求证:DO ⊥AB.3、如图2-97,已知:∠1=∠2=,∠3=∠4,∠5=∠6.求证:AD ∥BC.4、如图2—101,若要能使AB ∥ED ,∠B 、∠C 、∠D 应满足什么条件?ABCDOE F5、同一平面内有四条直线a 、b 、c 、d ,若a ∥b ,a ⊥c ,b ⊥d ,则c 、d 的位置关系为( ) A.互相垂直 B .互相平行 C.相交 D .没有确定关系专题三:平行线的性质1、如图,110,ABC ACB BO ∠+∠=、CO 分别平分ABC ∠和,ACB EF ∠过点O 与BC 平行,则BOC ∠= . 2、如图,AB //CD ,BC //DE ,则∠B+∠D = .3、如图,直线AB 与CD 相交于点O ,OB 平分∠DOE .若60DOE ∠=,则∠AOC 的度数是 .4、 如图,175,2120,375∠=∠=∠=,则4∠= .13 425、如图,//AB CD ,直线EF 分别交AB 、CD 于E 、F ,ED 平分BEF ∠,若172∠=,则2∠= .【例题讲解】例1:如图,已知:AD ∥BC, ∠AEF=∠B,求证:AD ∥EF 。
高考数学一轮复习考点知识专题讲解52---直线、平面平行的判定与性质

高考数学一轮复习考点知识专题讲解直线、平面平行的判定与性质考点要求1.理解空间中直线与直线、直线与平面、平面与平面的平行关系,并加以证明.2.掌握直线与平面、平面与平面平行的判定与性质,并会简单应用.知识梳理1.线面平行的判定定理和性质定理文字语言图形语言符号语言判定定理平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行错误!⇒a∥α性质定理一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行错误!⇒a∥b2.面面平行的判定定理和性质定理文字语言图形语言符号语言判定定理一个平面内的两条相交直线与另一个平面平行,那么这两个平面平行错误!⇒β∥α性质定理如果两个平行平面同时和第三个平面相交,那么它们的交线平行错误!⇒a∥b常用结论(1)垂直于同一条直线的两个平面平行,即若a⊥α,a⊥β,则α∥β.(2)平行于同一个平面的两个平面平行,即若α∥β,β∥γ,则α∥γ.(3)垂直于同一个平面的两条直线平行,即a⊥α,b⊥α,则a∥b.(4)若α∥β,a⊂α,则a∥β.思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)若一条直线平行于一个平面内的一条直线,则这条直线平行于这个平面.(×)(2)若直线a∥平面α,P∈α,则过点P且平行于直线a的直线有无数条.(×)(3)若直线a⊂平面α,直线b⊂平面β,a∥b,则α∥β.(×)(4)如果两个平面平行,那么分别在这两个平面内的两条直线平行或异面.(√)教材改编题1.下列说法中,与“直线a∥平面α”等价的是()A.直线a上有无数个点不在平面α内B.直线a与平面α内的所有直线平行C.直线a与平面α内无数条直线不相交D.直线a与平面α内的任意一条直线都不相交答案D解析因为a∥平面α,所以直线a与平面α无交点,因此a和平面α内的任意一条直线都不相交.2.已知不重合的直线a,b和平面α,则下列选项正确的是()A.若a∥α,b⊂α,则a∥bB.若a∥α,b∥α,则a∥bC.若a∥b,b⊂α,则a∥αD.若a∥b,a⊂α,则b∥α或b⊂α答案D解析若a∥α,b⊂α,则a∥b或异面,A错;若a∥α,b∥α,则a∥b或异面或相交,B错;若a∥b,b⊂α,则a∥α或a⊂α,C错;若a∥b,a⊂α,则b∥α或b⊂α,D对.3.如图是长方体被一平面所截得的几何体,四边形EFGH为截面,则四边形EFGH的形状为______.答案平行四边形解析∵平面ABFE∥平面DCGH,又平面EFGH∩平面ABFE=EF,平面EFGH∩平面DCGH=HG,∴EF∥HG.同理EH∥FG,∴四边形EFGH是平行四边形.题型一直线与平面平行的判定与性质命题点1直线与平面平行的判定例1如图,在四棱锥P-ABCD中,底面ABCD是平行四边形,E,F分别是BC,PD的中点,求证:(1)PB∥平面ACF;(2)EF∥平面PAB.证明(1)如图,连接BD交AC于O,连接OF,∵四边形ABCD 是平行四边形, ∴O 是BD 的中点, 又∵F 是PD 的中点, ∴OF ∥PB ,又∵OF ⊂平面ACF ,PB ⊄平面ACF , ∴PB ∥平面ACF .(2)取PA 的中点G ,连接GF ,BG . ∵F 是PD 的中点, ∴GF 是△PAD 的中位线, ∴GF 綉12AD ,∵底面ABCD 是平行四边形,E 是BC 的中点, ∴BE 綉12AD ,∴GF 綉BE ,∴四边形BEFG 是平行四边形, ∴EF ∥BG ,又∵EF ⊄平面PAB ,BG ⊂平面PAB , ∴EF ∥平面PAB .命题点2直线与平面平行的性质例2如图所示,在四棱锥P -ABCD 中,四边形ABCD 是平行四边形,M 是PC 的中点,在DM上取一点G,过G和PA作平面交BD于点H.求证:PA∥GH.证明如图所示,连接AC交BD于点O,连接OM,∵四边形ABCD是平行四边形,∴O是AC的中点,又M是PC的中点,∴PA∥OM,又OM⊂平面BMD,PA⊄平面BMD,∴PA∥平面BMD,又平面PAHG∩平面BMD=GH,∴PA∥GH.教师备选如图,四边形ABCD是矩形,P∉平面ABCD,过BC作平面BCFE交AP于点E,交DP于点F,求证:四边形BCFE是梯形.证明∵四边形ABCD为矩形,∴BC∥AD.∵AD⊂平面PAD,BC⊄平面PAD,∴BC∥平面PAD.∵平面BCFE∩平面PAD=EF,BC⊂平面BCFE,∴BC∥EF.∵AD=BC,AD≠EF,∴BC≠EF,∴四边形BCFE是梯形.思维升华(1)判断或证明线面平行的常用方法①利用线面平行的定义(无公共点).②利用线面平行的判定定理(a⊄α,b⊂α,a∥b⇒a∥α).③利用面面平行的性质(α∥β,a⊂α⇒a∥β).④利用面面平行的性质(α∥β,a⊄β,a∥α⇒a∥β).(2)应用线面平行的性质定理的关键是确定交线的位置,有时需要经过已知直线作辅助平面确定交线.跟踪训练1如图所示,已知四边形ABCD是正方形,四边形ACEF是矩形,M是线段EF的中点.(1)求证:AM∥平面BDE;(2)若平面ADM∩平面BDE=l,平面ABM∩平面BDE=m,试分析l与m的位置关系,并证明你的结论.(1)证明如图,记AC与BD的交点为O,连接OE.因为O,M分别为AC,EF的中点,四边形ACEF是矩形,所以四边形AOEM是平行四边形,所以AM∥OE.又因为OE⊂平面BDE,AM⊄平面BDE,所以AM∥平面BDE.(2)解l∥m,证明如下:由(1)知AM∥平面BDE,又AM⊂平面ADM,平面ADM∩平面BDE=l,所以l∥AM,同理,AM∥平面BDE,又AM⊂平面ABM,平面ABM∩平面BDE=m,所以m∥AM,所以l∥m.题型二平面与平面平行的判定与性质例3如图所示,在三棱柱ABC-A1B1C1中,过BC的平面与上底面A1B1C1交于GH(GH与B1C1不重合).(1)求证:BC∥GH;(2)若E,F,G分别是AB,AC,A1B1的中点,求证:平面EFA1∥平面BCHG.证明(1)∵在三棱柱ABC-A1B1C1中,∴平面ABC∥平面A1B1C1,又∵平面BCHG∩平面ABC=BC,且平面BCHG∩平面A1B1C1=HG,∴由面面平行的性质定理得BC∥GH.(2)∵E,F分别为AB,AC的中点,∴EF∥BC,∵EF⊄平面BCHG,BC⊂平面BCHG,∴EF∥平面BCHG.又G,E分别为A1B1,AB的中点,A1B1綉AB,∴A1G綉EB,∴四边形A1EBG是平行四边形,∴A1E∥GB.∵A1E⊄平面BCHG,GB⊂平面BCHG,∴A1E∥平面BCHG.又∵A 1E ∩EF =E ,A 1E ,EF ⊂平面EFA 1, ∴平面EFA 1∥平面BCHG .延伸探究 在本例中,若将条件“E ,F ,G 分别是AB ,AC ,A 1B 1的中点”变为“点D ,D 1分别是AC ,A 1C 1上的点,且平面BC 1D ∥平面AB 1D 1”,试求ADDC的值. 解如图,连接A 1B 交AB 1于O ,连接OD 1.由平面BC 1D ∥平面AB 1D 1, 且平面A 1BC 1∩平面BC 1D =BC 1, 平面A 1BC 1∩平面AB 1D 1=D 1O ,所以BC 1∥D 1O ,则A 1D 1D 1C 1=A 1OOB =1.又由题设A 1D 1D 1C 1=DC AD, 所以DC AD=1,即ADDC=1.如图,在三棱柱ABC -A 1B 1C 1中,E ,F ,G 分别为B 1C 1,A 1B 1,AB 的中点.(1)求证:平面A 1C 1G ∥平面BEF ;(2)若平面A1C1G∩BC=H,求证:H为BC的中点.证明(1)∵E,F分别为B1C1,A1B1的中点,∴EF∥A1C1,∵A1C1⊂平面A1C1G,EF⊄平面A1C1G,∴EF∥平面A1C1G,又F,G分别为A1B1,AB的中点,∴A1F=BG,又A1F∥BG,∴四边形A1GBF为平行四边形,则BF∥A1G,∵A1G⊂平面A1C1G,BF⊄平面A1C1G,∴BF∥平面A1C1G,又EF∩BF=F,EF,BF⊂平面BEF,∴平面A1C1G∥平面BEF.(2)∵平面ABC∥平面A1B1C1,平面A1C1G∩平面A1B1C1=A1C1,平面A1C1G与平面ABC有公共点G,则有经过G的直线,设交BC于点H,如图,则A1C1∥GH,得GH∥AC,∵G为AB的中点,∴H为BC的中点.思维升华证明面面平行的常用方法(1)利用面面平行的判定定理.(2)利用垂直于同一条直线的两个平面平行(l⊥α,l⊥β⇒α∥β).(3)利用面面平行的传递性,即两个平面同时平行于第三个平面,则这两个平面平行(α∥β,β∥γ⇒α∥γ).跟踪训练2如图,四棱柱ABCD-A1B1C1D1的底面ABCD是正方形.(1)证明:平面A1BD∥平面CD1B1;(2)若平面ABCD∩平面CD1B1=直线l,证明:B1D1∥l.证明(1)由题设知BB1綉DD1,所以四边形BB1D1D是平行四边形,所以BD∥B1D1.又BD⊄平面CD1B1,B1D1⊂平面CD1B1,所以BD∥平面CD1B1.因为A1D1綉B1C1綉BC,所以四边形A1BCD1是平行四边形,所以A1B∥D1C.又A1B⊄平面CD1B1,D1C⊂平面CD1B1,所以A1B∥平面CD1B1.又因为BD∩A1B=B,BD,A1B⊂平面A1BD,所以平面A1BD∥平面CD1B1.(2)由(1)知平面A1BD∥平面CD1B1,又平面ABCD∩平面CD1B1=直线l,平面ABCD∩平面A1BD=直线BD,所以直线l∥直线BD,在四棱柱ABCD-A1B1C1D1中,四边形BDD1B1为平行四边形,所以B1D1∥BD,所以B1D1∥l.题型三平行关系的综合应用例4如图,在正方体ABCD-A1B1C1D1中,E为DD1的中点.(1)求证:BD1∥平面AEC;(2)CC1上是否存在一点F,使得平面AEC∥平面BFD1,若存在,请说明理由.(1)证明如图,连接BD交AC于O,连接EO.因为ABCD-A1B1C1D1为正方体,底面ABCD为正方形,对角线AC,BD交于O点,所以O为BD的中点,又因为E为DD1的中点,所以在△DBD1中,OE是△DBD1的中位线,所以OE∥BD1.又因为OE⊂平面AEC,BD1⊄平面AEC,所以BD1∥平面AEC.(2)解当CC1上的点F为中点时,即满足平面AEC∥平面BFD1.连接BF,D1F,因为F为CC1的中点,E为DD1的中点,所以CF綉ED1,所以四边形CFD1E为平行四边形,所以D1F∥EC,又因为EC⊂平面AEC,D1F⊄平面AEC,所以D1F∥平面AEC.由(1)知BD1∥平面AEC,又因为BD1∩D1F=D1,BD1,D1F⊂平面BFD1,所以平面AEC∥平面BFD1.教师备选如图,四边形ABCD与ADEF均为平行四边形,M,N,G分别是AB,AD,EF的中点.求证:(1)BE∥平面DMF;(2)平面BDE∥平面MNG.证明(1)如图,连接AE,则AE必过DF与GN的交点O,连接MO,则MO为△ABE的中位线,所以BE∥MO.又BE⊄平面DMF,MO⊂平面DMF,所以BE∥平面DMF.(2)因为N,G分别为平行四边形ADEF的边AD,EF的中点,所以DE∥GN,又DE⊄平面MNG,GN⊂平面MNG,所以DE∥平面MNG.又M为AB的中点,所以MN为△ABD的中位线,所以BD∥MN,又MN⊂平面MNG,BD⊄平面MNG,所以BD∥平面MNG,又DE,BD⊂平面BDE,DE∩BD=D,所以平面BDE∥平面MNG.思维升华证明平行关系的常用方法熟练掌握线线、线面、面面平行关系间的相互转化是解决线线、线面、面面平行的综合问题的关键.面面平行判定定理的推论也是证明面面平行的一种常用方法.跟踪训练3如图所示,四边形EFGH为空间四边形ABCD的一个截面,若截面为平行四边形.(1)求证:AB∥平面EFGH;(2)若AB=4,CD=6,求四边形EFGH周长的取值范围.(1)证明∵四边形EFGH为平行四边形,∴EF∥HG.∵HG ⊂平面ABD ,EF ⊄平面ABD , ∴EF ∥平面ABD . 又∵EF ⊂平面ABC , 平面ABD ∩平面ABC =AB , ∴EF ∥AB ,又∵AB ⊄平面EFGH ,EF ⊂平面EFGH , ∴AB ∥平面EFGH . (2)解设EF =x (0<x <4), 由(1)知EF ∥AB , ∴CF CB =EF AB =x 4, 与(1)同理可得CD ∥FG , ∴FG CD =BF BC, 则FG 6=BF BC =BC -CF BC =1-x 4, ∴FG =6-32x .∴四边形EFGH 的周长L =2⎝ ⎛⎭⎪⎫x +6-32x =12-x . 又∵0<x <4, ∴8<L <12,故四边形EFGH 周长的取值范围是(8,12).课时精练1.(2022·宁波模拟)下列命题中正确的是()A.若a,b是两条直线,且a∥b,那么a平行于经过b的任何平面B.若直线a和平面α满足a∥α,那么a与α内的任何直线平行C.平行于同一条直线的两个平面平行D.若直线a,b和平面α满足a∥b,a⊂α,b⊄α,则b∥α答案D解析A中,a可以在过b的平面内;B中,a与α内的直线也可能异面;C中,两平面可能相交;D中,由直线与平面平行的判定定理知b∥α,正确.2.设l是直线,α,β是两个不同的平面,则下列能判断l∥α的是()A.l∥β,α∥βB.l与平面α内无数条直线平行C.l⊂β,α∥βD.l⊥β,α⊥β答案C解析对于A,l可能在α内,故不能判断l∥α,故A不正确;对于B,l可能在α内,故不能判断l∥α,故B不正确;对于C,因为l⊂β,α∥β,由面面平行的定义得l∥α,故C正确;对于D,l可能在α内,故不能判断l∥α,故D不正确.3.(2022·成都模拟)如图,在三棱柱ABC-A1B1C1中,AM=2MA1,BN=2NB1,过MN作一平面分别交底面△ABC的边BC,AC于点E,F,则()A.MF∥EB B.A1B1∥NEC.四边形MNEF为平行四边形 D.四边形MNEF为梯形答案D解析由于B,E,F三点共面,F∈平面BEF,M∉平面BEF,故MF,EB为异面直线,故A错误;由于B1,N,E三点共面,B1∈平面B1NE,A1∉平面B1NE,故A1B1,NE为异面直线,故B错误;∵在平行四边形AA1B1B中,AM=2MA1,BN=2NB,1∴AM∥BN,AM=BN,故四边形AMNB为平行四边形,∴MN∥AB.又MN⊄平面ABC,AB⊂平面ABC,∴MN∥平面ABC.又MN⊂平面MNEF,平面MNEF∩平面ABC=EF,∴MN∥EF,∴EF∥AB,显然在△ABC中,EF≠AB,∴EF≠MN,∴四边形MNEF为梯形,故C错误,D正确.4.(2022·杭州模拟)已知P为△ABC所在平面外一点,平面α∥平面ABC,且α交线段PA,PB,PC于点A′,B′,C′,若PA′∶AA′=2∶3,则S∶S△ABC等于()△A′B′C′A.2∶3 B.2∶5C.4∶9 D.4∶25答案D解析∵平面α∥平面ABC,∴A′C′∥AC,A′B′∥AB,B′C′∥BC,∴S△A′B′C′∶S△ABC=(PA′∶PA)2,又PA′∶AA′=2∶3,∴PA′∶PA=2∶5,∴S△A′B′C′∶S△ABC=4∶25.5.如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是()答案D解析A项,由正方体性质可知AB∥NQ,NQ⊂平面MNQ,AB⊄平面MNQ,AB∥平面MNQ,排除;B,C项,由正方体性质可知AB∥MQ,MQ⊂平面MNQ,AB⊄平面MNQ,AB∥平面MNQ,排除;D项,由正方体性质易知,直线AB与平面MNQ不平行,满足题意.6.如图,透明塑料制成的长方体容器ABCD-A1B1C1D1内灌进一些水,固定容器一边AB于地面上,再将容器倾斜,随着倾斜程度的不同,有下面几个结论,其中正确的是()①没有水的部分始终呈棱柱形;②水面EFGH所在四边形的面积为定值;③随着容器倾斜程度的不同,A1C1始终与水面所在平面平行;④当容器倾斜如图(3)所示时,AE·AH为定值.A.①② B.①④C.②③ D.③④答案B解析根据棱柱的特征(有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行),结合题中图形易知①正确;由题图可知水面EFGH的边EF的长保持不变,但邻边的长却随倾斜程度而改变,可知②错误;因为A1C1∥AC,AC⊂平面ABCD,A 1C 1⊄平面ABCD ,所以A 1C 1∥平面ABCD ,当平面EFGH 不平行于平面ABCD 时,A 1C 1不平行于水面所在平面,故③错误;当容器倾斜如题图(3)所示时,因为水的体积是不变的,所以棱柱AEH -BFG 的体积V 为定值,又V =S △AEH ·AB ,高AB 不变,所以S △AEH 也不变,即AE ·AH 为定值,故④正确.7.考查①②两个命题,①⎭⎪⎬⎪⎫m ⊂αl ∥m ⇒l ∥α;②⎭⎪⎬⎪⎫l ∥m m ∥α⇒l ∥α,它们都缺少同一个条件,补上这个条件就可以使其构成真命题(其中l ,m 为直线,α为平面),则此条件为__________. 答案l ⊄α解析①由线面平行的判定定理知l ⊄α;②由线面平行的判定定理知l ⊄α.8.如图所示,在正四棱柱ABCD -A 1B 1C 1D 1中,E ,F ,G ,H 分别是棱CC 1,C 1D 1,D 1D ,DC 的中点,N 是BC 的中点,点M 在四边形EFGH 及其内部运动,则M 只需满足条件______,就有MN ∥平面B 1BDD 1.(注:请填上你认为正确的一个条件即可,不必考虑全部可能情况)答案点M 在线段FH 上(或点M 与点H 重合) 解析连接HN ,FH ,FN (图略), 则FH ∥DD 1,HN ∥BD ,∴平面FHN ∥平面B 1BDD 1,只需M ∈FH ,则MN ⊂平面FHN ,∴MN ∥平面B 1BDD 1.9.如图,在正方体ABCD -A 1B 1C 1D 1中,E ,F ,G ,H 分别是BC ,CC 1,C 1D 1,AA 1的中点,求证:(1)BF ∥HD 1; (2)EG ∥平面BB 1D 1D ; (3)平面BDF ∥平面B 1D 1H . 证明如图.(1)取B 1B 的中点M ,连接HM ,MC 1,易证四边形HMC 1D 1是平行四边形, ∴HD 1∥MC 1. 又MC 1∥BF , ∴BF ∥HD 1.(2)取BD 的中点O ,连接OE ,OD 1, 则OE 綉12DC .又D 1G 綉12DC ,∴OE綉D1G.∴四边形OEGD1是平行四边形,∴EG∥D1O.又D1O⊂平面BB1D1D,EG⊄平面BB1D1D,∴EG∥平面BB1D1D.(3)由(1)知BF∥HD1,由题意易证B1D1∥BD.又B1D1,HD1⊂平面B1D1H,BF,BD⊂平面BDF,且B1D1∩HD1=D1,DB∩BF=B,∴平面BDF∥平面B1D1H.10.如图,在四棱锥P-ABCD中,AD∥BC,AB=BC=12AD,E,F,H分别为线段AD,PC,CD的中点,AC与BE交于O点,G是线段OF上一点.(1)求证:AP∥平面BEF;(2)求证:GH∥平面PAD.证明(1)如图,连接EC,因为AD∥BC,BC=12 AD,所以BC∥AE,BC=AE,所以四边形ABCE是平行四边形,所以O为AC的中点.又因为F是PC的中点,所以FO ∥AP ,因为FO ⊂平面BEF ,AP ⊄平面BEF , 所以AP ∥平面BEF .(2)连接FH ,OH ,因为F ,H 分别是PC ,CD 的中点, 所以FH ∥PD ,因为PD ⊂平面PAD ,FH ⊄平面PAD , 所以FH ∥平面PAD .又因为O 是BE 的中点,H 是CD 的中点, 所以OH ∥AD ,因为AD ⊂平面PAD ,OH ⊄平面PAD , 所以OH ∥平面PAD .又FH ∩OH =H ,FH ,OH ⊂平面OHF , 所以平面OHF ∥平面PAD . 又因为GH ⊂平面OHF , 所以GH ∥平面PAD .11.(2022·福州检测)如图所示,正方体ABCD -A 1B 1C 1D 1中,点E ,F ,G ,P ,Q 分别为棱AB ,C 1D 1,D 1A 1,D 1D ,C 1C 的中点,则下列叙述中正确的是()A.直线BQ∥平面EFGB.直线A1B∥平面EFGC.平面APC∥平面EFGD.平面A1BQ∥平面EFG答案B解析过点E,F,G的截面如图所示(H,I分别为AA1,BC的中点),连接A1B,BQ,AP,PC,易知BQ与平面EFG相交于点Q,故A错误;∵A1B∥HE,A1B⊄平面EFG,HE⊂平面EFG,∴A1B∥平面EFG,故B正确;AP⊂平面ADD1A1,HG⊂平面ADD1A1,延长HG与PA必相交,故C错误;易知平面A1BQ与平面EFG有交点Q,故D错误.12.如图所示,正方体ABCD-A1B1C1D1的棱长为3,M,N分别是棱A1B1,B1C1的中点,P是棱AD上的一点,AP=1,过P,M,N的平面交上底面于PQ,Q在CD上,则PQ=________.答案2 2解析因为平面ABCD∥平面A1B1C1D1,平面ABCD∩平面PQNM=PQ,平面A1B1C1D1∩平面PQNM=MN,所以MN∥PQ,又因为MN∥AC,所以PQ∥AC.又因为AP=1,所以PDAD=DQCD=PQAC=23,所以PQ=23AC=23×32=2 2.13.在正四棱柱ABCD-A1B1C1D1中,O为底面ABCD的中心,P是DD1的中点,设Q是CC1上的点,则点Q满足条件________时,有平面D1BQ∥平面PAO.答案Q为CC1的中点解析如图所示,设Q为CC1的中点,因为P为DD1的中点,所以QB∥PA.连接DB,因为P,O分别是DD1,DB的中点,所以D1B∥PO,又D1B⊄平面PAO,QB⊄平面PAO,PO⊂平面PAO,PA⊂平面PAO,所以D1B∥平面PAO,QB∥平面PAO,又D1B∩QB=B,D1B,QB⊂平面D1BQ,所以平面D 1BQ ∥平面PAO .故Q 为CC 1的中点时,有平面D 1BQ ∥平面PAO .14.在三棱锥P -ABC 中,PB =6,AC =3,G 为△PAC 的重心,过点G 作三棱锥的一个截面,使截面平行于PB 和AC ,则截面的周长为________. 答案8解析如图,过点G 作EF ∥AC ,分别交PA ,PC 于点E ,F ,过点E 作EN ∥PB 交AB 于点N ,过点F 作FM ∥PB 交BC 于点M ,连接MN ,则四边形EFMN 是平行四边形(平面EFMN 为所求截面),且EF =MN =23AC =2,FM =EN =13PB =2,所以截面的周长为2×4=8.15.(2022·合肥市第一中学模拟)正方体ABCD -A 1B 1C 1D 1的棱长为1,点M ,N 分别是棱BC ,CC 1的中点,动点P 在正方形BCC 1B 1(包括边界)内运动,且PA 1∥平面AMN ,则PA 1的长度范围为()A.⎣⎢⎡⎦⎥⎤1,52B.⎣⎢⎡⎦⎥⎤324,52C.⎣⎢⎡⎦⎥⎤324,32 D.⎣⎢⎡⎦⎥⎤1,32答案B解析取B 1C 1的中点E ,BB 1的中点F ,连接A 1E ,A 1F ,EF , 取EF 的中点O ,连接A 1O ,如图所示,∵点M ,N 分别是棱长为1的正方体ABCD -A 1B 1C 1D 1中棱BC ,CC 1的中点, ∴AM ∥A 1E ,MN ∥EF ,∵AM ∩MN =M ,A 1E ∩EF =E ,AM ,MN ⊂平面AMN ,A 1E ,EF ⊂平面A 1EF , ∴平面AMN ∥平面A 1EF ,∵动点P 在正方形BCC 1B 1(包括边界)内运动, 且PA 1∥平面AMN , ∴点P 的轨迹是线段EF , ∵A 1E =A 1F =12+⎝ ⎛⎭⎪⎫122=52,EF =1212+12=22, ∴A 1O ⊥EF ,∴当P 与O 重合时,PA 1的长度取最小值A 1O ,A 1O =⎝ ⎛⎭⎪⎫522-⎝ ⎛⎭⎪⎫242=324,当P 与E (或F )重合时,PA 1的长度取最大值A 1E 或A 1F ,A 1E =A 1F =52.∴PA 1的长度范围为⎣⎢⎡⎦⎥⎤324,52.16.(2022·郑州模拟)如图,在三棱锥P -ABC 中,AC ,BC ,PC 两两垂直,AC =BC ,E ,F 分别是AC ,BC 的中点,△ABC 的面积为8,四棱锥P -ABFE 的体积为4.(1)若平面PEF ∩平面PAB =l ,求证:EF ∥l ; (2)求三棱锥P -ABC 的表面积. (1)证明∵E ,F 分别是AC ,BC 的中点, ∴EF ∥AB ,∵AB ⊂平面PAB ,EF ⊄平面PAB , ∴EF ∥平面PAB .又平面PEF ∩平面PAB =l ,EF ⊂平面PEF , ∴EF ∥l .(2)解∵AC ,BC ,PC 两两垂直,AC ∩BC =C ,AC ,BC ⊂平面ABC , ∴PC ⊥平面ABC ,即PC 是四棱锥P -ABFE 的高. ∵S △ABC =8,AC =BC ,AC ⊥BC , ∴AC =BC =4.∵E ,F 分别是AC ,BC 的中点,V P -ABFE =4, ∴13×34×12AC ×BC ×PC =4,即PC =2. ∴PA =42+22=25,PB =42+22=25,AB =42+42=4 2.∴△PAB的面积为12×42×(25)2-⎝⎛⎭⎪⎫4222=4 6.∴三棱锥P-ABC的表面积S=2×12×4×2+8+46=16+4 6.。
高一数学 空间中的平行关系

济南市长清第一中学
考点二 平面与平面平行的判定与性质
1、设直线l,m,平面α,β,下列条件能得 出α∥β的有( )
①l⊂α,m⊂α,且l∥β,m∥β; ②l⊂α,m⊂α,且l∥m,l∥β,m∥β; ③l∥α,m∥β,且l∥m; ④l∩m=P,l⊂α,m⊂α,且l∥β,m∥β. A.1个 B.2个 C.3个 D.0个
高中数学一年级
空间中的平行关系复习课
目录
1 知识回顾 2 考点一 直线与平面平行的判定与性质 3 考点二 平面与平面平行的判定与性质 4 考点三 线面、面面平行的综合应用
知识回顾:
一、直线与直线平行
1、基本事实4:平行于同一条直线的两条直线平行。
2、判定直线与直线平行的常用方法: (1)三角形中利用中位线定理 (2)构造平行四边形 (3)平行线的传递性 (4)平行线分线段成比例
故面GFH∥面ACD
方法二 取BE的中点M,连接GM,FM
G, M , F分别是CE, BE, AE的中点
GM // BC, FM // AB
又 GM 面GMF , FM 面GMF , AB 面ABC, BC 面ABC
GM FM M, AB BC B 面GMF // 面ABC
GF 面GMF
GF // 面ABC
考点一 直线与平面平行的判定与性质
1.“直线与平面内无数条直线平行”是“直线//平面”
的( )
A. 充要条件
B. 充分不必要条件
C. 必要不充分条件 D. 既不充分也不必要条件
答案:C
2.如图,已知四边形ABCD是平行四边形,点P是平 面ABCD外一点,M是PC的中点,在DM上取一点G, 过G和AP作平面交平面BDM于GH.求证:
判定平行的条件

判定平行的条件一、平行的定义和性质在平面几何中,平行是指两条直线或平面上的点、直线或面永远不会相交的关系。
平行的性质有以下几点:1. 平行的直线在平面上的任意点之间的距离是相等的。
2. 平行的直线与平面上的任意一条横切线的夹角是相等的。
3. 平行的直线与平面上的任意一条平面内的直线的夹角是相等的。
在平面几何中,我们可以通过以下条件来判定两条直线是否平行:1. 同位角相等定理:如果两条直线被一条横切线所截,且同位角相等,则这两条直线是平行的。
这个定理的应用非常广泛,可以用于证明平行四边形、相似三角形等定理。
2. 垂直定理的逆定理:如果两条直线互相垂直,则这两条直线是平行的。
这个定理可以通过垂直定理的逆定理进行证明。
三、平行的应用平行的概念和判定条件在几何学中有广泛的应用。
以下是一些常见的应用:1. 平行四边形:如果四边形的对边是平行的,则这个四边形是平行四边形。
平行四边形具有一些特殊的性质,如对边相等、对角线平分等。
2. 相似三角形:如果两个三角形的对应边分别平行,则这两个三角形是相似的。
相似三角形具有对应角相等、对应边成比例等性质。
3. 平行线的判定:在解决几何问题中,判定两条直线是否平行是一个常见的任务。
通过应用判定条件,可以快速确定两条直线是否平行,从而简化问题的解决过程。
4. 平面的划分:在平面几何中,经常需要将平面划分成不同的区域。
通过判定直线的平行关系,可以将平面划分成不同的区域,从而方便进行后续的分析和计算。
总结:平行是几何学中的一个重要概念,指的是两条直线或平面永远不会相交。
我们可以通过同位角相等定理和垂直定理的逆定理来判定两条直线是否平行。
平行的概念和判定条件在解决几何问题中有广泛的应用,如平行四边形、相似三角形等。
掌握平行的定义和判定条件,能够帮助我们更好地理解和解决几何问题。
在实际应用中,我们可以利用平行的性质进行划分和分析,简化问题的解决过程。
通过学习和应用平行的知识,我们可以更好地理解和应用几何学的原理,提高解决问题的能力。
高考数学考点归纳之 直线、平面平行的判定与性质

高考数学考点归纳之 直线、平面平行的判定与性质一、基础知识1.直线与平面平行的判定定理和性质定理⎣⎢⎡⎦⎥⎤❶应用判定定理时,要注意“内”“外”“平行”三个条件必须都具备,缺一不可. 2.平面与平面平行的判定定理和性质定理⎣⎢⎢⎡⎦⎥⎥⎤❷如果一个平面内的两条相交直线分别平行于另一个平面的两条直线,那么这两个平面互相平行.符号表示:a ⊂α,b ⊂α,a ∩b =O ,a ′⊂β,b ′⊂β,a ∥a ′,b ∥b ′⇒α∥β. 二、常用结论平面与平面平行的三个性质(1)两个平面平行,其中一个平面内的任意一条直线平行于另一个平面. (2)夹在两个平行平面间的平行线段长度相等.(3)两条直线被三个平行平面所截,截得的对应线段成比例.考点一 直线与平面平行的判定与性质考法(一) 直线与平面平行的判定[典例] 如图,在直三棱柱ABC A 1B 1C 1中,点M ,N 分别为线段A 1B ,AC 1的中点.求证:MN ∥平面BB 1C 1C .[证明] 如图,连接A 1C .在直三棱柱ABC A 1B 1C 1中,侧面AA 1C 1C 为平行四边形.又因为N 为线段AC 1的中点,所以A 1C 与AC 1相交于点N ,即A 1C 经过点N ,且N 为线段A 1C 的中点.因为M 为线段A 1B 的中点,所以MN ∥BC . 又因为MN ⊄平面BB 1C 1C ,BC ⊂平面BB 1C 1C , 所以MN ∥平面BB 1C 1C .考法(二)线面平行性质定理的应用[典例](2018·豫东名校联考)如图,在四棱柱ABCDA1B1C1D1中,E为线段AD上的任意一点(不包括A,D两点),平面CEC1与平面BB1D交于FG.求证:FG∥平面AA1B1B.[证明]在四棱柱ABCDA1B1C1D1中,BB1∥CC1,BB1⊂平面BB1D,CC1⊄平面BB1D,所以CC1∥平面BB1D.又CC1⊂平面CEC1,平面CEC1与平面BB1D交于FG,所以CC1∥FG.因为BB1∥CC1,所以BB1∥FG.因为BB1⊂平面AA1B1B,FG⊄平面AA1B1B,所以FG∥平面AA1B1B.[题组训练]1.(2018·浙江高考)已知平面α,直线m,n满足m⊄α,n⊂α,则“m∥n”是“m∥α”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件解析:选A∵若m⊄α,n⊂α,且m∥n,由线面平行的判定定理知m∥α,但若m⊄α,n⊂α,且m∥α,则m与n有可能异面,∴“m∥n”是“m∥α”的充分不必要条件.2.如图,在四棱锥PABCD中,AB∥CD,AB=2,CD=3,M为PC上一点,且PM =2MC.求证:BM ∥平面P AD .证明:法一:如图,过点M 作MN ∥CD 交PD 于点N ,连接AN . ∵PM =2MC ,∴MN =23CD .又AB =23CD ,且AB ∥CD ,∴AB 綊MN ,∴四边形ABMN 为平行四边形, ∴BM ∥AN .又BM ⊄平面P AD ,AN ⊂平面P AD , ∴BM ∥平面P AD .法二:如图,过点M 作MN ∥PD 交CD 于点N ,连接BN . ∵PM =2MC ,∴DN =2NC , 又AB ∥CD ,AB =23CD ,∴AB 綊DN ,∴四边形ABND 为平行四边形, ∴BN ∥AD .∵BN ⊂平面MBN ,MN ⊂平面MBN ,BN ∩MN =N , AD ⊂平面P AD ,PD ⊂平面P AD ,AD ∩PD =D , ∴平面MBN ∥平面P AD .∵BM ⊂平面MBN ,∴BM ∥平面P AD .3.如图所示,四边形ABCD 是平行四边形,点P 是平面ABCD 外一点,M 是PC 的中点,在DM 上取一点G ,过G 和P A 作平面P AHG 交平面BMD 于GH .求证:P A ∥GH .证明:如图所示,连接AC 交BD 于点O ,连接MO , ∵四边形ABCD 是平行四边形, ∴O 是AC 的中点,又M 是PC 的中点,∴P A ∥MO . 又MO ⊂平面BMD ,P A ⊄平面BMD , ∴P A ∥平面BMD .∵平面P AHG ∩平面BMD =GH , P A ⊂平面P AHG , ∴P A ∥GH .考点二平面与平面平行的判定与性质[典例]如图,在三棱柱ABCA1B1C1中,E,F,G,H分别是AB,AC,A1B1,A1C1的中点,求证:(1)B,C,H,G四点共面;(2)平面EF A1∥平面BCHG.[证明](1)∵GH是△A1B1C1的中位线,∴GH∥B1C1.又∵B1C1∥BC,∴GH∥BC,∴B,C,H,G四点共面.(2)∵E,F分别为AB,AC的中点,∴EF∥BC,∵EF⊄平面BCHG,BC⊂平面BCHG,∴EF∥平面BCHG.∵A1G綊EB,∴四边形A1EBG是平行四边形,∴A1E∥GB.∵A1E⊄平面BCHG,GB⊂平面BCHG,∴A1E∥平面BCHG.∵A1E∩EF=E,∴平面EF A1∥平面BCHG.[变透练清]1.(变结论)在本例条件下,若D1,D分别为B1C1,BC的中点,求证:平面A1BD1∥平面AC1D.证明:如图所示,连接A1C,AC1,设交点为M,∵四边形A1ACC1是平行四边形,∴M是A1C的中点,连接MD,∵D为BC的中点,∴A1B∥DM.∵DM⊄平面A1BD1,A1B⊂平面A1BD1,∴DM∥平面A1BD1.又由三棱柱的性质知D1C1綊BD,∴四边形BDC1D1为平行四边形,∴DC1∥BD1.又DC1⊄平面A1BD1,BD1⊂平面A1BD1,∴DC1∥平面A1BD1,又∵DC1∩DM=D,DC1⊂平面AC1D,DM⊂平面AC1D,∴平面A1BD1∥平面AC1D.2.如图,四边形ABCD与四边形ADEF为平行四边形,M,N,G分别是AB,AD,EF的中点,求证:(1)BE∥平面DMF;(2)平面BDE∥平面MNG.证明:(1)如图,连接AE,设DF与GN的交点为O,则AE必过DF与GN的交点O.连接MO,则MO为△ABE的中位线,所以BE∥MO.又BE⊄平面DMF,MO⊂平面DMF,所以BE∥平面DMF.(2)因为N,G分别为平行四边形ADEF的边AD,EF的中点,所以DE∥GN.又DE⊄平面MNG,GN⊂平面MNG,所以DE∥平面MNG.又M为AB中点,所以MN为△ABD的中位线,所以BD∥MN.又BD⊄平面MNG,MN⊂平面MNG,所以BD ∥平面MNG .又DE ⊂平面BDE ,BD ⊂平面BDE ,DE ∩BD =D , 所以平面BDE ∥平面MNG .[课时跟踪检测]A 级1.已知直线a 与直线b 平行,直线a 与平面α平行,则直线b 与α的关系为( ) A .平行 B .相交C .直线b 在平面α内D .平行或直线b 在平面α内解析:选D 依题意,直线a 必与平面α内的某直线平行,又a ∥b ,因此直线b 与平面α的位置关系是平行或直线b 在平面α内.2.若平面α∥平面β,直线a ∥平面α,点B ∈β,则在平面β内且过B 点的所有直线中( )A .不一定存在与a 平行的直线B .只有两条与a 平行的直线C .存在无数条与a 平行的直线D .存在唯一与a 平行的直线解析:选A 当直线a 在平面β内且过B 点时,不存在与a 平行的直线,故选A. 3.在空间四边形ABCD 中,E ,F 分别是AB 和BC 上的点,若AE ∶EB =CF ∶FB =1∶2,则对角线AC 和平面DEF 的位置关系是( )A .平行B .相交C .在平面内D .不能确定解析:选A 如图,由AE EB =CFFB 得AC ∥EF .又因为EF ⊂平面DEF ,AC ⊄平面DEF , 所以AC ∥平面DEF .4.(2019·重庆六校联考)设a ,b 是两条不同的直线,α,β是两个不同的平面,则α∥β的一个充分条件是( )A .存在一条直线a ,a ∥α,a ∥βB .存在一条直线a ,a ⊂α,a ∥βC .存在两条平行直线a ,b ,a ⊂α,b ⊂β,a ∥β,b ∥αD .存在两条异面直线a ,b ,a ⊂α,b ⊂β,a ∥β,b ∥α解析:选D 对于选项A ,若存在一条直线a ,a ∥α,a ∥β,则α∥β或α与β相交,若α∥β,则存在一条直线a ,使得a ∥α,a ∥β,所以选项A 的内容是α∥β的一个必要条件;同理,选项B 、C 的内容也是α∥β的一个必要条件而不是充分条件;对于选项D ,可以通过平移把两条异面直线平移到一个平面中,成为相交直线,则有α∥β,所以选项D 的内容是α∥β的一个充分条件.故选D.5.如图,透明塑料制成的长方体容器ABCD A 1B 1C 1D 1内灌进一些水,固定容器底面一边BC 于地面上,再将容器倾斜,随着倾斜度的不同,有下面四个命题:①没有水的部分始终呈棱柱形;②水面EFGH 所在四边形的面积为定值; ③棱A 1D 1始终与水面所在平面平行; ④当容器倾斜如图所示时,BE ·BF 是定值. 其中正确命题的个数是( ) A .1 B .2 C .3D .4解析:选C 由题图,显然①是正确的,②是错误的; 对于③,∵A 1D 1∥BC ,BC ∥FG ,∴A 1D 1∥FG 且A 1D 1⊄平面EFGH ,FG ⊂平面EFGH , ∴A 1D 1∥平面EFGH (水面). ∴③是正确的;对于④,∵水是定量的(定体积V ), ∴S △BEF ·BC =V ,即12BE ·BF ·BC =V .∴BE ·BF =2VBC(定值),即④是正确的,故选C.6.如图,平面α∥平面β,△P AB 所在的平面与α,β分别交于CD ,AB ,若PC =2,CA =3,CD =1,则AB =________.解析:∵平面α∥平面β,∴CD ∥AB , 则PC P A =CDAB ,∴AB =P A ×CD PC =5×12=52. 答案:527.设α,β,γ是三个平面,a ,b 是两条不同直线,有下列三个条件: ①a ∥γ,b ⊂β;②a ∥γ,b ∥β;③b ∥β,a ⊂γ.如果命题“α∩β=a ,b ⊂γ,且________,则a ∥b ”为真命题,则可以在横线处填入的条件是________(填序号).解析:由面面平行的性质定理可知,①正确;当b ∥β,a ⊂γ时,a 和b 在同一平面内,且没有公共点,所以平行,③正确.故应填入的条件为①或③.答案:①或③8.在三棱锥P ABC 中,PB =6,AC =3,G 为△P AC 的重心,过点G 作三棱锥的一个截面,使截面平行于PB 和AC ,则截面的周长为________.解析:如图,过点G 作EF ∥AC ,分别交P A ,PC 于点E ,F ,过点E 作EN ∥PB 交AB 于点N ,过点F 作FM ∥PB 交BC 于点M ,连接MN ,则四边形EFMN 是平行四边形(平面EFMN 为所求截面),且EF =MN =23AC =2,FM =EN =13PB =2,所以截面的周长为2×4=8.答案:89.如图,E ,F ,G ,H 分别是正方体ABCD A 1B 1C 1D 1的棱BC ,CC 1,C 1D 1,AA 1的中点.求证:(1)EG ∥平面BB 1D 1D ; (2)平面BDF ∥平面B 1D 1H .证明:(1)如图,取B 1D 1的中点O ,连接GO ,OB , 因为OG 綊12B 1C 1,BE 綊12B 1C 1,所以BE 綊OG ,所以四边形BEGO 为平行四边形, 故OB ∥EG ,因为OB ⊂平面BB 1D 1D , EG ⊄平面BB 1D 1D , 所以EG ∥平面BB 1D 1D . (2)由题意可知BD ∥B 1D 1.连接HB ,D 1F ,因为BH 綊D 1F , 所以四边形HBFD 1是平行四边形, 故HD 1∥BF .又B 1D 1∩HD 1=D 1,BD ∩BF =B , 所以平面BDF ∥平面B 1D 1H .10.(2019·南昌摸底调研)如图,在四棱锥P ABCD 中,∠ABC = ∠ACD =90°,∠BAC =∠CAD =60°,P A ⊥平面ABCD ,P A =2,AB =1.设M ,N 分别为PD ,AD 的中点.(1)求证:平面CMN ∥平面P AB ; (2)求三棱锥P ABM 的体积.解:(1)证明:∵M ,N 分别为PD ,AD 的中点, ∴MN ∥P A ,又MN ⊄平面P AB ,P A ⊂平面P AB , ∴MN ∥平面P AB .在Rt △ACD 中,∠CAD =60°,CN =AN , ∴∠ACN =60°.又∠BAC =60°,∴CN ∥AB . ∵CN ⊄平面P AB ,AB ⊂平面P AB , ∴CN ∥平面P AB . 又CN ∩MN =N , ∴平面CMN ∥平面P AB .(2)由(1)知,平面CMN ∥平面P AB ,∴点M 到平面P AB 的距离等于点C 到平面P AB 的距离. ∵AB =1,∠ABC =90°,∠BAC =60°,∴BC =3,∴三棱锥P ABM 的体积V =V M P AB =V C P AB =V P ABC =13×12×1×3×2=33.B 级1.如图,四棱锥P ABCD 中,P A ⊥底面ABCD ,AD ∥BC ,AB =AD =AC =3,P A =BC =4,M 为线段AD 上一点,AM =2MD ,N 为PC 的中点.(1)求证:MN ∥平面P AB ; (2)求四面体N BCM 的体积. 解:(1)证明:由已知得AM =23AD =2.取BP 的中点T ,连接AT ,TN , 由N 为PC 的中点知TN ∥BC , TN =12BC =2.又AD ∥BC ,故TN 綊AM ,四边形AMNT 为平行四边形,于是MN ∥AT . 因为AT ⊂平面P AB ,MN ⊄平面P AB , 所以MN ∥平面P AB .(2)因为P A ⊥平面ABCD ,N 为PC 的中点,所以N 到平面ABCD 的距离为12P A .取BC 的中点E ,连接AE .由AB =AC =3,得AE ⊥BC ,AE =AB 2-BE 2= 5.由AM ∥BC 得M 到BC 的距离为5,故S △BCM =12×4×5=2 5. 所以四面体N BCM 的体积V N BCM =13×S △BCM ×P A 2=453.2.如图所示,几何体E ABCD 是四棱锥,△ABD 为正三角形,CB =CD ,EC ⊥BD .(1)求证:BE =DE ;(2)若∠BCD =120°,M 为线段AE 的中点,求证:DM ∥平面BEC . 证明:(1)如图所示,取BD 的中点O ,连接OC ,OE .∵CB =CD ,∴CO ⊥BD .又∵EC ⊥BD ,EC ∩CO =C ,∴BD ⊥平面OEC ,∴BD ⊥EO .又∵O 为BD 中点.∴OE 为BD 的中垂线,∴BE =DE .(2)取BA 的中点N ,连接DN ,MN .∵M 为AE 的中点,∴MN ∥BE .∵△ABD 为等边三角形,N 为AB 的中点,∴DN ⊥AB .∵∠DCB =120°,DC =BC ,∴∠OBC =30°,∴∠CBN =90°,即BC ⊥AB ,∴DN ∥BC .∵DN ∩MN =N ,BC ∩BE =B ,∴平面MND ∥平面BEC .又∵DM ⊂平面MND ,∴DM ∥平面BEC .。
空间几何中的平面平行关系

空间几何中的平面平行关系在空间几何学中,平面平行关系是一个重要的概念。
当两个平面永远不相交,无论它们延伸到无穷远,都不会相交,我们就可以说这两个平面是平行的。
平面平行关系有一些性质和判定方法,本文将对这些内容进行详细讨论。
一、定义和性质1. 定义:如果两个平面不相交,则它们是平行的。
2. 性质:a. 平行的平面在任意方向上的截线是平行线。
b. 平面平行关系是对称关系,即如果平面A与平面B平行,则平面B与平面A也平行。
c. 平面平行关系是传递关系,即如果平面A与平面B平行,平面B与平面C平行,则平面A与平面C也平行。
二、平面平行的判定方法1. 通过两个平面的法向量判定:如果两个平面的法向量是平行的,则这两个平面平行。
2. 通过平面上的一组向量判定:如果两个平面上的相同向量比值相等,则这两个平面平行。
3. 通过平面上的直线与另一平面的交点判定:如果一条直线与一个平面平行于另一个平面,则这两个平面平行。
三、平行平面的性质和相关定理1. 平行平面的截距:平行平面的任意两个截距之比相等。
2. 平行平面的夹角:平行平面之间的夹角等于它们的法向量夹角的余角。
3. 平行线与平面的垂直关系:如果一条直线平行于一个平面,那么该直线上的任意一条直线都与该平面垂直。
4. 平行平面的平行线:平行平面上的平行线在空间中保持平行关系。
根据上述性质和判定方法,我们可以在空间几何中确定两个平面之间的平行关系。
在实际生活中,平面平行关系有广泛的应用,比如建筑设计、地理测量等领域都需要考虑平面平行关系。
理解和掌握平行关系的概念和判定方法对于解决实际问题非常重要。
总结:空间几何中的平面平行关系是一种重要的关系概念,具有一定的性质和判定方法。
理解和应用平面平行关系对于解决各种实际问题以及在相关领域中的应用具有重要意义。
通过本文的介绍,希望读者能够对平面平行关系有更深入的理解,并能够灵活应用于实际问题中。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§5 平行关系
整体设计
教学分析
平行是一种非常重要的空间位置关系,它不仅应用较多,而且是学习空间位置关系的基础,是空间问题平面化的典范.要求学生在回忆直线与直线平行的定义的基础上探究直线与平面、平面与平面平行的判定定理.
平行的判定定理给出了由线面平行转化为面面平行的方法;平行的性质定理又给出了由面面平行转化为线线平行的方法,所以本节在立体几何中占有重要地位.
三维目标
1.掌握平行的判定定理,提高学生归纳能力.
2.能够利用两个判定定理解决有关问题,提高学生的空间想象能力和逻辑推理能力. 3.掌握平行关系的两个性质定理,提高学生空间想象能力. 4.掌握平行关系的应用,提高学生的逻辑思维能力. 重点难点
教学重点:①平行的判定定理的归纳和应用. ②平行的性质定理及应用.
教学难点:①平行的判定定理的归纳和应用. ②平行的性质定理的应用. 课时安排 2课时
1.5.1 平行关系的判定
导入新课
将一本书平放在桌面上,翻动书的封面,封面边缘AB 所在直线与桌面所在平面具有什么样的位置关系?
观察长方体(图1),你能发现长方体ABCD —A ′B ′C ′D ′中,线段A ′B 所在的直线与长方体ABCD —A ′B ′C ′D ′的侧面C ′D ′DC 所在平面的位置关系吗?
图1
新知探究
提出问题
活动:问题①引导学生回忆直线与平面的位置关系. 问题②借助模型锻炼学生的空间想象能力. 问题③引导学生进行语言转换. 问题④引导学生用反证法证明.
讨论结果:①直线在平面内、直线与平面相交、直线与平面平行. ②直线a 在平面α外,是不是能够断定a ∥α呢?
不能!直线a 在平面α外包含两种情形:一是a 与α相交,二是a 与α平行, 因此,由直线a 在平面α外,不能断定a ∥α. 若平面外一条直线平行平面内一条直线,那么平面外的直线与平面的位置关系可能相交吗?
既然不可能相交,则该直线与平面平行. ③直线与平面平行的判定定理:
平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行.
符号语言为:
⎭
⎪⎬⎪
⎫
a ⊄α
b ⊂αa ∥b ⇒a ∥α.
图形语言为:如图2.
图2
提出问题
①回忆空间两平面的位置关系.
②欲证线面平行可转化为线线平行,欲判定面面平行可如何转化?
③找出恰当空间模型加以说明.
④用三种语言描述平面与平面平行的判定定理.,⑤应用面面平行的判定定理应注意什么?
讨论结果:①如果两个平面没有公共点,则两平面平行⇔若α∩β=∅,则α∥β.
如果两个平面有一条公共直线,则两平面相交⇔若α∩β=AB,则α与β相交.两平面平行与相交的图形表示如图3.
图3
②由两个平面平行的定义可知:其中一个平面内的所有直线一定都和另一个平面平行.这是因为在这些直线中,如果有一条直线和另一平面有公共点,这点也必是这两个平面的公共点,那么这两个平面就不可能平行了.
另一方面,若一个平面内所有直线都和另一个平面平行,那么这两个平面平行,否则,这两个平面有公共点,那么在一个平面内通过这点的直线就不可能平行于另一个平面.由此将判定两个平面平行的问题转化为一个平面内的直线与另一个平面平行的问题,但事实上判定两个平面平行的条件不需要一个平面内的所有直线都平行于另一个平面,到底要多少条直线(且直线与直线应具备什么位置关系)与另一面平行,才能判定两个平面平行呢?
③如图4,如果一个平面内有一条直线与另一个平面平行,两个平面不一定平行.
图4
例如:AA′⊂平面AA′D′D,AA′∥平面DCC′D′,但是,平面AA′D′D∩平面DCC′D′=DD′.
如图5,如果一个平面内有两条直线与另一个平面平行,两个平面也不一定平行.
图5
例如:AA′⊂平面AA′D′D,EF⊂平面AA′D′D,AA′∥平面DCC′D′,EF∥平面DCC′D′,但是,平面AA′D′D∩平面DCC′D′=DD′.
如图6,如果一个平面内有两条相交直线与另一个平面平行,则这两个平面一定平行.
图6
例如:A′C′⊂平面A′B′C′D′,B′D′⊂平面A′B′C′D′,A′C′∥平面ABCD,B′D′∥平面ABCD,直线A′C′与直线B′D′相交.
可以判定,平面A′B′C′D′∥平面ABCD.
④两个平面平行的判定定理:
如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.
以上是两个平面平行的文字语言,另外面面平行的判定定理的符号语言为:
若a⊂α,b⊂α,a∩b=A,且a∥β,b∥β,则α∥β.
图形语言为:如图7.
图7
⑤利用判定定理证明两个平面平行,必须具备:
1°有两条直线平行于另一个平面;
2°这两条直线必须相交.
尤其是第二条学生容易忽视,应特别强调.
应用示例
例1 空间四边形ABCD中,E,F分别为AB,AD的中点.判断EF与平面BCD的位置关系.
图8
解:设由相交直线BC,CD所确定的平面为α,如图8,连接BD.易见,EF不在平面α内.由于E,F分别为AB,AD的中点,所以EF∥BD.又BD在平面α内,所以EF∥平面α.
点评:证明线面平行,转化为证明线线平行.
例2 如图9所示,空间四边形ABCD中,E,F,G,H分别是AB,BC,CD,AD的中点.试指出图中满足线面平行位置关系的所有情况.
图9
解:由EF∥HG∥AC,得
EF∥平面ACD;
AC∥平面EFGH;
HG∥平面ABC.
由BD∥EH∥FG,得
BD∥平面EFGH;
EH∥平面BCD;
FG∥平面ABD.
点评:判断线面是否平行时,首先确定是否存在线线平行.
变式训练
如图10,在△ABC 所在平面外有一点P ,M ,N 分别是PC 和AC 上的点,过MN 作平面平行于BC ,画出这个平面与其他各面的交线,并证明画法.
图10
画法:过点N 在面ABC 内作NE ∥BC 交AB 于E ,过点M 在面PBC 内作MF ∥BC 交PB 于F ,连接EF ,则平面MNEF 为所求,其中MN ,NE ,EF ,MF 分别为平面MNEF 与各面的交线.
图11
证明:如图11,
⎭
⎪⎬⎪
⎫
BC ⊄面MNEF NE ⊂面MNEF BC ∥NE
⇒BC ∥平面MNEF . 所以BC ∥平面MNEF .
点评:“见中点,找中点”是证明线线平行常用方法,而证明线面平行往往转化为证明线线平行.
例3 已知正方体ABCD —A 1B 1C 1D 1,求证:平面AB 1D 1∥平面C 1BD . 证明:如图12所示,ABCD —A 1B 1C 1D 1是正方体,
图12
所以BD ∥B 1D 1.
又B 1D 1平面AB 1D 1, 从而BD ∥平面AB 1D 1.
同理可证,BC 1∥平面AB 1D 1.
又直线BD 与直线BC 1交于点B ,因此平面C 1BD ∥平面AB 1D 1. 点评:证明面面平行,转化为证明线面平行. 变式训练
如图13,在正方体ABCD —EFGH 中,M ,N ,P ,Q ,R 分别是EH ,EF ,BC ,CD ,AD 的中点,求证:平面MNA ∥平面PQG .
证明:∵M ,N ,P ,Q ,R 分别是EH ,EF ,BC ,CD ,AD 的中点,∴MN ∥HF ,PQ ∥BD .
图13
∵BD∥HF,
∴MN∥PQ.
∵PR∥GH,PR=GH,MH∥AR,MH=AR,
∴四边形RPGH为平行四边形,四边形ARHM为平行四边形.
∴AM∥RH,RH∥PG.
∴AM∥PG.
∵MN∥PQ,MN⊄平面PQG,PQ⊂平面PQG,∴MN∥平面PQG.
同理可证,AM∥平面PQG.
又直线AM与直线MN相交,
∴平面MNA∥平面PQG.
点评:证面面平行,通常转化为证线面平行,而证线面平行又转化为证线线平行,所以关键是证线线平行.
课堂练习:P31练习
课堂小结:证明平行的策略是转化,即证明线面平行转化为证明线线平行,证明面面平行转化为证明线面平行.
课后作业:P34习题1—5 A组第4,6题.。