2019全国中考数学真题分类汇编之29:数学文化(含答案)
中考数学专题19 统计-三年(2019-2021)中考真题数学分项汇编(全国通用)(原卷版)

专题19 统计一、单选题1.(2021·山东聊城市·中考真题)为了保护环境加强环保教育,某中学组织学生参加义务收集废旧电池的活动,下面是随机抽取40名学生对收集废旧电池的数量进行的统计:请根据学生收集到的废旧电池数,判断下列说法正确的是()A.样本为40名学生B.众数是11节C.中位数是6节D.平均数是5.6节2.(2021·湖北随州市·中考真题)如图是小明某一天测得的7次体温情况的折线统计图,下列信息不正确的是()A.测得的最高体温为37.1℃B.前3次测得的体温在下降C.这组数据的众数是36.8 D.这组数据的中位数是36.63.(2021·湖南常德市·中考真题)舒青是一名观鸟爱好者,他想要用折线统计图来反映中华秋沙鸭每年秋季到当地避寒越冬的数量变化情况,以下是排乱的统计步骤:①从折线统计图中分析出中华秋沙鸭每年来当地避寒越冬的变化趋势;②从当地自然保护区管理部门收集中华秋沙鸭每年来当地避寒越冬的数量记录;③按统计表的数据绘制折线统计图;④整理中华秋沙鸭每年来当地避寒越冬的数量并制作统计表.正确统计步骤的顺序是()A.②→③→①→④B.③→④→①→②C.①→②→④→③D.②→④→③→①4.(2021·四川广安市·中考真题)下列说法正确的是()A.为了了解全国中学生的心理健康情况,选择全面调查B .在一组数据7,6,5,6,6,4,8中,众数和中位数都是6C .“若a 是实数,则0a >”是必然事件D .若甲组数据的方差20.02S =甲,乙组数据的方差20.12S =乙,则乙组数据比甲组数据稳定5.(2021·云南中考真题)2020年以来,我国部分地区出现了新冠疫情.一时间,疫情就是命令,防控就是责任,一方有难八方支援,某公司在疫情期间为疫区生产A 、B 、C 、D 四种型号的帐篷共20000顶,有关信息见如下统计图:下列判断正确的是( )A .单独生产B 型帐篷的天数是单独生产C 型帐篷天数的3倍 B .单独生产B 型帐篷的天数是单独生产A 型帐篷天数的1.5倍 C .单独生产A 型帐篷与单独生产D 型帐篷的天数相等 D .每天单独生产C 型帐篷的数量最多6.(2021·山东泰安市·中考真题)为了落实“作业、睡眠、手机、读物、体质”等五项管理要求,了解学生的睡眠状况,调查了一个班50名学生每天的睡眠时间,绘成睡眠时间频数分布直方图如图所示,则所调查学生睡眠时间的众数,中位数分别为( )A .7 h ;7 hB .8 h ;7.5 hC .7 h ;7.5 hD .8 h ;8 h7.(2021·广西玉林市·中考真题)甲、乙两人进行飞镖比赛,每人各投6次,他们的成绩如下表(单位:环):如果两人的比赛成绩的中位数相同,那么乙的第三次成绩x是()A.6环B.7环C.8环D.9环8.(2021·四川广元市·中考真题)一组数据:1,2,2,3,若添加一个数据3,则不发生变化的统计量是()A.平均数B.中位数C.众数D.方差9.(2021·江苏宿迁市·中考真题)已知一组数据:4,3,4,5,6,则这组数据的中位数是()A.3B.3.5C.4D.4.510.(2021·山西中考真题)每天登录“学习强国”App进行学习,在获得积分的同时,还可获得“点点通”附加奖励,李老师最近一周每日“点点通”收入明细如下表,则这组数据的中位数和众数分别是()A.27点,21点B.21点,27点C.21点,21点D.24点,21点11.(2021·山东菏泽市·中考真题)在2021年初中毕业生体育测试中,某校随机抽取了10名男生的引体向上成绩,将这组数据整理后制成如下统计表:关于这组数据的结论不正确的是()A.中位数是10.5B.平均数是10.3C.众数是10D.方差是0.8112.(2021·湖南长沙市·中考真题)“杂交水稻之父”袁隆平培育的超级杂交稻在全世界推广种植.某种植户为了考察所种植的杂交水稻苗的长势,从稻田中随机抽取9株水稻苗,测得苗高(单位:cm)分别是:22,23,24,23,24,25,26,23,25.则这组数据的众数和中位数分别是()A.24,25B.23,23C.23,24D.24,2413.(2021·湖北十堰市·中考真题)某校男子足球队的年龄分布如下表则这些队员年龄的众数和中位数分别是( ) A .8,15B .8,14C .15,14D .15,1514.(2021·四川眉山市·中考真题)全民反诈,刻不容缓!陈科同学参加学校举行的“防诈骗”主题演讲比赛,五位评委给出的分数分别为90,80,86,90,94,则这组数据的中位数和众数分别是( ) A .80,90B .90,90C .86,90D .90,9415.(2021·江苏苏州市·中考真题)为增强学生的环保意识,共建绿色文明校园.某学校组织“废纸宝宝旅行记”活动.经统计,七年级5个班级一周回收废纸情况如下表;则每个班级回收废纸的平均重量为( ) A .5kgB .4.8kgC .4.6kgD .4.5kg16.(2021·浙江台州市·中考真题)超市货架上有一批大小不一的鸡蛋,某顾客从中选购了部分大小均匀的鸡蛋,设货架上原有鸡蛋的质量(单位:g )平均数和方差分别为x ,s 2,该顾客选购的鸡蛋的质量平均数和方差x 1,21s ,则下列结论一定成立的是( ) A . x x <1B . x x >1C .s 2>21s D .s 221<s17.(2021·浙江嘉兴市·中考真题)5月1日至7日,我市每日最高气温如图所示,则下列说法错误的是( )A.中位数是33C︒B.众数是33C︒C.平均数是197C7︒D.4日至5日最高气温下降幅度较大18.(2021·四川成都市·中考真题)菲尔兹奖是数学领域的一项国际大奖,常被视为数学界的诺贝尔奖,每四年颁发一次,最近一届获奖者获奖时的年龄(单位:岁)分别为:30,40,34,36,则这组数据的中位数是()A.34B.35C.36D.4019.(2021·浙江宁波市·中考真题)甲、乙、丙、丁四名射击运动员进行射击测试,每人10次射击成绩的平均数x(单位:环)及方差2S(单位:环2)如下表所示:根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择()A.甲B.乙C.丙D.丁20.(2021·四川资阳市·中考真题)15名学生演讲赛的成绩各不相同,若某选手想知道自己能否进入前8名,则他不仅要知道自己的成绩,还应知道这15名学生成绩的()A.平均数B.众数C.方差D.中位数21.(2020·辽宁盘锦市·中考真题)在市运动会射击比赛选拔赛中,某校射击队甲、乙、丙、丁四名队员的10次射击成绩如图所示.他们的平均成绩均是9.0环,若选一名射击成绩稳定的队员参加比赛,最合适的人选是()A.甲B.乙C.丙D.丁22.(2020·山东烟台市·中考真题)如果将一组数据中的每个数都减去5,那么所得的一组新数据()A.众数改变,方差改变B.众数不变,平均数改变C.中位数改变,方差不变D.中位数不变,平均数不变23.(2020·四川成都市·中考真题)成都是国家历史文化名城,区域内的都江堰、武侯祠、杜甫草堂、金沙遗址、青羊宫都有深厚的文化底蕴.某班同学分小组到以上五个地方进行研学旅行,人数分别为:12,5,11,5,7(单位:人),这组数据的众数和中位数分别是()A.5人,7人B.5人,11人C.5人,12人D.7人,11人二、填空题目A B C D E F六省60岁及以上人口24.(2021·浙江丽水市·中考真题)根据第七次全国人口普查,华东,,,,,占比情况如图所示,这六省60岁及以上人口占比的中位数是__________.25.(2021·四川乐山市·中考真题)如图是根据甲、乙两人5次射击的成绩(环数)制作的折线统计图.你认为谁的成绩较为稳?________(填“甲”或“乙”)26.(2020·辽宁大连市·中考真题)某公司有10名员工,他们所在部门及相应每人所创年利润如下表所示.这个公司平均每人所创年利润是_____万元.27.(2020·辽宁铁岭市·中考真题)甲、乙两人参加“环保知识”竞赛,经过6轮比赛,他们的平均成绩都是97分.如果甲、乙两人比赛成绩的方差分别为226.67, 2.50==甲乙s s ,则这6次比赛成绩比较稳定的是__________.(填“甲”或“乙”)28.(2020·内蒙古赤峰市·中考真题)某校为了解七年级学生的身体素质情况,从七年级各班随机抽取了数相同的男生和女生,组成一个容量为60的样本,进行各项体育项目的测试.下表是通过整理样本数据,得到的关于每个个体测试成绩的部分统计表: 某校60名学生体育测试成绩频数分布表如果该校七年级共有300名学生,根据以上数据,估计该校七年级学生身体素质良好及以上的人数为__________人.29.(2020·湖北中考真题)某校即将举行30周年校庆,拟定了,,,A B C D 四种活动方案,为了解学生对方案的意见,学校随机抽取了部分学生进行问卷调查(每人只能赞成一种方案),将调查结果进行统计并绘制成如下两幅不完整的统计图.若该校有学生3000人,请根据以上统计结果估计该校学生赞成方案B 的人数为______.30.(2020·湖北孝感市·中考真题)在线上教学期间,某校落实市教育局要求,督促学生每天做眼保健操.为了解落实情况,学校随机抽取了部分学生进行调查,调查结果分为四类(A 类:总时长5≤分钟;B 类:5分钟<总时长10≤分钟;C 类:10分钟<总时长15≤分钟;D 类:总时长>15分钟),将调查所得数据整理并绘制成如下两幅不完整的统计图.该校共有1200名学生,请根据以上统计分析,估计该校每天做眼保健操总时长超过5分钟且不超过10分钟的学生约有______人.31.(2020·湖南株洲市·中考真题)王老师对本班40个学生所穿校服尺码的数据统计如下:则该班学生所穿校服尺码为“L”的人数有________个.32.(2020·江苏泰州市·中考真题)今年6月6日是第25个全国爱眼日,某校从八年级随机抽取50名学生进行了视力调查,并根据视力值绘制成统计图(如图),这50名学生视力的中位数所在范围是______.43.(2020·四川达州市·中考真题)2019年是中华人民共和国成立70周年,天安门广场举行了盛大的国庆阅兵式和群众游行活动.其中,群众游行队伍以“同心共筑中国梦”为主题,包含有“建国创业”“改革开放”“伟大复兴”三个部分,某同学要统计本班学生最喜欢哪个部分,制作扇形统计图.以下是打乱了的统计步骤:①绘制扇形统计图②收集三个部分本班学生喜欢的人数③计算扇形统计图中三个部分所占的百分比其中正确的统计顺序是____________.34.(2020·四川攀枝花市·中考真题)如图是某校参加各兴趣小组的学生人数分布扇形统计图,已知参加STEAM课程兴趣小组的人数为120人,则该校参加各兴趣小组的学生共有________人.35.(2020·湖南中考真题)4月23日是世界读书日,这天某校为了解学生课外阅读情况,随机收集了30名学生每周课外阅读的时间,统计如表:若该校共有1200名学生,试估计全校每周课外阅读时间在5小时以上的学生人数为_____.36.(2020·四川自贡市·中考真题)某中学新建食堂正式投入使用,为提高服务质量,食堂管理人员对学生进行了“最受欢迎菜品”的调查统计,以下是打乱了的调查统计顺序,请按正确顺序重新排序(只填番号)_________________.①.绘制扇形图;②.收集最受学生欢迎菜品的数据;③.利用扇形图分析出受欢迎的统计图;④.整理所收集的数据.37.(2019·湖南永州市·中考真题)下表是甲、乙两名同学近五次数学测试(满分均为100分)的成绩统计表:根据上表数据,成绩较好且比较稳定的同学是_____.38.(2019·内蒙古巴彦淖尔市·中考真题)甲、乙两班举行数学知识竞赛,参赛学生的竞赛得分统计结果如下表:某同学分析上表后得到如下结论:≥分为优秀);①甲、乙两班学生的平均成绩相同;②乙班优秀的人数少于甲班优秀的人数(竞赛得分85③甲班成绩的波动性比乙班小.上述结论中正确的是_____.(填写所有正确结论的序号)39.(2019·内蒙古包头市·)甲、乙两班举行数学知识竞赛,参赛学生的竞赛得分统计结果如下表:某同学分析上表后得到如下结论:①甲、乙两班学生的平均成绩相同;≥分为优秀);③甲班成绩的波动性比乙班小.②乙班优秀的人数少于甲班优秀的人数(竞赛得分85上述结论中正确的是_____.(填写所有正确结论的序号)40.(2019·四川遂宁市·中考真题)某校拟招聘一批优秀教师,其中某位教师笔试、试讲、面试三轮测试得分分别为92分、85分、90分,综合成绩笔试占40%,试讲占40%,面试占20%,则该名教师的综合成绩为_______分.三、解答题41.(2021·北京中考真题)为了解甲、乙两座城市的邮政企业4月份收入的情况,从这两座城市的邮政企业中,各随机抽取了25家邮政企业,获得了它们4月份收入(单位:百万元)的数据,并对数据进行整理、描述和分析.下面给出了部分信息.a.甲城市邮政企业4月份收入的数据的频数分布直方图如下(数据分成5组:≤<≤<≤<≤<≤≤):x x x x x68,810,1012,1214,1416b.甲城市邮政企业4月份收入的数据在1012x≤<这一组的是:10.0,10.0,10.1,10.9,11.4,11.5,11.6,11.8c.甲、乙两座城市邮政企业4月份收入的数据的平均数、中位数如下:根据以上信息,回答下列问题:(1)写出表中m的值;(2)在甲城市抽取的邮政企业中,记4月份收入高于它们的平均收入的邮政企业的个数为1p.在乙城市抽取的邮政企业中,记4月份收入高于它们的平均收,p p的大小,并说明理由;(3)若乙城市共有200家邮政企业,估计乙入的邮政企业的个数为2p.比较12城市的邮政企业4月份的总收入(直接写出结果).42.(2021·江苏南京市·中考真题)某市在实施居民用水定额管理前,对居民生活用水情况进行了调查,通过简单随机抽样,获得了100个家庭去年的月均用水量数据,将这组数据按从小到大的顺序排列,其中部分数据如下表:(1)求这组数据的中位数.已知这组数据的平均数为9.2t,你对它与中位数的差异有什么看法?(2)为了鼓励节约用水,要确定一个用水量的标准,超出这个标准的部分按1.5倍价格收费,若要使75%的家庭水费支出不受影响,你觉得这个标准应该定为多少?43.(2021·山东临沂市·中考真题)实施乡村振兴计划以来,我市农村经济发展进入了快车道,为了解梁家岭村今年一季度经济发展状况,小玉同学的课题研究小组从该村300户家庭中随机抽取了20户,收集到他们一季度家庭人均收入的数据如下(单位:万元):0.69;0.73;0.74;0.80;0.81;0.98;0.93;0.81;0.89;0.69;0.74;0.99;0.98;0.78;0.80;0.89;0.83;0.89;0.94;0.89研究小组的同学对以上数据进行了整理分析,得到下表:(1)表格中:a=,b=,c=,d=;(2)试估计今年一季度梁家岭村家庭人均收入不低于0.8万元的户数;(3)该村梁飞家今年一季度人均收入为0.83万元,能否超过村里一半以上的家庭?请说明理由.44.(2021·安徽中考真题)为了解全市居民用户用电情况,某部门从居民用户中随机抽取100户进行月用电量(单位:kW•h)调查,按月用电量50~100,100~150,150~200,200~250,250~300,300~350进行分组,绘制频数分布直方图如下:(1)求频数分布直方图中x的值;(2)判断这100户居民用户月用电量数据的中位数在哪一组(直接写出结果);(3)设各组居民用户月平均用电量如表:根据上述信息,估计该市居民用户月用电量的平均数.45.(2021·重庆中考真题)2021年是中国共产党建党100周年,某校开展了全校教师学习党史活动并进行了党史知识竞赛,从七、八年级中各随机抽取了20名教师,统计这部分教师的竞赛成绩(竞赛成绩均为整数,满分为10分,9分及以上为优秀).相关数据统计、整理如下:抽取七年级教师的竞赛成绩(单位:分)6,7,7,8,8,8,8,8,8,8,8,9,9,9,9,10,10,10,10,10.八年级教师竞赛成绩扇形统计图七、八年级教师竞赛成绩统计表根据以上信息,解答下列问题:(1)填空:a=__________,b=_________;(2)估计该校七年级120名教师中竞赛成绩达到8分及以上的人数;(3)根据以上数据分析,从一个方面评价两个年级教师学习党史的竞赛成绩谁更优异.46.(2021·云南中考真题)垃圾的分类回收不仅能够减少环境污染,美化家园,甚至能够变废为宝,节约能源,为增强学生垃圾分类意识,推动垃圾分类进校园,某中学组织全校1565名学生参加了“垃圾分类知识竞赛”(满分为100分),该校数学兴趣小组为了解全校学生竞赛分数情况,采用简单随机抽样的方法(即每名学生的竞赛分数被抽到的可能性相等的抽样方法)抽取部分学生的竞赛分数进行调查分析.(1)以下三种抽样调查方案:方案一:从七年级、八年级、九年级中指定部分学生的竞赛分数作为样本;方案二:从七年级、八年级中随机抽取部分男生的竞赛分数以及在九年级中随机抽取部分女生的竞赛分数作为样本;方案三:从全校1565名学生的竞赛分数中随机抽取部分学生的竞赛分数作为样本,其中抽取的样最具有代表性和广泛性的一种抽样调查方案是_______(填写“方案一”、“方案二”或“方案三”);(2)该校数学兴趣小组根据简单随机抽样方法获得的样本,绘制出如下统计表(90分及以上为“优秀”,60分及以上为“及格”,学生竞赛分数记为x分)结合上述信息解答下列问题:①样本数据的中位数所在分数段为__________;②全校1565名学生,估计竞赛分数达到“优秀”的学生有________人.47.(2021·浙江温州市·中考真题)某校将学生体质健康测试成绩分为A,B,C,D四个等级,依次记为4分,3分,2分,1分.为了解学生整体体质健康状况,拟抽样进行统计分析.(1)以下是两位同学关于抽样方案的对话:小红:“我想随机柚取七年级男、女生各60人的成绩.”小明:“我想随机柚取七、八、九年级男生各40人的成绩.”根据右侧学校信息,请你简要评价小红、小明的抽样方案.如果你来抽取120名学生的测试成绩,请给出抽样方案.(2)现将随机抽取的测试成绩整理并绘制成如下统计图,请求出这组数据的平均数、中位数和众数.某校部分学生体质健康测试成绩统计图48.(2021·重庆中考真题)“惜餐为荣,殄物为耻”,为了解落实“光盘行动”的情况,某校数学兴趣小组的同学调研了七、八年级部分班级某一天的餐厨垃圾质量.从七、八年级中各随机抽取10个班的餐厨垃圾质量的数据(单位:kg ),进行整理和分析(餐厨垃圾质量用x 表示,共分为四个等级:A .1x <,B . 1 1.5x ≤<,C . 1.52x ≤<,D . 2x ≥),下面给出了部分信息.七年级10个班的餐厨垃圾质量:0.8,0.8,0.8,0.9,1.1,1.1,1.6,1.7,1.9,2.3. 八年级10个班的餐厨垃圾质量中B 等级包含的所有数据为:1.0,1.0,1.0,1.0,1.2. 七八年级抽取的班级餐厨垃圾质量统计表根据以上信息,解答下列问题:(1)直接写出上述表中a ,b ,m 的值;(2)该校八年级共30个班,估计八年级这一天餐厨垃圾质量符合A 等级的班级数;(3)根据以上数据,你认为该校七、八年级的“光盘行动”,哪个年级落实得更好?请说明理由(写出一条理由即可).49.(2021·四川泸州市·中考真题)某合作社为帮助农民增收致富,利用网络平台销售当地的一种农副产品.为了解该农副产品在一个季度内每天的销售额,从中随机抽取了20天的销售额(单位:万元)作为样本,数据如下:16,14,13,17,15,14,16,17,14,14,15,14,15,15,14,16,12,13,13,16(1)根据上述样本数据,补全条形统计图;(2)上述样本数据的众数是_____,中位数是_____;(3)根据样本数据,估计这种农副产品在该季度内平均每天的销售额.50.(2020·河南中考真题)为发展乡村经济,某村根据本地特色,创办了山药粉加工厂.该厂需购置一台分装机,计划从商家推荐试用的甲、乙两台不同品牌的分装机中选择.试用时,设定分装的标准质量为每袋500g,与之相差大于10g为不合格.为检验分装效果,工厂对这两台机器分装的成品进行了抽样和分析,过程如下:[收集数据]从甲、乙两台机器分装的成品中各随机抽取20袋,测得实际质量(单位:g)如下:甲:501 497 498 502 513 489 506 490 505 486 502 503 498 497 491 500 505 502 504 505乙:505 499 502 491 487 506 493 505 499 498 502 503 501 490 501 502 512 499 499 501[整理数据]整理以上数据,得到每袋质量()x g的频数分布表.[分析数据]根据以上数据,得到以下统计量.根据以上信息,回答下列问题:()1表格中的a=b=()2综合上表中的统计量,判断工厂应选购哪一台分装机,并说明理由.51.(2020·广西中考真题)阅读下列材料,完成解答:材料1:国家统计局2月28日发布了2019年国民经济和社会发展统计公报,该公报中的如图发布的是全国“2015﹣2019年快递业务量及其增长速度”统计图(如图1).材料2:6月28日,国家邮政局发布的数据显示:受新冠疫情影响,快递业务量快速增长,5月份快递业务量同比增长41%(如图2).某快递业务部门负责人据此估计,2020年全国快递业务量将比2019年增长50%.(1)2018年,全国快递业务量是亿件,比2017年增长了%;(2)2015﹣2019年,全国快递业务量增长速度的中位数是%;(3)统计公报发布后,有人认为,图1中表示2016﹣2019年增长速度的折线逐年下降,说明2016﹣2019年全国快递业务量增长速度逐年放缓,所以快递业务量也逐年减少.你赞同这种说法吗?为什么?(4)若2020年全国快递业务量比2019年增长50%,请列式计算2020年的快递业务量.52.(2020·辽宁盘锦市·中考真题)某校为了解学生课外阅读时间情况,随机抽取了m名学生,根据平均每A B C D四个组别,并绘制了如下不完整的频数分布表和扇形统计图.天课外阅读时间的长短,将他们分为,,,频数分布表请根据图表中的信息解答下列问题:(1)求m与n的值,并补全扇形统计图;(2)直接写出所抽取的m名学生平均每天课外阅读时间的中位数落在的组别;(3)该校现有1500名学生,请你估计该校有多少名学生平均每天课外阅读时间不少于1小时.53.(2020·内蒙古呼伦贝尔市·中考真题)某校为了了解初中学生每天的睡眠时间(单位为小时),随机调查了该校的部分初中学生,根据调查结果,绘制出如下统计图.请根据相关信息,解答下列问题:(1)本次接受调查的初中学生人数为___________人,扇形统计图中的m= ________,条形统计图中的n=_____;(2)所调查的初中学生每天睡眠时间的众数是_______,方差是______;(3)该校共有1600名初中学生,根据样本数据,估计该校初中学生每天睡眠时间不足8小时的人数.54.(2020·四川绵阳市·中考真题)为助力新冠肺炎疫情后经济的复苏,天天快餐公司积极投入到复工复产中.现有A、B两家农副产品加工厂到该公司推销鸡腿,两家鸡腿的价格相同,品质相近.该公司决定通过检查质量来确定选购哪家的鸡腿.检察人员从两家分别抽取100个鸡腿,然后再从中随机各抽取10个,记录它们的质量(单位:克)如表:(1)根据表中数据,求A加工厂的10个鸡腿质量的中位数、众数、平均数;(2)估计B加工厂这100个鸡腿中,质量为75克的鸡腿有多少个?(3)根据鸡腿质量的稳定性,该快餐公司应选购哪家加工厂的鸡腿?55.(2020·云南昆明市·中考真题)某鞋店在一周内销售某款女鞋,尺码(单位:cm)数据收集如下:24 23.5 21.5 23.5 24.5 23 22 23.5 23.5 23 22.5 23.5 23.5 22.5 24 24 22.5 25 23 23 23.5 23 22.5 23 23.5 23.5 23 24 22 22.5绘制如图不完整的频数分布表及频数分布直方图:(1)请补全频数分布表和频数分布直方图;(2)若店主要进货,她最应该关注的是尺码的众数,上面数据的众数为;(3)若店主下周对该款女鞋进货120双,尺码在23.5≤x<25.5范围的鞋应购进约多少双?56.(2020·四川眉山市·中考真题)中华文化源远流长,文学方面,《西游记》、《三国演义》、《水浒传》、《红楼梦》是我国古代长篇小说中的典型代表,被称为“四大古典名著”.某中学为了了解学生对四大古典名著的阅读情况,就“四大古典名著你读完了几部”的问题在全校学生中进行了抽样调查,根据调查结果绘制成如下尚不完整的统计图.请根据以上信息,解决下列问题:(1)本次调查所得数据的众数是________部,中位数是________部;(2)扇形统计图中“4部”所在扇形的圆心角为________度;(3)请将条形统计图补充完整;(4)没有读过四大古典名著的两名学生准备从中各自随机选择一部来阅读,请用列表或画树状图的方法求他们恰好选中同一名著的概率.57.(2020·湖北荆州市·中考真题)6月26日是“国际禁毒日”某中学组织七、八年级全体学生开展了“禁毒知。
2019年全国各地中考数学真题分类解析:有理数

有理数一、选择题1. ( 2018•安徽省,第1题4分)(﹣2)×3的结果是()A.﹣5 B. 1 C.﹣6 D. 6考点:有理数的乘法.分析:根据两数相乘同号得正,异号得负,再把绝对值相乘,可得答案.解答:解:原式=﹣2×3=﹣6.故选:C.点评:本题考查了有理数的乘法,先确定积的符号,再进行绝对值的运算.2. ( 2018•福建泉州,第1题3分)2018的相反数是()3. ( 2018•广东,第1题3分)在1,0,2,﹣3这四个数中,最大的数是()A.1 B.0 C.2 D.﹣3考点:有理数大小比较.分析:根据正数大于0,0大于负数,可得答案.解答:解:﹣3<0<1<2,故选:C.点评:本题考查了有理数比较大小,正数大于0,0大于负数是解题关键.4. ( 2018•珠海,第1题3分)﹣的相反数是()﹣的相反数为.解:与﹣符号相反的数是,所以﹣的相反数是;5. ( 2018•广西贺州,第1题3分)在﹣1、0、1、2这四个数中,最小的数是()A.0 B.﹣1 C.1 D.1考点:有理数大小比较分析:根据正数大于0,0大于负数,可得答案.解答:解:﹣1<0<1<2,故选:B.点评:本题考查了有理数比较大小,正数大于0,0大于负数是解题关键.6. ( 2018•广西贺州,第4题3分)未来三年,国家将投入8450亿元用于缓解群众“看病难、看病贵”的问题.将8450亿元用科学记数法表示为()A.0.845×104亿元B.8.45×103亿元C.8.45×104亿元D.84.5×102亿元考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将8450亿元用科学记数法表示为8.45×103亿元.故选B.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.7. ( 2018•广西玉林市、防城港市,第1题3分)下面的数中,与﹣2的和为0的是()8. ( 2018•广西玉林市、防城港市,第2题3分)将6.18×10﹣3化为小数的是()9. (2018四川资阳,第1题3分)的相反数是()A.B.﹣2 C.D. 2考点:相反数.专题:计算题.分析:根据相反数的定义进行解答即可.解答:解:由相反数的定义可知,﹣的相反数是﹣(﹣)=.故选C.点评:本题考查的是相反数的定义,即只有符号不同的两个数叫互为相反数.10. (2019年四川资阳,第4题3分)餐桌边的一蔬一饭,舌尖上的一饮一酌,实属来之不易,舌尖上的浪费让人触目惊心.据统计,中国每年浪费的食物总量折合粮食约500亿千克,这个数据用科学记数法表示为()A.5×1010千克B.50×109千克C.5×109千克D.0.5×1011千克考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于500亿有11位,所以可以确定n=11﹣1=10.解答:解:500亿=50 000 000 000=5×1010.故选A.点评:此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.11. (2019年天津市,第1题3分)计算(﹣6)×(﹣1)的结果等于()A. 6 B.﹣6 C. 1 D.﹣1考点:有理数的乘法.分析:根据有理数的乘法运算法则进行计算即可得解.解答:解:(﹣6)×(﹣1),=6×1,=6.故选A.点评:本题考查了有理数的乘法运算,是基础题,熟记运算法则是解题的关键.12.(2019年天津市,第4题3分)为了市民出行更加方便,天津市政府大力发展公共交通,2019年天津市公共交通客运量约为1608000000人次,将1608000000用科学记数法表示为()A.160.8×107B.16.08×108C.1.608×109D.0.1608×1010考点:科学记数法—表示较大的数分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将1608000000用科学记数法表示为:1.608×109.故选:C.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.13.(2019年云南省,第1题3分)|﹣|=()A.﹣B.C.﹣7 D.7考点:绝对值.分析:根据负数的绝对值是它的相反数,可得答案.解答:解:|﹣|=,故选:B.点评:本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.14.(2019年云南省,第6题3分)据统计,2019年我国用义务教育经费支持了13940000名农民工随迁子女在城市里接受义务教育,这个数字用科学计数法可表示为()A.1.394×107B.13.94×107C.1.394×106D.13.94×105考点:科学记数法—表示较大的数分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:13 940 000=1.394×107,故选:A.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.15.(2018•温州,第1题4分)计算:(﹣3)+4的结果是()A.﹣7 B.﹣1 C. 1 D.716.(2018•舟山,第1题3分)﹣3的绝对值是()17.(2018•舟山,第3题3分)2019年12月15日,我国“玉兔号”月球车顺利抵达月球表面,月球离地球平均距离是384 400 000米,数据384 400 000用科学记数法表示为()18.(2019年广东汕尾,第1题4分)﹣2的倒数是()A.2 B.C.﹣D.﹣0.2分析:根据乘积为1的两数互为倒数,即可得出答案.解:﹣2的倒数为﹣.故选C.点评:此题考查了倒数的定义,属于基础题,关键是掌握乘积为1的两数互为倒数.19.(2019年广东汕尾,第4题4分)在我国南海某海域探明可燃冰储量约有194亿立方米,数字19400000000用科学记数法表示正确的是()A.1.94×1010B.0.194×1010C.19.4×109D.1.94×109分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解:将19400000000用科学记数法表示为:1.94×1010.故选:A.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.20.(2019年广东汕尾,第5题4分)下列各式计算正确的是()A.(a+b)2=a2+b2 B.a•a2=a3C.a8÷a2=a4D.a2+a3=a5分析:A、原式利用完全平方公式展开得到结果,即可做出判断;B、原式利用同底数幂的乘法法则计算得到结果,即可做出判断;C、原式利用同底数幂的除法法则计算得到结果,即可做出判断;D、原式不能合并,错误.解:A、原式=a2+b2+2ab,错误;B、原式=a3,正确;C、原式=a6,错误;D、原式不能合并,错误,故选B点评:此题考查了同底数幂的乘除法,合并同类项,以及完全平方公式,熟练掌握公式及法则是解本题的关键.21.(2018•毕节地区,第1题3分)计算﹣32的值是()纳米用科学记数法表示为 3.05×10﹣12米.23.(2018•武汉,第1题3分)在实数﹣2,0,2,3中,最小的实数是()24.(2018•武汉,第3题3分)光速约为3000 000千米/秒,将数字300000用科学记数法表示为()25.(2018•襄阳,第1题3分)有理数﹣的倒数是()B解:26.(2018•襄阳,第3题3分)我市今年参加中考人数约为42000人,将42000用科学记数法表示为()27.(2018•襄阳,第7题3分)下列命题错误的是()28.(2018•孝感,第1题3分)下列各数中,最大的数是()30.(2018·台湾,第5题3分)算式743×369﹣741×370之值为何?( )A.﹣3 B.﹣2 C.2 D.3分析:根据乘法分配律,可简便运算,根据有理数的减法,可得答案.解:原式=743×(370﹣1)﹣741×370=370×(743﹣741)﹣743=370×2﹣743=﹣3,故选:A.点评:本题考查了有理数的乘法,乘法分配律是解题关键.31.(2018·台湾,第7题3分)已知果农贩卖的西红柿,其重量与价钱成线型函数关系,今小华向果农买一竹篮的西红柿,含竹篮秤得总重量为15公斤,付西红柿的钱250元.若他再加买0.5公斤的西红柿,需多付10元,则空竹篮的重量为多少公斤?( )A.1.5 B.2 C.2.5 D.3分析:由加买0.5公斤的西红柿,需多付10元就可以求出西红柿的单价,再由总价250元÷西红柿的单价就可以求出西红柿的数量,进而求出结论.解:由题意,得西红柿的单价为:10÷0.5=20元,西红柿的重量为:250÷20=12.5kg,∴空竹篮的重量为:15﹣12.5=2.5kg .故选C .点评:本题考查了总价÷数量=单价的运用,总价÷单价=数量的运用,解答时求出西红柿的单价是解答本题的关键.32.(2018·台湾,第14题3分)小明在络上搜寻到水资源的数据如下:「地球上水的总储量为1.36×1018立方公尺,其中可供人类使用的淡水只占全部的0.3%.」根据他搜寻到的数据,判断可供人类使用的淡水有多少立方公尺?( )A .4.08×1014B .4.08×1015C .4.08×1016D .4.08×1017 分析:科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.解:36×1018×0.3%=4.08×1015.故选:B .点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.33.(2018·云南昆明,第1题3分)21的相反数是( ) A. 21 B. 21- C. 2 D. 2-34.(2018•浙江湖州,第1题3分)﹣3的倒数是( )A .﹣3B . 3C .D . ﹣分析:根据乘积为的1两个数倒数,可得到一个数的倒数.解:﹣3的倒数是﹣,故选:D .点评:本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.35.(2018·浙江金华,第1题4分)在数1,0,1,2-- 中,最小的数是【 】A .1B .0C .1-D .2-【答案】D .【解析】36.(2018•浙江宁波,第1题4分)下列各数中,既不是正数也不是负数的是().亿元,其中253.7亿用科学记数法表示为()足的千克数记为负数,记录如图,则这4框杨梅的总质量是()50000000000千克,这个数据用科学记数法表示为()40. (2018•株洲,第1题,3分)下列各数中,绝对值最大的数是()万人,此数用科学记数法表示正确的是()44.(2018•菏泽,第1题3分)比﹣1大的数是()、45.(2018•济宁,第1题3分)实数1,﹣1,﹣,0,四个数中,最小的数是()﹣>﹣,﹣46.(2019年山东泰安,第1题3分)在,0,﹣1,﹣这四个数中,最小的数是()A.B.0 C.﹣D.﹣1分析:根据正数大于0,0大于负数,可得答案.解:﹣1<﹣<0<,故选:D.点评:本题考查了有理数比较大小,正数大于0,0大于负数是解题关键.47.(2019年山东泰安,第4题3分)PM2.5是指大气中直径≤0.0000025米的颗粒物,将0.0000025用科学记数法表示为()A.2.5×10﹣7B.2.5×10﹣6C.25×10﹣7D.0.25×10﹣5分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解:0.0000025=2.5×10﹣6,故选:B.点评:本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.48.(2018•邵阳,第7题3分)地球的表面积约为511000000km2,用科学记数法表示正确的是()二.填空题1. ( 2018•安徽省,第11题5分)据报载,2019年我国将发展固定宽带接入新用户25000000户,其中25000000用科学记数法表示为2.5×107.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将25000000用科学记数法表示为2.5×107户.故答案为:2.5×107.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2. ( 2018•福建泉州,第8题4分)2019年6月,阿里巴巴注资1200000000元入股广州恒大,将数据1200000000用科学记数法表示为 1.2×109.3. ( 2018•广东,第12题4分)据报道,截止2019年12月我国民规模达618 000 000人.将618 000 000用科学记数法表示为 6.18×108.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将618 000 000用科学记数法表示为:6.18×108.故答案为:6.18×108.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4. ( 2018•珠海,第6题4分)比较大小:﹣2 >﹣3.5. ( 2018•广西玉林市、防城港市,第13题3分)3的倒数是..6.(2018•武汉,第11题3分)计算:﹣2+(﹣3)= ﹣5 .58500万立方米用科学计数法表示为万立方米.8.(2018•浙江宁波,第13题4分)﹣4的绝对值是 4 .的相反数是 3 .9390000人,用科学记数法表示9390000是9.39×106.的相反数是,﹣的绝对值是.考点:相反数的定义和绝对值的定义分析:根据相反数的定义和绝对值定义求解即可.解答:﹣2的相反数是2,﹣2的绝对值是2.点评:主要考查了相反数的定义和绝对值的定义,要求熟练运用定义解题.相反数的定义:只有符号不同的两个数互为相反数,0的相反数是0;绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.12. (2019年江苏南京,第8题,2分)截止2019年底,中国高速铁路营运里程达到11000km,居世界首位,将11000用科学记数法表示为.考点:科学记数法的表示方法分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:将11000用科学记数法表示为:1.1×104.故答案为:1.1×104.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.13. (2018•扬州,第9题,3分)据统计,参加今年扬州市初中毕业、升学统一考试的学生约36800人,这个数据用科学记数法表示为 3.68×104.14.(2018•德州,第13题4分)﹣的相反数是.解:﹣的相反数是﹣(﹣)15.(2018•菏泽第9题3分)2019年“原创新春祝福微博大赛”作品充满了对马年的浓浓祝福,主办方共收到原创祝福电信作品62800条,将62800用科学记数法表示为 6.28×104 .16.(2018•滨州,第13题4分)计算:﹣3×2+(﹣2)2﹣5= ﹣7 .。
2019年浙江绍兴中考数学试题(解析版)

2019年浙江省绍兴市中考数学试卷考试时间:120分钟满分:150分{题型:1-选择题}一、选择题:本大题共10小题,每小题4分,合计40分.{题目}1.(2019•绍兴T1)-5的绝对值是A.5B.-5C.15D.-15{答案}A{解析}本题考查了绝对值的意义,根据负数的绝对值等于它的相反数,得|-5|=5.因此本题选A.{分值}4{章节:[1-1-2-4]绝对值}{考点:绝对值的意义}{类别:常考题}{难度:1-最简单}{题目}2.(2019•绍兴T2)某市决定为全市中小学教室安装空调,今年预计投入资金126 000 000元,其中数字126 000 000元用科学记数法可表示为()A.12.6×107B.1.26×108C.1.26×109D.0.126×1010{答案} B{解析}本题考查了科学记数法的表示方法,126000000=1.26×100000000=1.26×108,因此本题选B.{分值}4{章节:[1-1-5-2]科学计数法}{考点:将一个绝对值较大的数科学计数法}{类别:常考题}{难度:1-最简单}{题目}3.(2019•绍兴T3)如图的几何体由六个相同的小正方体搭成,它的主视图是()A.B.C.D.{答案}A{解析}本题考查了简单组合体的三视图,从正面看得到的视图是主视图.从正面看有三列,从左起第一列有两个正方形,第二列有两个正方形,第三列有一个正方形,因此本题选A.{分值}4{章节:[1-29-2]三视图}{考点:简单组合体的三视图}{类别:常考题}{难度:1-最简单}{题目}4.(2019•绍兴T4)为了解某地区九年级男生的身体情况,随机抽取了该地区100名九年级男生,他们的身高x(cm)统计如下:组别(cm)x<160160≤x<170170≤x<180x≥180人数5384215根据以上结果,抽查该地区一名九年级男生,估计他的身高不低于180cm的概率是()A.0.85B.0.57C.0.42D.0.15{答案}D{解析}本题考查了利用频率估计概率,先计算出样本中身高不低于180cm的频率,然后根据利用频率估计概率求解.样本中身高不低于180cm的频率=15100=0.15,所以估计他的身高不低于180cm的概率是0.15.因此本题选D.{分值}4{章节:[1-25-3]用频率估计概率}{考点:利用频率估计概率}{类别:常考题}{难度:2-简单}{题目}5.(2019•绍兴T5)如图,墙上钉着三根木条a,b,c,量得∠1=70°,∠2=100°,那么木条a,b所在直线所夹的锐角是()A.5°B.10°C.30°D.70°{答案} B{解析}本题考查了三角形内角和定理和对顶角的性质,设a,b所在直线所夹的锐角是∠α,由对顶角相等,得到∠3=∠2=100°,再根据∠α+∠1+∠3=180°,求得∠α=180°-70°-100°=10°,因此本题选B.{分值}4{章节:[1-11-2]与三角形有关的角}{考点:三角形内角和定理}{类别:常考题}{难度:2-简单}{题目}6.(2019•绍兴T6)若三点(1,4),(2,7),(a,10)在同一直线上,则a的值等于()α3A . -1B . 0C . 3D . 4{答案}C{解析}本题考查了用待定系数法求一次函数解析式;设经过(1,4),(2,7)两点的直线解析式为y =kx +b ,∴⎩⎨⎧4=k +b ,7=2k +b .∴⎩⎨⎧k =3,b =1,∴y =3x +1,将点(a ,10)代入解析式,则a =3;因此本题选C . {分值}4{章节:[1-19-2-2]一次函数}{考点:待定系数法求一次函数的解析式} {类别:常考题} {难度:2-简单}{题目}7.(2019•绍兴T7)在平面直角坐标系中,抛物线y =(x +5)(x -3)经过变换后得到抛物线y =(x +3)(x -5),则这个变换可以是( ) A .向左平移2个单位 B .向右平移2个单位 C .向左平移8个单位 D .向右平移8个单位{答案}4{解析}本题考查了二次函数图象与几何变换,y =(x +5)(x -3)=(x +1)2-16,顶点坐标是(-1,-16);y =(x +3)(x -5)=(x -1)2-16,顶点坐标是(1,-16).所以将抛物线y =(x +5)(x -3)向右平移2个单位长度得到抛物线y =(x +3)(x -5),因此本题选B . {分值}4{章节:[1-22-1-4]二次函数y=ax2+bx+c 的图象和性质} {考点:二次函数图象的平移} {类别:思想方法}{类别:常考题} {难度:2-简单}{题目}8.(2019•绍兴T8)如图,△ABC 内接于⊙O ,∠B =65°,∠C =70°,若BC =22,则⌒BC 的长为( )A .πB . 2πC .2πD . 22π{答案}A{解析}本题考查了弧长的计算和圆周角定理,如图,连接OB 、OC ,由三角形内角和定理,求得∠A =180°-∠B -∠C =180°-65°-70°=45°,∴∠BOC =2∠BAC =2×45°=90°,∴OB =BC2=222=2,∴⌒BC 的长90×π×2180=π,因此本题选A .{分值}4{章节:[1-24-4]弧长和扇形面积} {考点:圆周角定理} {考点:弧长的计算}{章节:[1-24-4]弧长和扇形面积} {类别:常考题} {难度:3-中等难度}{题目}9.(2019•绍兴T9)正方形ABCD 的边AB 上有一动点E ,以EC 为边作矩形ECFG ,且边FG 过点D .在点E 从点A 移动到点B 的过程中,矩形ECFG 的面积( ) A .先变大后变小 B .先变小后变大 C .一直变大 D .保持不变{答案} D{解析}本题考查了相似三角形的性质,由题意,得∠BCD =∠ECF =90°,∴∠BCE =∠DCF ,又∵∠CBE =∠CFD =90°,∴△CBE ∽△CFD ,∴CE CD =CBCF ,∴CE ⋅CF =CB ⋅CD ,即矩形ECFG 的面积=正方形ABCD 的面积,因此本题选D . {分值}4{章节:[1-27-1-1]相似三角形的判定} {考点:相似三角形的判定(两角相等)} {类别:常考题} {难度:3-中等难度}{题目}10.(2019•绍兴T10)如图1,长、宽均为3,高为8的长方体容器,放置在水平桌面上,里面盛有水,水面高为6,绕底面一棱进行旋转倾斜后,水面恰好触到容器口边缘,图2是此时的示意图,则图2中水面高度为( ) A .245B .325C .123417D .203417{答案} A{解析}本题考查了勾股定理的应用,解决此题的突破点在于根据题意得到关系式:长方体中水的容积=倾斜后底面积为ADCB 的四棱柱的体积,列方程,得到DE 的长,如图,设DE =x ,则AD =8-x,12(8-x +8)×3×3=3×3×6,解得x =4.∴DE =4.在Rt △DEC 中,CD =DE 2+EC 2=42+32=5,过点C 作CH ⊥BF 于点H ,则由△CBH ∽△CDE ,得到CH CE =CB CD ,即CH 3=85,∴CH =245,因此本题选A . {分值}4{章节:[1-27-1-3]相似三角形应用举例} {考点:勾股定理的应用} {考点:相似三角形的应用} {考点:几何选择压轴}{类别:思想方法}{类别:高度原创} {难度:3-中等难度}{题型:2-填空题}二、填空题:本大题共6小题,每小题5分,合计30分.{题目}11.(2019•绍兴T11)因式分解:x 2-1= .{答案}(x +1)(x -1){解析}本题考查了用平方差公式分解因式,根据平方差公式,有x 2-1=x 2-12=(x +1)(x -1). {分值}5{章节:[1-14-3]因式分解} {考点:因式分解-平方差} {类别:常考题} {难度:1-最简单}{题目}12.(2019•绍兴T12)不等式3x -2≥4的解为 . {答案} x ≥2.{解析}本题考查了解一元一次不等式,先移项得,3x ≥4+2,再合并同类项得,3x ≥6,把x 的系数化为1得,x ≥2. {分值}5{章节:[1-9-2]一元一次不等式} {考点:解一元一次不等式}ED C BAHF{类别:常考题} {难度:1-最简单}{题目}13.(2019•绍兴T13)我国的《洛书》中记载着世界最古老的一个幻方:将1~9这九个数字填入3×3的方格中,使三行、三列、两对角线上的三个数之和都相等,如图的幻方中,字母m 所表示的数是 .{答案}4{解析}本题考查了幻方的特点,数的对称性是解题的关键.根据“每行、每列、每条对角线上的三个数之和相等”,可知三行、三列、两对角线上的三个数之和都等于15,∴第一列第三个数为:15-2-5=8,∴m =15-8-3=4. {分值}5{章节:[1-1-3-1]有理数的加法} {考点:有理数加法的实际应用} {类别:数学文化} {难度:2-简单}{题目}14.(2019•绍兴T14)如图,在直线AP 上方有一个正方形ABCD ,∠PAD =30°,以点B为圆心,AB 为半径作弧,与AP 交于点A ,M ,分别以点A ,M 为圆心,AM 长为半径作弧,两弧交于点E ,连结ED ,则∠ADE 的度数为 .{答案}45°或15°.{解析}本题考查了以正方形为背景的角度计算,正确画出图形是解题的关键.如图,∵四边形ABCD 是正方形,∴∠BAD =90°,∵∠PAD =30°,∴∠BAM =60°,又∵BA =BM ,∴△ABM 是等边三角形.当点E 在直线PA 的上方时,点E 与点B 重合,显然∠ADE =∠ADB =45°;当点E 在直线PA 的下方时,∠BDE =180°-∠BME =180°-2×60°=60°,∴∠ADE =∠BDE -∠ADB =60°-45°=15°,因此答案为45°或15°.{分值}5{章节:[1-18-2-3] 正方形} {考点:等边三角形的判定} {考点:正方形的性质} {考点:几何综合} {类别:发现探究} {类别:易错题} {难度:3-中等难度}{题目}15.(2019•绍兴T15)如图,矩形ABCD 的顶点A ,C 都在曲线y =kx (常数k >0,x >0)上,若顶点D 的坐标为(5,3),则直线BD 的函数表达式是 .{答案}y =35x .{解析}本题考查了反比例函数中几何图形问题,设C (5,k 5),A (k 3,3),则A (k 3,k5);设直线BD 的函数表达式为y =ax +b ,则⎩⎪⎨⎪⎧k 3a +b =k 5,5a +b =3,解得⎩⎪⎨⎪⎧a =35,b =0, 因此直线BD 的函数表达式是y =35x .{分值}5{章节:[1-26-1]反比例函数的图像和性质} {考点:矩形的性质}{考点:待定系数法求一次函数的解析式} {考点:双曲线与几何图形的综合} {类别:常考题} {难度:3-中等难度}{题目}16.(2019•绍兴T16)把边长为2的正方形纸片ABCD 分割成如图的四块,其中点O 为正方形的中心,点E ,F 分别是AB ,AD 的中点.用这四块纸片拼成与此正方形不全等的四边形MNPQ (要求这四块纸片不重叠无缝隙),则四边形MNPQ 的周长是 .{答案}10或6+22或8+22.{解析}本题考查了图形的剪拼,抓住图形的特征是解题的关键,如下图,共有3种周长不同的拼法,拼成的四边形的周长分别为10或6+22或8+22.E{分值}5{章节:[1-18-2-3] 正方形} {考点:勾股定理的应用} {考点:图形的剪拼} {考点:几何填空压轴} {类别:发现探究} {难度:4-较高难度}{题型:4-解答题}三、解答题:本大题共8小题,合计80分.{题目}17.(2019•绍兴T17(1))(1)计算:4sin 60°+(π-2)0-(-12)-2-12.{解析}本题考查了实数的运算,根据实数运算法则直接解答.{答案}解:原式=4×32+1-4-23=-3.{分值}4{章节:[1-28-3]锐角三角函数} {难度:2-简单} {类别:常考题} {考点:正弦}{考点:简单的实数运算}{题目}17.(2019•绍兴T17(2))(2)x 为何值时,两个代数式x 2+1,4x +1的值相等? {解析}本题考查了一元二次方程的解法,由题意得到x 2+1=4x +1,利用因式分解法解方程即可.{答案}解:由题意,得x 2+1=4x +1,x 2-4x =0,x (x -4)=0,x 1=0,x 2=4. {分值}4{章节:[1-21-2-3] 因式分解法} {难度:2-简单} {类别:常考题}{考点:解一元二次方程-因式分解法}{题目}18.(2019•绍兴T18)如图是某型号新能源纯电动汽车充满电后,蓄电池剩余电量y (千瓦时)关于已行驶路程x (千米)的函数图象.(1)根据图象,直接写出蓄电池剩余电量为35千瓦时时汽车已行驶的路程.当0≤x ≤150时,求1千瓦时的电量汽车能行驶的路程.(2)当150≤x ≤200时,求y 关于x 的函数表达式,并计算当汽车已行驶180千米时,蓄电池的剩余电量.{解析}本题考查了一次函数的应用,解题的关键:(1)由图象可知,蓄电池剩余电量为35千瓦时时汽车已行驶了150千米,据此即可求出1千瓦时的电量汽车能行驶的路程;(2)运用待定系数法求出y 关于x 的函数表达式,再把x =180代入即可求出当汽车已行驶180千米时,蓄电池的剩余电量.{答案}解: (1)由图象可知,蓄电池剩余电量为35千瓦时时汽车已行驶了150千米.1千瓦时的电量汽车能行驶的路程为:15060-35=6千米;(2)设y =kx +b (k ≠0),把点(150,35),(200,10)代入, 得⎩⎨⎧150k +b =35,200k +b =10,∴⎩⎨⎧k =-0.5,b =100,∴y =-0.5x +110. 当x =180时,y =-0.5×180+110=20.答:当150≤x ≤200时,函数表达式为y =-0.5x +110,当汽车已行驶180千米时,蓄电池的剩余电量为20千瓦时. {分值}8{章节:[1-19-4]课题学习 选择方案} {难度:2-简单} {类别:常考题}{考点:待定系数法求一次函数的解析式} {考点:分段函数的应用}{题目}19.(2019•绍兴T19)小明、小聪参加了100m 跑的5期集训,每期集训结束市进行测试,根据他们的集训时间、测试成绩绘制成如下两个统计图:根据图中信息,解答下列问题:(1)这5期的集训共有多少天?小聪5次测试的平均成绩是多少?(2)根据统计数据,结合体育运动的实际,从集训时间和测试成绩这两方面,说说你的想法. {解析}本题考查了条形统计图、折线统计图、算术平均数,抓住图中信息是解题的关键.(1)根据图中的信息可以求得这5期的集训共有多少天和小聪5次测试的平均成绩;(2)根据图中的信息和题意,说明自己的观点即可,本题答案不唯一,只要合理即可.{答案}解:(1)这5期的集训共有:5+7+10+14+20=56(天),小聪这5次测试的平均成绩是:(11.88+11.76+11.61+11.53+11.62)÷5=11.68(秒),答:这5期的集训共有56天,小聪5次测试的平均成绩是11.68秒;(2)一类:结合已知的两个统计图的信息及体育运动实际,如:集训时间不是越多越好,集训时间过长,可能会造成劳累,导致成绩下滑.二类:结合已知的两个统计图的信息,如:集训时间为10天或14天时,成绩最好.三类:根据已知的两个统计图中的其中一个统计图的信息,如:集训时间每期都增加.{分值}8{章节:[1-20-1-1]平均数}{难度:2-简单}{类别:常考题}{考点:条形统计图}{考点:折线统计图}{考点:算术平均数}{题目}20.(2019•绍兴T20)如图1为放置在水平桌面l上的台灯,底座的高AB为5cm,长度均为20cm的连杆BC,CD与AB始终在同一平面上.(1)转动连杆BC,CD,使∠BCD成平角,∠ABC=150°,如图2,求连杆端点D离桌面l的高度DE.(2)将(1)中的连杆CD再绕点C逆时针旋转,使∠BCD=165°,如图3,问此时连杆端点D离桌面l的高度是增加还是减少?增加或减少了多少?(精确到0.1cm,参考数据:2≈1.41,3≈1.73){解析}本题考查了解直角三角形的应用,解题的关键是添加常用辅助线,构造直角三角形解决问题.(1)如图2中,作BO⊥DE于O.解直角三角形求出OD即可解决问题.(2)作DF⊥l于F,CP⊥DF于P,BG⊥DF于G,CH⊥BG于H,则四边形PCHG是矩形,求出DF,再求出DF-DE即可解决问题.{答案}解:(1)如图2中,作BO⊥DE,垂足为O.∵∠OEA=∠BOE=∠BAE=90°,∴四边形ABOE是矩形,∴∠OBA=90°,∴∠DBO=150°-90°=60°,∴OD=BD•sin60°=40•sin60°=203(cm),∴DF=OD+OE=OD+AB=203+5≈39.6(cm).(2)下降了.如图3,过点D作DF⊥l于F,过点C作CP⊥DF于P,过点B作BG⊥DF于G,过点C作CH⊥BG 于H.则四边形PCHG是矩形,∵∠CBH=60°,∠CHB=90°,∴∠BCH=30°,又∵∠BCD=165°,∴∠DCP=45°,∴CH=BC sin60°=103(cm),DP=CD sin45°=102(cm),∴DF=DP+PG+GF=DP+CH+AB=102+10+5(cm),∴下降高度:DE-DF=203+5-102-103-5=103-102≈3.2(cm).{分值}8{章节:[1-28-2-1]特殊角}{难度:3-中等难度}{类别:高度原创}{类别:常考题}{考点:解直角三角形的应用—测高测距离}{题目}21.(2019•绍兴T21)在屏幕上有如下内容:如图,△ABC内接于⊙O,直径AB的长为2,过点C的切线交AB的延长线于点D.张老师要求添加条件后,编制一道题目,并解答.(1)在屏幕内容中添加条件∠D=30°,求AD的长.请你解答.(2)以下是小明、小聪的对话:小明:我加的条件是BD=1,就可以求出AD的长小聪:你这样太简单了,我加的是∠A=30°,连结OC,就可以证明△ACB与△DCO全等.参考此对话,在屏幕内容中添加条件,编制一道题目(可以添线、添字母),并解答.{解析}本题考查了切线的性质及应用,添加过切点的半径是常用辅助线.(1)连接OC,如图,利用切线的性质得∠OCD=90°,再根据含30°的直角三角形三边的关系得到OD=2,然后计算OA+OD即可;(2)添加∠DCB=30°,求AC的长,利用圆周角定理得到∠ACB=90°,再证明∠A=∠DCB=30°,然后根据含30°的直角三角形三边的关系求AC的长;本题答案不唯一.{答案}解:(1)连接OC,如图,∵CD为切线,∴OC⊥CD,∴∠OCD=90°,∵∠D =30°,∴OD =2OC =2,∴AD =AO +OD =1+2=3;(2)本题答案不唯一,如:添加∠DCB =30°,求AC 的长.解:∵AB 为直径,∴∠ACB =90°,∵∠ACO +∠OCB =90°,∠OCB +∠DCB =90°,∴∠ACO =∠DCB ,∵∠ACO =∠A ,∴∠A =∠DCB =30°,在Rt △ACB 中,BC =12AB =1, ∴AC =3BC =3.{分值}10{章节:[1-24-2-2]直线和圆的位置关系}{难度:3-中等难度}{类别:常考题}{考点:圆周角定理}{考点:切线的性质}{题目}22.(2019•绍兴T22)有一块形状如图的五边形余料ABCDE ,AB =AE =6,BC =5,∠A =∠B =90°,∠C =135°,∠E >90°.要在这块余料中截取一块矩形材料,其中一条边在AE 上,并使所截矩形材料的面积尽可能大.(1)若所截矩形材料的一条边是BC 或AE ,求矩形材料的面积.(2)能否截出比(1)中更大面积的矩形材料?如果能,求出这些矩形材料面积的最大值;如果不能,说明理由.{解析}本题考查了矩形的性质、等腰直角三角形的判定与性质、矩形面积公式以及二次函数的应用等知识;(1)①若所截矩形材料的一条边是BC ,过点C 作CF ⊥AE 于F ,得出S 1=AB •BC =6×5=30;②若所截矩形材料的一条边是AE ,过点E 作EF ∥AB 交CD 于F ,FG ⊥AB 于G ,过点C 作CH ⊥FG 于H ,则四边形AEFG 为矩形,四边形BCHG 为矩形,证出△CHF 为等腰三角形,得出AE =FG =6,HG =BC =5,BG =CH =FH ,求出BG =CH =FH =FG -HG =1,AG =AB -BG =5,得出S 2=AE •AG =6×5=30;(2)在CD 上取点F ,过点F 作FM ⊥AB 于M ,FN ⊥AE 于N ,过点C 作CG ⊥FM 于G ,则四边形ANFM 为矩形,四边形BCGM 为矩形,证出△CGF 为等腰三角形,得出MG =BC =5,BM =CG ,FG =DG ,设AM =x ,则BM =6-x ,FM =GM +FG =GM +CG =BC +BM =11-x ,得出S =AM ×FM =x (1-x )-x 2+11x ,由二次函数的性质即可得出结果.{答案}解:(1)①若所截矩形材料的一条边是BC ,如图1所示:过点C 作CF ⊥AE 于F ,S 1=AB •BC =6×5=30;②若所截矩形材料的一条边是AE,如图2所示:过点E作EF∥AB交CD于点F,FG⊥AB于点G,过点C作CH⊥FG于点H,则四边形AEFG为矩形,四边形BCHG为矩形,∵∠C=135°,∴∠FCH=45°,∴△CHF为等腰直角三角形,∴AE=FG=6,HG=BC=5,BG=CH=FH,∴BG=CH=FH=FG-HG=6-5=1,∴AG=AB-BG=6-1=5,∴S2=AE•AG=6×5=30;(2)能;理由如下:在CD上取点F,过点F作FM⊥AB于点M,FN⊥AE于点N,过点C作CG⊥FM于点G,则四边形ANFM为矩形,四边形BCGM为矩形,∵∠C=135°,∴∠FCG=45°,∴△CGF为等腰直角三角形,∴MG=BC=5,BM=CG,FG=DG,设AM=x,则BM=6-x,∴FM=GM+FG=GM+CG=BC+BM=11-x,∴S=AM×FM=x(11-x)=-x2+11x=-(x-5.5)2+30.25,∴当x=5.5时,S的最大值为30.25.{分值}12{章节:[1-22-3]实际问题与二次函数}{难度:3-中等难度}{类别:高度原创}{考点:矩形的性质}{考点:与平行四边形有关的面积问题}{考点:二次函数与平行四边形综合}{题目}23.(2019•绍兴T23)如图1是实验室中的一种摆动装置,BC在地面上,支架ABC是底边为BC的等腰直角三角形,摆动臂AD可绕点A旋转,摆动臂DM可绕点D旋转,AD=30,DM =10.(1)在旋转过程中,①当A,D,M三点在同一直线上时,求AM的长.②当A,D,M三点为同一直角三角形的顶点时,求AM的长.(2)若摆动臂AD顺时针旋转90°,点D的位置由△ABC外的点D1转到其内的点D2处,连结D1D2,如图2,此时∠AD2C=135°,CD2=60,求BD2的长.{解析}本题是四边形综合题,考查了等腰直角三角形的性质,勾股定理,全等三角形的判定和性质等知识.(1)①分两种情形分别求解即可.②显然∠MAD不能为直角.当∠AMD为直角时,根据AM2=AD2-DM2,计算即可,当∠ADM=90°时,根据AM2=AD2+DM2,计算即可.(2)连接CD.首先利用勾股定理求出CD1,再利用全等三角形的性质证明BD2=CD1即可.{答案}解:(1)①AM=AD+DM=40,或AM=AD-DM=20.②显然∠MAD不能为直角.当∠AMD为直角时,AM2=AD2-DM2=302-102=800,∴AM=202或(AM=-202舍去).当∠ADM=90°时,AM2=AD2+DM2=302+102=1000,∴AM=1010或(AM=-1010舍去).综上所述,满足条件的AM的值为202或1010.(2)如图2中,连接CD1.由题意:∠D1AD2=90°,AD1=AD2=30,∴∠AD2D1=45°,D1D2=302,∵∠AD2C=135°,∴∠CD2D1=90°,∴CD1=CD22+D1D22=306,∵∠BAC=∠D2AD1=90°,∴∠BAC-∠CAD2=∠D2AD1-∠CAD2,∴∠BAD2=∠CAD1,又∵AB=AC,AD2=AD1,∴△BAD2≌△CAD1(SAS),∴BD2=CD1=306.{分值}12{章节:[1-17-1]勾股定理}{难度:4-较高难度}{类别:发现探究}{考点:勾股定理}{考点:全等三角形的判定SAS}{考点:几何综合}{题目}24.(2019•绍兴T24)如图,矩形ABCD中,AB=a,BC=b,点M,N分别在边AB,CD上,点E ,F 分别在边BC ,AD 上,MN ,EF 交于点P ,记k =MN ∶EF .(1)若a :b 的值为1,当MN ⊥EF 时,求k 的值.(2)若a :b 的值为12,求k 的最大值和最小值. (3)若k 的值为3,当点N 是矩形的顶点,∠MPE =60°,MP =EF =3PE 时,求a ∶b 的值.{解析}本题考查了正方形的性质,全等三角形的判定和性质,矩形的性质,相似三角形的判定和性质等知识,是一道几何综合题.(1)作EH ⊥BC 于H ,MQ ⊥CD 于Q ,设EF 交MN 于点O .证明△FHE ≌△MQN (ASA ),即可解决问题.(2)由题意:2a ≤MN ≤5a ,a ≤EF ≤5a ,当MN 的长取最大时,EF 取最短,此时k 的值最大最大值=5,当MN 的最短时,EF 的值取最大,此时k 的值最小,最小值为255. (3)连接FN ,ME .由k =3,MP =EF =3PE ,推出MN PM =EF PE =3,推出PN PM =PF PE=2,由△PNF ∽△PME ,推出NF ME =PN PM=2,ME ∥NF ,设PE =2m ,则PF =4m ,MP =6m ,NP =12m ,接下来分两种情形①如图2中,当点N 与点D 重合时,点M 恰好与B 重合.②如图3中,当点N 与C 重合,分别求解即可.{答案}解:(1)如图1中,作EH ⊥BC 于H ,MQ ⊥CD 于Q ,设EF 交MN 于点O .∵四边形ABCD 是正方形,∴FH =AB ,MQ =BC ,∵AB =CB ,∴EH =MQ ,∵EF ⊥MN ,∴∠EON =90°,∵∠ECN =90°,∴∠MNQ +∠CEO =180°,∠FEH +∠CEO =180°,∴∠FEH =∠MNQ ,∵∠EHF =∠MQN =90°,∴△FHE ≌△MQN (ASA ),∴MN =EF ,∴k =MN ∶EF =1.(2)∵a ∶b =1∶2,∴b =2a ,由题意:2a ≤MN ≤5a ,a ≤EF ≤5a ,∴当MN 的长取最大时,EF 取最短,此时k 的值最大最大值=5,当MN 的最短时,EF 的值取最大,此时k 的值最小,最小值为255. (3)连接FN ,ME . ∵k =3,MP =EF =3PE ,∴MN PM =EF PE =3,∴PN PM =PF PE=2, ∵∠FPN =∠EPM ,∴△PNF ∽△PME ,∴NF ME =PN PM=2,ME ∥NF , 设PE =2m ,则PF =4m ,MP =6m ,NP =12m ,①如图2中,当点N 与点D 重合时,点M 恰好与B 重合.作FH ⊥BD 于H .∵∠MPE =∠FPH =60°,∴PH =2m ,FH =23m ,DH =10m ,∴a b =AB AD =FH HD =35. ②如图3中,当点N 与C 重合,作EH ⊥MN 于H .则PH =m ,HE =3m ,∴HC =PH +PC =13m ,∴tan ∠HCE =MB BC =HE HC =313, ∵ME ∥FC ,∴∠MEB =∠FCB =∠CFD ,∵∠B =∠D ,∴△MEB ∽△CFD ,∴CD MB =FC ME =2,∴a b =CD BD =2MB BC =2313, 综上所述,a ∶b 的值为35或2313. {分值}14{章节:[1-28-1-2]解直角三角形}{难度:5-高难度}{类别:发现探究}{考点:矩形的性质}{考点:相似三角形的性质}{考点:其他二次函数综合题}{考点:几何综合}。
2019全国各市中考真题(含解析)—福建省中考数学试卷

2019年全国各省市中考数学真题(函解析)2019年福建省中考数学试卷4A . 72 X 10 5B . 7.2X 10 - c -6C. 7.2X10 6D. 0.72X 10(4分)下列图形中,一定既是轴对称图形又是中心对称图形的是(C. 8(4分)如图是某班甲、乙、丙三位同学最近 5次数学成绩及其所在班级相应平均分的折线统方t 图,则下列判断错误的是(」丁宇成般分104-A .甲的数学成绩高于班级平均分,且成绩比较稳定 B.乙的数学成绩在班级平均分附近波动,且比丙好C.丙的数学成绩低于班级平均分,但成绩逐次提高、选择题(每小题4分共40分)(4分)计算22+ (-1)0的结果是(A. 5C. 3D. 22. (4分)北京故宫的占地面积约为720000m 2将720000用科学记数法表示为( 3. A.等边三角形B.直角三角形C.平行四边形D.正方形4. (4分)如图是由一个长方体和一个球组成的几何体,它的主视图是5. (4分)已知正多边形的一个外角为D.36。
,则该正多边形的边数为(D.6. A .C.70审 丙■班氢用均D.就甲、乙、丙三个人而言,乙的数学成绩最不稳10. (4 分)若二次函数 y= |a|x 2+bx+c 的图象经过 A (m,n )、B (0,y 1)、C (3-m,n )、D(N''2,y 2)、E (2,y 3),则y 1、y 2、y 3的大小关系是( )A . y 1V y 2〈y 3B . y 1V y 3〈y 2C. y 3V y 2〈y 1D. y 2V y 3〈y 1二、填空题(每小题 4分共24分)2 -11. (4分)因式分解:x -9 =.12.(4分)如图,数轴上A 、B 两点所表示的数分别是- 4和2,点C 是线段AB 的中点,则点C 所表示的数是.AC Bt I n副 〉-4213. (4分)某校征集校运会会徽 ,遴选出甲、乙、丙三种图案.为了解何种图案更受欢迎,随机调查了该校100名学生,其中60名同学喜欢甲图案,若该校共有2000人,根据所学的统7. (4分)下列运算正确的是( A. a?a 3=a 3 B.(2a) 3= 6a 3 8. C. a 6+a 3=a 2D.(4分)《增删算法统宗》记载:“有个学生资性好 (a 2) 3- (- a3) 2=0,一部孟子三日了,每日增添一倍多,问若每日读多少?”其大意是:有个学生天资聪慧前一天的两倍,问他每天各读多少个字?已知,三天读完一部《孟子》,每天阅读的字数是 《孟子》一书共有34685个字,设他第一天读x 个字,则下面所列方程正确的是(A . x+2x+4x= 34685C. x+2x+2x= 34685B. x+2x+3x= 346859.4分)如图,PA 、PB 是。
2019全国中考数学真题分类汇编之10:整式(含答案)

2019年全国中考数学真题分类汇编:整式一、选择题1. (2019年安徽省)计算3a-a•()的结果是()A.a2B.-a2C.a4D.-a4【考点】整式的乘法、同底数幂相乘【解答】D2.(2019年上海市)下列运算正确的是()A.3+2=52B.3﹣2=C.3•2=6 D.3÷2=2 3【考点】整式的加减法、整式的乘除法【解答】解:(A)原式=5,故A错误;(C)原式=62,故C错误;(D)原式=32,故D错误;故选:B.3. (2019年四川省广安市)下列运算正确的是()A.a2+a3=a5B.3a2•4a3=12a6C.5﹣=5 D.×=【考点】整式的加减法、整式的乘除法、二次根式混合运算【解答】解:A、a2+a3不是同类项不能合并;故A错误;B、3a2•4a3=12a5故B错误;C、5﹣=4,故C错误;D、,故D正确;故选:D.4. (2019年重庆市)按如图所示的运算程序,能使输出y值为1的是()A.m=1,n=1 B.m=1,n=0 C.m=1,n=2 D.m=2,n=1 【考点】代数式求值、有理数的混合运算【解答】解:当m=1,n=1时,y=2m+1=2+1=3,当m=1,n=0时,y=2n﹣1=﹣1,当m=1,n=2时,y=2m+1=3,当m=2,n=1时,y=2n﹣1=1,故选:D.5. (2019年山东省滨州市)下列计算正确的是()A.2+3=5B.2•3=6C.3÷2=D.(22)3=66【考点】整式的运算【解答】解:A、2+3不能合并,错误;B、2•3=5,错误;C、3÷2=,正确;D、(22)3=86,错误;故选:C.6. (2019年山东省滨州市)若8m y与63y n的和是单项式,则(m+n)3的平方根为()A.4 B.8 C.±4 D.±8【考点】同类项、整式的运算【解答】解:由8m y与63y n的和是单项式,得m=3,n=1.(m+n)3=(3+1)3=64,64的平方根为±8.故选:D.7. (2019年山东省德州市)下列运算正确的是()A. (−2a)2=−4a2B. (a+b)2=a2+b2C. (a5)2=a7D. (−a+2)(−a−2)=a2−4【考点】积的乘方运算、完全平方公式、幂的乘方、平方差公式【解答】解:(-2a)2=4a2,故选项A不合题意;(a+b)2=a2+2ab+b2,故选项B不合题意;(a5)2=a10,故选项C不合题意;(-a+2)(-a-2)=a2-4,故选项D符合题意.故选:D.8. (2019年山东省菏泽市)下列运算正确的是()A.(﹣a3)2=﹣a6B.a2•a3=a6C.a8÷a2=a4D.3a2﹣2a2=a2【考点】整式的加减乘除法、幂的乘方【解答】解:A、原式=a6,不符合题意;B、原式=a5,不符合题意;C、原式=a6,不符合题意;D、原式=a2,符合题意,故选:D.9. (2019年山东省青岛市)计算(﹣2m)2•(﹣m•m2+3m3)的结果是()A.8m5B.﹣8m5C.8m6D.﹣4m4+12m5【考点】幂的乘方、积的乘方以及合并同类项【解答】解:原式=4m2•2m3=8m5,故选:A.10. (2019年山东省枣庄市)下列运算,正确的是()A.2+3y=5y B.(﹣3)2=2﹣9C.(y2)2=2y4D.6÷3=2【考点】合并同类项、完全平方公式、积的乘方、同底数幂的乘除运算【解答】解:A、2+3y,无法计算,故此选项错误;B、(﹣3)2=2﹣6+9,故此选项错误;C、(y2)2=2y4,正确;D、6÷3=3,故此选项错误;故选:C.11. (2019年四川省达州市)下列计算正确的是()A.a2+a3=a5B.a8÷a4=a4C.(﹣2ab)2=﹣4a2b2D.(a+b)2=a2+b2【考点】合并同类项、完全平方公式、积的乘方、同底数幂的乘除运算【解答】解:A、a2+a3,无法计算,故此选项错误;B、a8÷a4=a4,故此选项正确;C、(﹣2ab)2=4a2b2,故此选项错误;D、(a+b)2=a2+2ab+b2,故此选项错误;故选:B.12. (2019年四川省资阳市)下列各式中,计算正确的是()A.a3•a2=a6B.a3+a2=a5C.a6÷a3=a2D.(a3)2=a6【考点】同底数幂的乘法和除法、幂的乘方、同底数幂的乘除运算【解答】解:A、a3•a2=a5,错误;B、a3+a2不能合并,错误;C、a6÷a3=a3,错误;D、(a3)2=a6,正确;故选:D.13. (2019年四川省资阳市)4张长为a、宽为b(a>b)的长方形纸片,按如图的方式拼成一个边长为(a+b)的正方形,图中空白部分的面积为S1,阴影部分的面积为S2.若S1=2S2,则a、b满足()A.2a=5b B.2a=3b C.a=3b D.a=2b【考点】整式的混合运算、完全平方公式【解答】解:S1=b(a+b)×2++(a﹣b)2=a2+2b2,S2=(a+b)2﹣S1=(a+b)2﹣(a2+2b2)=2ab﹣b2,∵S1=2S2,∴a2+2b2=2(2ab﹣b2),整理,得(a﹣2b)2=0,∴a﹣2b=0,∴a=2b.故选:D.14. (2019年广西贺州市)把多项式4a2﹣1分解因式,结果正确的是()A.(4a+1)(4a﹣1)B.(2a+1)(2a﹣1)C.(2a﹣1)2D.(2a+1)2【考点】分解因式【解答】解:4a2﹣1=(2a+1)(2a﹣1),故选:B.15. (2019年江苏省泰州市)若2a-3b=-1,则代数式4a2-6ab+3b的值为()A.-1 B.1 C.2 D.3【考点】分解因式【解答】原式=2 a(2a-3b)+3b=2 a×(-1)+ 3b=-(2 a-3b)= -(-1) =1.故答案为:B.16. (2019年河南省)下列计算正确的是()A.2a+3a=6a B.(﹣3a)2=6a2C.(﹣y)2=2﹣y2D.3﹣=2【考点】整式的运算、完全平方公式、二次根式的运算【解答】解:2a+3a=5a,A错误;(﹣3a)2=9a2,B错误;(﹣y)2=2﹣2y+y2,C错误;=2,D正确;故选:D.17. (2019年湖北省十堰市)下列计算正确的是()A.2a+a=2a2B.(﹣a)2=﹣a2C.(a﹣1)2=a2﹣1 D.(ab)2=a2b2【考点】整式的运算、完全平方公式【解答】解:A、2a+a=3a,故此选项错误;B、(﹣a)2=a2,故此选项错误;C、(a﹣1)2=a2﹣2a+1,故此选项错误;D、(ab)2=a2b2,正确.故选:D.18. (2019年浙江省衢州市)下列计算正确的是()A. a6+a6=a12B. a6×a2=a8C. a6÷a2=a3D. (a6)2=a8【考点】同底数幂的乘法,同底数幂的除法,合并同类项法则及应用,幂的乘方【解答】解:A.∵a6+a6=2a6,故错误,A不符合题意;B.∵a6×a2=a6+2=a8,故正确,B符合题意;C.∵a6÷a2=a6-2=a4,故错误,C不符合题意;D.∵(a6)2=a2×6=a12,故错误,D不符合题意;故答案为:B.19. (2019年甘肃省天水市)下列运算正确的是()A.(ab)2=a2b2B.a2+a2=a4C.(a2)3=a5D.a2•a3=a6【考点】合并同类项法则、同底数幂相乘、幂的乘方、【解答】解:A选项,积的乘方:(ab)2=a2b2,正确B选项,合并同类项:a2+a2=2a2,错误C选项,幂的乘方:(a2)3=a6,错误D选项,同底数幂相乘:a2•a3=a5,错误故选:A.20.(2019年甘肃省)计算(﹣2a)2•a4的结果是()A.﹣4a6B.4a6C.﹣2a6D.﹣4a8【考点】积的乘方运算、同底数幂的乘法运算、【解答】解:(﹣2a)2•a4=4a2•a4=4a6.故选:B.21. (2019年湖北省宜昌市)化简(﹣3)2﹣(﹣6)的结果为()A.6﹣9 B.﹣12+9 C.9 D.3+9【考点】完全平方公式、单项式乘以多项式【解答】解:原式=2﹣6+9﹣2+6=9.故选:C.二、填空题x⋅5的结果等于。
2019全国中考数学真题分类含答案解析-知识点26 反证法、命题与定理2019

一、选择题7.(2019·德州)下列命题是真命题的是( )A.两边及其中一边的对角分别相等的两个三角形全等B.平分弦的直径垂直于弦C.一组对边平行且一组对角相等的四边形是平行四边形D.两条直线别第三条直线所截,内错角相等【答案】C .【解析】A 、由两边及其中一边的对角分别相等无法证明两个三角形全等,故A 错误,是假命题;B 、平分弦(非直径)的直径垂直于弦,故B 错误,是假命题;C 、一组对边平行且一组对角相等的四边形是平行四边形,故C 正确,是真命题;D 、两条平行线被第三条直线所截,内错角相等,故D 错误,是假命题;故选C .6.(2019·娄底)下列命题是假命题的是( )A .到线段两端点距离相等的点在线段的垂直平分线上B .等边三角形既是轴对称图形,又是中心对称图形C .n 边形(n ≥3)的内角和是180360n ︒-︒D .旋转不改变图形的形状和大小【答案】B【解析】A .由线段垂直平分线的判定知该选项是真命题.B .等边三角形既是轴对称图形,但不是中心对称图形;故该选项为假命题.C .由n 边形(n ≥3)的内角和是()2180n -︒知该选项是真命题.D .由旋转的性质得该选项是真命题.8.(2019·衡阳)下列命题是假命题的是( )A. n 边形(n ≥3)的外角和是360°B. 线段垂直平分线上的点到线段两个端点的距离相等C. 相等的角是对顶角D. 矩形的对角线互相平分且相等【答案】C .【解析】对顶角相等,但相等的角不一定是对顶角,故选C .8.(2019·武汉)已知反比例函数xk y =的图象分别位于第二、第四象限,A (x 1,y 1)、B (x 2,y 2)两点在该图象上,下列命题:① 过点A 作AC ⊥x 轴,C 为垂足,连接O A .若△ACO 的面积为3,则k =-6;②若x 1<0<x 2,则y 1>y 2;③ 若x 1+x 2=0,则y 1+y 2=0其中真命题个数是( )A .0B .1C .2D .3【答案】D【解析】①中,由反比例的几何意义可知,S △ACO =12|xy |=3,∴|k |=|xy |=6,∵图象位于第二、第四象限,∴k =-6.正确;∵x 1<0<x 2,∴点A 在第二象限,点B 在第四象限,故y 1>y 2,正确;③中,∵y 1=16x -,y 2=26x -,∴y 1+y 2=16x -+26x -=12126()x x x x -+,若x 1+x 2=0,∴y 1+y 2=0.正确,其中真命题有3个.故选D . 1. (2019·岳阳)下列命题是假命题...的是( ) A .平行四边形既是轴对称图形,又是中心对称图形B .同角(或等角)的余角相等C .线段垂直平分线上的点到线段两端的距离相等D .正方形的对角线相等,且互相垂直平分【答案】A【解析】平行四边形一定是中心对称图形,但不一定是轴对称图形,选项A 是假命题;故选A .2. (2019·巴中)下列命题是真命题的是( )A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是矩形C.对角线互相垂直的矩形是正方形D.四边相等的平行四边形是正方形【答案】C【解析】对角线相等的平行四边形是矩形,故A,B 均错误;对角线互相垂直的矩形是正方形,C 正确;四边相等的平行四边形是菱形,故D 错误;故选C.二、填空题12.(2019·泰州)命题"三角形的三个内角中至少有两个锐角"是______(填"真命题"或"假命题")【答案】真命题【解析】如果三角形有两个直角或钝角,那么内角和就大于180°,所以三角形中最多只能有一个钝角或直角,至少有两个锐角,故原命题为真命题.12.(2019·安徽)命题“如果a+b=0,那么a ,b 互为相反数”的逆命题为 .【答案】如果a ,b 互为相反数,那么a +b =0【解析】本题考查了命题及其逆命题的概念,解题的关键是理解命题的条件和结论.逆命题是将原命题的题设与结论部分对调.该命题的题设部分为“a +b =0”,结论部分为“a ,b 互为相反数”. 故答案为如果a ,b 互为相反数,那么a +b =0.三、解答题1. (2019·台州)我们知道,各个角都相等,各条边都相等的多边形叫做正多边形.对一个各条边都相等的凸多边形(边数大于3),可以由若干条对角线相等判定它是正多边形.例如,各条边都相等的凸四边形,若两条对角线相等,则这个四边形是正方形.(1)已知凸五边形ABCDE 的各条边都相等.①如图1,若AC =AD =BE =BD =CE,求证:五边形ABCDE 是正五边形;②如图2,若AC =BE =CE,请判断五边形ABCDE 是不是正五边形,并说明理由;(2)判断下列命题的真假.(在括号内填写"真"或"假")如图3,已知凸六边形ABCDEF 的各条边都相等.①若AC =CE =EA,则六边形ABCDE 是正六边形;( )②若AD =BE =CF,则六边形ABCDE 是正六边形;( )解:(1)①在△EAD 和△ABE 中,AB =EA,AE =ED,BE =AD,∴△EAD ≌△ABE,同理可得△EAD ≌△ABE ≌△BCA ≌△CDB ≌△DEC,∴∠ABC =∠BCD =∠CDE =∠DEA =∠EAB,∴五边形ABCDE 是正五边形;②∵AC =BE =CE,AB =BC =CD =DE =EA,∴△ABC ≌△EAB ≌△DEC,∴设∠DCE =∠ABE =∠BCA =x,易得△ACE ≌△BEC,∴设∠ACE =∠BEC =y,∵EB =EC,∴∠EBC =∠ECB =x+y,∴∠AED =2x+y,∠BCD =2x+y,∵∠ABC =2x+y,∴∠ABC =∠BCD =∠CDE =∠DEA =∠EAB,∴五边形ABCDE 是正五边形;(2)①假命题;②假命题;21.(2019山东威海,21,8分)(1)阅读理解如图,点A ,B 在反比例函数的图象上,连接AB ,取线段AB 的中点C ,分别过点A ,C ,B 作x 轴的垂线,垂足为E ,F ,G ,CF 交反比例函数的图象于点D ,点E ,F ,G 的横坐标分别为n -1,n ,n +1(n >1).小红通过观察反比例的图象,并运用几何知识得到结论: AE +BG =2CF ,CF >DF .由此得出一个关于之间数量关系的命题: 若n >1,则(2)证明命题小东认为:可以通过“若≥0,则≥”的思路证明上述命题.小晴认为:可以通过“若>0,>0,且≥1,则≥”的思路证明上述命题.请你选择一种方法证明(1)中的命题.【解题过程】(1)∵A ,D ,B 都在反比例的图象上,且点E ,F ,G 的横坐标分别为n -1,n ,n +1(n >1), ∴AE =BG =DF =. 又∵AE +BG =2CF ,∴CF = 又∵CF >DF ,n >1,1y x =1y x =1y x =112,,11n n n-+a b -a b a b a b ÷a b 1y x=1,1n -1,1n +1n111(),211n n +-+∴>,即>. 故答案为>. (2)选择选择小东的思路证明结论>, ∵n >1,∴>0, ∴>.一、选择题10.(2019·深圳)下列命题正确的是( )A .矩形对角线互相垂直B .方程x 2=14x 的解为x=14C .六边形的内角和为540°D .斜边和一条直角边分别相等的两个直角三角形全等【答案】D【思路分析】对各个选项逐项判断.【解题过程】A 中,矩形的对角线相等,而不具备对角线互相垂直,故A 错误;B 中,方程x2=14x 的解为x=14或x=0,故B 错误;C 中,六边形的内角和为(6-2)×180°=720°,故C 错误;选项D 正确.故选D .【知识点】矩形的性质;一元二次方程的解法;正多边形的内角和;全等三角形8.(2019•广安)下列命题是假命题的是( )A .函数35y x =+的图象可以看作由函数31y x =-的图象向上平移6个单位长度而得到B .抛物线234y x x =--与x 轴有两个交点C .对角线互相垂直且相等的四边形是正方形D .垂直于弦的直径平分这条弦【答案】C【解析】A 、函数35y x =+的图象可以看作由函数31y x =-的图象向上平移6个单位长度而得到,正确,是真命题;B 、抛物线234y x x =--中△24250b ac =-=>,与x 轴有两个交点,正确,是真命题;C 、对角线互相垂直且相等的平行四边形是正方形,故错误,是假命题;D 、垂直与弦的直径平分这条弦,正确,是真命题,故选C .111()211n n +-+1n 1111n n +-+2n1111n n +-+2n1111n n +-+2n 2221122(1)2()11(1)(1)(1)(1)n n n n n n n n n n n n n n ++---+-==-+-+-+1111n n +-+2n【知识点】命题与定理;一次函数的平移;抛物线与坐标轴的交点;正方形的判定;垂径定理16.(2019·资阳)给出以下命题:①平分弦的直径垂直于这条弦;②已知点A (﹣1,y 1)、B (1,y 2)、C (2,y 3)均在反比例函数y =k x(k <0)的图象上,则y 2<y 3<y 1; ③若关于x 的不等式组{x <−1x >a 无解,则a ≥﹣1; ④将点A (1,n )向左平移3个单位到点A 1,再将A 1绕原点逆时针旋转90°到点A 2,则A 2的坐标为(﹣n ,﹣2).其中所有真命题的序号是.【答案】②③④【解析】①平分弦的直径垂直于这条弦,应该为:平分弦(不是直径)的直径垂直于这条弦,故错误; ②反比例函数y =k x (k <0)在二、四象限,当x <0时,y >0;x >0时,y <0,且x 增大,y 增大,故y 1>y 3>y 2,故正确;③若关于x 的不等式组{x <−1x >a无解,a ≥﹣1,正确; ④将点A (1,n )向左平移3个单位到点A 1,则A 1(﹣2,n ),将A 1绕原点逆时针旋转90°到点A 2,A 2的坐标为(﹣n ,﹣2),正确.以上正确的都为真命题,故答案为:②③④.【知识点】命题与定理一、选择题7. (2019·永州)下列说法正确的是A .有两边和一角分别相等的两个三角形全等B .有一组对边平行,且对角线相等的四边形是矩形C .如果一个角的补角等于它本身,那么这个角等于45°D .点到直线的距离就是该点到该直线的垂线段的长度【答案】D【解析】选项A 中,可能是“SSA ”的情形,不能判定两个三角形全等;选项B 中,没有“对角 线互相平分”这一条件,不能判定四边形为平行四边形,更不能判定为矩形;选项C 中,如果一个角的补角等于它本身,那么这个角等于90°;只有选项D 正确.7.(2019 · 北京) 用三个不等式a b >,0ab >,11a b <中的两个不等式作为题设,余下的一个不等式作为结论组成一个命题,组成真命题的个数为A .0B .1C .2D .3【答案】D 【解析】本题共有3个命题: 命题①,如果a b >,0ab >,那么11a b <.∵a b >,∴0a b ->.又∵0ab >;∴0a b ab ->,化简得11a b <,该命题为真命题. 命题②,如果a b >,11a b <;那么0ab >. ∵11a b <,∴110a b-<,0b a ab -<. ∵a b >,∴0b a -<,∴0ab >.该命题为真命题. 命题③,如果0ab >,11a b <,那么a b >. ∵11a b <,∴110a b-<,0b a ab -<. ∵0ab >,∴0b a -<, ∴b a <.该命题为真命题. 选D.【知识点】真假命题、不等式的性质.7. (2019 · 桂林)下列命题中,是真命题的是( )A .两直线平行,内错角相等B .两个锐角的和是钝角C .直角三角形都相似D .正六边形的内角和为360︒ 【答案】A【解析】解:A.两直线平行,内错角相等,正确,是真命题;B.两个锐角的和不一定是钝角,故错误,是假命题;C.所有的直角三角形不一定相似,故错误,是假命题;D.正六边形的内角和为720︒,故错误,是假命题;故选:A .7.(2019 ·常州)判断命题“如果n <1,那么n 2-1<0”是假命题,只需举出一个反例.反例中的n 可以为( )A .-2B .-12C .0D .12【答案】A【解析】本题考查了用举反例的方法证明一个假命题,根据反例的意义:即命题的条件成立,但命题的结论不成立的例子即可为反例,本题中由“-2<1,而(-2)2-1=3>1”,从而反例中的n 可以为-2,因此本题选A .【知识点】命题与证明;反证法;举反例。
2019全国中考数学真题分类汇编之10:整式(含答案)

2019年全国中考数学真题分类汇编:整式一、选择题1. (2019年安徽省)计算3a-a•()的结果是()A.a2B.-a2C.a4D.-a4【考点】整式的乘法、同底数幂相乘【解答】D2.(2019年上海市)下列运算正确的是()A.3+2=52B.3﹣2=C.3•2=6 D.3÷2=2 3【考点】整式的加减法、整式的乘除法【解答】解:(A)原式=5,故A错误;(C)原式=62,故C错误;(D)原式=32,故D错误;故选:B.3. (2019年四川省广安市)下列运算正确的是()A.a2+a3=a5B.3a2•4a3=12a6C.5﹣=5 D.×=【考点】整式的加减法、整式的乘除法、二次根式混合运算【解答】解:A、a2+a3不是同类项不能合并;故A错误;B、3a2•4a3=12a5故B错误;C、5﹣=4,故C错误;D、,故D正确;故选:D.4. (2019年重庆市)按如图所示的运算程序,能使输出y值为1的是()A.m=1,n=1 B.m=1,n=0 C.m=1,n=2 D.m=2,n=1 【考点】代数式求值、有理数的混合运算【解答】解:当m=1,n=1时,y=2m+1=2+1=3,当m=1,n=0时,y=2n﹣1=﹣1,当m=1,n=2时,y=2m+1=3,当m=2,n=1时,y=2n﹣1=1,故选:D.5. (2019年山东省滨州市)下列计算正确的是()A.2+3=5B.2•3=6C.3÷2=D.(22)3=66【考点】整式的运算【解答】解:A、2+3不能合并,错误;B、2•3=5,错误;C、3÷2=,正确;D、(22)3=86,错误;故选:C.6. (2019年山东省滨州市)若8m y与63y n的和是单项式,则(m+n)3的平方根为()A.4 B.8 C.±4 D.±8【考点】同类项、整式的运算【解答】解:由8m y与63y n的和是单项式,得m=3,n=1.(m+n)3=(3+1)3=64,64的平方根为±8.故选:D.7. (2019年山东省德州市)下列运算正确的是()A. (−2a)2=−4a2B. (a+b)2=a2+b2C. (a5)2=a7D. (−a+2)(−a−2)=a2−4【考点】积的乘方运算、完全平方公式、幂的乘方、平方差公式【解答】解:(-2a)2=4a2,故选项A不合题意;(a+b)2=a2+2ab+b2,故选项B不合题意;(a5)2=a10,故选项C不合题意;(-a+2)(-a-2)=a2-4,故选项D符合题意.故选:D.8. (2019年山东省菏泽市)下列运算正确的是()A.(﹣a3)2=﹣a6B.a2•a3=a6C.a8÷a2=a4D.3a2﹣2a2=a2【考点】整式的加减乘除法、幂的乘方【解答】解:A、原式=a6,不符合题意;B、原式=a5,不符合题意;C、原式=a6,不符合题意;D、原式=a2,符合题意,故选:D.9. (2019年山东省青岛市)计算(﹣2m)2•(﹣m•m2+3m3)的结果是()A.8m5B.﹣8m5C.8m6D.﹣4m4+12m5【考点】幂的乘方、积的乘方以及合并同类项【解答】解:原式=4m2•2m3=8m5,故选:A.10. (2019年山东省枣庄市)下列运算,正确的是()A.2+3y=5y B.(﹣3)2=2﹣9C.(y2)2=2y4D.6÷3=2【考点】合并同类项、完全平方公式、积的乘方、同底数幂的乘除运算【解答】解:A、2+3y,无法计算,故此选项错误;B、(﹣3)2=2﹣6+9,故此选项错误;C、(y2)2=2y4,正确;D、6÷3=3,故此选项错误;故选:C.11. (2019年四川省达州市)下列计算正确的是()A.a2+a3=a5B.a8÷a4=a4C.(﹣2ab)2=﹣4a2b2D.(a+b)2=a2+b2【考点】合并同类项、完全平方公式、积的乘方、同底数幂的乘除运算【解答】解:A、a2+a3,无法计算,故此选项错误;B、a8÷a4=a4,故此选项正确;C、(﹣2ab)2=4a2b2,故此选项错误;D、(a+b)2=a2+2ab+b2,故此选项错误;故选:B.12. (2019年四川省资阳市)下列各式中,计算正确的是()A.a3•a2=a6B.a3+a2=a5C.a6÷a3=a2D.(a3)2=a6【考点】同底数幂的乘法和除法、幂的乘方、同底数幂的乘除运算【解答】解:A、a3•a2=a5,错误;B、a3+a2不能合并,错误;C、a6÷a3=a3,错误;D、(a3)2=a6,正确;故选:D.13. (2019年四川省资阳市)4张长为a、宽为b(a>b)的长方形纸片,按如图的方式拼成一个边长为(a+b)的正方形,图中空白部分的面积为S1,阴影部分的面积为S2.若S1=2S2,则a、b满足()A.2a=5b B.2a=3b C.a=3b D.a=2b【考点】整式的混合运算、完全平方公式【解答】解:S1=b(a+b)×2++(a﹣b)2=a2+2b2,S2=(a+b)2﹣S1=(a+b)2﹣(a2+2b2)=2ab﹣b2,∵S1=2S2,∴a2+2b2=2(2ab﹣b2),整理,得(a﹣2b)2=0,∴a﹣2b=0,∴a=2b.故选:D.14. (2019年广西贺州市)把多项式4a2﹣1分解因式,结果正确的是()A.(4a+1)(4a﹣1)B.(2a+1)(2a﹣1)C.(2a﹣1)2D.(2a+1)2【考点】分解因式【解答】解:4a2﹣1=(2a+1)(2a﹣1),故选:B.15. (2019年江苏省泰州市)若2a-3b=-1,则代数式4a2-6ab+3b的值为()A.-1 B.1 C.2 D.3【考点】分解因式【解答】原式=2 a(2a-3b)+3b=2 a×(-1)+ 3b=-(2 a-3b)= -(-1) =1.故答案为:B.16. (2019年河南省)下列计算正确的是()A.2a+3a=6a B.(﹣3a)2=6a2C.(﹣y)2=2﹣y2D.3﹣=2【考点】整式的运算、完全平方公式、二次根式的运算【解答】解:2a+3a=5a,A错误;(﹣3a)2=9a2,B错误;(﹣y)2=2﹣2y+y2,C错误;=2,D正确;故选:D.17. (2019年湖北省十堰市)下列计算正确的是()A.2a+a=2a2B.(﹣a)2=﹣a2C.(a﹣1)2=a2﹣1 D.(ab)2=a2b2【考点】整式的运算、完全平方公式【解答】解:A、2a+a=3a,故此选项错误;B、(﹣a)2=a2,故此选项错误;C、(a﹣1)2=a2﹣2a+1,故此选项错误;D、(ab)2=a2b2,正确.故选:D.18. (2019年浙江省衢州市)下列计算正确的是()A. a6+a6=a12B. a6×a2=a8C. a6÷a2=a3D. (a6)2=a8【考点】同底数幂的乘法,同底数幂的除法,合并同类项法则及应用,幂的乘方【解答】解:A.∵a6+a6=2a6,故错误,A不符合题意;B.∵a6×a2=a6+2=a8,故正确,B符合题意;C.∵a6÷a2=a6-2=a4,故错误,C不符合题意;D.∵(a6)2=a2×6=a12,故错误,D不符合题意;故答案为:B.19. (2019年甘肃省天水市)下列运算正确的是()A.(ab)2=a2b2B.a2+a2=a4C.(a2)3=a5D.a2•a3=a6【考点】合并同类项法则、同底数幂相乘、幂的乘方、【解答】解:A选项,积的乘方:(ab)2=a2b2,正确B选项,合并同类项:a2+a2=2a2,错误C选项,幂的乘方:(a2)3=a6,错误D选项,同底数幂相乘:a2•a3=a5,错误故选:A.20.(2019年甘肃省)计算(﹣2a)2•a4的结果是()A.﹣4a6B.4a6C.﹣2a6D.﹣4a8【考点】积的乘方运算、同底数幂的乘法运算、【解答】解:(﹣2a)2•a4=4a2•a4=4a6.故选:B.21. (2019年湖北省宜昌市)化简(﹣3)2﹣(﹣6)的结果为()A.6﹣9 B.﹣12+9 C.9 D.3+9【考点】完全平方公式、单项式乘以多项式【解答】解:原式=2﹣6+9﹣2+6=9.故选:C.二、填空题x⋅5的结果等于。
2019年全国各地中考数学真题汇编:统计与概率(湖北专版)(解析卷)

2019年全国各地中考数学真题汇编(湖北专版)统计与概率参考答案与试题解析一.选择题(共13小题)1.(2019•天门)下列说法正确的是()A.了解我市市民知晓“礼让行人”交通新规的情况,适合全面调查B.甲、乙两人跳远成绩的方差分别为S甲2=3,S乙2=4,说明乙的跳远成绩比甲稳定C.一组数据2,2,3,4的众数是2,中位数是2.5D.可能性是1%的事件在一次试验中一定不会发生解:A.了解我市市民知晓“礼让行人”交通新规的情况,适合抽样调查,A错误;B.甲、乙两人跳远成绩的方差分别为S甲2=3,S乙2=4,说明甲的跳远成绩比乙稳定,B错误;C.一组数据2,2,3,4的众数是2,中位数是2.5,正确;D.可能性是1%的事件在一次试验中可能会发生,D错误.故选:C.2.(2019•武汉)不透明的袋子中只有4个黑球和2个白球,这些球除颜色外无其他差别,随机从袋子中一次摸出3个球,下列事件是不可能事件的是()A.3个球都是黑球B.3个球都是白球C.3个球中有黑球D.3个球中有白球解:A、3个球都是黑球是随机事件;B、3个球都是白球是不可能事件;C、3个球中有黑球是必然事件;D、3个球中有白球是随机事件;故选:B.3.(2019•十堰)一次数学测试,某小组5名同学的成绩统计如下(有两个数据被遮盖):则被遮盖的两个数据依次是()A.80,80B.81,80C.80,2D.81,2解:根据题意得:80×5﹣(81+77+80+82)=80(分),则丙的得分是80分;众数是80,故选:A.4.(2019•武汉)从1、2、3、4四个数中随机选取两个不同的数,分别记为a、c,则关于x的一元二次方程ax2+4x+c=0有实数解的概率为()A.B.C.D.解:画树状图得:由树形图可知:一共有12种等可能的结果,其中使ac≤4的有6种结果,∴关于x的一元二次方程ax2+4x+c=0有实数解的概率为,故选:C.5.(2019•宜昌)李大伯前年在驻村扶贫工作队的帮助下种了一片果林,今年收货一批成熟的果子.他选取了5棵果树,采摘后分别称重.每棵果树果子总质量(单位:kg)分别为:90,100,120,110,80.这五个数据的中位数是()A.120B.110C.100D.90解:90,100,120,110,80,从小到大排列为:80,90,100,110,120,则这五个数据的中位数是:100.故选:C.6.(2019•襄阳)下列说法错误的是()A.必然事件发生的概率是1B.通过大量重复试验,可以用频率估计概率C.概率很小的事件不可能发生D.投一枚图钉,“钉尖朝上”的概率不能用列举法求得解:A、必然事件发生的概率是1,正确;B、通过大量重复试验,可以用频率估计概率,正确;C、概率很小的事件也有可能发生,故错误;D、投一枚图钉,“钉尖朝上”的概率不能用列举法求得,正确,故选:C.7.(2019•鄂州)已知一组数据为7,2,5,x,8,它们的平均数是5,则这组数据的方差为()A.3B.4.5C.5.2D.6解:∵一组数据7,2,5,x,8的平均数是5,∴5=(7+2+5+x+8),∴x=5×5﹣7﹣2﹣5﹣8=3,∴s2=[(7﹣5)2+(2﹣5)2+(5﹣5)2+(3﹣5)2+(8﹣5)2]=5.2,故选:C.8.(2019•宜昌)在“践行生态文明,你我一起行动”主题有奖竞赛活动中,903班共设置“生态知识、生态技能、生态习惯、生态文化”四个类别的竞赛内容,如果参赛同学抽到每一类别的可能性相同,那么小宇参赛时抽到“生态知识”的概率是()A.B.C.D.解:∵共设置“生态知识、生态技能、生态习惯、生态文化”四个类别的竞赛内容,参赛同学抽到每一类别的可能性相同,∴小宇参赛时抽到“生态知识”的概率是:.故选:B.9.(2019•孝感)下列说法错误的是()A.在一定条件下,可能发生也可能不发生的事件称为随机事件B.一组数据中出现次数最多的数据称为这组数据的众数C.方差可以刻画数据的波动程度,方差越大,波动越小;方差越小,波动越大D.全面调查和抽样调查是收集数据的两种方式解:A.在一定条件下,可能发生也可能不发生的事件称为随机事件,正确,故选项A不合题意;B.一组数据中出现次数最多的数据称为这组数据的众数,正确,故选项B不合题意;C.方差可以刻画数据的波动程度,方差越大,波动越大;方差越小,波动越小.故选项C符合题意;D.全面调查和抽样调查是收集数据的两种方式,正确,故选项D不合题意.故选:C.10.(2019•荆门)投掷一枚质地均匀的骰子两次,向上一面的点数依次记为a,b.那么方程x2+ax+b =0有解的概率是()A.B.C.D.解:画树状图为:共有36种等可能的结果数,其中使a2﹣4b≥0,即a2≥4b的有19种,∴方程x2+ax+b=0有解的概率是,故选:D.11.(2019•荆州)在一次体检中,甲、乙、丙、丁四位同学的平均身高为1.65米,而甲、乙、丙三位同学的平均身高为1.63米,下列说法一定正确的是()A.四位同学身高的中位数一定是其中一位同学的身高B.丁同学的身高一定高于其他三位同学的身高C.丁同学的身高为1.71米D.四位同学身高的众数一定是1.65解:A、四位同学身高的中位数可能是某两个同学身高的平均数,故错误;B、丁同学的身高一定高于其他三位同学的身高,错误;C、丁同学的身高为1.65×4﹣1.63×3=1.71米,正确;D.四位同学身高的众数一定是1.65,错误.故选:C.12.(2019•随州)某校男子篮球队10名队员进行定点投篮练习,每人投篮10次,他们投中的次数统计如表:则这些队员投中次数的众数、中位数和平均数分别为()A.5,6,6B.2,6,6C.5,5,6D.5,6,5解:在这一组数据中5是出现次数最多的,故众数是5;处于中间位置的两个数的平均数是(6+6)÷2=6,那么由中位数的定义可知,这组数据的中位数是6.平均数是:(3+15+12+14+16)÷10=6,所以答案为:5、6、6,故选:A.13.(2019•随州)如图,在平行四边形ABCD中,E为BC的中点,BD,AE交于点O,若随机向平行四边形ABCD内投一粒米,则米粒落在图中阴影部分的概率为()A.B.C.D.解:∵E为BC的中点,∴,∴=,∴S△BOE=S△AOB,S△AOB=S△ABD,∴S△BOE=S△ABD=S▱ABCD,∴米粒落在图中阴影部分的概率为,故选:B.二.填空题(共8小题)14.(2019•天门)一个不透明的口袋中有四个完全相同的小球,其上分别标有数字1,2,4,8.随机摸取一个小球后不放回,再随机摸取一个小球,则两次取出的小球上数字之积等于8的概率是.解:列表如下由表知,共有12种等可能结果,其中两次取出的小球上数字之积等于8的有4种结果,所以两次取出的小球上数字之积等于8的概率为=,故答案为:.15.(2019•黄石)根据下列统计图,回答问题:该超市10月份的水果类销售额>11月份的水果类销售额(请从“>”“=”“<”中选一个填空).解:10月份的水果类销售额60×20%=12(万元),11月份的水果类销售额70×15%=10.5(万元),所以10月份的水果类销售额>11月份的水果类销售额,故答案为>.16.(2019•武汉)武汉市某气象观测点记录了5天的平均气温(单位:℃),分别是25、20、18、23、27,这组数据的中位数是23℃.解:将数据重新排列为18、20、23、25、27,所以这组数据的中位数为23℃,故答案为:23℃.17.(2019•十堰)我市“创建文明城市”活动正如火如荼的展开.某校为了做好“创文”活动的宣传,就本校学生对“创文”有关知识进行测试,然后随机抽取了部分学生的测试成绩进行统计分析,并将分析结果绘制成如下两幅不完整的统计图:若该校有学生2000人,请根据以上统计结果估计成绩为优秀和良好的学生共有1400人.解:∵被调查的总人数为28÷28%=100(人),∴优秀的人数为100×20%=20(人),∴估计成绩为优秀和良好的学生共有2000×=1400(人),故答案为:1400.18.(2019•襄阳)从2,3,4,6中随机选取两个数记作a和b(a<b),那么点(a,b)在直线y=2x上的概率是.解:画树状图如图所示,一共有6种情况,b=2a的有(2,4)和(3,6)两种,所以点(a,b)在直线y=2x上的概率是=,故答案为:.19.(2019•黄冈)一组数据1,7,8,5,4的中位数是a,则a的值是5.解:先把原数据按从小到大排列:1,4,5,7,8,正中间的数5,所以这组数据的中位数a的值是5.故答案为:5.20.(2019•孝感)董永社区在创建全国卫生城市的活动中,随机检查了本社区部分住户五月份某周内“垃圾分类”的实施情况,将他们绘制了两幅不完整的统计图(A.小于5天;B.5天;C.6天;D.7天),则扇形统计图B部分所对应的圆心角的度数是108°.解:∵被调查的总人数为9÷15%=60(人),∴B类别人数为60﹣(9+21+12)=18(人),则扇形统计图B部分所对应的圆心角的度数是360°×=108°,故答案为:108°.21.(2019•咸宁)一个质地均匀的小正方体,六个面分别标有数字“1”“1”“2”“4”“5”“5”,随机掷一次小正方体,朝上一面的数字是奇数的概率是.解:∵一个质地均匀的小正方体,六个面分别标有数字“1”“1”“2”“4”“5”“5”,∴随机掷一次小正方体,朝上一面的数字是奇数的概率是:=.故答案为:.三.解答题(共12小题)22.(2019•天门)为了解某地七年级学生身高情况,随机抽取部分学生,测得他们的身高(单位:cm),并绘制了如下两幅不完整的统计图,请结合图中提供的信息,解答下列问题.(1)填空:样本容量为100,a=30;(2)把频数分布直方图补充完整;(3)若从该地随机抽取1名学生,估计这名学生身高低于160cm的概率.解:(1)15÷=100,所以样本容量为100;B组的人数为100﹣15﹣35﹣15﹣5=30,所以a%=×100%=30%,则a=30;故答案为100,30;(2)补全频数分布直方图为:(3)样本中身高低于160cm的人数为15+30=45,样本中身高低于160cm的频率为=0.45,所以估计从该地随机抽取1名学生,估计这名学生身高低于160cm的概率为0.45.23.(2019•武汉)为弘扬中华传统文化,某校开展“双剧进课堂”的活动,该校童威随机抽取部分学生,按四个类别:A表示“很喜欢”,B表示“喜欢”,C表示“一般”,D表示“不喜欢”,调查他们对汉剧的喜爱情况,将结果绘制成如下两幅不完整的统计图,根据图中提供的信息,解决下列问题:(1)这次共抽取50名学生进行统计调查,扇形统计图中,D类所对应的扇形圆心角的大小为72°;(2)将条形统计图补充完整;(3)该校共有1500名学生,估计该校表示“喜欢”的B类的学生大约有多少人?解:(1)这次共抽取:12÷24%=50(人),D类所对应的扇形圆心角的大小360°×=72°,故答案为50,72°;(2)A类学生:50﹣23﹣12﹣10=5(人),条形统计图补充如下该校表示“喜欢”的B类的学生大约有1500×=690(人),答:该校表示“喜欢”的B类的学生大约有690人;24.(2019•十堰)第一盒中有2个白球、1个黄球,第二盒中有1个白球、1个黄球,这些球除颜色外无其他差别.(1)若从第一盒中随机取出1个球,则取出的球是白球的概率是.(2)若分别从每个盒中随机取出1个球,请用列表或画树状图的方法求取出的两个球中恰好1个白球、1个黄球的概率.解:(1)若从第一盒中随机取出1个球,则取出的球是白球的概率是,故答案为:;(2)画树状图为:,共有6种等可能的结果数,取出的两个球中恰好1个白球、1个黄球的有3种结果,所以取出的两个球中恰好1个白球、1个黄球的概率为.25.(2019•黄石)将正面分别写着数字1,2,3的三张卡片(注:这三张卡片的形状、大小、质地、颜色等其它方面完全相同,若背面朝上放在桌面上,这三张卡片看上去无任何差别)洗匀后,背面朝上放在桌面上,甲从中随机抽取一张卡片,记该卡片上的数字为m,然后放回洗匀,背面朝上放在桌面上,再由乙从中随机抽取一张卡片,记该卡片上的数字为n,组成一数对(m,n).(1)请写出(m,n)所有可能出现的结果;(2)甲、乙两人玩游戏,规则如下:按上述要求,两人各抽一次卡片,卡片上数字之和为奇数则甲赢,数字之和为偶数则乙赢.你认为这个游戏公平吗?请说明理由.解:(1)(m,n)所有可能出现的结果:(1,1),(1,2),(1,3),(2,2),(2,1),(2,3),(3,1),(3,2),(3,3).(2)数字之和为奇数的概率=,数字之和为偶数的概率=,≠,∴这个游戏不公平.26.(2019•宜昌)某校在参加了宜昌市教育质量综合评价学业素养测试后,随机抽取八年级部分学生,针对发展水平四个维度“阅读素养、数学素养、科学素养、人文素养”,开展了“你最需要提升的学业素养”问卷调查(每名学生必选且只能选择一项).小明、小颖和小雯在协助老师进行统计后,有这样一段对话:小明:“选科学素养和人文素养的同学分别为16人,12人.”小颖:“选数学素养的同学比选阅读素养的同学少4人.”小雯:“选科学素养的同学占样本总数的20%.”(1)这次抽样调查了多少名学生?(2)样本总数中,选“阅读素养”、“数学素养”的学生各多少人?(3)如图是调查结果整理后绘制成的扇形图.请直接在横线上补全相关百分比;(4)该校八年级有学生400人,请根据调查结果估计全年级选择“阅读素养”的学生有多少人?解:(1)16÷20%=80,所以这次抽样调查了80名学生;(2)设样本中选数学素养的同学数为x人,则选阅读素养的同学数为(x+4)人,x+x+4+16+12=80,解得x=24,则x+4=28,所以本总数中,选“阅读素养”的学生数为28人,选“数学素养”的学生数为24人;(3)选数学素养的学生数所占的百分比为×100%=30%;选阅读素养的学生数所占的百分比为×100%=35%;选人文素养的学生数所占的百分比为×100%=15%;如图,(4)400×35%=140,所以估计全年级选择“阅读素养”的学生有140人.27.(2019•襄阳)今年是中华人民共和国建国70周年,襄阳市某学校开展了“我和我的祖国”主题学习竞赛活动.学校3000名学生全部参加了竞赛,结果所有学生成绩都不低于60分(满分100分).为了了解成绩分布情况,学校随机抽取了部分学生的成绩进行统计,得到如下不完整的统计表.根据表中所给信息,解答下列问题:(1)表中a=20,b=0.2;(2)这组数据的中位数落在70≤x<80范围内;(3)判断:这组数据的众数一定落在70≤x<80范围内,这个说法正确(填“正确”或“错误”);(4)这组数据用扇形统计图表示,成绩在80≤x<90范围内的扇形圆心角的大小为72°;(5)若成绩不小于80分为优秀,则全校大约有900名学生获得优秀成绩.解:(1)调查学生总数:15÷0.3=50(名),70≤x<80的频数:50﹣15﹣10﹣5=20,即a=2080≤x<90的频率:1﹣0.3﹣0.4﹣0.1=0.2,即b=0.2,故答案为20,0.2;(2)共50名学生,中位数落在“70≤x<80”范围内;(3)“70≤x<80”范围内,频数最大,因此这组数据的众数落在70≤x<80范围内,故答案为正确;(4)成绩在80≤x<90范围内的扇形圆心角:=72°,故答案为72°;(5)获得优秀成绩的学生数:=900(名),故答案为900.28.(2019•鄂州)某校为了解全校学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机选取该校部分学生进行调查,要求每名学生从中选出一类最喜爱的电视节目,以下是根据调查结果绘制的统计图表的一部分.请你根据以上信息,回答下列问题:(1)统计表中m的值为25,统计图中n的值为25,A类对应扇形的圆心角为39.6度;(2)该校共有1500名学生,根据调查结果,估计该校最喜爱体育节目的学生人数;(3)样本数据中最喜爱戏曲节目的有4人,其中仅有1名男生.从这4人中任选2名同学去观赏戏曲表演,请用树状图或列表求所选2名同学中有男生的概率.解:(1)∵样本容量为20÷20%=100,∴m=100﹣(11+20+40+4)=25,n%=×100%=25%,A类对应扇形的圆心角为360°×=39.6°,故答案为:25、25、39.6.(2)1500×=300(人)答:该校最喜爱体育节目的人数约有300人;(3)画树状图如下:共有12种情况,所选2名同学中有男生的有6种结果,所以所选2名同学中有男生的概率为.29.(2019•荆门)高尔基说:“书,是人类进步的阶梯.”阅读可以丰富知识、拓展视野、充实生活等诸多益处.为了解学生的课外阅读情况,某校随机抽查了部分学生阅读课外书册数的情况,并绘制出如下统计图,其中条形统计图因为破损丢失了阅读5册书数的数据.(1)求条形图中丢失的数据,并写出阅读书册数的众数和中位数;(2)根据随机抽查的这个结果,请估计该校1200名学生中课外阅读5册书的学生人数;(3)若学校又补查了部分同学的课外阅读情况,得知这部分同学中课外阅读最少的是6册,将补查的情况与之前的数据合并后发现中位数并没有改变,试求最多补查了多少人?解:(1)设阅读5册书的人数为x,由统计图可知:=30%,∴x=14,∴条形图中丢失的数据是14,阅读书册数的众数是5,中位数是5;(2)该校1200名学生中课外阅读5册书的学生人数为1200×=420(人),答:该校1200名学生中课外阅读5册书的学生人数是420人;(3)设补查了y人,根据题意得,12+6+y<8+14,∴y<4,∴最多补查了3人.30.(2019•黄冈)某校开发了“书画、器乐、戏曲、棋类”四大类兴趣课程.为了解全校学生对每类课程的选择情况,随机抽取了若干名学生进行调查(每人必选且只能选一类),先将调查结果绘制成如下两幅不完整的统计图:(1)本次随机调查了多少名学生?(2)补全条形统计图中“书画”、“戏曲”的空缺部分;(3)若该校共有1200名学生,请估计全校学生选择“戏曲”类的人数;(4)学校从这四类课程中随机抽取两类参加“全市青少年才艺展示活动”,用树形图或列表法求处恰好抽到“器乐”和“戏曲”类的概率.(书画、器乐、戏曲、棋类可分别用字幕A,B,C,D表示)解:(1)本次随机调查的学生人数为30÷15%=200(人);(2)书画的人数为200×25%=50(人),戏曲的人数为200﹣(50+80+30)=40(人),补全图形如下:(3)估计全校学生选择“戏曲”类的人数约为1200×=240(人);(4)列表得:∵共有12种等可能的结果,其中恰好抽到“器乐”和“戏曲”类的有2种结果,∴恰好抽到“器乐”和“戏曲”类的概率为=.31.(2019•荆州)体育组为了了解九年级450名学生排球垫球的情况,随机抽查了九年级部分学生进行排球垫球测试(单位:个),根据测试结果,制成了下面不完整的统计图表:(1)表中的数a=20,b=0.08;(2)估算该九年级排球垫球测试结果小于10的人数;(3)排球垫球测试结果小于10的为不达标,若不达标的5人中有3个男生,2个女生,现从这5人中随机选出2人调查,试通过画树状图或列表的方法求选出的2人为一个男生一个女生的概率.(2)该九年级排球垫球测试结果小于10的人数450×(1﹣0.1)=45(人),答:该九年级排球垫球测试结果小于10的人数为405人;(3)列表如下∴P(选出的2人为一个男生一个女生的概率)==.32.(2019•咸宁)某校为了解七、八年级学生一分钟跳绳情况,从这两个年级随机抽取50名学生进行测试,并对测试成绩(一分钟跳绳次数)进行整理、描述和分析,下面给出了部分信息:七、八年级学生一分钟跳绳成绩分析表七年级学生一分钟跳绳成绩(数据分7组:60≤x<80,80≤x<100,…,180≤x<200)在100≤x<120这一组的是:100 101 102 103 105 106 108 109 109 110 110 111 112 113 115 115 115 116 117 119根据以上信息,回答下列问题:(1)表中a=118;(2)在这次测试中,七年级甲同学的成绩122次,八年级乙同学的成绩125次,他们的测试成绩,在各自年级所抽取的50名同学中,排名更靠前的是甲(填“甲”或“乙”),理由是甲的成绩122超过中位数118,乙的成绩125低于其中位数126.(3)该校七年级共有500名学生,估计一分钟跳绳不低于116次的有多少人?解:(1)∵七年级50名学生成绩的中位数是第25、26个数据的平均数,而第25、26个数据分别是117、119,∴中位数a==118,故答案为:118;(2)∴在各自年级所抽取的50名同学中,排名更靠前的是甲,理由是甲的成绩122超过中位数118,乙的成绩125低于其中位数126,故答案为:甲,甲的成绩122超过中位数118,乙的成绩125低于其中位数126.(3)估计一分钟跳绳不低于116次的有500×=270(人).33.(2019•随州)“校园安全”越来越受到人们的关注,我市某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图.根据图中信息回答下列问题:(1)接受问卷调查的学生共有60人,条形统计图中m的值为10;(2)扇形统计图中“了解很少”部分所对应扇形的圆心角的度数为96°;(3)若该中学共有学生1800人,根据上述调查结果,可以估计出该学校学生中对校园安全知识达到“非常了解”和“基本了解”程度的总人数为1020人;(4)若从对校园安全知识达到“非常了解”程度的2名男生和2名女生中随机抽取2人参加校园安全知识竞赛,请用列表或画树状图的方法,求恰好抽到1名男生和1名女生的概率.解:(1)接受问卷调查的学生共有30÷50%=60(人),m=60﹣4﹣30﹣16=10;故答案为:60,10;(2)扇形统计图中“了解很少”部分所对应扇形的圆心角的度数=360°×=96°;故答案为:96°;(3)该学校学生中对校园安全知识达到“非常了解”和“基本了解”程度的总人数为:1800×=1020(人);故答案为:1020;(4)由题意列树状图:由树状图可知,所有等可能的结果有12 种,恰好抽到1名男生和1名女生的结果有8种,∴恰好抽到1名男生和1名女生的概率为=.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
⎩7 x + 4 = y《 ⎧ “2019 年全国中考数学真题分类汇编:数学文化一、选择题1. (2019 年乐山市) 九章算术》第七卷“盈不足”中记载: 今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”译为:“今有人合伙购物,每人出 8 钱,会多 3 钱;每人出 7 钱,又差 4 钱。
问人数、物价各多少?”根据所学知识,计算出人数、物价 分别是( )( A) 1,11( B ) 7,53 (C ) 7,61 ( D ) 6,50【考点】二元一次方程组的解法与应用 【解答】解:设人数人,物价 y 钱.⎧8x - 3 = y ⎨解得: ⎨x = 7 ⎩ y = 53,故选 B.2.(2019 年重庆市)《九章算术》中有这样一个题:今有甲乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?其意思为:今有甲乙二人,不如其钱包里有多少钱,若乙把其一半的钱给甲,则甲的数为 50;而甲把其的钱给乙,则乙的钱数也为 50,问甲、乙各有多少钱?设甲的钱数为,乙的钱数为 y ,则可建立方程组为()A .B .C .D .【考点】二元一次方程组的解法与应用【解答】解:设甲的钱数为,乙的钱数为 y ,依题意,得:.故选:A .3. (2019 年山东省德州市)《孙子算经》中有一道题,原文是: 今有木,不知长短.引绳 度之,余绳四足五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根长 木,绳子还剩余4.5 尺.将绳子对折再量长木,长木还剩余1 尺,问木长多少尺,现设绳长《“尺,木长y尺,则可列二元一次方程组为()A. B.C D【考点二元一次方程组的解法与应用、数学文化【解答】解:设绳长尺,长木为y尺,依题意得,故选:B.4.(2019年湖北省襄阳市)九章算术》是我国古代数学名著,卷七盈不足”中有题译文如下:今有人合伙买羊,每人出5钱,会差45钱;每人出7钱,会差3钱.问合伙人数、羊价各是多少?设合伙人数为人,所列方程正确的是()A.5﹣45=7﹣3B.5+45=7+3C.=D.=【考点】一元一次方程的应用【解答】解:设合伙人数为人,依题意,得:5+45=7+3.故选:B.5.(2019年湖北省宜昌市)古希腊几何学家海伦和我国宋代数学家秦九韶都曾提出利用三角形的三边求面积的公式,称为海伦﹣秦九韶公式:如果一个三角形的三边长分别是a,b,c,记p=,那么三角形的面积为S=.如图,在△ABC 中,∠A,∠B,∠C所对的边分别记为a,b,c,若a=5,b=6,c=△7,则ABC的面积为()A.6B.6C.18D.【考点】二次根式的应用【解答】解:∵a=7,b=5,c=6.∴p==9,∴△ABC的面积S==6;故选:A.6.(2019年福建省)《增删算法统宗》记载:“有个学生资性好,一部孟子三日了,每日增【 【 “添一倍多,问君每日读多少?”其大意是:有个学生天资聪慧,三天读完一部《孟子》,每天阅读的字数是前一天的两倍,问他每天各读多少个字?已知《孟子》一书共有 34685个字,设他第一天读个字,则下面所列方程正确的是()A .+2+4=34685C .+2+2=34685B .+2+3=34685D .+1+1=346852 4【考点】由实际问题抽象出一元一次方程【解答】解:设他第一天读个字,根据题意可得:+2+4=34685,故选:A .7.(2019 年吉林省长春市)《九章算术》是中国古代重要的数学著作,其中“盈不足术”记载:今有共买鸡,人出九,盈十一;人出六,不足十六.问人数鸡价各几何?译文:今有人合伙买鸡,每人出九钱,会多出 11 钱;每人出 6 钱,又差 16 钱.问人数、买鸡的钱数各是多少?设人数为,买鸡的钱数为 y ,可列方程组为()A .CB .D . 考】由实际问题抽象出二元一次方程组【解答】解:设人数为,买鸡的钱数为 y ,可列方程组为:.故:D .8.(2019 年甘肃兰州)《九章算术》是中国古代数学著作之一,书中有这样的一个问题:五只雀,六只燕共重一斤,雀重燕轻,互换一只,恰好一样重.问:每只雀、燕的重量各为多少?设一只雀的重量为斤,一只燕的重量为 y 斤,则可列方程组为()A .CB .D . 考由际问抽出二元一次方程组【解答】解:由题意可得,,故:C .9.(019 年湖南省长沙市)《孙子算经》是中国传统数学的重要著作,其中有一道题,原文是: 今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根木头的长、绳子还剩余 4.5 尺;将绳子对折再量木头,则木头还剩余 1 尺,问木头长多少尺?可设木头长为尺,绳子长为 y 尺,则所列方程组正“;确的是()A .B .C .D .考点由实际问题抽象出二元一次方程组【解答】解:由题意可得,,故选 A .10.(2019 年浙江省舟山市)中国清代算书《御制数理精蕴》中有这样一题: 马四匹、牛六头,共价四十八两(我国古代货币单位) 马三匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹两,牛每头 y 两,根据题意可列方程组为()A .C .B .D 【考】二元一次方程组的应用【解答】解:设马每匹两,牛每头 y 两,根据题意可列方程组为:.故:D .11.(2019 年浙江省宁波市)勾股定理是人类最伟大的科学发现之一,在我国古算书《周髀算经》中早有记载.如图 1,以直角三角形的各边为边分别向外作正方形,再把较小的两张正方形纸片按图 2 的方式放置在最大正方形内.若知道图中阴影部分的面积,则一定能求出()A .直角三角形的面积B .最大正方形的面积C .较小两个正方形重叠部分的面积D .最大正方形与直角三角形的面积和【考点】勾股定理则+y = .6“”. ““【解答】解:设直角三角形的斜边长为 c ,较长直角边为 b ,较短直角边为 a ,由勾股定理得,c 2=a 2+b 2,阴影部分的面积=c 2﹣b 2﹣a (c ﹣b )=a 2﹣ac +ab =a (a +b ﹣c ),较小两个正方形重叠部分的宽=a ﹣(c ﹣b ),长=a ,则较小两个正方形重叠部分底面积=a (a +b ﹣c ),∴知道图中阴影部分的面积,则一定能求出较小两个正方形重叠部分的面积,故选:C .二、填空题1. (2019 年上海市)《九章算术》中有一道题的条件是:“今有大器五小器一容三斛,大器 一小器五容二斛.”大致意思是:有大小两种盛米的桶,5 大桶加 1 小桶共盛 3 斛米,1大桶加 5 小桶共盛 2 斛米,依据该条件,1 大桶加 1 小桶共盛.斛米.(注:斛是古代一种容量单位)【考点】二元一次方程组的解法【解答】解:设 1 个大桶可以盛米斛,1 个小桶可以盛米 y 斛,则,故++y +5y =5,55答:1 大桶加 1 小桶共盛 斛米.65故答案为: .62. (2019 年辽宁省大连市)我国古代数学著作《九章算术》中记载:今有大器五小器一容三斛,大器一小器五容二斛.问大小器各容几何. 其大意为:有大小两种盛酒的桶,已 知 5 个大桶加上 1 个小桶可以盛酒 3 斛(斛,音 h u ,是古代的一种容量单位) 1 个大桶加上 5 个小桶可以盛酒 2 斛,问 1 个大桶、一个小桶分别可以盛酒多少斛?若设 1 个大桶可以盛酒斛,1 个小桶可以盛酒 y 斛,根据题意,可列方程组为 .【考点】二元一次方程组的应用【解答】解:设 1 个大桶可以盛酒斛,1 个小桶可以盛酒 y 斛,根据题意得:,故案为.3(2019 年江苏省南通市)《九章算术》是中国传统数学最重要的著作之一.书中记载: 今有人共买鸡,人出九,盈十一;人出六,不足十六.问人数几何?”意思是:有若干人《“““共同出钱买鸡,如果每人出九钱,那么多了十一钱;如果每人出六钱,那么少了十六钱.问:共有几个人?”设共有个人共同出钱买鸡,根据题意,可列一元一次方程为 .【解答】一元一次方程的应用【考点】解:设有个人共同买鸡,根据题意得:9﹣11=6+16.故答案为:9﹣11=6+16.4.(2019 年湖南省株洲市) 九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题: 今有善行者行一百步,不善行者行六十步.今不善行者先行一百步,善行者追之,问几何步及之?“其意思为:速度快的人走100 步,速度慢的人只走 60 步,现速度慢的人先走 100 步,速度快的人去追赶,则速度快的人要走 步才能追到速度慢的人.【解答】一元一次方程的应用【考点】解:设走路快的人追上走路慢的人所用时间为 t ,根据题意得:(100﹣60)t =100,解得:t =2.5,∴100t =100×2.5=250.答:走路快的人要走 250 步才能追上走路慢的人.故答案是:250.5.(2019 年湖北省咸宁市)《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”译文大致是:用一根绳子去量一根木条,绳子剩余 4.5 尺;将绳子对折再量木条,木条剩余 1 尺,问木条长多少尺?”如果设木条长尺,绳子长 y 尺,可列方程组为 .【解答】二元一次方程组的应用【考点】解:设木条长尺,绳子长 y 尺,依题意,得:.答案为:..(2019 年江苏省泰安市)《九章算术》是我国古代数学的经典著作,书中有一个问题: 今有黄金九枚,白银一十一枚,称之重适等,交易其一,金轻十三两,问金、银一枚各重几何?”意思是:甲袋中装有黄金 9 枚(每枚黄金重量相同),乙袋中装有白银 11 枚(每枚白银重量相同),称重两袋相等,两袋互相交换 1 枚后,甲袋比乙袋轻了 13 两(袋子重量忽略不计),问黄金、白银每枚各重多少两?设每枚黄金重两,每枚白银重y 两,根据题意可列方程组为 ____ .【解答】由实际问题抽象出二元一次方程组【考点】解:设每枚黄金重两,每枚白银重y两,由题意得:,故案为:.7(201年宁夏自治)你知道吗,对于一元二次方程,我国古代数学家还研究过其几何解法呢!以方程2+5﹣14=0即(+5)=14为例加以说明.数学家赵爽(公元3~4世纪)在其所著的《勾股圆方图注》中记载的方法是:构造图(如下面左图)中大正方形的面积是(++5)2,其中它又等于四个矩形的面积加上中间小正方形的面积,即4×14+52,据此易得=2.那么在下面右边三个构图(矩形的顶点均落在边长为1的小正方形网格格点上)中,能够说明方程2﹣4﹣12=0的正确构图是.(只填序号)【解答】一元二次方程的应用【考点】解:∵2﹣4﹣12=0即(﹣4)=12,∴构造如图②中大正方形的面积是(+﹣4)2,其中它又等于四个矩形的面积加上中间小正方形的面积,即4×12+42,据此易得=6.故答案为:②.8.(2019年甘肃白银)一个猜想是否正确,科学家们要经过反复的实验论证.下表是几位科学家“掷硬币”的实验数据:实验者掷币次数出现“正面朝德•摩根61403109蒲丰40402048费勒100004979皮尔逊3600018031罗曼诺夫斯基8064039699上”的次数频率0.5060.5070.4980.5010.492请根据以上数据,估计硬币出现“正面朝上”的概率为0.5(精确到0.1).【解答】利用频率估计概率【考点】解:因为表中硬币出现“正面朝上”的频率在0.5左右波动,所以估计硬币出现“正面朝上”的概率为0.5.( “ ( 故答案为 0.5.三、解答题1. (2019 年甘肃省)中国古代入民很早就在生产生活中发现了许多有趣的数学问题,其中《孙子算经》中有个问题,原文:今有三人共车,二车空;二人共车,九人步,问人与车各几何?译文为:今有若干人乘车,每 3 人共乘一车,最终剩余 2 辆车,若每 2 人共乘一车,最终剩余 9 个人无车可乘,问共有多少人,多少辆车?【考点】一元一次方程的解法及应用【解答】解:设共有人,根据题意得:+2= ,去分母得:2+12=3﹣27,解得:=39,∴=15,则共有 39 人,15 辆车.2. 2019 年湖北省黄石市) 今有善行者行一百步,不善行者行六十步.” 出自《九章算术》)意思是:同样时间段内,走路快的人能走100 步,走路慢的人只能走 60 步.假定两者步长相等,据此回答以下问题:(1)今不善行者先行一百步,善行者追之,不善行者再行六百步,问孰至于前,两者几何步隔之?即:走路慢的人先走 100 步,走路快的人开始追赶,当走路慢的人再走 600步时,请问谁在前面,两人相隔多少步?(2)今不善行者先行两百步,善行者追之,问几何步及之?即:走路慢的人先走 200 步,请问走路快的人走多少步才能追上走路慢的人?【解答】一元一次方程的应用 【考点】解:(1)设当走路慢的人再走 600 步时,走路快的人的走步,由题意得:600=100:60∴=1000∴1000﹣600﹣100=300答:当走路慢的人再走 600 步时,走路快的人在前面,两人相隔 300 步.(2)设走路快的人走 y 步才能追上走路慢的人,由题意得y =200+ 60 y100∴y =500答:走路快的人走500步才能追上走路慢的人.。