公式整理双曲线的光学性质证明

公式整理双曲线的光学性质证明
公式整理双曲线的光学性质证明

圖一

塗色題型解析: 塗色過程中的定型區域、未定型區域、獨立區域之研究 題型<一>

以7種不同顏色,塗下列圖形的區域,每一區域限塗一色,顏色可重複使用且相鄰區域不同顏色,則恰有兩個區域顏色相同之機率為

解法:塗色順序如圖一,其對應算式

為:7×6×5×5×5=5250 此為全部塗法

圖二、圖三、圖四皆為有兩個區域顏色相同 其對應算式為:7×6×5×4

兩個區域顏色相同的所有塗法共:3×7×6×5×4 種 P= 5556745673????????=25

12

定義:

1定型區域:塗色的過程中,不需要討論同色與異色算式的區域 ○

2未定型區域: 塗色的過程中,需要討論同色與異色算式的區域 ○

3獨立區域:只與一個區域相鄰且永遠都是定型區域 討論:全部的塗法依下列塗色順序不同而有兩種解法:

解法一:

上列各種圖形(對稱塗法省略不畫)其對應算式

為:7×6×5×5×

5=5250 為全部塗法(塗色的過程均保持為定型區域)

上列各圖形塗色過程中保持○

1○2○3兩兩相鄰,才能維持為定型區域

圖二一

圖三一 圖四

解法二:塗色順序如下圖

二同二同: 7×6×5

二同三異: 7×6×5×4×3

全異: +) 7×6×5×4×3

7×6×5×(1+12+12)=7×6×5×25=7×6×5×5×5

上列各圖形塗色的過程依然保持○1○2○3兩兩相鄰(圖二除外:維持定型區域要領)

以6種不同顏色,塗下列圖形的區域,每一區域限塗一色,顏色可重複使用且相鄰區域不同顏色,則恰有兩個區域顏色相同之機率為

解法一:塗色順序如圖一,其對應算式

為:6×5×4×3×3 此為全部塗法(保持○

1○2○3兩兩相鄰)

解法二:塗色順序如右圖,此時○3為未定型區域

若○2、○3同色:6×5×1×4×3 若○2、○3異色:6×5×4

×3×2

兩者相加為:6×5×4×3×3 此為全部塗法

圖一一 二同二同:7×6×5 二同三異

:(7×6×5×4)×3

圖二

一 全異:7×6×5×4×3

圖三一 圖四一 圖五

討論: (1)

此時○2為未定型區域 此時○3為未定型區域

更換順序

此時○

4為未定型區域,因為○5區域(空白處)同時與○1、○4兩個區域相鄰 更換成右圖,此時○

4才能維持為定型區域 (2)

下圖中的五個圈皆為獨立區域,所以最後才塗色(×55)

結論: 題型<一>塗色的捷徑算法,即過程中保持兩兩相鄰且空白處不可與兩

個不相鄰的區域同時相鄰(如上討論(1)),才能維持為定型區域,若圖中有獨立區域則最後才塗色

其對應算式為:6×5×4×3×3×55

題型<二>

以6種不同顏色,塗下列三個圖形的區域,每一區域限塗一色,顏色可重複使用且相鄰區域不同顏色,則共有 種塗色方法

圖一

若○1、○3同色:6×5×1×5 (此時○3必為未定型區域) 若○1、○3異色:6×5×4×4

兩者相加為:6×5×(1×5+4×4) 此為全部塗法

圖一 圖二 若○2、○4同色:6×5×4×1×4 (此時○4必為未定型區域) 若○

2、○4異色:6×5×4×3×3 兩者相加為: 6×5×4×(1×4+3×3) 此為全部塗法 (○1不用塗)

圖二

圖三

若○1、○3同色:6×5×1×5 (此時○3必為未定型區域) 若○1、○3異色:6×5×4×4

兩者相加為:6×5×(1×5+4×4) 此為全部塗法

圖三

結論: 題型<二>塗色的過程中,因為○1、○3(or ○2、○4)不相鄰,所以○

3(or ○4)必成為『未定型區域』,一定要討論同色與異色的算式

題型<三>…………………………..待續

欧拉公式的应用

欧拉公式的应用 绪论 本文首先介绍了一下欧拉公式以及推广的欧拉公式,对欧拉公式的特点作了简要的探讨.欧拉公式形式众多,在数学领域内的应用范围很广,本文对欧拉公式在三角函数中的应用作了详细的研究,欧拉公式在求三角级数中的应用中、在证明三角恒等式时、解三角方程的问题时、探求一些复杂的三角关系时,可以避免复杂的三角变换,利用较直观的代数运算使得问题得到解决.另一方面,利用欧拉公式大降幂,能够把高次幂的正余弦函数表示为一次幂函数的代数和,克服了高次幂函数在运算上的不方便. 关键词:欧拉公式三角函数降幂级数三角级数

目录 绪论......................................错误!未定义书签。目录......................................错误!未定义书签。 一、绪论 (1) 二、欧拉公式的证明、特点、作用 (1) 三、欧拉公式在三角函数中的应用 (4) (一) 倍角和半角的三角变换 (4) (二) 积化和差与差化积的三角变换 (4) (三) 求三角表达式的值 (5) (四) 证明三角恒等式 (6) (五) 解三角方程 (7) (六) 利用公式求三角级数的和 (7) (七) 探求一些复杂的三角关系式 (8) (八) 解决一些方程根的问题 (9) (九) 欧拉公式大降幂 (10) 结束语 (15)

一、绪论 欧拉公式形式众多,有多面体欧拉公式、欧拉求和公式、cos sin i e i θθθ=+、欧拉积分等多种形式、立体几何、工程方面等方面.由于欧拉公式有多种形式,在数学领域中的应用范围很广,本文只介绍欧拉公式的一种形式“cos sin i e i θθθ=+”以及这种形式在数学中的应用. 二 、欧拉公式的证明、特点、作用 1748年,欧拉在其著作中陈述出公式cos sin i e i θθθ=+,欧拉公式在数学的许多定理的证明和计算中,有着广泛的应用.它将定义和形式完全不同的指数函数和三角函数联系起来,为我们研究这两种函数的有关运算及其性质架起了一座桥梁.同时我们知道三角函数的恒等变换是中学数学中的一个重要内容,也是一个难点,但由于三角恒等变换所用公式众多,这便给解决三角变换问题带来了诸多不便.下面将通过欧拉公式,将三角函数化为复指数函数,从而将三角变换化为指数函数的代数运算,从而使得问题简单化,并给出了欧拉公式在其它几个方面的应用,在高等数学中的部分应用. 欧拉公式cos sin i e i θθθ =+它的证明有各种不同的证明方法,好多《复变 函数》教科书上,是以复幂级数为工具,定义复变指数函数和复变三角函数来进行证明的.下面我们介绍一种新的证明方法:极限法. 证明 令()1n f z i n θ?? =+ ??? (),R n N θ∈∈. 首先证明 ()lim cos sin n f z i θθ→∞ =+. 因为 arg 1n i narctg n n θθ?? ?? += ? ????? , 所以 2 2 211cos sin n n i i narctg i narctg n n n n θθθθ????????? ?+=++ ? ? ? ???????? ?????. 从而2 2 2lim 1lim 1cos sin n n n n i narctg i narctg n n n n θθθθ→∞→∞????????? ?+=++ ? ? ? ???????? ?????.

欧拉公式的证明和应用

数学文化课程报告 欧拉公式的证明与应用 一.序言------------------------------------------------------------------------2 二.欧拉公式的证明--------------------------------------3 极限法 --------------------------------------3 指数函数定义法-------------------------------4 分离变量积分法-------------------------------4 复数幂级数展开法-----------------------------4 变上限积分法---------------------------------5 类比求导法-----------------------------------7 三.欧拉公式的应用 求高阶导数-----------------------------------7 积分计算------------------------------------8 高阶线性齐次微分方程的通解------------------9 求函数级数展开式----------------------------9 三角级数求和函数----------------------------10 傅里叶级数的复数形式-------------------------10 四.结语------------------------------------------------11 参考文献-----------------------------------------------11 一.序言

双曲线的标准方程及其性质

双曲线的标准方程及其性质 一、双曲线的定义 1、已知双曲线22 1916 x y -=上一点P 到双曲线的一个焦点的距离为3,则P 到另一个焦点的距离为__________________. 2、若双曲线22 221x y a b -=的两个焦点为F 1、F 2,12F F =10,P 为双曲线上一点,122PF PF =,12PF PF ⊥,求此双曲线的方程. 3、在相距1400m 的A ,B 两哨所,听到炮弹爆炸声的时间相差3s ,已知声速是340m/s ,问炮弹爆炸点在怎样的曲线上? 4、已知双曲线16x 2-9y 2=144,(1)设P 为双曲线上一点,且|PF 1|?|PF 2|=32,求12F PF S ?; (2)设P 为双曲线上一点,且∠ F 1PF 2=120?,求12F PF S ?. 二、双曲线的标准方程 1、已知3,4a c ==的双曲线的标准方程是__________________. 2、已知双曲线方程为22 1205 x y -=,它的焦距是__________________. 3、设m 为常数,若点(0,5)F 是双曲线22 19 y x m -=的一个焦点,则m =__________________. 4、若R ∈k ,则“3>k ”是“方程13 322 =+--k y k x 表示双曲线”的( ) (A )充分不必要条件. (B )必要不充分条件. (C )充要条件. (D )既不充分也不必要条件. 5、双曲线22 2x y k -=的焦距是6,则实数k 的值是__________________. 三、双曲线的性质 1、已知双曲线中心在原点,一个顶点的坐标为,且焦距与虚轴长之比为,则双曲线的标准方程是__________________. 2、双曲线的虚轴长是实轴长的2倍,则m =__________________. 3、若双曲线的渐近线方程为 ,它的一个焦点是,则双曲线的标准方程是__________________. (3,0)5:4221mx y +=

双曲线的简单几何性质总结归纳(人教版)教学教材

双曲线的简单几何性质 一.基本概念 1 双曲线定义: ①到两个定点F 1与F 2的距离之差的绝对值等于定长(<|F 1F 2|)的点的轨迹 (21212F F a PF PF <=-(a 为常数))这两个定点叫双曲线的焦点. ②动点到一定点F 的距离与它到一条定直线l 的距离之比是常数e (e >1)时,这个动点的轨迹是双曲线 这定点叫做双曲线的焦点,定直线l 叫做双曲线的准线 2、双曲线图像中线段的几何特征: ⑴实轴长122A A a =,虚轴长2b,焦距122F F c = ⑵顶点到焦点的距离:11A F =22A F c a =-,12A F =21A F a c =+ ⑶顶点到准线的距离:21122 a A K A K a c ==-;21221 a A K A K a c ==+ ⑷焦点到准线的距离:22 11221221 a a F K F K c F K F K c c c ==-==+或 ⑸两准线间的距离: 2 122a K K c = ⑹21F PF ?中结合定义a PF PF 221=-与余弦定理21cos PF F ∠,将 有关线段1PF 、2PF 、21F F 和角结合起来,122 12 2 PF F F PF S b ?∠= ⑺离心率: 121122121122PF PF A F A F c e PM PM A K A K a ======∈(1,+∞) ⑻焦点到渐近线的距离:虚半轴长b ⑼通径的长是a b 22,焦准距2b c ,焦参数2b a (通径长的一半)其中 22b a c +=a PF 221=- 3 双曲线标准方程的两种形式: ①22 a x -22 b y =1, c =22b a +,焦点是F 1(-c ,0),F 2(c ,0) ②22a y -22 b x =1, c =22b a +,焦点是F 1(0,-c )、F 2(0,c ) 4、双曲线的性质:22 a x -22b y =1(a >0,b >0) ⑴范围:|x |≥a ,y ∈R ⑵对称性:关于x 、y 轴均对称,关于原点中心对称 ⑶顶点:轴端点A 1(-a ,0),A 2(a ,0) ⑷渐近线: ①若双曲线方程为12222=-b y a x ?渐近线方程?=-02222b y a x x a b y ±= ②若渐近线方程为x a b y ±=?0=±b y a x ?双曲线可设为λ=-2222b y a x ③若双曲线与12222=-b y a x 有公共渐近线,可设为λ=-22 22b y a x (0>λ,焦点在x 轴上,0<λ,焦点在y 轴上)

欧拉公式推导

欧拉公式推导: 图4.3所示的两端铰支杆件,受轴向压力N 作用而处于中性平衡微弯状态,杆件弯曲后截面中产生了弯矩M 和剪力V ,在轴线任意点上由弯矩产生的横向变形为1y ,由剪力产生的横向变形为2y ,总变形21y y y +=。 y 图4.3 两端铰支的轴心压杆临界状态 设杆件发生弯曲屈曲时截面的临界应力小于材料比例极限p f ,即p f ≤σ(对理想材料取y p f f =)。由材料力学可得: EI M dz y d -=2 12 由剪力V 产生的轴线转角为: dz dM GA V GA dz dy ?=?==ββγ2 式中 A 、I ——杆件截面面积、惯性矩; E 、G ——材料的弹性模量、剪切模量; β—— 与截面形状有关的系数。 因为 222 22dz M d GA dz y d ?=β 所以 2222122222d y d y d y M d M dz dz dz EI GA dz β=+=-+? 由 y N M ?=得: 2222dz y d GA N y EI N dz y d ?+?-=β

01=?+??? ??-''y EI N GA N y β 令 ??? ??-=GA N EI N k β12 得常系数线性二阶齐次方程 20y k y ''+= 其通解为:sin cos y A kz B kz =+ 由边界条件:;0,0==y z 0=B ,kz A y sin =。再由0,==y l z 得: 0sin =kl A 上式成立的条件是0=A 或0sin =kl ,其中0=A 表示杆件不出现任何变形,与杆件微弯的假设不符。由0sin =kl ,得πn kl =(=n 1,2,3…),取最小值=n 1,得π=kl ,即 2 221N k N l EI GA πβ==??- ??? 由此式解出N ,即为中性平衡的临界力cr N 12222222211Ι11γππβππ?+?=?+?=l ΕΙl ΕGA l ΕΙl ΕΙ N cr (4.6) 临界状态时杆件截面的平均应力称为临界应力cr σ 12 22211γλπλπσ?+?==ΕΑΕA N cr cr (4.7) 式中 1γ——单位剪力时杆件的轴线转角,)/(1GA βγ=; l ——两端铰支杆得长度; λ——杆件的长细比,i l /=λ; i ——杆件截面对应于屈曲轴的回转半径,A I i /=。 如果忽略杆件剪切变形的影响(此影响很小)则式(4.6)、(4.7)变为: 22cr E πσλ = (4.8)

(完整版)双曲线简单几何性质知识点总结

四、双曲线 一、双曲线及其简单几何性质 (一)双曲线的定义:平面内到两个定点F 1,F 2的距离差的绝对值等于常数2a (0<2a <|F 1F 2|)的点的轨 迹叫做双曲线。 定点叫做双曲线的焦点;|F 1F 2|=2c ,叫做焦距。 ● 备注:① 当|PF 1|-|PF 2|=2a 时,曲线仅表示右焦点F 2所对应的双曲线的一支(即右支); 当|PF 2|-|PF 1|=2a 时,曲线仅表示左焦点F 1所对应的双曲线的一支(即左支); ② 当2a=|F 1F 2|时,轨迹为以F 1,F 2为端点的2条射线; ③ 当2a >|F 1F 2|时,动点轨迹不存在。 双曲线12222=-b y a x 与122 22=-b x a y (a>0,b>0)的区别和联系

(二)双曲线的简单性质 1.范围: 由标准方程122 22=-b y a x (a >0,b >0),从横的方向来看,直线x=-a,x=a 之间没有图象,从纵的 方向来看,随着x 的增大,y 的绝对值也无限增大。 x 的取值范围________ ,y 的取值范围______ 2. 对称性: 对称轴________ 对称中心________ 3.顶点:(如图) 顶点:____________ 特殊点:____________ 实轴:21A A 长为2a, a 叫做半实轴长 虚轴:21B B 长为2b ,b 叫做半虚轴长 双曲线只有两个顶点,而椭圆则有四个顶点 4.离心率: 双曲线的焦距与实轴长的比 a c a c e = = 22,叫做双曲线的离心率 范围:___________________ 双曲线形状与e 的关系:1122 222-=-=-==e a c a a c a b k ,e 越大,即渐近线的斜率的绝对值就越 大,这时双曲线的形状就从扁狭逐渐变得开阔 由此可知,双曲线的离心率越大,它的开口就越阔 5.双曲线的第二定义: 到定点F 的距离与到定直线l 的距离之比为常数 )0(>>= a c a c e 的点的轨迹是双曲线 其中,定点叫做双 曲线的焦点,定直线叫做双曲线的准线 常数e 是双曲线的离心率. 准线方程: 对于12222=-b y a x 来说,相对于左焦点)0,(1c F -对应着左准线c a x l 2 1:-=, 相对于右焦点)0,(2c F 对应着右准线 c a x l 2 2:= ; 6.渐近线 过双曲线122 2 2=-b y a x 的两顶点21,A A ,作x 轴的垂线a x ±=,经过21,B B 作y 轴的垂线b y ±=,四条直线 围成一个矩形 矩形的两条对角线所在直线方程是____________或(0 =±b y a x ),这两条直线就是双曲线 的渐近线 双曲线无限接近渐近线,但永不相交。

欧拉公式的证明(整理)Word版

欧拉公式的证明 著名的欧拉公式e^(iθ)=cosθ+isinθ是人们公认的优美公式。原因是指数函数和三角函数在实数域中几乎没有什么联系,而在复数域中却发现了他们可以相互转化,并被一个非常简单的关系式联系在一起。特别是当θ=π时,欧拉公式便写成了e^(iπ)+1=0,就这个等式将数中最富有特色的五个数0,1,i , e , π ,绝妙地联系在一起 方法一:用幂级数展开形式证明,但这只是形式证明(严格的说,在实函数域带着i只是形式上的) 再抄一遍:设z = x+iy 这样 e^z = e^(x+iy)=e^x*e^(iy),就是e^z/e^x = e^(iy) 用牛顿幂级数展开式 e^x = 1+x+x^2/2!+x^3/3!+.....+x^n/n!+...... 把 e^(iy) 展开,就得到 e^z/e^x = e^(iy) =1+iy-y^2/2!-iy^3/3!+y^4/4!+iy^5/5!-y^6/6!-..... =(1-y^2/2!+y^4/4!-y^6/6!+.....) +i(y-y^3/3!+y^5/5!-....) 由于 cosy = 1-y^2/2!+y^4/4!-y^6/6!+....., siny = y-y^3/3!+y^5/5!-.... 所以 e^(x+iy)=e^x*e^(iy)=e^x*(cosy+isiny) 即 e^(iy) = (cosy+isiny) 方法二:见复变函数第2章,在整个负数域内重新定义了sinz cosz而后根据关系推导出了欧拉公式。着个才是根基。由来缘于此。 方法一是不严格的。 再请看这2个积分 ∫sqrt(x^2-1)dx=x*sqrt(x^2-1)/2-ln(2*sqrt(x^2-1)+2x)/2 ∫sqrt(1-x^2)dx=arcsin(x)/2+x*sqrt(1-x^2)/2; 上式左边相当于下式左边乘以i 于是上式右边相当于下式右边乘以i 然后化简就得到欧拉公式 这个证明方法不太严密 但很有启发性 历史上先是有人用上述方法得到了对数函数和反三角函数的关系 然后被欧拉看到了,才得到了欧拉公式 设a t θ ?R,ρ?R+,a^(it)?z有: a^(it)=ρ(cosθ+isinθ) 1 因共轭解适合方程,用-i替换i有: a^(-it)=ρ(cosθ-isinθ) 2

欧拉公式的证明和应用

欧拉公式的证明和应用https://www.360docs.net/doc/994932080.html,work Information Technology Company.2020YEAR

数学文化课程报告 欧拉公式的证明与应用 一 .序言------------------------------------------------------------------------2 二.欧拉公式的证明--------------------------------------3 1.1 极限法 --------------------------------------3 1.2 指数函数定义法-------------------------------4 1.3 分离变量积分法-------------------------------4 1.4 复数幂级数展开法-----------------------------4 1.5 变上限积分法---------------------------------5

1.6 类比求导法-----------------------------------7 三.欧拉公式的应用 2.1 求高阶导数-----------------------------------7 2.2 积分计算------------------------------------8 2.3 高阶线性齐次微分方程的通解------------------9 2.4 求函数级数展开式----------------------------9 2.5 三角级数求和函数----------------------------10 2.6 傅里叶级数的复数形式-------------------------10 四.结语------------------------------------------------11 参考文献-----------------------------------------------11 一.序言 欧拉是十八世纪最杰出的最多产的数学家之一[1],留下了数不胜数的以其名 字命名的公式。本文关注的欧拉公式x i x e ix sin cos +=,在复数域中它把指数函数 联系在一起。特别当π=x 时,欧拉公式便写成了01=+πi e ,这个等式将最富有特 色的五个数π,,,,10e i 绝妙的联系在一起,“1是实数的基本单位,i 是虚数的基本单位,0是唯一的中性数,他们都具有独特的地位,都具有代表性。i 源于代数,

欧拉公式的证明

欧拉公式的证明 文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

欧拉公式的证明 着名的欧拉公式e^(iθ)=cosθ+isinθ是人们公认的优美公式。原因是指数函数和三角函数在实数域中几乎没有什么联系,而在复数域中却发现了他们可以相互转化,并被一个非常简单的关系式联系在一起。特别是当θ=π时,欧拉公式便写成了e^(iπ)+1=0,就这个等式将数中最富有特色的五个数0,1,i , e , π ,绝妙地联系在一起 方法一:用幂级数展开形式证明,但这只是形式证明(严格的说,在实函数域带着i只是形式上的) 再抄一遍:??? 设z = x+iy 这样 e^z = e^(x+iy)=e^x*e^(iy),就是 e^z/e^x = e^(iy) 用牛顿幂级数展开式 e^x = 1+x+x^2/2!+x^3/3!+.....+x^n/n!+...... 把 e^(iy) 展开,就得到 e^z/e^x = e^(iy) =1+iy-y^2/2!-iy^3/3!+y^4/4!+iy^5/5!-y^6/6!-..... =(1-y^2/2!+y^4/4!-y^6/6!+.....) +i(y-y^3/3!+y^5/5!-....) 由于 cosy = 1-y^2/2!+y^4/4!-y^6/6!+.....,

siny = y-y^3/3!+y^5/5!-.... 所以 e^(x+iy)=e^x*e^(iy)=e^x*(cosy+isiny) 即 e^(iy) = (cosy+isiny) 方法二:见复变函数第2章,在整个负数域内重新定义了sinz cosz而后根据关系推导出了欧拉公式。着个才是根基。由来缘于此。 方法一是不严格的。 再请看这2个积分 ∫sqrt(x^2-1)dx=x*sqrt(x^2-1)/2-ln(2*sqrt(x^2-1)+2x)/2 ∫sqrt(1-x^2)dx=arcsin(x)/2+x*sqrt(1-x^2)/2; 上式左边相当于下式左边乘以i 于是上式右边相当于下式右边乘以i 然后化简就得到欧拉公式 这个证明方法不太严密 但很有启发性 历史上先是有人用上述方法得到了对数函数和反三角函数的关系 然后被欧拉看到了,才得到了欧拉公式 设a t θ ?R,ρ?R+,a^(it)?z有:

欧拉公式的证明(整理)

创作编号: GB8878185555334563BT9125XW 创作者:凤呜大王* 欧拉公式的证明 著名的欧拉公式e^(iθ)=cosθ+isinθ是人们公认的优美公式。原因是指数函数和三角函数在实数域中几乎没有什么联系,而在复数域中却发现了他们可以相互转化,并被一个非常简单的关系式联系在一起。特别是当θ=π时,欧拉公式便写成了e^(iπ)+1=0,就这个等式将数中最富有特色的五个数0,1,i , e , π ,绝妙地联系在一起 方法一:用幂级数展开形式证明,但这只是形式证明(严格的说,在实函数域带着i只是形式上的) 再抄一遍:设z = x+iy 这样 e^z = e^(x+iy)=e^x*e^(iy),就是e^z/e^x = e^(iy) 用牛顿幂级数展开式 e^x = 1+x+x^2/2!+x^3/3!+.....+x^n/n!+...... 把 e^(iy) 展开,就得到 e^z/e^x = e^(iy) =1+iy-y^2/2!-iy^3/3!+y^4/4!+iy^5/5!-y^6/6!-..... =(1-y^2/2!+y^4/4!-y^6/6!+.....) +i(y-y^3/3!+y^5/5!-....) 由于 cosy = 1-y^2/2!+y^4/4!-y^6/6!+....., siny = y-y^3/3!+y^5/5!-.... 所以 e^(x+iy)=e^x*e^(iy)=e^x*(cosy+isiny) 即 e^(iy) = (cosy+isiny) 方法二:见复变函数第2章,在整个负数域内重新定义了sinz cosz而后根据关系推导出了欧拉公式。着个才是根基。由来缘于此。 方法一是不严格的。 再请看这2个积分 ∫sqr t(x^2-1)dx=x*sqrt(x^2-1)/2-ln(2*sqrt(x^2-1)+2x)/2 ∫sqrt(1-x^2)dx=arcsin(x)/2+x*sqrt(1-x^2)/2;

双曲线的几何性质(习题)

双曲线的几何性质 年级__________ 班级_________ 学号_________ 姓名__________ 分数____ — 一、选择题(共34题,题分合计170分) ) 1.双曲线9y 2-x 2 -2x -10=0的渐近线方程是 =±3(x +1) =±3(x -1) =±31(x +1) =±31 (x -1) 2.若双曲线x 2-y 2 =1右支上一点P (a ,b )到直线y =x 的距离为2,则a +b 的值是 A.-21 B.21 C.-21或21 或-2 ( 3.过(0,3)作直线 L ,若L 与双曲线 342 2y x =1,只有一个公共点,则L 共有

条 条 条 条 4.双曲线2mx 2 -my 2 =2,有一条准线方程是y =1,则m 应等于 是 21 34 5.双曲线15)1(422=--y x ,经过第一象限内的点) 217 , (m P ,则P 点到双曲线右焦点的距离是__________. 6.双曲线11692 2=-y x 的一个焦点到一条渐近线的距离等于 A.3 7.已知双曲线中心在原点且一个焦点为 )0,7(F ,直线y =x -1与其相交于M ?N 两点,MN 中点的横坐标为, 32 -则此双曲线的方程是 … A.14322=-y x B.13422=-y x C.12522=-y x D.1522 2=-y x 8.双曲线虚轴的一个端点为M,两个焦点为F,F ,∠FMF =120°则双曲线的离心率为 A.3 B.26 C.36 D.33 9.双曲线的渐近线方程为y =±2(x -1),一焦点坐标为(1+25,0),则该双曲线的方程是 A.116)1(422=--y x B.1164)1(22=--y x C.1416)1(22=--y x D.116)1(42 2=--y x 10.过双曲线1 22 2 =-y x 的右焦点F 作直线l 交双曲线于A ?B 两点,若|AB |=4,则这样的直线l 有 条 条 条 条 11.以椭圆114416922=+y x 的右焦点为圆心,且与双曲线116922=-y x 的渐近线相切的圆的方程是 / A. 91022=+-+x y x B. 91022=--+x y x C. 091022=-++x y x

双曲线的性质及应用

双曲线的性质及应用 教学目标 (一)知识教学点 使学生理解并掌握双曲线的几何性质,并能从双曲线的标准方程出发,推导出这些性质,并能具体估计双曲线的形状特征. (二)能力训练点 在与椭圆的性质的类比中获得双曲线的性质,从而培养学生分析、归纳、推理等能力. (三)学科渗透点 使学生进一步掌握利用方程研究曲线性质的基本方法,加深对直角坐标系中曲线与方程的关系概念的理解,这样才能解决双曲线中的弦、最值等问题. 教学重点:双曲线的几何性质及初步运用. (解决办法:引导学生类比椭圆的几何性质得出,至于渐近线引导学生证明.) 教学难点:双曲线的渐近线方程的导出和论证. (解决办法:先引导学生观察以原点为中心,2a、2b长为邻边的矩形的两条对角线,再论证这两条对角线即为双曲线的渐近线.) 教学疑点:双曲线的渐近线的证明. (解决办法:通过详细讲解.) 活动设计 提问、类比、重点讲解、演板、讲解并归纳、小结. 教学过程 (一)复习提问引入新课 1.椭圆有哪些几何性质,是如何探讨的? 请一同学回答.应为:范围、对称性、顶点、离心率,是从标准方程探讨的.

2.双曲线的两种标准方程是什么? 再请一同学回答.应为:中心在原点、焦点在x轴上的双曲线的标 下面我们类比椭圆的几何性质来研究它的几何性质. (二)类比联想得出性质(性质1~3) 引导学生完成下列关于椭圆与双曲线性质的表格(让学生回答,教师引导、启发、订正并板书).<见下页> (三)问题之中导出渐近线(性质4) 在学习椭圆时,以原点为中心,2a、2b为邻边的矩形,对于估计 仍以原点为中心,2a、2b为邻边作一矩形(板书图形),那么双曲线和这个矩形有什么关系?这个矩形对于估计和画出双曲线简图(图2-26)有什么指导意义?这些问题不要求学生回答,只引起学生类比联想. 接着再提出问题:当a、b为已知时,这个矩形的两条对角线的方程是什么? 下面,我们来证明它:

欧拉公式的证明方法和应用

欧拉公式的证明方法和 应用 公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

欧拉公式 θθθ sin cos i e i +=的证明方法和应用 摘要:在复数域内用几种不同的方法证明欧拉公式θθθ sin cos i e i +=,举例说明欧拉公式在数学中的几类应用,通过总结多种方法看问题的思想来解决问题,通过几种不同种类的问题的解决方案让读者更加明白欧拉公式在学习中的多方面思想和数学中的重要性。 关键词:欧拉公式、微分中值定理、证明、应用、三角函数 1.欧拉公式意义简说 在我们所学过的指数函数和三角函数在实数域中几乎没有什么联系,在复数域中却可以相互转换,被θθθ sin cos i e i +=这简单的关系联系在一起,这个一直盘踞在许多研究家心里的欧拉公式,有着很多很多的疑问,特别是当πθ=时,有1-=e i π ,即01=+e i π ,这个等式将数学中的最富有特色的五个数0、1、i 、e 、π联系在一起,0,1是实数中特殊的数字,i 是一个很重要的虚数单位,e 是无理数它取自瑞士数学家欧拉(Euler,1707-1783)的英文开头[5],π是圆周率在公园前就被定义为“周长与直径的比”。它们在数学中各自都有发展的方面。因此e i π +1=0公式充分揭示了数学的统一性、简洁性和奇异性。了解这些内容对于学习高等数学,对于我们在研究较深的数学问题上有很大帮助。 2.欧拉公式的证明简述 在这里,我把几种证明欧拉公式的方法总结在一起,对学者学习欧拉公式提供多方面的题材,并作出知识的一种综合理解。 幂级数展开式的证明法 引用三角函数和指数函数“幂级数展开式”证明欧拉公式θθθ sin cos i e i +=, 复指数定义法 用复指数定义)sin (cos y i y e e e x iy x z +==+,证明欧拉公θθθ sin cos i e i += 类比法求导法 通过实函数的性质来对复函数进行求导运算(附件①),通过构造x i x x f e ix sin cos )(+= , 0)(='x f 用lagrange 微分中值定理推论[3],从而证明1)(=x f ,使得x i x e ix sin cos += 分离变量积分法

双曲线及其性质知识点及题型归纳总结

双曲线及其性质知识点及题型归纳总结 知识点精讲 一、双曲线的定义 平面内与两个定点21,F F 的距离的差的绝对值.....等于常数(大于零且小于21F F )的点的轨迹叫做双曲线(这两个定点叫双曲线的焦点).用集合表示为 {})20(22121F F a a MF MF M <<=-. 注(1)若定义式中去掉绝对值,则曲线仅为双曲线中的一支. (2)当212F F a =时,点的轨迹是以1F 和2F 为端点的两条射线;当02=a 时,点的轨迹是线段21F F 的垂直平分线. (3)212F F a >时,点的轨迹不存在. 在应用定义和标准方程解题时注意以下两点: ①条件“a F F 221>”是否成立;②要先定型(焦点在哪个轴上),再定量(确定2a ,2b 的值),注意222c b a =+的应用. 二、双曲线的方程、图形及性质 双曲线的方程、图形及性质如表10-2所示.

题型归纳及思路提示 题型1 双曲线的定义与标准方程 思路提示 求双曲线的方程问题,一般有如下两种解决途径: (1)在已知方程类型的前提下,根据题目中的条件求出方程中的参数a ,b ,c ,即利用待定系数法求方程. (2)根据动点轨迹满足的条件,来确定动点的轨迹为双曲线,然后求解方程中的参数,即利用定义法求方程. 例10.11 设椭圆1C 的离心率为 13 5 ,焦点在x 轴上且长轴长为26,若曲线2C 上的点到椭圆1C 的两个焦点的距离的差的绝对值等于8,则曲线2C 的标准方程为( ) A. 13422 22=-y x B. 151322 22=-y x C. 14322 22=-y x D. 112 1322 22=-y x 解析 设1C 的方程为)0(122 22>>=+b a b y a x , 则?????==13 5262a c a ,得???==513c a .

欧拉公式的证明

欧拉公式的证明(是我摘录的) 2008/10/23 16:49 看到了q239urju空间里关于欧拉公式的证明。本着为人民服务的思想,我在此做一些补充: 方法一:用幂级数展开形式证明,但这只是形式证明(严格的说,在实函数域带着i只是形式上的)(就是q239urju空间里的那个) 再抄一遍:设z = x+iy 这样 e^z = e^(x+iy)=e^x*e^(iy),就是e^z/e^x = e^(iy) 用牛顿幂级数展开式 e^x = 1+x+x^2/2!+x^3/3!+.....+x^n/n!+...... 把 e^(iy) 展开,就得到 e^z/e^x = e^(iy) =1+iy-y^2/2!-iy^3/3!+y^4/4!+iy^5/5!-y^6/6!-..... =(1-y^2/2!+y^4/4!-y^6/6!+.....) +i(y-y^3/3!+y^5/5!-....) 由于 cosy = 1-y^2/2!+y^4/4!-y^6/6!+....., siny = y-y^3/3!+y^5/5!-.... 所以 e^(x+iy)=e^x*e^(iy)=e^x*(cosy+isiny) 即 e^(iy) = (cosy+isiny) 方法二:见复变函数第2章,在整个负数域内重新定义了sinz cosz而后根据关系推导出了欧拉公式。着个才是根基。由来缘于此。 方法一是不严格的。

a^(it)=ρ(cosθ+isinθ) 1 因共轭解适合方程,用-i替换i有: a^(-it)=ρ(cosθ-isinθ) 2 由1,2得ρ=1,点P[a^(it)]在单位圆上,a^(it)可表达为: a^(it)=cosθ+isinθ 3 设t=u(θ),对3微商有: [a^(it)]*(lna)*u'(θ)*i=-sinθ+icosθ整理有: [a^(it)]*(lna)*u'(θ)*i=(cosθ+isinθ)(cosπ/2+isinπ/2)约去a^(it)有: u'(θ)=logae 4 4取积分有: T=(logae)*θ+Ψ 5 θ→0时,t=limt=Ψ,带入3有: a^(iΨ)=1 即: Ψ=0 6 6代入5有: T=(logae)*θ 7 7代入3有: [a^(logae)]^(iθ)=cosθ+isinθ化简得欧拉公式: e^(iθ)=cosθ+isinθ (后两者才是真正让我震惊的!!!!)

复数欧拉公式的证明和应用

复数欧拉公式 θθθ sin cos i e i +=的证明和应用 摘要:在复数域内用几种不同的方法证明欧拉公式θθθ sin cos i e i +=,举例说明欧拉公式在数学中的几类应用,通过总结多种方法看问题的思想来解决问题,通过几种不同种类的问题的解决方案让读者更加明白欧拉公式在学习中的多方面思想和数学中的重要性。 关键词:欧拉公式、微分中值定理、证明、应用、三角函数 1.欧拉公式意义简说 在我们所学过的指数函数和三角函数在实数域中几乎没有什么联系,在复数域中却可以相互转换,被θθθ sin cos i e i +=这简单的关系联系在一起,这个一直盘踞在许多研究家心里的欧拉公式,有着很多很多的疑问,特别是当πθ=时,有1-=e i π ,即01=+e i π ,这个等式将数学中的最富有特色的五个数0、1、i 、e 、π联系在一起,0,1是实数中特殊的数字,i 是一个很重要的虚数单位,e 是无理数它取自瑞士数学家欧拉(Euler,1707-1783)的英文开头[5], π是圆周率在公园前就被定义为“周长与直径的比” 。它们在数学中各自都有发展的方面。因此e i π +1=0公式充分揭示了数学的统一性、简洁性和奇异性。了解这些内容对于学习高等数学,对于我们在研究较深的数学问题上有很大帮助。 2.欧拉公式的证明简述 在这里,我把几种证明欧拉公式的方法总结在一起,对学者学习欧拉公式提供多方面的题材,并作出知识的一种综合理解。 2.1幂级数展开式的证明法 引用三角函数和指数函数“幂级数展开式”证明欧拉公式θθθ sin cos i e i +=, 2.2复指数定义法 用复指数定义)sin (cos y i y e e e x iy x z +==+,证明欧拉公θθθ sin cos i e i += 2.3类比法求导法 通过实函数的性质来对复函数进行求导运算(附件①),通过构造x i x x f e ix sin cos )(+= , 0)(='x f 用lagrange 微分中值定理推论[3],从而证明1)(=x f ,使得x i x e ix sin cos += 2.4分离变量积分法 假设x i x z sin cos +=,求导得 iz dx dz =,通过分离变量得,idx z dz =,然后两边取积分得

双曲线的定义及其基本性质

双曲线的定义及其基本性质 一、双曲线的定义: (1)到两个定点F 1与F 2的距离之差的绝对值等于定长(< 2 1F F )的点的轨迹。两定点叫双曲线的焦点。 a PF PF 221=-<2 1F F (2)动点P 到定点F 的距离与到一条定直线的距离之比是常数e (e >1)时,这个动点的轨迹是双曲线。这定点叫做双曲线的焦点,定直线l 叫做双曲线的准线。 二、双曲线的方程: 双曲线标准方程的两种形式: ① 12 222=-b y a x ,2 2b a c +=,焦点是 F 1(-c,0),F 2(c,0) 12222=-b x a y , 22b a c +=, 焦点是F 1(0, -c),F 2(0, c) 三、双曲线的性质: (1)焦距F 1F 2=2c,实轴长A 1A 2=2a,虚轴长2b,且a 2+b 2=c 2 (2)双曲线的离心率为e= a c ,e>1恒成立。 (3)焦点到渐近线的距离:虚半轴长b ,通径长EF = a b 2 2 (4)有两条准线,c a x l 21:- =c a x l 2 2:= 四、双曲线的渐近线: (1)若双曲线为12222=-b y a x ?渐近线方程为x a b y ±=, (2)若已知某双曲线与12222=-b y a x 有公共渐近线,则可设此双曲线为λ=-22 22b y a x , (3)特别地当a=b 时?2=e ?两渐近线互相垂直,分别为y =±x ,此时双曲线为等轴双曲线 五、共轭双曲线: 双曲线A 的实轴为双曲线B 的虚轴,双曲线A 的虚轴为双曲线B 的实轴,即11 122=+B A e e 。 K 2 O F 1 F 2 x y O F 1F 2 x y

《欧拉公式及其应用》

华北水利水电大学 题目《欧拉公式及其应用》 课程名称:高等数学(2) 专业班级:电子信息工程2012154 成员组成: 联系方式: 2013年5月31 日

摘要:在复数域内用几种不同的方法证明欧拉公式θθθ sin cos i e i +=, 举例说明欧拉公式在数学中的几类应用,通过总结多种方法看问题的思想来解决问题,通过几种不同种类的问题的解决方案让读者更加明白欧拉公式在学习中的多方面思想和数学中的重要性。 关键词:欧拉公式,证明,应用 英文题目"Euler formula and its application" Abstract: The different methods of several in the complex domain that Euler's formula, illustrates several kinds of application of Euler's formula in mathematics, to solve the problem through the summary of many ways to look at problems of the mind, through the solution of several kinds of problems that the reader more understood the importance of Euler in learning many aspects of the theory and the mathematical formula in the. Key words: Euler formula Prove application

欧拉公式的证明方法和应用

欧拉公式 θθθ sin cos i e i +=的证明方法和应用 摘要:在复数域内用几种不同的方法证明欧拉公式θθθ sin cos i e i +=,举例说明欧拉公式在数学中的几类应用,通过总结多种方法看问题的思想来解决问题,通过几种不同种类的问题的解决方案让读者更加明白欧拉公式在学习中的多方面思想和数学中的重要性。 关键词:欧拉公式、微分中值定理、证明、应用、三角函数 1.欧拉公式意义简说 在我们所学过的指数函数和三角函数在实数域中几乎没有什么联系,在复数域中却可以相互转换,被θθθ sin cos i e i +=这简单的关系联系在一起,这个一直盘踞在许多研究家心里的欧拉公式,有着很多很多的疑问,特别是当πθ=时,有1-=e i π ,即01=+e i π ,这个等式将数学中的最富有特色的五个数0、1、i 、e 、π联系在一起,0,1是实数中特殊的数字,i 是一个很重要的虚数单位,e 是无理数它取自瑞士数学家欧拉(Euler,1707-1783)的英文开头[5],π是圆周率在公园前就被定义为“周长与直径的比”。它们在数学中各自都有发展的方面。因此e i π +1=0公式充分揭示了数学的统一性、简洁性和奇异性。了解这些内容对于学习高等数学,对于我们在研究较深的数学问题上有很大帮助。 2.欧拉公式的证明简述 在这里,我把几种证明欧拉公式的方法总结在一起,对学者学习欧拉公式提供多方面的题材,并作出知识的一种综合理解。 幂级数展开式的证明法 引用三角函数和指数函数“幂级数展开式”证明欧拉公式θθθ sin cos i e i +=, 复指数定义法 用复指数定义)sin (cos y i y e e e x iy x z +==+,证明欧拉公θθθ sin cos i e i += 类比法求导法 通过实函数的性质来对复函数进行求导运算(附件①),通过构造 x i x x f e ix sin cos )(+= ,0)(='x f 用lagrange 微分中值定理推论[3],从而证明1)(=x f , 使得x i x e ix sin cos += 分离变量积分法 假设x i x z sin cos +=,求导得 iz dx dz =,通过分离变量得,idx z dz =,然后两边取积分

相关文档
最新文档