高一数学必修5课件:34基本不等式(新人教A)

合集下载

基本不等式人教A版高中数学必修五PPT课件

基本不等式人教A版高中数学必修五PPT课件

函数的最小值为 4.
用均值不等式求最值,必须注意 “相等” 的条件. 如果取等的条件不成立,则不能取到该最值.
基本不等式人教A版高中数学必修五PP T课件
基本不等式人教A版高中数学必修五PP T课件
练习
1、若x 0,求f ( x) 12 3x的最小值 x
2、已知x 0,y 0,求证 x y 2 yx
基本不等式人教A版高中数学必修五PP T课件
2.基本不等式 基本不等式人教A版高中数学必修五PPT课件 (均值定理)
如果a 0, b 0,那么 a b ab 2
(当且仅当a b时,取""号)
我们把 a b 叫做正数a, b的算术平均数, 2
把 ab叫做正数a, b的几何平均数。
此定理又可叙述为:
解:∵ x 0
x
x 1 2 x 1 2
x
x
当且仅当x 1 ,即x 1时,原式有最小值 2 x
变式、已知x 0,求x 1 的最值 x
解:∵ x 0, x 0
x 1 [( x) 1 ] 2 ( x) 1 2
x
( x)
( x)
运用均当且值仅不当等式x 的1过,程即x中,1时a、,b原必式须有最为大“正值 数 2”.
(1)a、b均为正数;
(2)a+b与ab有一个为定值;
(3)等号必须取到。பைடு நூலகம்
以上三个条件缺一不可. “一正”、“二定”、“三相等”。
构造积为定值,利用基本不等式求最值
例1、求函数y 1 x( x 3)的最小值
x3
练习:
已知x 1,求x 1 的最小值以及取得最小 值时x的值 x1
答:最小值是3,取得最小值时x的值为2

3.4.2基本不等式课件(人教A版必修5)

3.4.2基本不等式课件(人教A版必修5)

4 3 求函数y sin 其中 0, ] ( sin 2 的最小值。 4 4 解:y sin 2 sin sin sin 4,函数的最小值为4。
用均值不等式求最值,必须注意 “相等” 的条 件. 如果取等的条件不成立,则不能取到该最值.
4800 z 150 120( 2 3 x 2 3 y ) =240000+720(x+y) 3
由容积为4800m3 ,可得3xy=4800,
因此xy=1600,
由基本不等式与不等式性质,可得 240000+720(x+y)≥ 240000+720×2 xy 即:z≥240000+720×2 xy =297600
2 ( x 1) x 1 1 3
(1)x=2 (2)x=1/2
思考:取到最值时x的值呢?
构造法
变式:(1)已知x>-2,求
1 x 的最小值; x2
(2)已知0<x<1/2,求x(1-2x)的最大值.
1 变式:(1)已知x>-2,求 x 的最小值;0 x2 (2)已知0<x<1/2,求x(1-2x)的最大值. 1 8
解:设矩形菜园的长为x m,宽为y m 则 2(x+y)=36,x+y=18 由
xy x y 18 9 2 2
矩形菜园的面积为xy m2 xy≤81
可得
等号当且仅当x=y时成立,这时x=y=9.
因此,这个矩形的长、宽都为9m时,菜园的 面积最大,最大面积为81m2
例6 某工厂要建造一个长方形无盖贮水池,其容 积为4800m3,深为3 m。如果池底每平方米的造价为 所以,将水池的地面设计成边长为40 m的正方形 150元,池壁每平方米的造价为120元,怎样设计水池能 时总造价最低,最低造价为297600元 使总造价最低?最低造价为多少元? 解:设底面的长为x m,宽为y m, 水池总造价为z元,根据题意,有

人教A版高中数学必修5第三章 不等式3.4 基本不等式课件

人教A版高中数学必修5第三章 不等式3.4 基本不等式课件

学家大会的会标,它是根据中国古代数
学家赵爽的弦图设计的,颜色的明暗使
它看上去象一个风车,代表中国人民热
情好客.在这个图案中既有一些相等关系,
也有一些不等关系,
对这
些等与不等的关系,
我们作些相应研究.
精品PPT
精品PPT
探究(一):基本不等式的原理
思考1:将图中的“风车”
抽象成如图,在正方形
ABCD中有4个全等的直角
2
两边平方可得什么结论?它与不等式 a2+b2≥2ab有什么内在联系?
( a + b)2 ³ ab 2
精品PPT
思考2:在不等式a2+b2≥2ab两边同加
上a2+b2可得什么结论?所得不等式有
什么特色? a 0
y ax2 bx c x1, x2 (x1 x2 )
a2 + b2 ³
2
(a + b)2 2
b

ab 分别为a,
2
b的算术平均数和几何平均数,如何用 文字语言表述基本不等式?
两个正数的算术平均数不小于它们的 几何平均数.
精品PPT
a+b
思2 考8:如图,在直角三角形ABC中,CD
为斜边上的高, CO为斜边上中线,你能
利用这个图形对基本不等式作出几何解
释吗?
C
A
O
DB
精品PPT
探究(二):基本不等式的变通 思考1:将基本不等式 a b ab
三角形.设直角三角形的
两a2b2 条直角边长为a,b那么 正方形ABCD和EFGH的边长 D
分别为多少?
A
F GE
C
H
a2 b2
|a-b |
B

人教版A版高中数学必修5:基本不等式: ≤(a+b)_课件34

人教版A版高中数学必修5:基本不等式: ≤(a+b)_课件34
基本不等式
[大纲要求]
• 基本不等式: • (1)了解基本不等式的证明过程; • (2)会用基本不等式解决简单的最大(小)
值问题.
1.复习并掌握“两个正数的算术平均数不小于它们的几何 平均数”的定理.了解它的变式:
(1)a2+b2≥2ab(a,b∈R); (2) a b ab (a,b∈R+);
4
返回
典型例题分析
例1、求证:lg9·lg11<1
分析:由构成特点:乘积、小于,联 想到基本不等式,并用到放缩法。
∴lg9·lg11<1
例2、求证:lg9·lg11<1
分析:由构成特点:乘积、小于,联 想到基本不等式,并用到放缩法。
lg 9lg11
lg 9lg11 2

lg 99 2

lg100 2
2
(3) b a 2(ab>0); ab
(4)a 2 b2 a b 2 (a,b∈R).
2 2
以上各式当且仅当a=b时取等号,并注意各式中字母的取
值要求.
2.理解四个“平均数”的大小关系;a,b∈R+,则 2ab ab
a b a 2 b2.其中当且仅当a=b时取等号. a b
x (B)y sinx
4
0 x
sinx
(C)y 4e x e -x
(D)y log 3 x log x 30 x 1
例4、已知a、b R,且a 2b 1, 求 1 1 的最小值.
ab
练习:已知x、y R,且lgx+lgy 1, 求 2 5 的最小值.
2
2
3.在使用“和为常数,积有最大值”和“积为常数,和 有最小值”这两个结论时,应把握三点:“一正、二 定、三相等、四最值”.当条件不完全具备时,应创造 xy的最值.

高中数学人教A版必修5必修五基本不等式PPT课件

高中数学人教A版必修5必修五基本不等式PPT课件

∴x+ 1 =(x-1)+ 1 +1
x 1
(x 1)
凑项法
2 x 1 1 1 3
x 1
当且仅当x-1= 1 时取“=”号。
x 1
于是x=2或x=0(舍去)
பைடு நூலகம்
高中数学人教A版必修5必修五基本不 等式PPT 课件
高中数学人教A版必修5必修五基本不 等式PPT 课件
已知0 x 1 ,求函数y x1 3x的最大值。
例1:(1)用篱笆围成一个面积为100m2的矩形菜园, 问这个矩形的长、宽各为多少时,所用篱笆最短。
最短的篱笆是多少?
解:设矩形菜园的长为x m,宽为y m,
则xy=100,篱笆的长为2(x+y)m.
x y xy 2
x y 2 100
2(x y) 40
等号当且仅当x=y时成立,此时x=y=10. 因此,这个矩形的长、宽都为10m时,所用的篱笆 最短最短的篱笆是40m.
① x 0 2,
② x0
,2
③ x 0 ,2 2,
④ x2
5 2
,
一正 、二定 、三等
一不正,需变号
二不定,需变形 三不等,需单调
两个不等式:
a2 b2 2ab (a, b R)
ab
ab
(a 0, b 0)
2
得:
a2 b2 ab
ab ( a b )2
2
2
ab
a
2
高中数学人教A版必修5必修五基本不 等式PPT 课件
最值定理:若x、y皆为正数,则
(1)当x+y的值是常数S时,当且仅当x=y时,xy有最 和
大值__14__S_2__;
定 积
(2)当xy的值是常数P时,当且仅当x=y时, x+y有最 最

高中数学人教A版必修5第三章不等式 3.4 基本不等式 课件

高中数学人教A版必修5第三章不等式 3.4 基本不等式 课件

C
B
u 数的角度
B
a2+b2-2ab=(a-b)2 0
a2 b2 2ab
当且仅当a b时等号成立.
当 a、b为任意实数时,a2 b2 2ab
都成立吗?
结论:一般地,对于任意实数a、b,我们有 a2 b2 2ab
当且仅当a b时,等号成立. 重要不等式
a2 b2 2ab
如果a 0,b 0,我们用 a, b分别代替a,b,能得到
文字叙述
两数的平方和不 小于它们积的2倍
两个正数的算术平均数 不小于它们的几何平均 数
“=”成立条 件
ab
ab
下面说法正确吗?
(1)x2 y2 2xy √
不等式中,不等关 系与字母形式无关
(2)m2 1 2m √
(3)x 0时,x 1 2 x

(4)若xy 0,则x y 2 xy ×
两个不等式
a
2
b
ab(a 0,b 0)
利用基本不
等式求最值
和定积最大 积定和最小
一“正” 二“定”
三“相等”
作业布置 一.课本习题3.4 A组2,3,4
二、思考题 1.下列说法正确的有

A.若a, b
R,

b a
a b
2

ba 2 ab
B.
x
1 x
2
C.若ab 0, b a 2
D. 3x 3x 2
❖ 走进生活 感悟数学
1.知识与技能:学会推导并掌握基本不等式, 理解基本不等式的几何意义,会用基 本不等式求最值、证明不等式;
2.过程和方法:培养观察、试验、归纳、判 断、猜想的思维能力;
3:情感、态度和价值观:敢于探索,体会 数与形的和谐统一,领略数学的应用 价值。

3.4基本不等式 课件(人教A版必修5)

3.4基本不等式 课件(人教A版必修5)

由容积为4800m3,可得:3xy=4800
因此
xy=1600
由基本不等式与不等式的性质,可得
240000 720(x y) 240000 720 2 xy
即 z 240000 720 2 1600
z 297当60x0=y,即x=y=40时,等号成立 所以,将水池的地面设计成边长为40m的正方形 时总造价最低,最低总造价为297600元.
(1)a,b R,那么a2 b2≥2ab ,当且仅当a b时,等号成立
(2) ab≤ a b (a>0,b>0),当且仅当a b时,等号成立。 2
2. 利用基本不等式求最值
已知 x, y 都是正数, P, S 是常数.
(1) xy=P x+y≥2 P(当且仅当 x=y 时, 取“=”号).
3x y 6 0,
2.(2009山东理12T)设 x, y 满足约束条件 x y 2 0, 若目标函数
x 0, y 0,
a z ax by(
>0, b
>0)的最大值为12,则
2 a
b3的最小值为(A)
A. 25 6
8
B.
3
11
C.
D. 4
3
略解:
y
把点(4,6)代入z = ax + by得4a + 6b = 12,
0,求x
1
x 的最值;
x
(3)若x 3,函数y x
1
,当x为何值时,函数
x3
有最值,并求其最值。
解: x 1 2 x 1 2
x
x
当且仅当x 1即x 1时原式有最小值2. x
2、解: x 1 [(x) ( 1 )] 2 ( x) ( 1 ) 2

34基本不等式(人教A版必修5)精品PPT课件

34基本不等式(人教A版必修5)精品PPT课件
面积S=_a_2___b 2
C 2、四个直角三角形的
面积和S’ =_2_ab
3、S与S’有什么
样的不等关系?
B
S>S′即
问:那么它们有相等的情况吗? a2 b2 > 2ab (a≠b)
D
D
a2 b2
b
G Fa
C
a
A
E
A E(FGH)
b
C
H
a2
b
2B
>
2ab
(a≠b)
B
a2 b2= 2ab (a=b)
重要不等式:一般地,对于任意实数a、b,总有
a2 b2≥2ab
当且仅当a=b时,等号成立 适用范围: a,b∈R 文字叙述为: 两数的平方和不小于它们积的2倍.
如果a 0,b 0,我们用 a, b分别代替a,b, 可得到什么结论?
如果a 0,b 0,我们用 a, b分别代替a,b, 可得到什么结论?
猜想: 一般地,对于任意实数a、b,我们有
a2 b2 2ab
当且仅当a=b时,等号成立。
思考:你能给出不等式 a2 b2≥2ab 的证明吗?
证明:(作差法) a2 b2 2ab (a b)2 当a b时 (a b)2 0 当a b时 (a b)2 0 所以(a b)2≥0 所以a2 b2≥2ab.
③OD与CD的大小关系怎样? OD__≥>___CD
a b≥ ab 2
几何意义:半径不小于弦长的一半
填表比较:
适用范围
a2 b2≥2ab
a,b∈R
a b≥ ab 2
a>0,b>0
文字叙述
两数的平方和不 两个正数的算术平均数不 小于它们积的2倍 小于它们的几何平均数
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档