最新空间中的平行关系教案
数学教案:空间里的平行关系

数学教案:空间里的平行关系1. 教学目标1.1 知识目标•知道空间中任意两个平面/直线之间的平行关系的定义。
•能够根据已知条件判断平面/直线之间是否平行。
•能够运用平行关系解决实际问题。
1.2 能力目标•具备分析问题、运用公式求解问题的能力。
•能够进行判断和推理,培养逻辑思维能力。
1.3 情感目标•培养学生对数学知识的兴趣。
•培养学生的合作精神和团队意识。
2. 教学重点难点2.1 教学重点•平面/直线之间的平行关系的定义。
•平行关系的性质。
2.2 教学难点•平面/直线之间是否平行的判断。
•如何应用平行关系解决实际问题。
3. 教学内容3.1 概念讲解3.1.1 平行向量定义:若两个非零向量共线,则称它们为平行向量。
性质:•平行向量的方向相同或相反,但模可以不同。
•平行向量的模相等,则方向相同或相反。
3.1.2 平面/直线的平行关系定义:若两个平面/直线没有交点,则称它们为平行的。
性质:•平行的平面/直线不存在交点。
•相交的平面/直线一般不平行。
•平行的平面/直线的法向量平行。
3.2 解决实际问题3.2.1 存在平面/直线的平行关系情境:已知空间中A、B两点和三个平面P1、P2、P3,求证:若P1∥P2,P1∥P3,则P2∥P3。
解法:•若P1与P2平行,则它们的法向量也平行,即n1∥n2。
•若P1与P3平行,则它们的法向量也平行,即n1∥n3。
•因为n1∥n2且n1∥n3,所以n2∥n3,即P2与P3平行。
3.2.2 应用平行关系解决实际问题情境:已知长方体ABCD-A1B1C1D1的AB∥CD,BD∥A1C1,连接A1D1,求证A1D1∥BC。
解法:•连接AC,AD,A1B,B1C,通过画图,我们可以发现三角形ACD与A1B1C1全等。
•进一步观察可以发现,在BC平面上,BD与A1C1平行,因此BD与BC的垂线平行。
•因此,A1D1∥BC。
4. 教学方法4.1 讲授法在黑板上进行讲述和演示,让学生对平行关系的概念和性质有更清晰的认识。
空间里的平行关系数学教案设计

空间里的平行关系数学教案设计第一章:引言1.1 课程目标让学生理解平面的概念让学生掌握平行线的定义让学生能够识别和画出平行线1.2 教学内容平面:介绍平面的定义和性质平行线:介绍平行线的定义和性质平行公理:介绍平行公理及其推论1.3 教学方法采用问题驱动的教学方法,引导学生通过观察和思考来发现平行关系的性质利用图形和实物模型,帮助学生直观地理解平行的概念1.4 教学资源准备平面和直线模型提供相关的练习题和思考题1.5 教学评估通过课堂讨论和练习题来评估学生对平面和平行线概念的理解程度第二章:平面的定义和性质2.1 教学目标让学生理解平面的定义和性质让学生能够描述和区分不同的平面图形2.2 教学内容平面:介绍平面的定义和性质平面图形:介绍矩形、正方形、三角形等平面图形的性质2.3 教学方法采用问题驱动的教学方法,引导学生通过观察和思考来发现平面的性质利用图形和实物模型,帮助学生直观地理解平面的概念2.4 教学资源准备平面和直线模型提供相关的练习题和思考题2.5 教学评估通过课堂讨论和练习题来评估学生对平面概念的理解程度第三章:平行线的定义和性质3.1 教学目标让学生掌握平行线的定义和性质让学生能够识别和画出平行线3.2 教学内容平行线:介绍平行线的定义和性质平行线的判定:介绍平行线的判定方法3.3 教学方法采用问题驱动的教学方法,引导学生通过观察和思考来发现平行线的性质利用图形和实物模型,帮助学生直观地理解平行线的概念3.4 教学资源准备平面和直线模型提供相关的练习题和思考题3.5 教学评估通过课堂讨论和练习题来评估学生对平行线概念的理解程度第四章:平行公理及其推论4.1 教学目标让学生理解平行公理及其推论让学生能够运用平行公理解决实际问题4.2 教学内容平行公理:介绍平行公理的定义和证明平行公理的推论:介绍平行公理的推论及其应用4.3 教学方法采用问题驱动的教学方法,引导学生通过观察和思考来发现平行公理的性质利用图形和实物模型,帮助学生直观地理解平行公理的概念4.4 教学资源准备平面和直线模型提供相关的练习题和思考题4.5 教学评估通过课堂讨论和练习题来评估学生对平行公理及其推论的理解程度第五章:练习与应用5.1 教学目标让学生巩固对平面和平行线的理解让学生能够运用所学的知识解决实际问题5.2 教学内容练习题:提供相关的练习题,帮助学生巩固对平面和平行线的理解实际问题:提供一些实际问题,让学生运用所学的知识解决问题5.3 教学方法采用问题驱动的教学方法,引导学生通过观察和思考来解决实际问题利用图形和实物模型,帮助学生直观地理解平面和平行线的概念5.4 教学资源提供相关的练习题和思考题提供一些实际问题5.5 教学评估通过课堂讨论和练习题来评估学生对平面和平行线的理解程度第六章:实际问题中的平行关系6.1 教学目标让学生能够将实际问题抽象为平面和平行线的问题让学生运用所学的知识解决实际问题6.2 教学内容实际问题:提供一些实际问题,让学生运用所学的知识解决问题问题解决策略:介绍如何将实际问题转化为平面和平行线的问题,并运用平行关系来解决6.3 教学方法采用问题驱动的教学方法,引导学生通过观察和思考来解决实际问题利用图形和实物模型,帮助学生直观地理解平面和平行线的概念6.4 教学资源提供相关的实际问题提供解决问题的指导和方法6.5 教学评估通过课堂讨论和练习题来评估学生对实际问题中平行关系的理解程度第七章:平行线的判定与证明7.1 教学目标让学生掌握平行线的判定方法让学生能够运用平行线的判定方法进行证明7.2 教学内容平行线的判定方法:介绍同位角相等、内错角相等、同旁内角互补等判定方法平行线的证明:介绍如何运用判定方法进行平行线的证明7.3 教学方法采用问题驱动的教学方法,引导学生通过观察和思考来发现平行线的判定方法利用图形和实物模型,帮助学生直观地理解平行线的判定方法7.4 教学资源提供相关的图形和实例提供证明题和思考题7.5 教学评估通过课堂讨论和练习题来评估学生对平行线的判定与证明的理解程度第八章:平行线的应用让学生能够运用平行线的知识解决实际问题让学生能够运用平行线的知识进行几何图形的分析和设计8.2 教学内容平行线的应用问题:提供一些应用问题,让学生运用所学的知识解决问题几何图形的分析与设计:介绍如何运用平行线的知识进行几何图形的分析和设计8.3 教学方法采用问题驱动的教学方法,引导学生通过观察和思考来解决实际问题利用图形和实物模型,帮助学生直观地理解平行线的应用8.4 教学资源提供相关的应用问题提供几何图形的分析和设计指导8.5 教学评估通过课堂讨论和练习题来评估学生对平行线的应用的理解程度第九章:复习与巩固9.1 教学目标让学生复习和巩固对平面和平行线的理解让学生能够运用所学的知识解决实际问题9.2 教学内容复习平面和平行线的概念和性质复习平行线的判定与证明方法提供一些实际问题,让学生运用所学的知识解决问题采用问题驱动的教学方法,引导学生通过观察和思考来复习和巩固知识利用图形和实物模型,帮助学生直观地理解平面和平行线的概念9.4 教学资源提供相关的图形和实例提供复习题和思考题9.5 教学评估通过课堂讨论和练习题来评估学生对平面和平行线的理解程度第十章:总结与拓展10.1 教学目标让学生总结对空间里的平行关系的理解让学生能够拓展所学的知识,探索更深层次的平行关系10.2 教学内容总结平面和平行线的概念、性质、判定和应用拓展平行关系的深入探索,如空间中的平行线、异面直线等10.3 教学方法采用问题驱动的教学方法,引导学生通过观察和思考来总结和拓展知识利用图形和实物模型,帮助学生直观地理解平行关系的深入探索10.4 教学资源提供相关的图形和实例提供总结和拓展的指导材料10.5 教学评估通过课堂讨论和练习题来评估学生对空间里的平行关系的理解程度,以及学生对平行关系拓展知识的探索程度。
1.2.空间中的平行关系-人教B版必修二教案

1.2.空间中的平行关系-人教B版必修二教案一、教学目标1.知道平面内两直线的四种相对位置及其判定方法;2.掌握实际问题中平面内直线的平行条件及其应用;3.了解空间中两平面的四种相对位置及其判定方法;4.能够应用平行的定义、判定及其性质解决实际问题。
二、教学内容1.平面内两直线的位置关系及判定方法;2.平面内直线平行的条件及其性质;3.空间中两平面的位置关系及判定方法;4.空间中两平面平行的条件及其性质。
三、教学重点和难点1.平面内直线平行的条件及其应用;2.空间中两平面的相对位置及判定方法。
四、教学过程导入1.根据生活中的例子,引导学生认识到平面内直线的位置关系。
感知1.利用草图,介绍平面内两直线的四种相对位置。
2.让学生自学两条平行线的定义及其应用。
理解1.讲解平行线间距离定义,引入直线平行的概念。
2.讲解平面内两直线平行的条件,掌握两个角相等的性质,并对平行线的判定方法进行强调。
3.介绍平行线的基本性质,并让学生通过讨论问题,了解实际问题中平行的应用。
拓展1.做空间中两平面的位置关系的引入问题,引出两个重要概念——相交和平行。
2.介绍空间中两平面的相对位置,详细说明它们可能存在的四种情况,并提供相应的判定方法。
3.介绍两平面平行的定义和判定条件。
4.讨论平面内直线与平面平行的问题,并引申到空间中两平面的平行性质。
总结1.总结平行的定义及其性质;2.回顾平面内两直线的判定条件及其应用;3.理解空间中两平面的判定条件及其应用;4.讲解平行的应用。
反思1.指出本节内容的难点和易错点,提醒学生注意。
2.调查并统计本节课的遗忘率或疑惑点,做针对性练习活动。
五、课堂设计在本节课中,老师可以采用以下设计:1.利用例子或图像,鼓励学生主动思考本节课的主要内容。
2.配合实际问题,引导学生学习平面和空间中的平行性质及其判定条件。
3.通过学生自主探究,让他们提高解决问题的能力和方法,增强学习兴趣。
六、学法指导1.分析排除错误的典型方法,将帮助学生更好地理解本节课中的概念和方法。
7.2 空间中的平行关系

7.2空间中的平行关系教学设计(人教A版普通高中教科书数学必修第二册第八章)一、教学目标:1、知识与技能目标:通过复习三个平行的关系,使学生在《立体几何》的证明中能够正确运用定理证明三个平行,从而使学生重新认识学习立体几何的目的,明确立体几何研究的内容;使学生初步建立空间观念,会看空间图形的直观图;使学生知道立体几何研究问题的一般思想方法。
2、过程与方法目标:通过对具体情形的分析,归纳得出一般规律,让学生具备初步归纳能力;借助图形,通过整体观察、直观感知,使学生形成积极主动、勇于探索的学习方式,完善思维结构,发展空间想象能力。
3、情感、态度、与价值观目标:在教学过程中培养学生创新意识和数学应用意识,提高学生学习数学的兴趣并注意在小组合作学习中培养学生的合作精神。
二、教学重点与难点:重点:培养空间想象能力,明确证明空间中的平行关系的一般思想方法,并会应用。
难点:在证明的过程中做辅助线或辅助平面。
三、教学方法:引导式教学法四、学情分析:1、由于这是复习课,学生已经系统学习了立体几何的知识,本节课就是让学生更深入地对空间中几何图形的平行位置和数量关系进行推理和计算;2、学生在学习过程中将会遇到一些问题:不能很好地使用直观图来表示立体图形、不能准确的做出辅助线、证明过程书写不规范等等。
五、教学过程:(一)考纲要求:(1)以空间直线、平面位置关系的定义为出发点认识和理解空间中的平行关系;(2)理解直线和平面平行、平面和平面平行的判定定理与性质定理;(3)能用公理、定理和已经获得的结论证明一些空间位置关系的简单命题。
设计意图:明确考纲要求,做到心中有数;(二)知识梳理:1.直线与平面平行(1)直线与平面平行的定义直线l与平面α没有公共点,则称直线l与平面α平行.(2)判定定理与性质定理2.(1)平面与平面平行的定义没有公共点的两个平面叫做平行平面.(2)判定定理与性质定理1.平行关系中的三个重要结论(1)垂直于同一条直线的两个平面平行,即若a⊥α,a⊥β,则α∥β.(2)平行于同一平面的两个平面平行,即若α∥β,β∥γ,则α∥γ.(3)垂直于同一个平面的两条直线平行,即若a⊥α,b⊥α,则a∥b.2.三种平行关系的转化设计意图:使学生更明确本节课的主题----三个平行的关系;通过知识点的复习与梳理,为学生构建完整的知识体系;(三)考点分层突破考点一与线、面平行相关命题的判定例1.(多选题)已知m,n是两条不同的直线,α,β,γ是三个不同的平面,则下列命题中正确的是() A.若m∥α,m∥β,则α∥β B.若m∥α,n∥α,则m∥nC.若m⊥α,n⊥α,则m∥nD.若α⊥γ,α⊥β,则γ与β可能平行,也可能相交答案CD解析对于A,若α∩β=n,m∥n,则m∥α,m∥β,所以A错误.对于B,若m∥α,n∥α,则m与n可能是异面直线,相交直线或平行直线,所以B错误.对于C,若m⊥α,n⊥α,由线面垂直的性质定理知m∥n,C正确.对于D,若α⊥γ,α⊥β,则γ与β可能相交或平行,D正确.练习(多选题)(2021·潍坊调研)在正方体ABCD-A1B1C1D1中,下列结论正确的是()A.AD1∥BC1B.平面AB1D1∥平面BDC1C.AD1∥DC1D.AD1∥平面BDC1答案ABD解析如图,因为AB//C1D1,所以四边形AD1C1B为平行四边形.故AD1∥BC1,从而A正确;易证BD∥B1D1,AB1∥DC1,又AB1∩B1D1=B1,BD∩DC1=D,故平面AB1D1∥平面BDC1,从而B正确;由图易知AD1与DC1异面,故C错误;因为AD1∥BC1,AD1⊄平面BDC1,BC1⊂平面BDC1,所以AD1∥平面BDC1,故D正确.设计意图:让学生学习到以下2点: 1.判断与平行关系相关命题的真假,必须熟悉线、面平行关系的各个定义、定理,无论是单项选择还是含选择项的填空题,都可以从中先选出最熟悉最容易判断的选项先确定或排除,再逐步判断其余选项.2.(1)结合题意构造或绘制图形,结合图形作出判断.(2)特别注意定理所要求的条件是否完备,图形是否有特殊情况,通过举反例否定结论或用反证法推断命题是否正确.考点二线面平行、面面平行的判定定理与性质定理例2.(辽宁卷)如图,直三棱柱ABC-A′B′C′,∠BAC=90°,AB=AC=2,AA′=1,点M,N分别为A′B和B′C′的中点.(1)证明:MN∥平面A′ACC′;(2)求三棱锥A′-MNC的体积.证法1:中位线法证法2 平行四边形法证法3:构造平行平面法设计意图:既让学生及时巩固了本节重点知识,又让学生明白,同一问题可以由不同方法去解决,体现一题多解.利用线面平行的判定定理证明直线与平面平行的关键是在平面内找到一条与已知直线平行的直线.利用面面平行的性质证明线面平行时,关键是构造过该直线与所证平面平行的平面,这种方法往往借助于比例线段或平行四边形.例3.如图,四边形ABCD是平行四边形,点P是平面ABCD外一点,M是PC的中点,在DM上取一点G,过G和AP作平面交平面BDM于GH.求证:GH∥GH.证明如图,连接AC交BD于点O,连接MO,因为四边形ABCD是平行四边形,所以O是AC的中点.又M是PC的中点,所以AP∥OM.根据直线和平面平行的判定定理,则有P A∥平面BMD.因为平面P AHG∩平面BMD=GH,根据直线和平面平行的性质定理,所以P A∥GH.设计意图在应用线面平行的性质定理进行平行转化时,一定注意定理成立的条件,通常应严格按照定理成立的条件规范书写步骤,如:把线面平行转化为线线平行时,必须说清经过已知直线的平面和已知平面相交,这时才有直线与交线平行.练习(2019·北京卷)如图,在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD为菱形,E为CD的中点.(3)棱PB上是否存在点F,使得CF∥平面PAE?说明理由.设计意图:本题带有探索性,该题会引领学生去探索。
空间里的平行关系数学教案设计

空间里的平行关系数学教案设计第一章:引言1.1 教学目标让学生了解平行关系的概念。
培养学生观察和识别空间中平行关系的能力。
1.2 教学内容平行关系的定义。
平行关系的性质。
1.3 教学方法观察和分析实际生活中的平行关系实例。
小组讨论和分享观察结果。
1.4 教学资源图片或实物展示平行关系的实例。
1.5 教学步骤1. 引入平行关系的概念,让学生思考在日常生活和学习中是否遇到过平行关系。
2. 展示一些实际生活中的平行关系实例,如教室里的书桌、街道上的交通标志等。
3. 引导学生观察和分析这些实例,发现平行关系的特征。
4. 学生分组讨论,分享观察结果,总结平行关系的性质。
5. 教师进行总结和强调平行关系的重要性。
第二章:平行线的性质2.1 教学目标让学生掌握平行线的性质。
培养学生运用平行线的性质解决问题的能力。
2.2 教学内容平行线的定义。
平行线的性质。
2.3 教学方法观察和分析实际生活中的平行线实例。
小组讨论和分享观察结果。
2.4 教学资源图片或实物展示平行线的实例。
2.5 教学步骤1. 回顾上一章的内容,引导学生思考平行关系的特征。
2. 引入平行线的概念,展示一些实际生活中的平行线实例,如黑板上的两条直线、书桌上的两条直线等。
3. 引导学生观察和分析这些实例,发现平行线的特征。
4. 学生分组讨论,分享观察结果,总结平行线的性质。
5. 教师进行总结和强调平行线的重要性。
第三章:平行公理3.1 教学目标让学生理解平行公理的概念。
培养学生运用平行公理解决问题的能力。
3.2 教学内容平行公理的定义。
平行公理的证明。
3.3 教学方法观察和分析实际生活中的平行关系实例。
小组讨论和分享观察结果。
3.4 教学资源图片或实物展示平行关系的实例。
3.5 教学步骤1. 引导学生回顾上一章的内容,了解平行线的性质。
2. 引入平行公理的概念,解释平行公理的含义。
3. 展示一些实际生活中的平行关系实例,引导学生运用平行公理进行分析。
空间里的平行关系(精选7篇)

空间里的平行关系(精选7篇)空间里的平行关系篇1教学建议一、知识结构在平行线知识的基础上,教科书以学生对长方体的直观认识为基础,通过观察长方体的某些棱与面、面与面的不相交,进而把它们想象成空间里的直线与平面、平面与平面的不相交,来建立空间里平行的概念.培养学生的空间观念.二、重点、难点分析能认识空间里直线与直线、直线与平面、平面与平面的平行关系既是本节教学重点也是难点.本节知识是线线平行的相关知识的延续,对培养学生的空间观念,进一步研究空间中的点、线、面、体的关系具有重要的意义.1.我们知道在同一平面内的两条直线的位置关系有两种:相交或平行,由于垂直和平行这两种关系与人类的生产、生活密切相关,所以这两种空间位置关系历来受到人们的关注,前面我们学过在平面内直线与直线垂直的情况,以及在空间里直线与平面,平面与平面的垂直关系.2.例如:在图中长方体的棱AA'与面ABCD垂直,面A'ABB'与面ABCD互相垂直并且当时我们还从观察中得出下面两个结论:(1)一条棱垂直于一个面内两条相交的棱,这条棱与这个面就互相垂直.(2)一个面经过另一个面的一条垂直的棱,这两个面就互相垂直.正如上述,在空间里有垂直情况一样,在空间里也有平行的情况,首先看棱AB与面A'B'C'D'的位置关系,把棱AB向两方延长,面A'B'C'D'向各个方向延伸,它们总也不会相交,像这样的棱和面就是互相平行的,同样,棱AB与面DD'C'C是互相平行的,棱AA'与面BB'C'C、与面DD'C'C 也是互相平行的.再看面ABCD与A'B'C'D',这两个面无论怎样延展,它们总也不会相交,像这样的两个面是互相平行的,面AA'B'B与DD'C'C也是互相平行的.3.直线与平面、平面与平面平行的判定(1)不在平面内的一条直线,只要与平面内的某一条直线平行,那么,这条直线与这个平面平行。
空间中的平行关系(优质课)教案

1.5空间中的平行关系(优质课)教案教学目标:了解直线和平面的三种位置关系; 理解并掌握直线与平面平行的判定定理; 理解并掌握直线与平面平行的性质定理; 理解并掌握平面与平面平行的性质定理.教学过程:一、直线与平面的位置关系//a α二、直线和平面平行1.定义:如果一条直线和一个平面没有公共点,那么这条直线与这个平面平行.2.判定定理:如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行.推理模式:////a b a a b ααα⊄⎫⎪⊂⇒⎬⎪⎭特别说明:1、定理中的三个条件缺一不可.2、该定理的作用:证明线面平行.3、该定理可简记为“线线平行,则线面平行.” 3. 性质定理如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行.推理模式 ////a a a b b αβαβ⎫⎪⊂⇒⎬⎪=⎭特别说明:1、定理中的三个条件缺一不可.2、该定理的作用:证明线线平行.3、该定理可简记为“线面平行,则线线平行.” 三、平面和平面的位置关系四、平面与平面平行 1.两平面互相平行的定义如果两个平面没有公共点,那么这两个平面平行. 2.两平面平行的判定定理如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.推理模式:.简言之:线面平行面面平行推论:如果一个平面内有两条相交直线分别平行于另一个平面内的两条直线,则这两个平面平行. 3.两个平面平行的性质如果两个平行平面同时和第三个平面相交,那么它们的交线平行.推理模式:////a a b b αβγαγβ⎫⎪=⇒⎬⎪=⎭.简言之:面面平行⇒线线平行特别说明:平面与平面平行的其它性质(1)两个平面平行,其中一个平面内的任何一条直线必平行于另一个平面. (2)夹在两个平行平面之间的平行线段相等.(3)经过平面外一点,有且仅有一个平面和已知平面平行.,//,////a a b b a b A αβαβαβ⊂⎫⎪⊂⇒⎬⎪=⎭⇒a(4)两条直线被三个平行平面所截,截得的对应线段成比例.类型一线面平行例1:b是平面α外的一条直线,可以推出b∥α的条件是()A.b与α内的一条直线不相交B.b与α内的两条直线不相交C.b与α内的无数条直线不相交D.b与α内的任何一条直线都不相交解析:∵b∥α,∴b与α无公共点,从而b与α内任何一条直线无公共点.答案:D练习1:(2014·甘肃天水一中高一期末测试)直线在平面外是指()A.直线与平面没有公共点B.直线与平面相交C.直线与平面平行D.直线与平面最多有一个公共点答案:D练习2:点M、N是正方体ABCD-A1B1C1D1的棱A1A与A1B1的中点,P是正方形ABCD的中心,则MN与平面PCB1的位置关系是()A.平行B.相交C.MN⊂平面PCB1D.以上三种情形都有可能答案:A如图,∵M、N分别为A1A和A1B1中点,∴MN∥AB1,又∵P是正方形ABCD的中心,∴P、A、C三点共线,∴AB1⊂平面PB1C,∵MN⊄平面PB1C,∴MN∥平面PB1C.练习3:在正方体ABCD-A1B1C1D1中和平面C1DB平行的侧面对角线有________条.答案:3例2:(2014江西丰城三中高一期末测试)如图,已知E、F分别是三棱锥A-BCD的侧棱AB、AD的中点,求证:EF∥平面BCD.解析:找到平面BCD中与EF平行的直线,即可由定理证明结论.答案:证明:∵E、F分别是AB、AD的中点,∴EF∥BD.又∵EF⊄平面BCD,BD⊂平面BCD,∴EF∥平面BCD.练习1:((2014·山东济南一中月考)如图所示,已知P是▱ABCD所在平面外的一点,M是PB的中点,求证:PD∥平面MAC.答案:连接BD交AC于点O,连接OM.根据题意,得O是BD的中点,M是PB的中点.∴在△BPD中,OM是中位线,∴OM∥PD.又∵OM⊂平面MAC,PD⊄平面MAC.∴PD∥平面MAC.练习2:(2014·陕西宝鸡园丁中学高一期末测试)如图,已知正方体ABCD -A 1B 1C 1D 1中,O 是底面ABCD 对角线的交点,求证:C 1O ∥平面AB 1D 1.答案:连接A 1C 1交B 1D 1于点O 1, ∵AO ∥C 1O 1,AO =C 1O∴四边形AOC 1O 1是平行四边形, ∴C 1O ∥AO 1.又∵C 1O ⊄平面AB 1D 1, AO 1⊂平面AB 1D 1, ∴C 1O ∥平面AB 1D 1.例3:已知直线a ∥平面α,a ∥平面β,α∩β=b ,求证a ∥b .解析:若直接证明两条直线a 与b 平行,则相当困难,注意到线面平行的条件,联想到性质定理,则可想到用构造法作辅助平面来帮助证明.答案:在平面α上任取一点A ,在β上任取一点B ,且A 、B 都不在直线b 上.∵a ∥α,a ∥β,∴A ∉a ,B ∉a ,∴由a 与A ,a 与B 可分别确定平面γ1,γ2, 设γ1∩α=c ,γ2∩β=d , 则a ∥c ,且a ∥d ,∴c ∥d . 又d ⊂β,且c ⊄β,∴c ∥β. 又c ⊂α且α∩β=b ,∴c ∥b . 而a ∥c ,∴a ∥b .练习1:三个平面α、β、γ两两相交,有三条交线l 1、l 2、l 3,如果l 1∥l 2.求证:l 3与l 1、l 2平行. 答案:如图,α∩β=l 1,β∩γ=l 2,α∩γ=l 3,l 1∥l 2.⎭⎪⎬⎪⎫⎭⎪⎬⎪⎫l 1∥l 2l 2⊂γl 1⊄γ⇒l 1∥γ l 1⊂α α∩γ=l 3⎭⎪⎬⎪⎫⇒l 1∥l 3 l 1∥l 2⇒l 3∥l 1∥l 2.练习2:如图,在四棱锥P -ABCD 中,底面ABCD 为平行四边形,N 是PB 的中点,过A 、N 、D 三点的平面交PC 于点M ,求证:AD ∥MN .答案:∵ABCD 为平行四边形,∴AD ∥BC ,又BC ⊂平面PBC , AD ⊄平面PBC ,∴AD ∥平面PBC ,又AD ⊂平面ADMN ,平面PBC ∩平面ADMN =MN ,∴AD ∥MN .类型二 平面与平面平行例3:如图,在三棱柱ABC -A 1B 1C 1中,E 、F 、G 、H 分别是AB 、AC 、A 1B 1、A 1C 1的中点,求证:平面EFA 1∥平面BCHG .解析:运用平面平行的判定.答案:∵E、F分别为AB、AC的中点,∴EF∥BC.∵EF⊄平面BCHG,BC⊂平面BCHG,∴EF∥平面BCHG.∵A1G EB,∴四边形A1EBG是平行四边形,∴A1E∥GB.∵A1E⊄平面BCHG,GB⊂平面BCHG,∴A1E∥平面BCHG.∵A1E∩EF=E,∴平面EF A1∥平面BCHG.练习1:如图所示,已知正方体ABCD-A1B1C1D1,求证:平面AB1D1∥平面BDC1.答案:∵AB A1B1,C1D1A1B1,∴AB C1D1.∴四边形ABC1D1为平行四边形.∴AD1∥BC1.又AD1⊂平面AB1D1,BC1⊄平面AB1D1,∴BC1∥平面AB1D1.同理BD∥平面AB1D1.又∵BD∩BC1=B,∴平面AB1D1∥平面BDC1.练习2:已知正方体ABCD-A1B1C1D1中,E、F分别是AA1、CC1的中点,求证:平面BDF∥平面B1D1E. 答案:如图,取BB 1的中点G,连接EG、GC1,则有EG A1B1.又A1B1C1D1,∴EG C1D1.∴四边形EGC1D1是平行四边形,∴D1E GC1.又BG C1F,∴四边形BGC1F为平行四边形,∴BF∥C1G,∴BF∥D1E.又BF⊄平面B1D1E,D1E⊂平面B1D1E,∴BF∥平面B1D1E.又BD∥B1D1,同理可得BD∥平面B1D1E.又∵BF∩BD=B,∴由平面与平面平行的判定定理得,平面BDF∥平面B1D1E.练习3:在正方体EFGH-E1F1G1H1中,平面E1FG1与平面EGH1,平面FHG1与平面F1H1G,平面F1H1H与平面FHE1,平面E1HG1与平面EH1G中互相平行的对数为()A.0 B.1C.2 D.3答案:本题考查面面平行的判定.∵EG∥E1G1,FG1∥EH1,EG∩EH1=E,E1G1∩FG1=G1,∴平面EGH1∥平面E1FG1,经验证其他3对均不平行,故选B.例4:将已知:平面α∥平面β,AB 、CD 是夹在这两个平面之间的线段, 且点E 、G 分别为AB 、CD 的中点,AB 不平行于CD ,如图所示. 求证:EG ∥α,EG ∥β.解析:由平面平行的性质除法得到结论.答案:如图所示,过点A 作AH ∥CD ,交平面β于点H ,设F 是AH 的中点,连接HD ,则AH 綊CD , ∴四边形ACDH 为平行四边形. 连接EF 、FG 和BH ,∵E 、F 分别是AB 、AH 的中点,∴EF ∥BH . ∵EF ⊄平面β,且BH ⊂平面β,∴EF ∥β.又F 、G 分别是AH ,CD 的中点,且AC ∥HD , ∴FG ∥HD .又∵FG ⊄平面β,HD ⊂平面β,∴FG ∥β. ∵EF ∩FG =F ,∴平面EFG ∥β, 又α∥β,∴平面EFG ∥α.∵EG ⊂平面EFC ,∴EG ∥α,EG ∥β. 练习1:知平面α、β、γ,α∥β∥γ,异面直线l 、m 分别与平面α、β、γ相交于A 、B 、C 和D 、E 、F .求证:AB BC =DE EF.答案:连接DC ,设DC 与平面β相交于G ,则平面ACD 与平面α、β分别交于AD 、BG , 平面DCF 与平面β、γ分别相交于直线GE 、CF , ∵α∥β,β∥γ,∴BG ∥AD ,GE ∥CF , ∴AB BC =DG GC ,DG GC =DE EF ,∴AB BC =DE EF. 练习2:若平面α∥平面β,直线a ⊂α,直线b ⊂β,那么a 、b 的位置关系是( )A .无公共点B .平行C .既不平行也不相交D .相交 答案:A1.(2014·江西丰城三中高一期末测试)已知直线a 、b 和平面α,下列命题中正确的是( )A .若a ∥α,b ⊂α,则a ∥bB .若a ∥α,b ∥α,则a ∥bC .若a ∥b ,b ⊂α,则a ∥αD .若a ∥b ,a ∥α,则b ⊂α或b ∥α 答案:D2.P 为矩形ABCD 所在平面外一点,矩形对角线交点为O ,M 为PB 的中点,给出四个命题:①OM ∥平面PCD ;②OM ∥平面PBC ;③OM ∥平面PDA ;④OM ∥平面PBA . 其中正确命题的个数是( ) A .1 B .2 C .3 D .4 答案:B3.过平面α外的直线l ,作一组平面与α相交,如果所得的交线为a ,b ,c ,…,则这些交线的位置关系为( )A .都平行B .都相交且交于同一点C .都相交但不一定交于同一点D .都平行或都交于同一点 答案:D4.如图,在空间四边形ABCD 中,M ∈AB ,N ∈AD ,若AM MB =ANND,则MN 与平面BDC 的位置关系是________.答案: 平行5.在下列条件中,可判断平面α与平面β平行的是( )A 、,αβ都垂直于γB 、α内存在不共线的三点到β的距离相等C 、,l m 是α内两条直线,且//,//l m ββD 、,l m 是两条异面直线,且//,//,//,//l m l m ααββ答案:D6. 有下列几个命题:①平面α内有无数个点到平面β的距离相等,则α∥β;②α∩γ=a ,α∩β=b ,且a ∥b (α、β、γ分别表示平面,a 、b 表示直线),则γ∥β; ③平面α内一个三角形三边分别平行于平面β内的一个三角形的三条边,则α∥β;④平面α内的一个平行四边形的两边与平面β内的一个平行四边形的两边对应平行,则α∥β. 其中正确的有________.(填序号) 答案: ③_________________________________________________________________________________ _________________________________________________________________________________基础巩固1.(2014·江西丰城三中高一期末测试)已知直线a 、b 和平面α,下列命题中正确的是( )A .若a ∥α,b ⊂α,则a ∥bB .若a ∥α,b ∥α,则a ∥bC .若a ∥b ,b ⊂α,则a ∥αD .若a ∥b ,a ∥α,则b ⊂α或b ∥α答案: D 若a ∥α,b ⊂α,则a ∥b 或a 与b 是异面直线;若a ∥α,b ∥α,则a 与b 相交、平行或异面;若a ∥b ,b ⊂α,则a ∥α或a ⊂α,故选D.2.P 为矩形ABCD 所在平面外一点,矩形对角线交点为O ,M 为PB 的中点,给出四个命题:①OM ∥平面PCD ;②OM ∥平面PBC ;③OM ∥平面PDA ;④OM ∥平面PBA . 其中正确命题的个数是( )A.1B.2C.3D.4答案:B由已知OM∥PD,∴OM∥平面PCD且OM∥平面P AD.故正确的只有①③,选B. 3.过平面α外的直线l,作一组平面与α相交,如果所得的交线为a,b,c,…,则这些交线的位置关系为()A.都平行B.都相交且交于同一点C.都相交但不一定交于同一点D.都平行或都交于同一点答案:D4..若平面α∥平面β,直线a⊂α,直线b⊂β,那么a、b的位置关系是()A.无公共点B.平行C.既不平行也不相交D.相交答案:A5.若两直线a、b相交,且a∥平面α,则b与α的位置关系是________.答案:相交或平行能力提升6.若平面α∥β,直线a⊂α,点B∈β,则在β内过点B的所有直线中()A.不一定存在与a平行的直线B.只有两条直线与a平行C.存在无数条直线与a平行D.存在惟一一条与a平行的直线答案:D7.已知a是一条直线,过a作平面β,使β∥平面α,这样的β()A.只能作一个B.至少有一个C.不存在D.至多有一个答案:D8.已知α∥β,O是两平面外一点,过O作三条直线和平面α交于不在同一直线上的A、B、C三点,和平面β交于A′、B′、C′三点,则△ABC与△A′B′C′的关系是________,若AB=a,A′B′=b,B′C′=c,则BC的长是________.答案:相似ac b9.在正方体ABCD-A1B1C1D1中,E、F、G、H分别是棱CC1、C1D1、D1D、CD的中点,N是BC 的中点,点M在四边形EFGH及其内部运动,则M满足________________时,有MN∥平面B1BDD1.答案:M在线段FH上移动10.正方体ABCD-A1B1C1D1中,平面AA1C1C和平面BB1D1D的交线与棱CC1的位置关系是________,截面BA1C1和直线AC的位置关系是________.答案:平行平行11.在正方体ABCD-A1B1C1D1,设M、N、E、F分别是棱A1B1、A1D1、C1D1、B1C1的中点,如图所示.(1)求证:E、F、B、D四点共面;(2)求证:平面AMN∥平面EFBD.答案:(1)分别连接BD、ED、FB,由正方体性质知,B1D1∥BD.∵E、F分别是C1D1和B1C1的中点,∴EF 12B1D1,EF12BD.∴E、F、B、D四点共面.(2)连接A1C1交MN于P点,交EF于点Q,分别连接PA、QO.∵M、N分别为A1B1、A1D1的中点,∴MN∥EF,EF⊂面EFBD,∴MN∥面EFBD.∵PQ AO,∴四边形PAOQ为平行四边形,∴PA∥QO.而QO⊂面EFBD,∵PA∥面EFBD,且PA∩MN=P,PA、MN⊂面AMN,∴平面AMN∥面EFBD.。
空间里的平行关系数学教案

空间里的平行关系数学教案一、教学目标1. 让学生理解平行线的概念,能够识别和描述空间中的平行关系。
2. 培养学生运用平行线的性质解决实际问题的能力。
3. 培养学生的观察能力、动手操作能力和逻辑思维能力。
二、教学内容1. 平行线的定义:在同一平面内,永不相交的两条直线叫做平行线。
2. 平行线的性质:平行线之间的距离相等;平行线与第三条直线相交,构成的角相等。
3. 平行线的判定:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行。
三、教学重点与难点1. 教学重点:平行线的定义、性质和判定。
2. 教学难点:平行线的判定方法。
四、教学方法1. 采用直观演示法,通过教具模型展示平行线的特征和性质。
2. 采用分组讨论法,让学生分组探讨平行线的判定方法。
3. 采用练习法,让学生通过实际操作和解决问题,巩固所学知识。
五、教学准备1. 教具:直尺、三角板、量角器、多媒体课件。
2. 学具:每人一套平行线模型、练习题。
教案一、导入新课利用多媒体课件展示生活中的平行关系现象,如电梯按钮、楼梯台阶等,引导学生关注空间中的平行关系,激发学生学习兴趣。
二、自主学习1. 让学生自主探究平行线的定义,引导学生通过观察、操作、总结平行线的特征。
2. 学生分组讨论,总结平行线的性质,如距离相等、角相等。
三、课堂讲解1. 讲解平行线的定义,强调“在同一平面内,永不相交”的条件。
2. 讲解平行线的性质,通过实例演示和讲解,让学生理解并掌握平行线之间的距离相等、平行线与第三条直线相交构成的角相等。
3. 讲解平行线的判定方法,包括同位角相等、内错角相等、同旁内角互补。
四、课堂练习1. 让学生利用平行线的性质,解决实际问题,如计算平行线之间的距离、求平行线与第三条直线的夹角等。
2. 让学生运用平行线的判定方法,判断给定的两条直线是否平行。
五、总结与反思1. 让学生回顾本节课所学内容,总结平行线的定义、性质和判定方法。
2. 引导学生思考平行线在实际生活中的应用,提高学生的应用能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题:空间中的平行关系授课人:杜仙梅教学目标:1.掌握直线和平面平行的判定定理和性质定理,灵活运用线面平行的判定定理和性质定理实现“线线”“线面”平行的转化。
2.掌握两个平面平行的判定定理及性质定理,灵活运用面面平行的判定定理和性质定理实现“线面”“面面”平行的转化.教学重点、难点:线面平行的判定定理和性质定理的证明及运用;两个平面平行的判定和性质及其灵活运用.教学方法:探究、引导、讲练相结合教学过程:基础知识梳理1.直线与平面平行的判定与性质(1)判定定理:平面外一条直线与_______________平行,则该直线与此平面平行.(此平面内的一条直线)(2)性质定理:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线.(平行)2.平面与平面平行的判定与性质(1)判定定理:一个平面内的与另一个平面平行,则这两个平面平行.(两条相交直线)(2)性质定理:如果两个平行平面同时和第三个平面相交,那么它们的交线.(平行)思考:能否由线线平行得到面面平行?【思考·提示】可以.只要一个平面内的两条相交直线分别平行于另一个平面内的两条相交直线,这两个平面就平行.三基能力强化1.两条直线a、b满足a∥b,b⊂α,则a与平面α的关系是(C)A.a∥αB.a与α相交C.a与α不相交D.a⊂α2.正方体ABCD-A1B1C1D1中,E是DD1的中点,则BD1与平面ACE的位置关系为_____.(平行) 课堂互动讲练考点一直线与平面平行的判定:判定直线与平面平行,主要有三种方法:(1)利用定义(常用反证法).(2)利用判定定理:关键是找平面内与已知直线平行的直线.可先直观判断平面内是否已有,若没有,则需作出该直线,常考虑三角形的中位线、平行四边形的对边或过已知直线作一平面找其交线.(3)利用面面平行的性质定理:当两平面平行时,其中一个平面内的任一直线平行于另一平面.特别提醒:线面平行关系没有传递性,即平行线中的一条平行于一平面,另一条不一定平行于该平面.例1正方形ABCD与正方形ABEF所在平面相交于AB,在AE、BD上各有一点P、Q,且AP=DQ.求证:PQ∥平面BCE.【证明】法一:如图所示,作PM∥AB交BE于M,作QN∥AB交BC于N,连结MN、PQ.正方形ABCD 和正方形ABEF 有公共边AB ,∴AE =BD .又∵AP =DQ ,∴PE =QB .又∵PM ∥AB ∥QN , ∴PM ∥QN , 即四边形PMNQ 为平行四边形, 又MN ⊂平面BCE ,PQ ⊄平面BCE ,∴PQ ∥平面BCE .法二:如图所示,连结AQ ,并延长交BC 于K ,连结EK .∵AE =BD ,AP =DQ ,∴PE =BQ ,∴HQ ∥AD ,即HQ ∥BC .又PH ∩HQ =H ,BC ∩EB =B ,∴平面PHQ ∥平面BCE ,而PQ ⊂平面PHQ ,∴PQ ∥平面BCE .【点评】 法一、法二均是依据线面平行的判定定理在平面BCE 内寻找一条直线l ,证得它与PQ 平行. 特别注意直线l 的寻找往往是通过过直线PQ 的平面与平面BCE 相交的交线来确定.法三是利用面面平行的性质,即若平面α∥β,l ⊂α,则l ∥β.考点二平面与平面平行的判定(1)利用定义(常用反证法).(2)利用判定定理:转化为判定一个平面内的两条相交直线分别平行于另一个平面.客观题中,也可直接利用一个平面内的两条相交线分别平行于另一个平面内的两条相交线来证明两平面平行.例2如图所示,正三棱柱ABC -A 1B 1C 1各棱长为4,E 、F 、G 、H 分别是AB 、AC 、A 1C 1、A 1B 1的中点,求证:平面A 1EF ∥平面BCGH .【思路点拨】 本题证面面平行,可证明平面A 1EF 内的两条相交直线分别与平面BCGH 平行,然后根据面面平行的判定定理即可证明. ∴PM AB =PE AE ,QN DC =QB BD , ∴AP PE =DQ BQ . ① 又∵AD ∥BK ,∴DQ BQ =AQ QK . ② 由①②得AP PE =AQ QK, ∴PQ ∥EK .又PQ ⊄平面BEC ,EK ⊂面BEC , ∴PQ ∥平面BEC . 法三:如图所示,作PH ∥EB 交AB 于H ,连结HQ ,则AH HB =AP PE , ∵AE =BD ,AP =DQ ,∴PE =BQ , ∴AH HB =AP PE =DQ BQ ,(3)利用面面平行的传递性: ⎭⎬⎫α∥βγ∥β⇒α∥γ. (4)利用线面垂直的性质:⎭⎬⎫α⊥l β⊥l ⇒α∥β.【证明】 △ABC 中,E 、F 分别为AB 、AC 的中点,∴EF ∥BC .又∵EF ⊄平面BCGH ,BC ⊂平面BCGH ,∴EF ∥平面BCGH .又∵G 、F 分别为A 1C 1,AC 的中点,∴四边形A 1FCG 为平行四边形.∴A 1F ∥GC .又∵A 1F ⊄平面BCGH ,CG ⊂平面BCGH ,∴A 1F ∥平面BCGH .又∵A 1F ∩EF =F ,∴平面A 1EF ∥平面BCGH .【点评】 利用面面平行的判定定理证明两个平面平行是常用的方法,即若a ⊂α,b ⊂α,a ∥β,b ∥β,a ∩b =O ,则α∥β.考点三直线与平面平行的性质利用线面平行的性质,可以实现由线面平行到线线平行的转化.在平时的解题过程中,若遇到线面平行这一条件,就需在图中找(或作)过已知直线与已知平面相交的平面.这样就可以由性质定理实现平行转化.例3如图,已知四边形ABCD 是平行四边形,点P 是平面ABCD 外一点,M 是PC 的中点,在DM 上取一点G ,过G 和AP 作平面交平面BDM 于GH.求证:AP∥GH.【思路点拨】 要证AP ∥GH ,只需证PA ∥面BDM.【证明】 如图,连结AC ,设AC 交BD 于O ,连结MO.∵四边形ABCD 是平行四边形,∴O 是AC 的中点.又∵M 是PC 的中点,∴MO ∥PA.又∵MO ⊂平面BDM ,PA ⊄平面BDM ,∴PA ∥平面BDM.又经过PA 与点G 的平面交平面BDM 于GH ,∴AP ∥GH.【点评】 利用线面平行的性质定理证明线线平行,关键是找出过已知直线的平面与已知平面的交线.考点四平面与平面平行的性质平面与平面平行的判定与性质,同直线与平面平行的判定与性质一样,体现了转化与化归的思想.三种平行关系如图.应用性质过程的转化实施,关键是作辅助平面,通过作辅助平面得到交线,就可把面面平行化为线面平行并进而化为线线平行,注意作平面时要有确定平面的依据.例4 (解题示范)(本题满分12分)如图,直线AC 、DF 被三个平行平面α、β、γ所截.(1)是否一定有AD ∥BE ∥CF?(2)若 =λ, =μ,试判断λ与μ的大小关系.【思路点拨】 本题是开放性题目,是近年来高考热点,利用面面平行的性质证明BG ∥CH ,从而可得λ=μ.【解】 (1)平面α∥平面β,平面α与β没有公共点,但不一定总有AD ∥BE.同理不总有BE ∥CF ,BC AB EFDE在△ACH 中,AB BC =AG GH, 而AG =DE ,GH =EF , ∴AB BC =DE EF , 即λ=μ. 12分 ∴不一定有AD ∥BE ∥CF 4分(2)过A 点作DF 的平行线,交β,γ于G ,H 两点,AH ∥DF.过两条平行线AH ,DF 的平面交平面α,β,γ于AD ,GE ,HF.根据两平面平行的性质定理,有AD ∥GE ∥HF , 6分∴AG =DE ,同理GH =EF .又过AC ,AH 两相交直线的平面与平面β,γ的交线为BG ,CH . 9分根据两平面平行的性质定理,有BG ∥CH ,【误区警示】 (1)小题易出错,其原因是把AC 、DF 习惯地认为是相交直线. 规律方法总结1.对线面平行,面面平行的认识一般按照“定义—判定定理—性质定理—应用”的顺序.其中定义中的条件和结论是相互充要的,它既可以作为判定线面平行和面面平行的方法,又可以作为线面平行和面面平行的性质来应用2.在解决线面、面面平行的判定时,一般遵循从“低维”到“高维”的转化,即从“线线平行”到“线面平行”,再到“面面平行”;而在应用性质定理时,其顺序恰好相反,但也要注意,转化的方向总是由题目的具体条件而定,决不可过于“模式化”.3.在应用有关定理、定义等解决问题时,应当注意规范性训练,即从定理、定义的每个条件开始,培养一种规范、严密的逻辑推理习惯,切不可只求目标,不顾过程,或言不达意,出现推理“断层”的错误. 课后作业⎭⎬⎫AG ∥DE AD ∥GE ⇒AGED 为平行四边形,1.已知直线a 、b 和平面α、β,则在下列命题中,真命题为( )A .若a ∥β,α∥β,则a ∥αB .若α∥β,a ⊂α,则a ∥βC .若α∥β,a ⊂α,b ⊂β,则a ∥bD .若a ∥β,b ∥α,α∥β,则a ∥b答案:B2.(教材习题改编)a ,b ,c 为三条不重合的直线,α,β,γ为三个不重合的平面,现给出六个命题:其中正确的命题是( )A .①②③B .①④⑤C .①④D .①④ 答案:C3.过三棱柱ABC -A 1B 1C 1任意两条棱的中点作直线,其中与平面ABB 1A 1平行的直线共有________条.(6)3.互动探究:正三棱柱ABC -A 1B 1C 1各棱长为4,若D 是BC 上一点,且A 1B∥平面AC 1D ,D 1是B 1C 1的中点,求证:平面A 1BD 1∥平面AC 1D .证明:如图所示,连结A 1C 交AC 1于点E ,∵四边形A 1ACC 1是平行四边形,∴E 是A 1C 的中点,连结ED ,∵A 1B ∥平面AC 1D ,平面A 1BC ∩平面AC 1D=ED ,∴ A 1B ∥ED ,∵E 是A 1C 的中点,∴D 是BC 的中点,又∵D 1是B 1C 1的中点,∴BD 1∥C 1D ,A 1D 1∥AD ,又A 1D 1∩BD 1=D 1,∴平面A 1BD 1∥平面AC 1D.4.高考检阅: (本题满分12分)如图,已知平面α∥平面β∥平面γ,且β位于α与γ之间,点A 、D ∈α,C 、F ∈γ,AC ∩β=B ,DF ∩β=E.(1)求证:AB BC =DE EF ; (2)设AF 交β于M ,AD 与CF 不平行,α与β间的距离为h ′,α与γ之间的距离为h ,当h ′h 的值是多少时,△BEM 的面积最大? ①⎩⎨⎧ a ∥c b ∥c ⇒a ∥b ②⎩⎨⎧ a ∥γb ∥γ⇒a ∥b ③⎩⎨⎧ α∥c β∥c ⇒α∥β ④⎩⎨⎧ α∥γβ∥γ⇒α∥β ⑤⎩⎨⎧ α∥c a ∥c ⇒a ∥α ⑥⎩⎨⎧a ∥γα∥γ⇒a ∥α解:(1)证明:如图,连结BM 、EM 、BE .∵β∥γ,平面ACF ∩β=BM ,平面ACF ∩γ=CF ,∴BM ∥CF ,∴AB BC =AM MF . 同理AM MF =DE EF , ∴AB BC =DE EF . 4分 (2)由(1)知BM ∥CF ,∴BM CF =AB AC =h ′h ,同理ME AD =h -h ′h , ∴BM ·ME =CF ·AD ·h ′h (1-h ′h). 6分 又S △BEM =12BM ·ME sin ∠BME .据题意 知,AD 与CF 异面,AD 、CF 是常量,只是平面β在α,γ之间平移,AD 、CF 所成的角也是定值,∴sin ∠BME 是常量,令h ′h=x ,只要考查函数y =x (1-x )的最值即可. 9分显然当x =12时,即1-x =x =12时,y =x (1-x )有最大值.故当h ′h=12时,即平面β在α,γ两平面的正中间时,△BEM 的面积最大. 12分。