卡拉胶

合集下载

卡拉胶成胶原理

卡拉胶成胶原理

卡拉胶成胶原理
卡拉胶是一种天然高分子多糖,具有较高的热稳定性和耐盐性,是一种优良的食品添加剂。

卡拉胶在水中或盐水中不能完全
溶解,但是当其与水混合时就可以均匀地分散在水中。

卡拉胶具
有独特的凝胶特性,将它添加到食品中可形成一种半透明状、比
较稠厚的胶冻,其粘度和强度可与明胶相比,可增加数百倍甚至
数千倍。

因此,卡拉胶在食品工业中应用广泛。

卡拉胶是一种水溶性物质,易溶于水,在水中易分散、膨胀、溶解和分散性良好。

其分子结构中含有一个大分子主链和多个小
分子侧链,其中的两个主链上有许多支链和支链末端上都有很多
羟基,从而形成了复杂的氢键结构。

卡拉胶是一种胶体,具有极
强的粘度、较大的粘弹性、较高的稳定性。

因此在食品工业中卡
拉胶可作为增稠剂、稳定剂、乳化剂、乳化剂等添加到各种食品中。

在食品工业中常用卡拉胶代替明胶生产多种果冻、果酱、布
丁和雪花酥等食品。

卡拉胶是一种天然高分子多糖,其分子量约为1万~10万,
分子量分布较窄,分子量越大分子链越短。

—— 1 —1 —。

卡拉胶

卡拉胶

卡拉胶在食品工业中的应用
卡拉胶稳定性强,干粉长期放置不易降解。它在中性和碱性溶 液中也很稳定,即使加热也不会水解,但在酸性溶液中(尤其是pH 值≤4.0)卡拉胶易发生酸水解,凝胶强度和黏度下降。值得注意的 是,在中性条件下,若卡拉胶在高温长时间加热,也会水解,导致 凝胶强度降低。所有类型的卡拉胶都能溶解于热水与热牛奶中。溶 于热水中能形成黏性透明或轻微乳白色的易流动溶液。卡拉胶在冷 水中只能吸水膨胀而不能溶解。 基于卡拉胶具有的性质,在食品工业中通常将其用作增稠剂、 胶凝剂、悬浮剂、乳化剂和稳定剂等。而这些卡拉胶的生产应用与 其流变学特性有着较大的关系,因而准确掌握卡拉胶的流变学性能 及其在各种条件下的变化规律对生产具有重要的意义。
简介:卡拉胶的利用起源于数百年前,在爱尔兰南部沿海出产 简介:
一种海藻,俗称为爱尔兰苔藓(Irish Moss),现名为皱波角 藻(Chondrus crispus),当地居民常把它采来放到牛奶中加糖 煮,放冷凝固后食用。18世纪初期,爱尔兰人把此种海藻制成 粉状物并介绍到美国,后来有公司开始商品化生产,并以海苔 粉(sea moss farina)的名称开始销售,广泛用于牛奶及多种 食品中。19世纪美国开始工厂化提炼卡拉胶,到19世纪40年代 卡拉胶工业才真正在美国发展起来。我国在1973年在海南岛开 始有卡拉胶生产。
化学结构 : 由硫酸基化的或非硫酸基化的半乳糖和3,6-脱水半乳糖通 过α-1,3糖苷键和β-1,4键交替连接而成,在1,3连接的D半 乳糖单位C4上带有1个硫酸基。分子量为20万以上。 胶体化学特性: 胶体化学特性: ● 溶解性:不溶于冷水,但可溶胀成胶块状,不溶于有机溶 剂,易溶于热水成半透明的胶体溶液.(在70℃以上热水中溶解速 度提高; ● 胶凝性:在钾离子存在下能生成热可逆凝胶; ● 增稠性:浓度低时形成低粘度的溶胶,接近牛顿流体,浓 度升高形成高粘度溶胶,则呈非牛顿流体。 ● 协同性:与刺槐豆胶、魔芋胶、黄原胶等胶体产生协同 作用,能提高凝胶的弹性和保水性; ● 健康价值:卡拉胶具有可溶性膳食纤维的基本特性,在 体内降解后的卡拉胶能与血纤维蛋白形成可溶性的络合物。可被 大肠细菌酵解成CO2、H2、沼气及甲酸、乙酸、丙酸等短链脂肪 酸,成为益生菌的能量源。

卡拉胶的生产及应用(综述)

卡拉胶的生产及应用(综述)

提纲1.简介2.卡拉胶分类和物理化学性质2.1卡拉胶的流变性能2.2卡拉胶结构3.质量标准4.卡拉胶的3大性能4.1卡拉胶的重要性质之一蛋白反应性4.2卡拉胶的重要性质之二凝胶性4.2.1卡拉胶凝胶机理探讨4.2.2卡拉胶和离子的作用4.2.3卡拉胶和其他多糖的作用5.卡拉胶应用以及生产工艺5.1果冻5.2软糖5.3肉制品5.4冰淇淋5.5啤酒5.6乳饮料内容将分几天上传2.卡拉胶简介卡拉胶(Carrageenan)又名角叉菜胶、鹿角藻胶,是从红藻中提取的一种高分子亲水性多糖。

其化学结构是由D-半乳糖和3,6-脱水-D-半乳糖残基所组成的线形多糖化合物。

根据其半乳糖残基上硫酸酯基团的不同可分为κ-型、ι-型、λ-型、β-型、μ-型等13种,其中主要的是κ-型、ι-型、λ-型。

μ-型通过碱处理,脱除6位上的硫酸酯形成内酯形成了κ-型,因此μ-型又称为κ-型的前体,同理,γ-型是ι-型的前体,λ-型是θ-型的前体,参见结构图。

市售最多的应用也最广的是κ-型,如下文没有特别指出,一般为指κ-型精品。

一.卡拉胶物理化学性质食品级卡拉胶为白色至淡黄褐色、表面皱缩、微有光泽、半透明片状体或粉末状物,无臭或有微臭,无味,口感粘滑,在冷水中膨胀,可溶于60℃以上的热水后形成粘性透明或轻微乳白色的易流动溶液,但不溶于有机溶剂,在低于或等于它们的等电点(此概念貌似不正确,卡拉胶应该没有等电点)时,它们易与醇、甘油、丙二醇相溶,但与清洁剂、低分子量胺及蛋白质不相溶。

由于卡拉胶大分子没有分支的结构及其具有强阴离子特性,它们可以形成高粘度溶液,其粘度取决于浓度、温度、卡拉胶类型以及是否有其他溶解物质存在等。

另外,卡拉胶还可以在低温下在水中或奶基食品体系中形成多种不同的凝胶。

卡拉胶稳定性强,干粉长期放置不易降解。

它在中性和碱性溶液中也很稳定,即使加热也不会水解,但在酸性溶液中(尤其pH≤4.0),卡拉胶易发生酸水解,凝胶强度和粘度下降。

卡拉胶-用途、生产工艺与安全标准

卡拉胶-用途、生产工艺与安全标准

卡拉胶卡拉胶是一种从红海海藻中提取的天然胶体物质,化学式为(C12H18O9)n。

卡拉胶在食品工业中作为增稠剂、凝胶剂和乳化剂使用,也可用于制药、化妆品等领域。

卡拉胶不但能增加食品的口感和稠度,还能起到保湿、润滑和增加食品的储存寿命等作用。

卡拉胶卡拉胶的用途卡拉胶的生产工艺卡拉胶的使用规范卡拉胶的安全标准卡拉胶的GB国标卡拉胶的验收流程卡拉胶的替代品卡拉胶的用途卡拉胶是一种多功能的天然高分子多糖,具有独特的物理和化学特性,可以被广泛应用于各种领域。

以下是卡拉胶的主要用途:1.食品工业:卡拉胶在食品加工中广泛应用,可以增加食品的黏度和稳定性,增加口感、口感、品质和保质期,常用于奶制品、果汁、饮料、调味品、面包等食品的生产中。

2.医药工业:卡拉胶具有良好的生物相容性和药物释放特性,可以用于制备控释药物和医用凝胶。

3.化妆品工业:卡拉胶可以用于制备化妆品的稠化剂、乳化剂、凝胶和乳液等,可以增加化妆品的黏度、质地和稳定性。

4.石油工业:卡拉胶可以用于石油开采中,可以作为钻井液、地层注水液和增稠剂等。

5.其他工业:卡拉胶还可以用于造纸、纺织、染料、涂料等工业领域。

总之,卡拉胶在工业和生活中有着广泛的用途,是一种非常有价值的天然高分子材料。

卡拉胶的生产工艺卡拉胶,又称为xanthan gum(化学式C35H49O29),是一种天然的高分子多糖,可以广泛应用于食品、医药、化妆品、石油开采等领域。

以下是卡拉胶的生产工艺:1.发酵生产法:将葡萄糖、麦芽糊精等碳源、氮源、无机盐和微生物Xanthomonas campestris 等放入发酵罐中,控制温度、pH、氧气等条件进行发酵,使微生物生长繁殖,产生卡拉胶,发酵结束后,通过杀菌、沉淀、干燥等步骤制成卡拉胶产品。

2.化学合成法:以葡萄糖为原料,通过化学反应合成卡拉胶。

但这种方法不常用,因为合成卡拉胶的成本较高,而且质量不如发酵法生产的卡拉胶。

在实际生产中,一般采用发酵法生产卡拉胶,其中发酵的条件和微生物的选择等因素会影响卡拉胶的质量和产量。

卡拉胶

卡拉胶

产生泡沫的增稠剂。 5、消防泡沫 - 产生泡沫的增稠剂。
增稠剂。 6、香波/洗发水和化妆乳膏 - 增稠剂。 香波/
胶凝剂。 7、空气清新剂 - 胶凝剂。
8、鞋油 - 作为增加 粘性的胶凝剂。 粘性的胶凝剂。
9、生物工艺学 - 固 定细胞核酶的凝胶。 定细胞核酶的凝胶。
七、卡拉胶Байду номын сангаас产厂家
1、汕头市捷成生物科技有限公司 、
卡拉胶的名字来源于爱尔兰苔 菜(Chondrus crispus, 也被称为角 叉菜), ),角叉菜在爱尔兰语被称为 叉菜),角叉菜在爱尔兰语被称为 carraigín。1844年 carraigín。1844年,卡拉胶首次从 海藻中分离出来。 海藻中分离出来。
二、卡拉胶的性质
卡拉胶无臭 无味、 无臭、 卡拉胶无臭、无味、大型的分子 分子量在10万道尔顿以上), 10万道尔顿以上),相互卷 (分子量在10万道尔顿以上),相互卷 曲在一起形成双螺旋结构。 曲在一起形成双螺旋结构。卡拉胶具有 亲水性、 粘性、稳定性,溶于80 80摄氏 亲水性、 粘性、稳定性,溶于80摄氏 度热水形成粘性透明液体, 度热水形成粘性透明液体,并能在室温 下形成凝胶。 下形成凝胶。
≤1% ≤5× Pa· ≤5×10-3Pa·s 75℃) (于75℃)
硫酸盐( 15%---40% 硫酸盐(以SO4 15%--40% 计)
六、卡拉胶的应用
卡拉胶被作为凝固剂、增稠剂, 卡拉胶被作为凝固剂、增稠剂,乳化 悬浮剂,澄清剂, 剂,悬浮剂,澄清剂,稳定剂和持水剂在 食品和其他工业得到广泛的使用。 食品和其他工业得到广泛的使用。
1、甜品,冰激凌,奶昔, 调味酱 – 作为 甜品,冰激凌,奶昔, 增加粘性的凝胶剂。 增加粘性的凝胶剂。 作为清除絮状物的澄清剂。 2、啤酒 - 作为清除絮状物的澄清剂。

卡拉胶分子结构

卡拉胶分子结构

卡拉胶分子结构
今天咱们来聊一个特别有趣的东西,叫卡拉胶。

你可能没听说过这个名字,但是它呀,就在我们身边呢。

你有没有吃过果冻呀?那滑溜溜、颤巍巍的果冻,就和卡拉胶有关系哦。

卡拉胶是一种很神奇的东西,它是由好多小小的部分组成的,就像搭积木一样。

这些小小的部分连在一起,就形成了卡拉胶的分子结构。

想象一下,每个小部分就像一个小小的珠子。

这些小珠子有不同的形状和颜色,它们按照一定的顺序串起来。

比如说,有的珠子是圆形的,有的是方形的,它们串起来就像一条漂亮的项链。

卡拉胶的分子结构就有点像这样的项链。

那卡拉胶的分子结构有什么用呢?咱们再来说说果冻。

如果没有卡拉胶,果冻就不会有那种QQ弹弹的感觉。

卡拉胶的分子结构就像一个小网子,把果冻里的水和其他东西都网住了。

就像你用小网兜捉小鱼一样,卡拉胶的分子结构把果冻里的成分都兜住了,这样果冻才能保持形状,还能有那种好玩的弹性。

还有冰淇淋,你肯定很爱吃吧。

冰淇淋里也有卡拉胶呢。

卡拉胶的分子结构在冰淇淋里就像一个个小卫士。

它们让冰淇淋不会很快融化,还能让冰淇淋的口感变得更细腻。

就像有一群小卫士在守护着冰淇淋城堡,不让城堡轻易倒塌。

卡拉胶虽然我们看不见它的分子结构,但是它就在我们吃的很多美味食物里发挥着大大的作用呢。

它就像一个小小的魔法,让我们的食物变得更加美味、有趣。

下次你吃果冻、冰淇淋或者软糖的时候,就可以想象一下卡拉胶的分子结构在里面努力工作的样子啦。

是不是很有趣呢?。

卡拉胶资料

卡拉胶资料

卡拉胶(Carrageenan) 资料我方产品规格:●卡帕卡拉胶:型号:484 (卡帕型,半精制品,主要用于肉制品中的胶凝剂)型号: ABC-461(卡帕型,高强度,用于肉食及果冻)型号:ABC-490(卡帕型,精制品,可用于透明果冻,饮料)型号:●阿欧塔卡拉胶:型号:SI-100 (阿欧塔型,精制品)型号:436 ( 阿欧塔型,漂白半精制品,可用于冷食制品中的稳定剂)尚可提供:莱姆达型精制卡拉胶等,详情请与我方联系。

A.卡拉胶的定义:卡拉胶是从红藻的角叉菜属(Chondrus)、麒麟菜属(Eucheuma)、杉藻属(Gigartina)及沙菜属(Hypnea)等品种海藻中提取的海藻多糖的统称。

不同的来源有不同的精细结构,其胶体性质也不尽相同,已命名的有kappa(卡帕), iota(阿欧塔), lambda(莱姆达), mu(缪), nu(纽), theta(塞塔), xi(西)型卡拉胶等,但商业化生产的主要是前三种。

即使同一品种来源,不同的工艺提取条件导致不同的分子量降解,产品性质也有差异。

因此卡拉胶只是一广义名称,具体应用时,应选择不同的规格,海藻品种及生产厂,不同的海藻品种含有卡拉胶的类型和数量各异, 如主产于菲律宾海域的Eucheuma cottonii 品种主要含卡帕型卡拉胶, 产于印尼海域的 E. spinosum 则主要含阿欧塔型, 产于摩洛哥海域的杉藻属Gigartina acicularis 主要含莱姆达型卡拉胶;而来自Chondrus crispus, Gigartina stellata, Iridaea sp. 等许多品种则含几种类型的卡拉胶,是混合型, 需通过特殊工艺处理将其分开。

同一类型的卡拉胶也有精制或半精制及粗制品之分,区别主要在凝胶强度,溶液透明度等,当然也表现在价格方面。

所以不同的用途应该选用不同的型号及等级,从而获得最经济有效的选择。

B.卡拉胶的主要性质及应用:在食品工业中卡拉胶主要用作凝胶剂、稳定剂和持水剂,其凝胶强度,粘度和其它特性很大程度上取决于卡拉胶的类型和分子量,pH值,含盐、酒精、氧化剂和其它食品胶的状况。

卡拉胶

卡拉胶
73 与蛋白质反应性
在pH大于蛋白质等电点时,卡拉胶可与牛 奶κ-酪蛋白表面带正电荷的氨基酸分子产生 静电吸引力。同时与αs1酪蛋白αs2酪蛋白及 钙离子反映形成三维立体蛋白质复合胶体 网络。 在pH值等于或小于等电点时,卡拉胶与蛋 白质直接结合,反应程度激烈,结果产生 蛋白质和卡拉胶混合物不容物的沉淀物。
卡拉胶
1
卡拉胶简介
卡拉胶是又称为鹿角菜胶、角叉菜胶。卡拉胶是从某些红藻 类海草中提炼出来的亲水性胶体,它的化学结构是由半乳糖 及脱水半乳糖所组成的多糖类硫酸酯的钙、钾、钠、铵盐。
2
卡拉胶的种类
Kappa卡拉胶时由压缩螺旋组织 形成牢固的凝胶,其亲水酯位于 外部,易于螺旋表面水相结合。
Iota卡拉胶能产生弹性凝胶,且 不发生脱水,螺旋结构不很紧密。
10
8
卡拉胶的应用
1中性奶 还原奶在杀菌前加入0.01-0.03%kappa卡拉 胶将有助于蛋白质稳定,防止沉淀和油脂 上浮。 2 牛奶布丁 在配方中添加混合型卡拉胶可提高产品顺 滑口感,利用iota卡拉胶之搅拌可逆性凝胶 特性可提供厚实口感。
9
3 可可奶,咖啡奶 Kappa卡拉胶和Iota卡拉胶具有与蛋白质反 应能力,能够与蛋白质形成网络结构,这 种结构能有效悬浮乳品中外加的颗粒,如 可可粉或咖啡颗粒。
Lambda 卡拉胶
不能够形成凝胶,聚合体链随机分布 粘度高 含有约35%的硫酸酯基及少量或不含3,6脱水半乳糖
卡拉胶的理化特性
1 流变特性 Kappa卡拉胶和Iota卡拉胶冷却时会凝胶,测其粘 度时要大于其凝胶温度。 卡拉胶溶液粘度很大,具有假塑性,是一种触变 性流体。 2 pH稳定性 在pH9时胶体稳定性最好,随着pH降低胶体稳定 性也下降,当pH低于3-4时,卡拉胶会有很大程 度的降解。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

卡拉胶
卡拉胶(Carrageenan)最初起源于爱尔兰南部的卡拉根郡。

18世纪开始工业化生产。

目前主要的原料为红藻类海藻如麒麟菜及角叉藻、杉藻等。

依其半乳糖残基上硫酸脂基团的不同,分为κ-型、ι-型、λ-型。

化学结构
由硫酸基化的或非硫酸基化的半乳糖和3,6-脱水半乳糖通过α-1,3糖苷键和β-1,4键交替连接而成,在1,3连接的D半乳糖单位C4上带有1个硫酸基。

分子量为20万以上。

胶体化学特性
● 溶解性:可以在冷水中溶解,在70℃以上热水中溶解速度提高;
● 胶凝性:在钾离子存在下能生成热可逆凝胶;
● 增稠性:浓度低时形成低粘度的溶胶,接近牛顿流体,浓度升高形成高粘度溶胶,则呈非牛顿流体。

● 协同性:与刺槐豆胶、魔芋胶、黄原胶等胶体产生协同作用,能提高凝胶的弹性和保水性;
● 健康价值:卡拉胶具有可溶性膳食纤维的基本特性,在体内降解后的卡拉胶能与血纤维蛋白形成可溶性的络合物。

可被大肠细菌酵解成CO2、H2、沼气及甲酸、乙酸、丙酸等短链脂肪酸,成为益生菌的能量源。

在食品中的应用
冰淇淋(雪糕):预防乳清分离、延缓溶化。

甜果冻、羊羹:胶凝剂。

巧克力牛奶:悬浮,增加质
感。

果汁饮料:使细小果肉粒均匀,悬浮,增加口感。

胶脂牛乳:滑润,增加质
感。

软糖:优良胶凝剂。

炼乳:乳化稳
定。

面包:增加保水能力,延缓变硬
加工干酪:防止脱液收
缩。

馅饼:糊状效应,增加质感。

婴儿奶粉:防止脱脂和乳浆分
离。

调味品:悬浮剂,赋形剂,带来亮泽感觉。

牛奶布丁:胶凝剂,增加质
感。

罐装食品:胶凝,稳定脂肪。

冷冻发泡糕点:防止脂肪分离和脱液收缩现象,不易变形。

肉食品:肪止脱液收缩,粘结剂。

奶昔:悬浮,增加质
感。

啤酒工业:澄清剂,稳定剂。

酸化乳品:增加质感,滑
腻牙膏:粘结
卡拉胶(Carrageenan)
卡拉胶又称角叉胶、爱尔兰浸膏和鹿角菜
胶,这是由D-吡喃半乳糖及3,6-脱水半乳糖组成的高分量多糖类硫酸酯的钙、镁、钾、钠、铵盐。

根据分子中硫酸酯结合型态,卡拉胶分为7种类型:k-型、λ-型、L-型等
(1)性状卡拉胶为白色至淡黄褐色、表面皱缩、微有光泽、半透明片状体或粉末状物,无臭或有微臭,无味,口感粘滑,溶于60℃以上的热水中,形成粘性透明或轻微乳白色的易流动溶液。

如先用乙醇、甘油或饱和蔗糖水溶液浸湿后,则较易溶于水。

加入30倍的水,煮沸10分钟的卡拉胶溶液,冷却后形成胶体。

与水结合黏液度增高。

蛋白质反应起乳化作用,能使已乳化液稳定。

它溶于热牛奶,不溶于有机溶剂。

1%水溶液的黏度为0.225Pa·S,pH值为7.0。

(2)性能卡拉胶水溶液相当黏稠,其黏度比琼脂还大,盐能降低酯或酸根之间的静电引力的缘故。

温度升高,黏度降低。

若加热是在pH为最佳稳定状态下进行,且忽使其发生热降解,则温度降低,粘度又上升。

这种变化是可逆的。

k-卡拉胶的水凝胶受到切变力作用发生的破坏是不可逆的,无触变性,而在牛奶中加入低浓度k-卡拉胶时,卡拉胶与牛奶蛋白络合形成弱凝胶,当受到切变力作用时则发生断裂,切变力除去后,又重新形成凝胶,显示出触变特性。

卡拉胶仅在有钾离子(k-型、L-型)或钙离子(L-型)存在时才能形成具有热可逆性的凝胶。

卡拉胶的凝胶强度不及琼脂,但透明度较其高。

卡拉胶的凝固性受某些阳离子(如钾、铷、铯、铵、钙等阳离子)影响。

加入一种或几种该类阳离子,能显著提高凝固性,且在一定范围内,凝固性随阳离子浓度增加而升高。

对k-卡拉胶,钾的作用比钙的作用大,称之为钾敏卡拉胶。

而对L-卡拉胶,则钙的作用较钾的大,故称其为钙过敏卡拉胶。

纯钾敏卡拉胶具有良好的弹性、粘性和透明度,而混入钙离子后会使其变脆。

卡拉胶中钾的存在能干扰卡拉胶的
胶凝作用,且使形成的凝胶加入钠离子,能使凝胶变脆而易碎。

大量钠离子的强度降低。

L-卡拉胶与钙离子能形成完全不脱水收缩的、富有弹性的和非常粘的凝胶,它是唯一的冷冻-融化稳定型卡拉胶。

A-卡拉胶凝胶的表面易发生胶液收缩。

这种现象是由于卡拉胶溶胶在胶凝过程中加入的阳离子过量造成的,因此阳离子的用量要适度。

K-卡拉胶与L-卡拉胶混用时,可提高凝胶的弹性又能防止脱水收缩。

槐豆胶与卡拉胶混用可使凝胶变得更富有弹性而不脆,这两种胶有协同效应。

K-卡拉胶与黄原胶共用也能克服卡拉胶凝胶的脱水收缩缺陷,还能使其疏松、增粘且富有弹性,缺点是凝胶中含有气泡,有损于外观。

溶于热牛奶的卡拉胶,冷却时都能形成凝胶。

K-型中奶凝胶性脆,极易脱液收缩,加入磷酸盐、碳酸盐或柠檬酸盐来螯合或沉淀钙离子,可改善其物理性质。

L-型牛奶凝胶也发生脱液收缩,加入焦磷酸四钠可使脱液收缩现象明显减弱,但凝胶变得柔软。

干燥的粉末状卡拉胶相当稳定,较果胶、海藻胶等稳定得多。

在中性和碱性溶液中,卡拉胶稳定,特别是在pH值为9的溶液中最稳定,即使加热也不水解。

而在酸性溶液中,特别是在pH值小于4的溶液中,卡拉胶易发生酸催化水解,使凝胶强度
和黏度都下降。

凝胶状卡拉胶较溶液状的卡拉胶稳定性高,在室温下被酸化水解的程度也较小。

(3)毒性大鼠经口(其钙盐和钠盐混入25%玉米油)LD50约5.1~6.28g/kg。

(4)来源和制法卡拉胶是从角叉菜、麒麟菜等海藻原料中提取的。

将海藻原料以稀碱液加热萃取或热水萃取,用醇类沉淀,经滚筒干燥或冷冻干燥而得:所用的醇为甲醇、乙醇或异丙醇。

以滚筒干燥法回收卡拉胶时。

需添加单甘油酯、双甘油酯或5%以下斯潘80作为滚筒剥离剂。

(5)应用在食品生产,卡拉胶用作增稠剂、凝胶剂、稳定剂、乳化剂和成膜剂,以改善食品的品质外观。

卡拉胶的凝固点、熔点、亲水性的高低或大小与海藻的种类、制造方法和测定时的条件有关。

测定黏度时,温度必须控制在其凝固点以上。

用乙醇、甘油、砂糖糖浆湿润,或与3倍以上的砂糖混合,可提高溶解性。

λ-型卡拉胶大部分能溶解于冷牛奶中,并增加其黏度,但κ-型和ι-型卡拉胶在冷牛奶中难溶解或不溶。

干的粉末状卡拉胶很稳定,它在中性和碱性溶液中稳定,但在酸性溶液中,尤其是pH小于4时较易水解,造成凝胶强度和黏度的下降。

生产中为了减轻含有卡拉胶的酸性食品在消毒加热时可能发生的水解,常采用高温、短时消毒方法。

只有κ-型和ι-型卡拉胶的水溶液能形成凝胶,其凝固性受某些阳离子的影响很大。

全部成钠盐的卡拉胶在纯水中不凝固,加入钾、铷、铯、铵或钙等阳离子能大大提高其凝固性。

在一定的范围内,凝固性能随这些阳离子浓度的增加而增强。

卡拉胶可与多种胶复配。

有些多糖对卡拉胶的凝固性也有影响。

如添加黄原胶可使卡拉胶凝胶更柔软、更粘稠和更具弹性;黄原胶与ι-型卡拉胶复配可降低食品脱水收缩;κ-型卡拉胶与魔芋胶相互作用形成一种具弹性的热可逆凝胶;加入槐豆胶可显著提高κ-型卡拉胶的凝胶强度和弹性;玉米和小麦淀粉对它的凝胶强度也有所提高;羟甲基纤维素降低其凝胶强度;土豆淀粉和木薯淀粉对它无作用。

在冰淇淋中加入少量的卡拉胶可改善糕体,使之细腻,滑润,可口,放置时不易溶化。

添加量为0.01%~0.03%,如选用r-卡拉胶与羧甲基纤维复配使用效果更好。

在可可乳糕、可可牛奶和可可糖中使用,可使可可粉均匀分散在牛奶和糖浆中起稳定作用。

可可牛奶中添加为0.025%~0.025%,如采用巴氏灭菌工艺,应选用卡拉胶。

如采用浓糖浆配制,在包袋前将糖浆掺于牛奶中,应选用λ-卡拉胶,用量在0.04%~0.05%之间(以成品计)。

在面包中加卡拉胶能增加其保水能力,从而延缓变硬,保持新鲜防老化,添加量为0.03%~0.5%。

相关文档
最新文档