呼吸机的临床应用

呼吸机的临床应用
呼吸机的临床应用

呼吸机的临床应用

呼吸机是进行机械通气的一种手段,它能维持呼吸道通畅、改善通气、纠正缺氧、防止二氧化碳在体内蓄积,为抢救提供有力的生命支持,使机体有可能度过基础疾病所致的呼吸功能衰竭,创造条件从疾病过程中恢复。目前由于呼吸机的应用日益广泛,使心脏停搏、呼吸衰竭等危重病人的预后大为改善,是呼吸医学的重大进展之一。

呼吸机的基本原理从50年至今未有重大改变。呼吸机能否发挥作用,一方面与机器的性能、质量有关;另一方面也与医务人员对呼吸机的熟练掌握,对具体患者的呼吸病理生理改变的了解,以及正确的治疗和护理均有很大关系。使用不当,反而会加重病情的发展。

-、呼吸机的治疗作用、指征和禁忌证

(一)呼吸机的治疗作用

1、改善通气功能、维持呼吸道内气体的流动常频通气时,由于正压产生对流,可达到是足够的潮气量;高频通气时则利用高频率的振动,促进对流及气体扩散、弥散过程。

2、改善换气功能由于气道内正压可使部分萎陷肺泡扩张,增加气体交换面积,改善通气;同时运用一些特殊的通气方式,如呼气末延长、呼气末屏气、呼气末正压通气(PEEP)等,改变通气与血流灌注比值,减少分流。

3、减少呼吸功呼吸机替代呼吸肌做功,减少了呼吸肌的负荷,使氧耗量降低,有利于呼吸肌疲劳的恢复。

(二)呼吸机的临床应用指征

1、由于呼吸停止或通气不足所致的急性缺氧和二氧化碳气体交换障碍。

2、肺内巨大分流所造成的严重低氧血症,外来供氧无法达到足够的吸入氧浓度。

3、在重大外科手术后(如心、胸或上腹部手术),为预防术后呼吸功能紊乱,需进行预防性短暂呼吸机支持。

4、在某些情况下,可暂时人为过度通气,以降低颅内压或在严重代谢性酸中毒时增

加呼吸代偿。

5、在某些神经、肌肉疾病中,由于肺活量受限,无法产生有效自发呼吸,可应用机械呼吸,增加通气,以避免肺不张和分泌物滞留。

6、下述指标可作为呼吸机应用的标准。即呼吸频率>30次/min,肺活量<10~

15ml/kg,最大吸气压<-2.45kPa(-25cmH2O),氧分压<7.98kPa(60托)(面罩纯氧吸入时),二氧化碳分压>7.32kPa(55托)(急性呼吸衰竭时)。可根据I型及Ⅱ型呼吸衰竭的病理生理特点,适当参考上述标准。有支气管胸膜瘘时可用高频通气。

(三)禁忌证

有大量咯血、肺大泡、张力性气胸(未进行适当引流时)或在重症结核易出现播散等情况下,则应慎重应用。

二、呼吸机的工作原理和分类

机械辅助呼吸是应用人工或机械装置产生通气,用以替代控制或改变自主呼吸运动,达到增加通气量、改善换气功能、减轻呼吸肌做功等目的。

(一)常频呼吸机

呼吸过程中,肺泡通气的动力是来自肺泡内压与口腔开口压之间的压差。常频呼吸机的工作原理即在于重建此压差。呼吸机分类的目的是说明其设计特点,以便在使用前可以了解其功能、操作特点,以及其对病人的适应性及可能出现的情况。

目前常用的分类方法是按呼吸时相分类。呼吸周期可分为4相,即吸气开始、吸气、吸气终止、呼气。其中吸气终止方式最常用,即由吸气相转向呼气相,又称为切换。按吸气终止切换方式可分为以下3类。

1、压力转换型通气机以气道压力作为切换参数。呼吸机可产生气流,经呼吸道使肺泡扩张,胸、肺被动扩大,气道内压不断升高,达到预定压力值后气流中止,开始呼气;此时气道内压不断下降,达到另一预定值,气流再次发生。吸气时间和气道内压的上升速率随气道阻力和肺顺应性而改变,由于它是以压力作为吸气终止的切换指标,因而当支气管痉挛、咳嗽、分泌物积聚,即增加吸气阻抗、压力升高时,可造成吸气过程的停止,不

能保证足够的潮气量。以往此型呼吸机多以压缩气体为动力,结构简单,易同步。一般认为对有严重肺实质病变者不适用,多用于新生儿通气或间歇正压通气治疗。近年来,压力控制型的应用范围有所扩大。

2、容积转换型通气机以容量作为切换参数。呼吸机将预定的潮气量送入呼吸道,并保证在预定的压力范围内(有压力安全阀门调控),潮气量不受胸肺顺应性及气道阻力变化的影响。目前临床应用较多,多数以电力为动力,工作性能稳定,体积较大。如容量以气流量和时间的乘积决定,则又称为流量型。

3、时间转换型通气机以时间作为切换参数。即按预设吸气及呼气时间进行切换,潮气量则由吸气流速加以控制,故基本上和容积转换型通气机相仿。但由于吸气流速除由呼吸机工作压力决定外,还受气流阻力(包括摩擦阻力及弹性阻力)的影响,因而气道阻力及胸肺顺应性对潮气量仍有一定影响。

目前常用的呼吸机除具有容积转换型通气机的特点外,尚可同时具有其他类型的功能,可根据病情选行选择。此外,尚有许多分类方法。如按产生吸气压力的控制方式分为正压通气机和负压通气机;按吸气开始方式分为流量触发型、容量触发型、时间触发型(即按预定呼吸频率)及压力触发型(按设置的吸气敏感度)。

(二)高频呼吸机

上述的常频呼吸机的频率范围在5~60次/min,潮气量范围在100~2 000ml。由于在常频呼吸机使用过程中,有时会给机体带来一定的不良影响。为了减少机械呼吸所带来的气压伤及血流动力学影响,近年来主张用较小的潮气量和较高的通气频率,既可提供一定的通气量,又能维持较低的气道内压和胸腔内压,因此产生了高频通气。它通过高频率的振动,大大加速了气体的弥散过程,同时气体在支气管内来回运动时产生偏流,肺组织非同步扩张,也形成了部分对流。实验结果表明,高频通气时对心血管的不良影响小,对呼吸道和肺无损伤,肺内气体分布均匀。高频通气的呼吸频率>60次/min,潮气量<150ml,吸气时间约在0.001~0.1s。根据频率的不同,可分为以下3种型。

1、高频正压通气(HFPPV)频率为60~100次/min,吸气时间百分率<30%,潮气量小于正常。

2、高频喷射通气(HFJV)频率在100~500次/mln,潮气量为1~3倍的生理无效腔。

3、高频振荡通气(HFOV)频率为900次/min以上,可达3000次/min,一般认为1000次以下已足够应用。潮气量<1倍的生理无效腔。也可使用高频振荡,产生呼吸道内震荡拍击,有利于排痰。

三、呼吸机的调节

呼吸机治疗是非生理性的,为了减少它对呼吸及循环的不良影响,需要根据不同病理状态所致的呼吸动力学改变,合理选择备项参数。

1、每分通气量通常以呼出气量表示,每平方米一般为3.5~4.5L/min。但要注意呼吸无效腔,以了解实际肺泡通气量。无效腔除体内的解剖无效腔和生理无效腔外,由于呼吸机的参与,还应包括呼吸无效腔,即静态无效腔和动态无效腔。前者是指呼吸机本身和连接患者管道中参与重复呼吸的部分;后者是指正压通气时,气体受压,橡皮气囊、通气管扩张延伸,部分潮气量未进入呼吸道。动态无效腔与通气压力成正比。故一般通气量需较生理需要量高出20%~50%,通气量的调整最后需依据血二氧化碳水平。通气量应该逐渐增大,使血二氧化碳水平逐步下降,避免通气过度。

2、潮气量和频率通气量是由潮气量和呼吸频率的乘积所决定。通常潮气量为10~L2ml/kg,频率在12~16次/min。为达到一定的通气量而又适合病人的实际生理需要,应根据病人的力学性质,选择不同的组合。如顺应性降低的患者,可选择频率稍快、潮气量较小的方式,避免通气压力增加过多。反之,对慢性阻塞性肺疾病患者则应选择潮气量大、频率慢的呼吸方式,避免气流进出过多、呼吸道内产生涡流较多而阻力更大,加重肺内通气分布不均。

3、吸气时间与呼气时间比值频率决定后,每次呼吸周期的时间也相应确定,此时需安排吸气时间与呼气时间比值。考虑两者的关系,需兼顾呼吸及循环两方面的影响。原则是吸气时在肺内能均匀分布,又能充分排出,不增加心脏负荷。一般将吸气时间定为1,肺气肿时以1:2~1:2.5为宜,限制性疾病时则为1:1或1:1.5,心功能不全时1:1.5,ARDS时则以(1.5~2):1为宜(此时为反比呼吸,将呼气时间定为1)。

吸气时间与呼气时间比值的计算方法为:

(1)确定呼吸频率。

(2)60除以每分钟呼吸次数。

(3)决定吸气时间(Tl)。

(4)呼吸时间减去吸气时间得出呼气时间(TE)。

(5)吸气时间/呼气时间=T1/TE。

4、通气压力它是近端呼吸道开口压,由潮气量、气道阻力和胸肺顺应性决定,不能反映肺泡内压。肺内病变较轻时,一般为1.47~1.96kPa(15~20cmH2O),通气压力增大后易产生循环改变。如需加大通气压力来维持适当的通气,则应减少吸气时间。

5、触发灵敏度吸气开始一般按预置的频率所决定的时间启动呼吸机送气,如病人有自主呼吸时,则其吸气动作所产生的气道负压将启动吸气开始。触发灵敏度取决于所需的吸气强度。

6、吸气流量及形态吸气流量反映每单位时间气体容量的变化,吸气时间取决于吸气流量,后者保证在足够时间内吸入预定的潮气量。通常成人的吸气流量定在40~60L/min,但病人呼吸频数(>25次/min〉时则需加大。在控制通气时,吸气时间由吸气流量和切换频率所决定。呼吸机送气的形态通常为匀速,但也可根据需要采用不同波形,如递升形、递降形等。

7、氧浓度呼吸机采用空气与氧混合装置,通过调节可决定吸入气的氧浓度。但长期高浓度吸氧可致氧中毒,因而当吸入氧浓度超过60%时,即应考虑改变压力进行供氧,而不是继续增加吸入氧浓度。

四、机械呼吸工作模式

将呼吸机各种工作参数进行不同的组合,根据临床需要组成各种工作模式,以便临床工作者进行选择。

1、控制通气采用时间切换方式,呼吸机控制病人的潮气量、频率和吸气时间与呼气时间比值,病人的自主呼吸不能触发送气。适用于呼吸完全停止或呼吸极微弱者。

2、辅助通气呼吸频率由病人控制,吸气由病人吸气动作所产生的气道内负压所触发,

但输入气量则由机器的预定值提供,采用压力或流量触发形式,适用于有自主呼吸但通气不足者。

3、控制/辅助通气同时具有上述两种模式功能,如病人自主呼吸能产生足够负压,则可产生吸气触发;反之,则由机器预定频率送气。当病人呼吸逐渐增强,由控制通气过渡到辅助通气时可采用此种方式。

4、间歇指令通气(IMV)和同步间歇指令通气(SIMV)呼吸机按预定频率定时触发或在一定时间内由气道内负压触发。在指令通气的间期,病人则在呼吸回路持续气流中自主呼吸。此法可避免通气过度,帮助病人撤机,且能改善通气与血流灌注比值,增加舒适感。

5、压力支持通气(PSV)即病人通过呼吸机在自发吸气时,从呼吸机所设置的按需阀得到一个附加气流,接受气道内的正压支持。

(1)特点:病人在自发呼吸状态下,由于呼吸肌无力,无法加大吸气幅度,所以通常采用浅快呼吸,造成频率增加、呼吸功消耗增加。使用压力支持通气需先观察病人需用多少吸气压力支持下才能达到需要容量,医务人员仅需调整支持压力量,当吸气流量降到高峰流量的25%以下时,即出现呼吸切换,呼吸频率可以减慢。

由于压力支持通气比容积转换通气使病人能更好地控制吸气流量、吸气时间和潮气量,肌肉作功、肺的牵伸和气体交换都较稳定。因此,目前认为在自主呼吸病人中,压力支持通气比常规通气方式更易与机械感受器的作用取得一致,同步性能更好。此外,在撤机呼吸肌锻炼中,需要对呼吸肌增加适当的工作负荷,以增强肌力或耐力。肌肉耐力的增强取决于肌肉作功(W=SP×△V)时的压力-容积转换特性(ΔP/△V)。呼吸肌和骨骼肌相仿,当肌肉作功采取高压-低容量转换特性时,可增强肌力的调节(使肌原纤维节增加);而取低压-高容量转换特性时,则可刺激耐力调节能力(增加线粒体密度和抗疲劳肌纤维)。理想的机械通气是在开始阶段减少疲劳呼吸肌的负荷,同时给予适当的营养支持,然后再调节适当的负荷量,以使肌肉得到最大的恢复。使用压力支持通气时,低水平压力即可减少作功及改变P/ΔV,高水平压力可使P/△V几乎为零。压力支持通气方式能改善膈肌耐力的调节,因膈机是高功率负荷能力的主要耐力来源。常规间歇正压通气及间歇指令通气均不能改变P/ΔV的特性。

(2)方法:目前临床使用的压力支持通气可采用以下两种方法。

1)低水平压力支持(0.49~0.98kPa),同时使用同步间歇指令通气。其特点为病人感到舒适,减少自主呼吸时由于按需式气流系统装置及气管插管高阻力所致的功耗、氧耗可显着减少。

2)单独压力支持,即将压力调整到能达到所需的潮气量及每分通气量时,可调节通气所作功的幅度。这种方式临床上用于呼吸中枢功能正常者,当自主呼吸已经出现,准备撤离呼吸机时最为适用。

Macintyre进行PSV和SIMV的比较,发现PSV可减少呼吸频率及呼吸道高峰压值,病人感到舒适。而由SIMV提供的通气容量及流量与呼吸中枢的调节并不完全合拍,常可造成呼吸机过度作功,引起呼吸肌疲劳。因而认为PSV从理论上讲是有益的,操作也安全。

6、吸气时间与呼气时间比值倒置通气(IRV)

(1)特点:IRV使吸气时间延长,吸气时间与呼气时间比值可达4:1。IRV最初用于新生儿中,现已用于成人。由于吸气时间延长,使时间常数(t=R×C)增加的肺泡能够张开;呼气时间缩短,可使肺泡不易萎陷。实际上是一种变异的呼气末正压通气(PEEP),产生了内源性呼气未正压。它通过增加气道平均压(Paw),达到较好的氧合,比PEEP法有利。IRV虽使气道平均压增高,但因吸气时间增加,最大气道内压并未增加。更由于功能肺泡逐渐增加和趋于稳定,应用于表面活性物质缺乏的肺组织更为有利。缺点有病人感觉不适,需要采取镇静、麻醉等措施;气道平均压增加后使呼气时间缩短,气体潴留在肺内过多,也会造成不良后果。

(2)方法:

1)先在容量控制形式下,增加Tl/TE,减少PEEP,观察呼出潮气量、有效PEEP值、顺应性和平均气道压。然后转至压力控制,校正吸气压,使潮气量达到原有值,保持其频率并使Tl/TE衡定。

2)在容量控制形式下,改变流速,以控制吸气时间或增加吸气屏气时间。操作过程中需监测呼气流速,以确保有适当的呼气时间,避免气体过度留。

7、每分指令量通气(MMV)作为呼吸机使用过程中便于呼吸机撤离的一种新概念,首先在1977年由Hewlett等提出。当时使用的是没有微处理机的呼吸机。每分指令量通气

是指患者通气量低于预定量时,即由呼吸机提供其不足量。呼吸机提供持续恒定的气流与每分钟所需的最小通气量相等,气流保存在恒压的气体贮存器中,病人按其需要呼吸,过多的气流则收集在气囊中。当气囊内气体达到预定值,呼吸机即触发,气囊内气体即加压提供潮气量。在使用微处理机以后,则可连续比较每分通气量与原预定值之差,然后通过指令通气弥补此差值。和SIMV原理相近。但其指令通气仅在低于预定量时才提供,在不同机型中采用不同的控制反馈系统。其优点是保证供给预定的每分通气量,不受病人自主呼吸及中枢调节的影响;使呼吸机撤离自动化,在病人从机械呼吸转向自主呼吸的过程中不必时刻调节控制。

8、呼气末正压通气(PEEP)指呼气末呼吸道开口处的压力仍维持高于大气压,它可增加功能残气量,使肺泡在呼气末不易陷闭,改善通气,提高动脉血氧分压。但由于增加气道内压,可使正常肺泡过度充气,造成无效腔增加,并易造成肺损伤,减少心排血量。因此,应正确了解其生理影响,合理应用。一般用于当吸入氧浓度达40%~50%,而PaO2

仍小于7.98kPa(80mmHg),PEEP可用于自发呼吸或机械呼吸时。用于自主呼吸时,称为呼气期气道正压。这时吸气时,气道压须降至大气压,故呼吸功明显增大。因此;在自主呼吸时应提倡应用连续气道正压通气(CPAP)。

9、连续气道正压通气整个自主呼吸周期中,呼吸道开口处的压力均维持高于大气压。目前,CPAP用于治疗尚能维持适当自主呼吸的某些弥漫性肺功能不全患者,如ARDS,以增加其功能残气量(FRC),改善肺顺应性,也有用于治疗阻塞性睡眠呼吸暂停综合征者。

10、吸气末屏气(pause)在吸气结束时,呼气阀门暂缓打开,此时吸入气流已停止,但肺仍维持扩张,有利于肺内气体分布均匀。

11、呼气延迟(expiratory retard)呼气口加一阻力,使呼出气阻力增大,呼气时间延长,而呼气末压力仍降至零。与PEEP作用部位不同,PEEP防止关闭的主要部位在肺泡,呼气延迟则主要在小支气管。

12、呼气末屏气(inspiratory hold)延长呼气时间,用于心脏手术时,使呼吸暂停于呼气阶段,以利于手术进行。

五、机械呼吸与病人呼吸道的连接

1、面罩或鼻罩适用于神志清楚、能合作的病人,短时应用主要进行间歇正压通气、

连续气道正压通气或双水平正压通气。面罩和鼻罩的缺点是容易漏气,压迫过紧易产生疼痛;有时气体易进入胃肠道,引起腹胀;面罩无效腔较大,对二氧化碳的排出也有一定影响。

2、气管内插管可使气道完全得到控制,避免引起误吸及胃膨胀。可与呼吸机连接,也可直接行气管内吸引,是紧急心肺复苏、呼吸衰竭抢救时保持气道通畅的简便可靠方法。它的主要优点是插入和拔出均较方便,为暂时性气道,避免了创伤性手术及其所具有的特殊并发症。

(1)经口气管内插管:容易插入,可使用口径较大的套管,易吸引,气道阻力小,减少呼吸功,易于支气管镜操作,可避免鼻及鼻旁窦并发症。缺点有易产生恶心,不能长期耐受,固定不便,病人自行拔管可能性大,插管易进入左右总支气管,管道易受咬而阻断,操作时可损伤唇、齿、舌、软腭等口腔软组织。

(2)经鼻气管内插管:经鼻腔进行的气管内插管较经口有较多优越性,易于长期耐受,固定好,能进食饮水,可进行口腔护理和卫生,避免口内气道阻塞,减少口腔并发症。缺点有可产生鼻并发症,管腔小,吸引难,阻力大,插入困难,咽后壁易挫伤。采用的插入方法有盲插法、支气管镜引导法及其他引导法。

目前,大多数人主张气管内插管的时间应限制在2周内,因为过长可产生较多并发症。

3、气管切开术气管切开术有其优点,病人较舒适,心理适应较好,反感少,避免了咽部和上呼吸道的并发症,易于固定及再插入,也不会导致插入过深,病人可自由活动、进食、发音,可进行口腔护理及支气管镜检查,吸引时可进入左侧,便于撤机等。其缺点有并发症重,可出现出血、皮下气肿、气管粘膜坏死、瘫痕形成狭窄,拔管后仍有开放通道,会减少咳嗽的有效性。

六、机械呼吸的并发症

1、气管插管、套管有关的并发症气管插管及气管套管(统称气管导管)是呼吸道连接呼吸机的重要一环,直接影响到呼吸机的工作和效果,有时甚至可危及患者生命。

(1)气管导管阻塞:堵塞所致危害视导管外壁与气管间空隙的大小和患者呼吸能力的强弱而定。阻塞见于呼吸道分泌物阻塞或呕吐物返流、导管位置不当、气囊滑脱及其他

机械原因。气囊滑脱可造成肺泡张力性充气,阻塞可造成窒息,常导致突然死亡。

(2)导管脱出:临床表现与导管阻塞相似,常见原因是气管插管下端离声门太近、固定不牢、气管套管带太松、套管垫太厚、病人过度肥胖以及咳嗽、移动体位或头后仰过伸等。

(3)喉损伤:插管时间超过72h后,喉损伤机会增多。喉损伤中以喉水肿常见,也可有溃疡、坏死、声带肉芽肿形成及喉瘫痕狭窄。

(4)气管粘膜损伤:可有溃疡、坏死、出血,甚至气管食道瘘等。损伤原因有气囊充气过多、物理摩擦、气道护理不当(如吸引负压过高)。低压高容气囊的应用使气管粘膜损伤明显减少。

(5)皮下气肿:多发生于气管切开和应用呼吸机的初期。气管套管滑出进入夹层气管旁蜂窝组织或气囊压迫不够而皮肤缝合过紧。

2、机械通气治疗所致的并发症主要因呼吸机参数调整不当。

(1)通气不足:可能由于呼吸机调节不当或故障所致,也可能由于气道阻力增加或顺应性降低之故。使用压力转换型通气机时更易出现通气量的改变,故呼吸机使用的动态无效腔需要考虑。吸气压力越高,动态无效控越大,而有效通气量越小。通气不足可导致呼吸性酸中毒加剧,出现与呼吸机对抗,进一步加剧通气不足。

(2)通气过度:使二氧化碳在短期排出过快,血PaCO2下降太快,碳酸氢离子在体内相对升高,造成呼吸性碱中毒,促使氧离曲线左移,影响氧合血红蛋白的离解,导致组织缺氧加重,并使脑血管收缩,血流减少,加重脑缺氧。碱中毒可诱发低血钾、心律失常,甚至心室颤动,危及病人生命。由于I型呼吸衰竭本身即有通气过度,故在呼吸机使用时可适当增加无效腔,使用SIMV模式可减少通气过度的出现。

(3)低血压:机械通气时,气道正压可使胸内压增高、外周静脉血回流受阻、肺血管床受压、右心负荷增加、右心室扩张、心脏和大血管受压、心脏舒张受限,产生类心包填塞作用,导致吸气压力过大、持续时间太长、平均压升高、呼气时间不是、肺泡内气体滞留,形成内源性呼气末正压,都能进一步增加肺循环阻力和右心负担,使心排血量降低、动脉血压下降、通气过度、碱中毒,严重时引起心、脑、肾等器官的灌注障碍。

低血压通常多见于呼吸机使用初期,通气量过大,使二氧化碳迅速排出,二氧化碳对心血管运动中枢和交感神经的兴奋作用突然消失,周围血管张力骤降,对存在血容量不足和心功能不全者,机械通气对循环功能的抑制将更为明显。

(4)气压伤:正常肺泡能耐受较高压力,一般能耐受7.84~9.80kPa,肺气肿及其他病变时耐压能力降低。当肺泡内压力过高,进入气量过多,可造成不同程度的气压损伤,出现肺间质水肿、纵隔气肿、皮下气肿等。气压伤的发生与气道的峰压和肺组织情况有关。

(5)其他脏器的损害:

1)肾:由于机械通气引起下腔静脉压升高而致肾静脉淤血,使心排血量下降、肾动脉血流减少、肾内血流重新分布和肾素一醛固酮系统兴奋,导致肾小球滤过减少、肾小管重吸收增加、水钠潴留;机械通气引起的大血管腔内和心房压力的变化也可反射性引起加压素(抗利尿激素)的分泌增加和心房肽(ANP)分泌减少,进一步加重水钢潴留。

2)肝:腹腔内压、肝静脉与门静脉压升高、肝淤血可引起肝缺血性损害,导致血清旭红素增加、肝功能损害;胆总管与十二指肠汇合处粘膜肿胀可致胆汁淤积。

3)肠道:可引起胃肠胀气、消化道出血。

3、氧中毒长时间使用呼吸机可能产生严重的并发症,表现为肺顺应性进行性下降,在吸入纯氧情况下,PaO2不断下降,PaCO2不断上升。其发生机制主要是高浓度氧可在体内产生氧自由基,作用于细胞膜脂质中的过氧化物而抑制细胞酶系,其分解产物也可造成蛋白和细胞膜损伤,氧自由基还可直接损伤核酸和引起蛋白质巯基氧化过程,进而使细胞内酶失活。氧中毒可发生在中枢神经系统、视网膜、造血系统、内分泌系统,通气治疗时以呼吸系统最明显。高浓度氧可损伤肺泡上皮细胞,亦可诱发肺泡巨噬细胞释放多核白细胞聚集和活化因子,使多核白细胞聚集于肺泡壁外周,并释放可致通透性增加的毒性产物和产生更多的氧自由基。

肺氧中毒的危险程度取决于PaO2(如肺泡PaO2>53.2kPa)和时间的长短。吸入湿化纯氧,在6~24h开始呼吸增快、肺活量降低,连续应用纯氧48h,可能出现不可逆出血性肺水肿和实变、肺毛细血管壁和肺泡上皮细胞改变,严重分流所致缺氧时,此种变化则可推迟。

全身氧中毒则主要根据动脉血PaO2。PaO2>66.5~79.8kPa是有害的,成人当PaO2>133kPa(高压氧时)才会引起脑损伤,早产儿PaO2>13.3kPa即可引起视网膜血管损害。

4、呼吸道感染由于人工气道的建立,使气管直接向外开放,失去正常防御功能,病原体可直接进入下呼吸道,吸气正压可将气管分泌物推向细支气管或肺泡,导致感染的播散和加剧,再加上如护理操作不严、吸入气体未适当湿化、分泌液粘稠,使纤毛运动功能减弱、咳嗽反射减弱、吸引不及时、未变动体位等均可造成呼吸道感染的发生和发展。应经常变动体位,滴入生理盐水,加压送气使液体分布均匀,必要时行支气管冲洗及吸引。

七、呼吸机的撤离

从机械通气撤离到自主呼吸的恢复是一门临床艺术,需要根据临床情况,个别具体化对待。撤机成功与否常常取决于病人的基础状况和医务人员的判断和决策。呼吸机治疗存活患者中,约90%可在7d内撤机,对这些患者仅仅是决定呼吸机何时停用而已。但对约9%在1周内不能达到撤离呼吸机的患者来说,他们多数伴有严重的急慢性肺部疾病、肺外多脏器损害或神经肌肉疾病,必须有一个撤离过程,即通过系统全面的步骤,逐渐恢复自主呼吸,最后达到完全停机目的。

(一)机械呼吸撤离的时机和基本条件当病人急性症状得到控制、病情趋向稳定后,即应对照该病人最初应用呼吸机的指征、肺部和全身的原始状态,以及病人的生理储备能力,创造条件,选择时机,及时或渐进式地实施撤机过程。

1、开始撤离的基本条件

(1)使用呼吸机的原发病因消失,如炎症控制、窒息解除等。

(2)全身状态改善,血细胞比容、血浆蛋白及电解质接近正常,静脉及其他途径营养状况适当。

(3)循环状态稳定,停用静脉升压药或强心药,在自主呼吸时心率虽增加但低于120次/min,无严重心律失常。

(4)X线胸片显示肺部病情好转,无明显肺水肿、肺不张或气胸、胸腔积液等。

(5)无明显腹胀,不会导致影响吸气肌的效能。

(6)气道管理良好,痰液清除较理想,并有自主咳嗽动作。

(7)病人对口头命令有反应,情绪稳定,对撤机已有一定思想准备,能努力配合。

(8)呼吸中枢驱动完整,病人在辅助/控制通气模式下,能自行触发呼吸,或在SIMV 模式下,在指令通气期间有自主呼吸出现。

(9)12h内未使用肌肉松弛剂及镇静剂,以免影响中枢驱动和肌肉收缩力。

2、预测撤机的常用指标

(1)气体交换:PaO2≥7.98kPa(FiO2≤35%),肺泡气动脉氧分压(A –aDO2)<46.55kPa (FiO2=10%),PaO2/FiO2>26.6kPa(200mmHg)。

(2)呼吸泵:潮气量(VT)>10~15ml/kg,肺活量(VC)>1L,每分通气量(VE)<10L/min,每分最大通气量(MVV)≥2×VE,功能残气量(FRC)>50%预计值,死腔/潮气量(VD/VT)<0.6,最大吸气负压(MIP)<-2.94kPa(-30cmH2O)。

3、传统的撤离呼吸机指标:自主呼吸频率<25次/min,VT>250ml,VE<10L/min,PaO2>7.98kPa(FiO2为40%时)等。

(二)撤机准备

1、改善呼吸中枢驱动,停用抑制呼吸中枢的药物,纠正代谢性碱中毒。

2、补充营养,避免肌肉废用,纠正贫血状态(Hb>120g/L),保持血清磷、钙、钾、镁正常水平。

3、应用支气管扩张剂,改善呼吸道阻塞和呼吸负荷,减少呼吸作功,氨茶碱等还可改善膈肌收缩。

4、改善充血性心力衰竭,改善肺顺应性和氧合状态。

5、改善血容量状态和心室功能,减少心脏对呼吸支持的需求。

6、控制感染,改善代谢状态,不要应用过多的糖类能量来源。

(三)撤机时呼吸机参数的调整

1、加快吸气流量(>60L/min),减少呼吸作功。

2、减少触发负压,约-98.06~-196.12 Pa(-1~-2cmH2O)。

3、降低FiO2为40%,但保持PaO2≥7.98kPa,撤机前FiO2则增50%。

4、每分通气量应使PaCO2达到正常水平,此时肾脏将碳酸氢盐调整到低水平,撤机时由于通气过低而造成呼吸性酸中毒,导致撤机失败。

5、PEEP减至98.06~490.3Pa(2~5cmH2O)。

6、减少呼气延迟。

7、每天减少潮气量50ml,达到其预期自主呼吸状态。

完成上述准备后,在半卧位下进行撤离,开始撤离的时机不要放在下午,必须在有经验的医生、护士指导下进行,密切观察生命体征和进行血气测。

(四)撤离技术

在肺部正常、机械通气仅进行数小时者可立即停用呼吸机,用T字管供给温暖、湿化、氧浓度为50%的混合空气。对较长期应用呼吸机的患者则需经历逐渐恢复自主呼吸的撤离过程,一般需要数天到数周以上。

1、采用T字管逐步撤离通过T字管吸入氧(浓度为40%),逐步增加自主呼吸时间,最初应用5~10min,渐增至30~60min,每次自主呼吸后休息l~3h,每天分3~4次,每次持续时间逐渐延长,晚间则继续呼吸支持,以保证足够的睡眠。如病人通过T字管呼吸可达8h则完成一半撤机过程,如能连续耐受24h则撤机成功。在自主呼吸过程中,如出现心率增快达120次/min或增加≥20次/min、严重心律失常、高血压、低血压或血压下降>26.73kPa(201mmHg)、呼吸增快>10次/min或达40次/min、肺动脉楔压或中心静脉压升高、PaCO2上升0.67kPa(5mmHg)、过度烦躁、紧张疲劳、失眠、不安,则需继续机械通气治疗。

2、采用SIMV模式撤机未采用此模式者,先确定其SIMV频率,达到维持其足够的

PaCO2水平,然后每次渐降2~4次/min,24h下调1次,保持氧合而PaCO2不增高。如在下调过程中出现浅快自发呼吸,则需回到前一水平,寻找原因后再继续撤机过程。在晚间则需要增加SIMV频率,保证休息。在指令通气间期则为自发呼吸,撤机过程中根据病人对自发呼吸的反应和维持能力,将指令通气次数逐渐降低。当SIMV频率下降为零时,则已完全恢复到自发呼吸,在整个撤机过程中病人仍与呼吸机连接,故不会感到恐惧。但由于呼吸机管道中按需阀的灵敏度等因素,其作功较T字管呼吸时要大,目前旁流系统(by -flow)的应用,可使管道阻力因素减少。

3、采用压力支持通气(PSV)模式提供一支持压力以补充其潮气量水平,每次减少294.2Pa(3cmH2O),密切观察每分呼出通气量,以保持足够的氧合及通气。PSV时病人可控制呼吸的时间、深度以及吸气时间与呼气时间比值,故比T字管及SIMV舒适,特别在呼吸驱动完整的患者中有益。

4、采用连续气道正压通气(CPAP)模式和T字管呼吸相仿,其优点在于仍和呼吸机相连,病人心理上获得安慰,并且有相应的报警系统监测比较完全,为克服管道阀门阻力及内源性PEEP,PEEP水平置于294.2Pa(3cmH2O)较好。呼吸机撤离需循序渐进,一旦停止则肌力和耐心均可逆转,故整个过程一定要持之以恒,以达到最终目标。

呼吸机的一般结构及工作原理

呼吸机的一般结构及工作原理 随着医学电子技术的发展,呼吸机的种类和形式越来越多,但它们一般的主要结构和原理基本相似,或者说,它们必须具备基本结构,现分述如下:一、机械呼吸机的动力 机械呼吸机的动力来源于电力、压缩气体, 或二者的结合。压缩气体由中心供气管道系统提 供或由呼吸机可配备的专用空气压缩机产生。 1. 气动机械呼吸机 气动机械呼吸机的通气以压缩气体为动力来 源,其所有控制系统也都是靠压缩气体来启动。 由高压压缩气体所产生的压力,通过机械呼吸机 内部的减压阀、高阻力活瓣,或通过射流原理等方式而得到调节,从而提供适当的通气驱动压及操纵各控制机制的驱动压。 2.电动机械呼吸机 单靠电力来驱动并控制通气的呼吸机,称为电动机械呼吸机。电动机械呼吸机也需要应用压缩氧气,但只是为了调节吸入气的氧浓度,而不是作为动力来源。电可通过带动活塞往复运动的方式来产生机械通气,或通过电泵产生压缩气体,压缩气体再推动风箱运动而产生通气。 3.电-气动机械呼吸机 电-气动机械呼吸机,只有在压缩气体及电力二者同时提供动力的情况下才能正常工作与运转。通常情况是,压缩空气及压缩氧气按不同比例混合后,

既提供了适当氧浓度的吸入气体,也供给了产生机械通气的动力。但通气的控 制、调节,及各种监测、警报系统的动力则来自电力,所以这类呼吸机又称为气动-电控制呼吸机。比较复杂的多功能定容呼吸机大多都采用这种动力提供方式。 二、供气装置 贮气囊或气缸供气装置:这种供气装置常用折叠贮气囊或气缸来输送气 体,其外部装有驱动装置。供给病人的潮气量(V T )取决于贮气囊或气缸直径(D)和行程距离(L) V T =πD2/4·L 驱动装置可以直线运动或旋转-直线运动。由于气缸的顺应性小,故V T 较为精确,因此,以气缸作为贮气装置的呼吸机适合于小儿科使用。 三、呼吸机的调控系统 80年代以前,呼吸机的调控方式有两种形式:一种是直流电机驱动的呼吸 机,通过电压的变化,使其转速发生改变,来控制V T 、E:I等参数。另一种是在用压缩气体的动力的呼吸机,通过针形阀作为可变气阻,来控制吸气和呼气过程及其转换,现代呼吸机大多数采用各种传感器,来“感知”呼吸力学等情 况的变化,并经过微电脑分析处理后,发出指令来自动调节V T 、P aw 、E:I等参 数。同时,还装备各种监测和报警系统以各种形式显示其数值,显示呼吸机当前状态和调整参数情况。 四、安全阀 安全阀有两种:一种为呼气安全阀,其结构大多采用直动式溢流阀,其工作原理是将溢流阀与气道系统相连接,当后者的压力在规定范围内时,由于气

呼吸机使用案例分析(修改后)

案例分析 中年男性,被家人发现人事不知10分钟,伴喷射性呕吐,家人送其急诊入院,入院查体:浅昏迷,口唇面色紫绀,双侧瞳孔等大等圆,约5MM,光反射迟钝,颈软,呼吸浅促,约5次/分,可闻及喉头痰鸣音,心率120次/分,律不齐,心电监护示房颤,腹软,四肢肌张力低,右侧巴氏征+ 问题: 1患者入院抢救流程注意哪些方面? 答:入院抢救注意遵守A-B-C流程,首先开放气道,保持气道通畅,呼吸支持(包括面罩吸氧,气管插管呼吸机辅助通气),维持循环稳定。 2患者行气管插管的指征是什么? 答:一病情危重,严重低氧需要机械通气支持二气道分泌物多,需反复吸引 3患者行经口气管插管机械通气后,如何调整参数如潮气量,呼吸频率,吸呼比(标准状态下),呼气末正压(peep)? 答:潮气量:8-12ML/KG (例如50KG患者潮气量是400-600ML );呼吸频率12-20 次/分;吸呼比1:2.3 ; PEEP 3-10 mmHg; 4患者需要吸痰,请问每次吸痰时间持续不超过多少秒? 答:不超过15秒。

5气管插管留置时间是多久? 答:一般1-2周最长不超过14天。 6患者机械通气时,出现呼吸机高气道压力报警,请问要注意出现哪些问题? 答:注意可能出现:1)痰液阻塞气道2)导管滑动移位导致单肺通气,气道压力增高,或者导管抵住气管隆突,气体不能进入肺内,气道压增高。3)患者呛咳反射,人机不同步,导致气道压增高。4)呼吸机参数设置不合理,出现人机拮抗,气道压增高。 7经口气管插管术中常见合并症有哪些? 答:1)气管误入食管,这是最常见的2)插入过深3)术中损伤上呼吸道软组织及声带4)一过性心律不齐,危重病人插管时可能发生心跳骤停5)插管过程中牙齿损伤6)口腔护理不便产生口腔溃疡,感染等。 8机械通气可以产生哪些生理效应? 答:1)改善通气功能,维持有效地肺泡通气2)改善气体交换功能3)减少呼吸功的消耗 9机械通气治疗的适应症? 答:广义上说,机械通气治疗适用于任何原因导致的呼吸衰竭。狭义上说,除了改善气体交换和减少呼吸功耗外,其主要意义在于维持有效地肺泡通气功能。 10机械通气治疗的禁忌证?

呼吸机的临床应用及参数设置大全

呼吸机的临床应用及参数设置大全 发布时间:2011-09-15 15:52:25 一、适应症:1.严重通气不良2.严重换气障碍3.神经肌肉麻痹4.心脏手术后 5.颅内压增高 6.新生儿破伤风使用大剂量镇静剂需呼吸支持时 7.窒息、心肺复苏9.任何原因的呼吸停止或将要停止。 二、禁忌症:没有绝对禁忌症。肺大泡、气胸、低血容量性休克、心肌梗塞等疾病应用时应减少通气压力而增加频率。 三、呼吸机的基本类型及性能: 1. 定容型呼吸机:吸气转换成呼气是根据预调的潮气量而切换。 2. 定压型呼吸机:吸气转换成呼气是根据预调的压力峰值而切换。(与限压不同,限压是气道压力达到一定值后继续送气并不切换) 3. 定时型呼吸机:吸气转换为呼气是通过时间参数(吸气时间)来确定。八十年代以来,出现了定时、限压、恒流式呼吸机。这种呼吸机保留了定时型及定容型能在气道阻力增加和肺顺应性下降时仍能保证通气量的特点,又具有由于压力峰值受限制而不容易造成气压伤的优点,吸气时间、呼气时间、吸呼比、吸气平台的大小、氧浓度大小均可调节,同时还可提供IMV(间歇指令通气)、CPAP(气道持续正压通气)等通气方式,是目前最适合婴儿、新生儿、早产儿的呼吸机。 四、常用的机械通气方式 1. 间歇正压呼吸(intermittent positive pressure ventilation,IPPV):最基本的通气方式。吸气时产生正压,将气体压入肺内,靠身体自身压力呼出气体。

2. 呼气平台(plateau):也叫吸气末正压呼吸(end inspiratory positive pressure breathing,EIPPB),吸气末,呼气前,呼气阀继续关闭一段时间,再开放呼气,这段时间一般不超过呼吸周期的5%,能减少VD/VT(死腔量/潮气量) 3. 呼气末正压通气(positive end expiratory pressure,PEEP):在间歇正压通气的前提下,使呼气末气道内保持一定压力,在治疗呼吸窘迫综合征、非心源性肺水肿、肺出血时起重要作用。 4. 间歇指令通气(intermittent mandatory ventilation,IMV)、同步间歇指令通气(synchronized intermittent mandatory ventilation,SIMV):属于辅助通气方式,呼吸机管道中有持续气流,(可自主呼吸)若干次自主呼吸后给一次正压通气,保证每分钟通气量,IMV的呼吸频率成人一般小于10次/分,儿童为正常频率的1/2~1/10 5. 呼气延迟,也叫滞后呼气(expiratory retard):主要用于气道早期萎陷和慢性阻塞性肺疾患,如哮喘等,应用时间不宜太久。 6. 深呼吸或叹息(sigh) 7. 压力支持(pressure support):自主呼吸基础上,提供一定压力支持,使每次呼吸时压力均能达到预定峰压值。 8. 气道持续正压通气(continue positive airway pressure,CPAP):除了调节CPAP旋钮外,一定要保证足够的流量,应使流量加大3~4倍。CPAP正常值一般4~12cm水柱,特殊情况下可达15厘米水柱。(呼气压4厘米水柱)。 五、呼吸机与人体的连接: 情况紧急或者估计插管保留时间不会太长、新生儿、早产儿、一般经口插管。其他情况可以选经鼻插管或者是气管切开。 六、呼吸机工作参数的调节: 四大参数:潮气量、压力、流量、时间(含呼吸频率、吸呼比)。 1. 潮气量:潮气输出量一定要大于人的生理潮气量,生理潮气量为6~10毫升/公斤,而呼吸机的潮气输出量可达10~15毫升/公斤,往往是生理潮气量的1~2倍。还要根据胸部起伏、听诊两肺进气情况、参考压力二表、血气分析进一步调节。 2. 吸呼频率:接近生理呼吸频率。新生儿40~50次/分,婴儿30~40次/分,年长儿20~30次/分,成人16~20次/分。潮气量*呼吸频率=每分通气量 3. 吸呼比:一般1:1.5~2,阻塞性通气障碍可调至1:3或更长的呼气时间,限制性通气障碍可调至1:1。 4. 压力:一般指气道峰压(PIP),当肺部顺应性正常时,吸气压力峰值一般为10~20厘米水柱,肺部病变轻度:20~25厘米水柱;中度:25~30毫米水柱;重度:30厘米水柱以上,RDS、肺出血时可达60厘米水柱以上。但一般在30以下,新生儿较上述压力低5厘米水柱。 5. PEEP使用IPPV的患儿一般给PEEP2~3厘米水柱是符合生理状况的,当严重换气障碍时(RDS、肺水肿、肺出血)需增加PEEP,一般在4~10厘米水柱,病情严重者可达15甚至20厘米水柱以上。当吸氧浓度超过60%(FiO2大于0.6)时,如动脉血氧分压仍低于80毫米汞柱,应以增加PEEP为主,直到动脉血氧分压超过80毫米汞柱。PEEP每增加或减少1~2毫米水柱,都会对血氧产生很大影

呼吸机流量传感器的原理和应用

呼吸机流量传感器的原理和应用西南医院设备科王义辉何 金环 [摘要]本文介绍了呼吸机使用的流量传感器的原理、结构、种类及应用。 [关键词]传感器;热丝;热膜; 1 流量传感器在呼吸机中的作用 流量传感器在呼吸机中的应用已有近30年的历史,在中高档呼吸机中被普遍使用。它作为呼吸机气路系统的重要部件,负责将吸入和呼出的气体流量转换成电信号,送给信号处理电路完成对吸入和呼出潮气量、分钟通气量、流速的检测和显示。 根据呼吸机功能和设计的不同,流量传感器的检测值不仅仅提供显示,还对呼吸机的控制、报警等起着决定作用,如流量传感器将测量到的实际值馈送到电子控制部分与面板设置值比较,利用两者间的误差控制伺服阀门来调节吸入和呼出气体流量;安装在吸气系统前端的空气和氧气流量传感器生成的信号能帮助微处理器对阀门进行控制,以提供病人所需要的氧浓度;流速和流量的检测值还直接影响到呼气与吸气时相的切换、分钟通气量上下限的报警、流量触发灵敏度、气流实时波形和P-V-环的监测显示等等,流量传感器性能的好坏直接影响到呼吸机参数的准确性和可靠性。 2 流量传感器的原理和应用 目前呼吸机的种类和型号很多,采用的流量传感器也各不相同,主要有热丝式、晶体热膜式、超声式、压力感应式、压差式。 2.1 热丝式流量传感器: 基本原理是将一根细的金属丝(在不同的温度下金属丝的电阻不同)放在被测气流中,通过电流加热金属丝,使其温度高于流体的温度,

当被测气体流过热丝时,将带走热丝的一部分热量,使热丝温度下降,热丝在气体中的散热量与流速有关,散热量导致热丝温度变化而引起电阻变化,流速信号即转变成电信号,经适当的信号变换和处理后测量出气体流量的大小。测量原理图如图1: 图1:热丝式流量传感器原理图 在图1中,放置于测量通道中的热丝Rh作为惠斯登电桥的一个桥臂,由运算放大器A1差分放大电桥输出的电压信号;运算放大器A2提供三极管T工作所需要的偏置电压,并使A1 输出信号能够叠加在三极管T的偏置电位上,并被T放大给电桥供电。由电桥电路,A1 ,A2 和三极管构成的反馈回路,能够使热线工作于恒温状态下。 在接通电源瞬间,热线电阻很快电流加热,并且,其阻值随即升高,使电桥很快达到平衡状态。当流体流过流量计时,由于热交换的原因,热丝的温度、阻抗将发生变化,使桥路失去平衡,根据输出的反馈电压信号即可以测量出流体的流量。 Drager公司的Savina和Evita系列的呼吸机采用的是热丝式流

呼吸机的临床应用

呼吸机的临床应用 呼吸支持是挽救急、危重患者生命最关键的手段之一,因而,呼吸机在临床救治中已成为不可缺少的器械;它在急救、麻醉、ICU和呼吸治疗领域中正俞来俞广泛应用;掌握呼吸机的基本知识和基本操作方法是临床医生必需的基本知识和技能。本文就呼吸机的基本原理与对人体的生理影响,临床应用的适应症和禁忌症,基本的操作方法和常见呼吸衰竭的应用,呼吸机的脱离等作一简要介绍。 一、呼吸机的基本原理和主要类型 自主通气时吸气动作产生胸腔负压,肺被动扩张出现肺泡和气道负压,从而构成了气道口与肺泡之间的压力差而完成吸气;吸气后胸廓及肺弹性回缩,产生相反的压力差完成呼气。因此,正常呼吸是由于机体通过呼吸动作产生肺泡与气道口“主动性负压力差”而完成吸气,吸气后的胸廓及肺弹性回缩产生肺泡与气道口被动性正压力差而呼气,以满足生理通气的需要。而呼吸机通气是由体外机械驱动使气道口和肺泡产生正压力差,而呼气是在撤去体外机械驱动压后胸廓及肺弹性回缩产生肺泡与气道口被动性正压力差而呼气,即呼吸周期均存在“被动性正压力差”而完成呼吸。根据呼吸机的工作特点,可把其分为以下类型: 1、定压型呼吸机 吸气时,呼吸机向气道泵入一定压力的气体,使肺泡膨胀,气道压力渐升,达到预定压力时,气流终止,转为呼气相。此类呼吸机的潮气量,与呼吸机预置的压力、吸气时间、流速等有关。如流速低,吸气时间短,预定压力低,潮气量则小,反之则潮气量增大。若肺顺应性下降或支气管痉挛使气道阻力增加均可使潮气量下降。 此类呼吸机的缺点是气道压力增加时,潮气量得不到保障,优点是气道有漏气时,它也必须保持一定压力,也能维持适当通气,简言之,此类呼吸机保压力不保容量。Bird系列呼吸机为定压型呼吸机的代表。 2、定容型呼吸机 呼吸机将固定的容积气体泵入病人气道及肺部,产生吸气呼气的动作。此类呼吸机的优点是在安全压力范围内,密闭的气道状态下能保证一定的潮气量。缺点是气道漏气无法补偿,气道压力过大同样可发生通气不足。简言之,此类呼吸机保容量不保压力。上海医疗器械四厂的SC型系列及Bear系列,Bennett7200属此类。 3、定时型呼吸机 为定时、限压恒流型呼吸机,呼吸机产生气流,进入气道达到预定时间,吸气停止,产生呼气。

呼吸机临床应用

随着现代医学的进展,呼吸机越来越多的应用于急危重抢救、麻醉、术后恢复、呼吸治疗和呼吸维持,在医疗设备中占有重要地位。据美国呼吸病学会统计,由于呼吸机的普遍使用,使临床抢救的成功率大约提高了55 %。但由于长时间使用呼吸机,使患者发生院内感染的机率增加,对于使用呼吸机的患者,护理人员应 从身心两方面给予患者细致护理,尽可能减轻应用呼吸机带来的不适与痛苦,减少并发症发生率。 (一)呼吸机的临床应用 1.呼吸机治疗的目的主要为: (1) 维持适当的通气量,使肺泡通气量满足机体需要。改善气体交换功能,维持有效的气体交换。(2)减少呼吸肌的作功。(3)肺内雾化吸入治疗。(4)预防性机械通气,用于开胸术后或败血症、休克、严重创伤情况下的呼吸衰竭预防性治疗。 2.呼吸机治疗的指征 成人的呼吸生理指标达到下列标准的任何一项时,即应开始机械通气治疗: (1)自主呼吸频率大于正常的3倍或小于1/3者。(2)自主潮气量小于正常1/3者。(3)生理无效腔/潮气量>60%者。(4)肺活量<10-15ml/kg者。 (5)PaCO2 >50mmHg (慢性阻塞性肺疾患除外) 且有继续升高趋势,或出现精神症状者。 3.呼吸机治疗的适应症 当患者出现呼吸困难或呼吸衰竭症状,应及时使用呼吸机进行机械通气,以防止因低氧或缺氧而引起的器官功能衰竭。在临床实践中,心肺复苏后、中枢神经系统疾病引起肺泡低通气量、成人呼吸窘迫综合征、重症肺炎、严重肺挫伤引起的低氧血症、部分COPD患者、ARDS、呼吸衰竭等病人宜使用。 (1)呼吸突然停止或即将停止。(2)在吸入100%氧气的情况下,动脉血氧分压仍达不到50~60mmHg。(3)严重缺氧和二氧化碳储留而引起意识和循环功能障碍。 4.呼吸机与病人的连接方式

呼吸机常用模式和应用

呼吸机常用模式和应用呼吸机常用模式目录 一、通气机工作原理 二、机械通气的目的 三、机械通气的适应证和应用时机 四、机械通气的禁忌证 五、人-机的连接 六、呼吸机模式选择

七、呼吸机常规参数的调整 八、机械通气时的监测 九、不同呼吸衰竭的机械通气原则 呼吸机行业的2013年发展非常快,又有哪些呼吸机品牌进入了十 大品牌的行列呢,让我们一起拭目以待呼吸机品牌吧。有关呼吸机的用法已经很多的ppt文档,本文由北京康迈思科技有限公司,丰台区丰益桥西国贸A8-3007室康迈思呼吸机商城编辑提供,介绍了呼吸机的使用方法,呼吸机的使用步骤和注意事项。 一、通气机工作原理

一、机械通气基本原理 通气 呼吸机-气道压力差 气体流量顺着压力差流动 氧合 改善通气/ 血流比值 扩张肺泡 减少肺毛细血管-肺泡静水压

二、机械通气的目的 1、纠正急性呼吸性酸中毒 2、纠正低氧血症 3、降低呼吸功消耗 4、预防和治疗肺不张 5、为安全使用镇静剂和肌松剂提供通气保障 6、稳定胸壁

三、机械通气的适应证和应用时机 在出现较为严重的呼吸功能障碍时,应使用机械通气。如果延迟实施机械通气,患者因严重缺氧和二氧化碳(CO2)潴留而出现多器官功能受损,机械通气的疗效显著降低。因此,机械通气宜早实施。 符合下述条件应实施机械通气: 经积极治疗后病情仍继续恶化; 意识障碍呼吸形式严重异常,如呼吸频率>35~40次/min 或<6~8 次/min ,节律异常,自主呼吸微弱或消失;

血气分析提示严重通气和氧合障碍:PaO2<50mmHg,尤其是充分氧疗后仍< 50mmHg;PaCO2进行性升高,pH动态下降 . 成人应用机械通气的生理学指标 通气力学 >35次/min呼吸频率 <3或>20L/min每分通气量 < 20cmHO(绝对值)最大吸气压2 <15ml/kg肺活量 气体交换 PaO(FiO>0.6)<50mmHg22

呼吸机的临床应用

呼吸机的临床应用 呼吸机呼吸模式SIMV 在临床上有许多患者因不同原因而引致呼吸困难或衰竭,出现通气不足。为抢救及治疗这类病人,以往只能通过气管内插管或气管切开来提供人工通气,维持患者的呼吸,为患者争取时间治疗原发病和诱发因素。但无论是用插管或气管切开方式进行机械通气,均需耗用大量的药物,应用仪器进行特别护理,并给患者带来极大的痛苦和危险,容易有并发症的发生,譬如对神志尚清、病情不稳定的患者插管前所要用的镇静剂可引起低血压或加重低氧血症和高碳酸血症;插管时会因咽反射和喉损伤引起气管痉挛;插管上的气囊构成的压迫又会引起气管坏死和狭窄或气管萎缩;最后需要拔管时仍可因咽痉挛、声带和气管的损害造成拔管困难。所以患者如不是病情发展到后期危及生命时,医生是不会随便为病人施行此类手术的。这些不利因素在很大程度上限制了人工通气在早、中期呼吸衰竭患者中的应用。近年来,世界各地的医护人员都致力寻求有效且操作方便的无创性人工通气方法无创呼吸机(特别是面罩式呼吸机)不仅免除患者因气管切开造成的痛苦及危险,而且缩短了病人的住院时间。现代先进的呼吸系统均配有微电脑系统,并能显示或记录流速、流量、压力图形等参数,为呼吸机在临床中的应用开辟了更广泛的前景。 根据临床实际应用情况,呼吸机设置了多种呼吸模式以适应不同状态下病人的需要: 一、强制式呼吸(ControlledVentilation) 1.容积强制式呼吸(V ol,Contr.)呼吸机在一特定时间内(预先设定的值)依一定的频率供应一特定的潮气量,若病人产生吸气努力,呼吸道压力低于预设的值,每分钟通气量会自动增加。 2.容积强制式呼吸+深呼吸(V olumeContuolledVentilation+Sign)在此模式下,呼吸机每隔若干次(如一百次)呼吸给予一次深呼吸。每一深呼吸为等速流量、双倍潮气量双倍吸气时间。因此每分钟呼气量的上下报警极限设定必须适度提高。 3.压力强制式呼吸(Press.Contr)压力强制式呼吸时在设定时间内将固定压力的气体供应给病患。 此呼吸模式为减速流量型,病人所接收的量由设定的吸气压力(InspiratoryPressLeve1)、呼吸次数/分钟(Breaths/min)、吸气时间百分比(Insp.Time%)所决定。 二、辅助式呼吸(SupportVentilation) 1.压力辅助式呼吸(Press.Support)这时一种必须有病患自发式带动呼吸的呼吸模式。此种模式应用于病人脱离自主呼吸装置后、气喘的病人、手术后病人自主换气不足。当病人带动呼吸机时,其会根据设定的压力在吸气阶段给予压力辅助。 2.同步化间歇性强制呼吸SIMV (SynchronizedInternittent Mandatory Ventilation)SIMV是指预先设定的呼吸次数由呼吸机强制式控制,病人在接受呼吸机间歇性给予强制呼吸的同时,也可在两强制式呼吸之间有自发式呼吸。 SIMV周期分为SIMV 期间和自发呼吸期间,在SIMV期间病人若能带动,呼吸机与病人同步给予一强制呼吸;如在SIMV期间内病人无自主呼吸,呼吸机在SIMV期间结束后给予病人一强制呼吸。

呼吸机基本知识

呼吸机基本知识 模式 1、A/C模式:是辅助通气(AV)和控制通气(CV)两种模式的结合,当患 者自主呼吸频率低于预置频率或患者吸气努力不能触发呼吸机送气时,呼吸机即以预置的潮气量及通气频率进行正压通气,即CV;当患者的吸气能触发呼吸机时,以高于预置频率进行通气,即AV。 例:患者调A/C模式时,如果患者没有自主呼吸,那就全部由机器送气即控制模式(PB840呼吸机上会显示C),如果患者有自主呼吸,且自主呼吸频率大于机器设定值时呼吸机即按患者自主的呼吸频率送气即辅助模式(此时送气量也是由事先调整好的参数送气。)(PB840呼吸机上会显示A) 使用A/C模式(定容型)时应调整以下参数:潮气量、呼吸频率、氧流量、触发敏感度,(必要时调peep)。 2、SIMV模式同步间歇指令通气:是指呼吸机以预设指令频率向患者输送常规通气,在两次机械呼吸之间允许患者自主呼吸。(其实就是指呼吸机在每分钟内按预设的呼吸参数(呼吸频率、潮气量、呼吸比值等)给予患者指令通气,在触发窗内出现自主呼吸,便协助患者完成自主呼吸,如触发窗内无自主呼吸,则在触发窗结束时给予间歇正压通气。 特点:通气设定IMV的频率和潮气量确保最低分钟量; ●SIMV能与患者的自主呼吸同步,减少患者与呼吸机的对抗,减低正压通气的血 流动力学影响; ●通过调整预设的IMV的频率改变呼吸支持的水平,即从完全支持到部分支持,, 减轻呼吸肌萎缩; ●用于长期带机的患者的撤机;但不适当的参数设置(如流速及VT设定不当)可 增加呼吸功,导致呼吸肌疲劳或过度通气。 参数设置:潮气量、流速/吸气时间、控制频率、触发灵敏度,当压力控制SIMV时需设置压力水平及吸气时间。 3、Spont自主呼吸模式:是指呼吸机的工作都由病人自主呼吸来控制的呼吸模式,即病人控制呼吸机,呼吸机仅提供吸入氧浓度,压力支持通气和病人的呼吸末继续抬高,增加气体交换面积(frc)。 参数调整:氧浓度 特点:适用予张立性气胸的患者。 4、压力支持通气(PSV):是一种辅助通气方式,即在有自主呼吸的前提下,每次吸气时患者都能接受一定水平的压力支持,以辅助和增强病人的吸气深度和吸入气量。 特点: ●适用于有完整的呼吸驱动能力的患者,当设定水平适当时,则少有人-机对抗,减轻呼 吸功; ●PSV是自主呼吸模式,支持适当可减轻呼吸肌的废用性萎缩; ●对血流动力学的影响较小,包括心脏外科手术后患者;

呼吸机的临床应用

呼吸机的临床应用 呼吸机是进行机械通气的一种手段,它能维持呼吸道通畅、改善通气、纠正缺氧、防止二氧化碳在体内蓄积,为抢救提供有力的生命支持,使机体有可能度过基础疾病所致的呼吸功能衰竭,创造条件从疾病过程中恢复。目前由于呼吸机的应用日益广泛,使心脏停搏、呼吸衰竭等危重病人的预后大为改善,是呼吸医学的重大进展之一。 呼吸机的基本原理从50年至今未有重大改变。呼吸机能否发挥作用,一方面与机器的性能、质量有关;另一方面也与医务人员对呼吸机的熟练掌握,对具体患者的呼吸病理生理改变的了解,以及正确的治疗和护理均有很大关系。使用不当,反而会加重病情的发展。 -、呼吸机的治疗作用、指征和禁忌证 (一)呼吸机的治疗作用 1、改善通气功能、维持呼吸道内气体的流动常频通气时,由于正压产生对流,可达到是足够的潮气量;高频通气时则利用高频率的振动,促进对流及气体扩散、弥散过程。 2、改善换气功能由于气道内正压可使部分萎陷肺泡扩张,增加气体交换面积,改善通气;同时运用一些特殊的通气方式,如呼气末延长、呼气末屏气、呼气末正压通气(PEEP)等,改变通气与血流灌注比值,减少分流。 3、减少呼吸功呼吸机替代呼吸肌做功,减少了呼吸肌的负荷,使氧耗量降低,有利于呼吸肌疲劳的恢复。 (二)呼吸机的临床应用指征 1、由于呼吸停止或通气不足所致的急性缺氧和二氧化碳气体交换障碍。 2、肺内巨大分流所造成的严重低氧血症,外来供氧无法达到足够的吸入氧浓度。 3、在重大外科手术后(如心、胸或上腹部手术),为预防术后呼吸功能紊乱,需进行预防性短暂呼吸机支持。 4、在某些情况下,可暂时人为过度通气,以降低颅内压或在严重代谢性酸中毒时增

呼吸机原理和结构

呼吸机是实施机械通气的工具,临床上已广泛应用于麻醉和ICU中,改善病人的氧合和通气,减少呼吸作功,支持呼吸和循环功能,以及进行呼吸衰竭的治疗,早在1796年,Herholar和Rafn专题报道了应用人工呼吸方法使溺水患者获救,1929年Drinker和Shaw研制成功自动铁肺。直到第二次世界大战前后才逐渐了解了机械通气的原理,并用于心胸外科手术后呼吸支持。1952年斯堪的纳维亚半岛脊髓灰质炎流行,在4个多月内哥本哈根医院收治了2722例,其中315例需用呼吸支持,Ibson 强调呼吸支持和气道管理,总死亡率从87%降到30%。从此人们认识到机械通气的重要性。各种类型的呼吸机逐渐诞生,曾先后有三十多家厂商研制和生产过数百种类型的呼吸机,尤其是近年来,随着微电脑技术在呼吸机领域中的应用,使呼吸机技术得到迅速发展,性能渐趋完善。 目前,呼吸机的种类和型号繁多,使用方法各异。但无论呼吸机产品种类和型号如何改进或更新,原理和结构大致相同。了解呼吸机的基本结构有助于合理地应用呼吸机,并及时发现呼吸机使用过程中出现的问题,以便及时处理,使机器故障给病人造成的危害降至最低水平。 第1节呼吸机的分类 一、按控制方式分类

(一)电动电控型呼吸机 驱动和参数调节均由电源控制,如SC5及EV800电动电控呼吸机等,其吸入氧浓度(FIO2)由氧流量调节,缺少精确数字显示,最好另装氧浓度分析仪。 (二)气动气控型呼吸机 需4kg/cm2以上氧源和空气源,由逻辑元件控制和调节呼吸机参数。 (三)气动电控型呼吸机 是多数现代化呼吸机的驱动和调节方式,如Evita、Servo900C、Bennett7200、Adult star、鸟牌8400及纽邦E-200等。 二、按用途分类 (一)成人呼吸机。 (二)婴儿和新生儿呼吸机。

呼吸机基础知识-11页精选文档

呼吸机基础知识 一、呼吸系统的正常解剖和结构 1、呼吸道以环状软骨下缘为界分为上下呼吸道。 上呼吸道是气体进入肺脏的门户,为生理性死腔,上呼吸道占一半,呼吸道的阻力约45%来自鼻与喉。 下呼吸道包括气管、支气管、细支气管和终末细支气管。气管切开一般在第2-4软骨环进行。 2、胸廓由12块胸椎、1块胸骨、12对肋骨、肋间肌和膈肌等组成。在神经的支配下胸廓可随意而有规律的进行呼吸运动。 3、呼吸是机体与外界之间的气体交换过程,由三个环节组成,外呼吸、气体的运输、内呼吸。 外呼吸是肺毛细血管血液与外界环境之间的气体交换过程,包括肺通气和肺换气过程。肺通气是肺与外界环境之间的气体交换过程。 肺换气是肺泡与肺毛细血管血液之间的气体交换过程。 影响肺换气的因素: (1)呼吸膜的厚度,呼吸膜由含肺表面活性物质的液体层、肺泡上皮细胞、上皮基底膜、肺泡间隙和毛细血管膜之间的间隙、毛细血管基膜和毛细血管内皮细胞层。 (2)呼吸膜的面积,气体扩散速率与扩散面积成正比,肺扩散总面积大70平方米。 (3)通气/血流比值约为0.84。 气体运输是由循环血液O2从肺运输到组织之间的气体交换。

内呼吸是组织毛细血管血液与组织、细胞之间的气体交换过程。 4、呼吸运动是呼吸肌的收缩和舒张引起的胸廓节律性扩大和缩小。胸廓扩大称为吸气运动,主要吸气肌是膈肌和肋间外肌,胸廓缩小称为呼气运动。 吸气肌是是胸廓扩大而产生吸气动作的呼吸肌,主要指膈肌和肋间外肌。呼气肌是指是胸廓缩小的呼吸肌,主要指肋间内肌和腹壁肌肉。 辅助呼吸肌指斜角肌、胸锁乳突肌、胸背部肌肉。 吸气过程是主动过程,膈肌下降扩大胸廓上下径,肋间外肌收缩,增大胸廓前后径和左右径,使胸腔容积增大,压力下降,空气进入肺内。 呼气过程是被动过程,肺脏的弹性回缩力和肺泡表面张力构成肺的弹性回缩力,膈肌和肋间外肌舒张,胸腔缩小,压力增大,呼气。 二、胸内压和肺内压变化。 1、胸膜腔是脏层胸膜与壁层胸膜之间的腔隙,内有少量液体,彼此紧贴,中间浆液起润滑作用,减少摩擦阻力;浆液分子之间的内聚力使两层胸膜紧贴在一起。 2、胸膜腔内的压力称为胸内压,随呼吸周期性变化。平静吸气末负压为-10--5厘米水柱,安静时呼气末为-5--3厘米水柱,用力时变化更大。在临床上即用食道内压力代表胸内压。 胸内负压的生理意义是使肺维持扩张状态,不致由于回缩力而完全萎缩;促进和利于静脉尤其是腔静脉回流。 胸内压=肺内压+(-肺回缩压),在呼气末或吸气末时胸膜腔内压=大气压-(-肺回缩)=-肺回缩压

呼吸机原理及临床应用

检测方法做简单介绍。 1 呼吸机结构原理及临床中的应用 1.1 呼吸机的临床作用 (1)改善通气功能:正确应用呼吸机可有效保证通气量,解除二氧化碳贮留和因通气障碍所致的缺氧,在纠正呼吸性酸中毒和降低PACO2方面有不可替代的优越性。 (2)改善换气功能:应用呼吸机纠正肺内气体分布不均,提高氧浓度。特别是呼气末正压的应用,使通气/血流比例失调和肺内分流得到改善。能纠正严重的低氧血症。 (3)减少呼吸功能:平静呼吸时,氧耗量在总氧耗量5%以下,而严重呼吸困难时氧耗量可以超过30%,使用呼吸机可全部或部分代替呼吸肌的工作,减少能量消耗,避免呼吸疲劳,并减轻循环负担。 总之,呼吸机就是一个给人打气的气桶,不管是什么原因导致的不能呼吸、肺泡氧交换能力不足(如矽肺),呼吸机都可以让人保持呼吸,如果交换不足的话,可提高氧浓度,使其维持住呼吸机能,保持血液中的供氧能力,争取救治时间。 1.2 呼吸机的分类 (1)应用场合:急救及转运呼吸机、家用呼吸支持、治疗呼吸机; (2)驱动方式:气动电控、电动电控、气动气控; (3)应用患者:成人、儿童、新生儿。 1.3 呼吸模式 (1)IPPV(间歇正压通气) 呼吸机最基本的通气方式。 吸气相呼吸机将气体压入体内,气道内产生正压,呼气管道与大气相通,胸肺组织弹性回缩将气体排出,直到压力与大气相等;比较多地应用于麻醉机中的呼吸模式。 (2)VCV(容量控制通气) 输出就是以设定的容量为参考点,主要设定潮气量。 (3)PCV(压力控制通气) 为控制通气,压力为控制的参数,气体分布均匀,氧和通气良好,需监测潮气量。(4)PSV(压力支持通气) 在病人自主呼吸的基础上,每次呼吸得到一定压力的呼吸支持。 (5)SIMV(同步间歇指令通气) 在病人自主呼吸的基础上,每分钟插入几次有规律的、间隙的指令性通气;从机械通气过度到自主呼吸。 (6)PEEP(持续气道正压通气) 控制呼吸时,呼气机维持较低的气道正压。目的在于使萎陷的肺泡复张,提高氧分压。(7)CPAP(持续气道正压通气) 于吸气期和呼气期均送入恒定的正压气流,使气道保持正压。适用于自主呼吸的病人,作用与PEEP 相似,PSV+PEEP。 (8)A/C(辅助控制通气) AV + CV自动选择; AV (辅助通气)———靠患者触发,呼吸机以预置条件提供通气辅助; CV (控制通气)———完全由呼吸机来控制通气的频率、潮气量和吸呼时间比; 1.4 呼吸机主要参数 (1)潮气量———Vti、Vte: 潮气量是最重要的参数,代表患者单次吸入或呼出气体的体积,一般分VTI 和VTE,分别代表吸入和呼出潮气量。对呼吸机而言,指机器每次向患者传送的混合气体的体积,单位

呼吸机的调研报告

针对呼吸机研究的调研报告 目前呼吸机多数采用压力控制和容量控制的工作模式,这种模式很大程度上取决于患者,由于患者的不稳定性会造成一定的人机不协调,所以对呼吸机智能判断和自动跟随控制方面的研究将会有着重大的意义。 一、国内外研究现状 1.1 控制方面 在对呼吸机压力控制方法上,北京交通大学的包涵设计的基于Pl控制算法的CPAP呼吸机控制器,在该控制器中采用了增量限幅式PI控制算法,该方法避免了传统PID算法易产生噪声影响控制精度的问题,降低了控制回路的响应时间,算法作用时间仅需毫秒级即可使系统稳定输出,提高了系统的控制精度[1]。山东大学的樊晓克在其智能化呼吸机中,设计了一个模糊PID控制器,利用其十几年研制呼吸机的经验以及医学专家经验建立了模糊控制规则库以及一套PSV模糊控制算法,在规则库中考虑到了各种呼吸状况,收到了满意的效果[2]。吉林大学的张彦春采用了模糊控制系统去研究呼吸机的控制器[3]。Favre AS,Jandre FC,Giannella-Neto A在其CPAP控制器中使用了一个闭环控制器去控制通气阀的开闭使得压力波动范围更小[8]。在呼吸相识别方法上。暨南大学的冼莹在呼吸机人机同步的上引入了新方法其通过采用食道电极、流量计、生理实验放大器和数据采集器建立一个隔肌肌电采集系统,通过分析隔肌肌电信号并利用阈值法和改良的数学形态滤波法结合提取出吸气开始时刻,呼气开始时刻和呼吸周期三个参数[4]。河北工业大学的徐文超在其研制的呼吸机中引入了CAN总线使得系统具有很好的扩展性[5]。在双水平模型的建立上台湾的Ching-Chih Tsai,Zen-Chung Wang等提出了预测模型理论,在每个呼吸阶段结束时通过该理论,对下一阶段的呼吸相的时间进行预测,然后系统依据这个时间进行呼吸相的切换[6, 7]。近年来人们试图将控制理论与人工智能结合应用于机械通气领域,当前的一些尝试主要有:①LDS医院的COMPASS分散结构系统,并与医院信息网相连;②KUSIV AR系统,引入了专家决策,并集成了病人—呼吸机模型;③VRM 首先引入模糊逻辑;④VQ—ATTENDING系统首先引入医生顾问分析参数设置; ⑤RESPAID首先运用机器自学习技术。飞利浦伟康公司是全球呼吸机著名的生产商,其产品利用了许多先进技术,包括Auto-Trak数字式自动追踪灵敏度技术、Bi-Flex 压力释放技术、优化的降噪技术、System One湿度控制及干盒子技术。伟康专利的Auto-Trak技术可立即对呼吸道的变化情况作出响应,配合RiseTime 的使用,可在整个治疗过程中确保患者所需的舒适性。无论漏气情况如何,也无论患者病情的变化如何,均可自动调节呼吸的触发和切换阈值,并可确保在大量漏气的情况下输出稳定的压力并保持好的人机同步。在呼吸过程中,Bi-Flex 技术都能够让BiPAP治疗变得更像正常呼吸。Bi-Flex 在呼吸循环中的三个关键节点上进行压力释放:吸气相的压力上升、吸气相的压力下降、以及呼气相的压力释放。System one湿度控制是一项突破性技术,即使在动态环境下,也能通过温度、相对湿度和患者气流分析,持续维系最佳湿度指数。装置配备五项设定,可利用增强型湿度控制,将水滴冷凝在管路及面罩中的潜在可能性控制到最低。在任何情况下,干盒子技术都能将湿化器和设备内部完全隔绝,以避免机器意外损坏。瑞思迈公司在其呼吸机生产上也具有其独特性。Vsync技术使得其呼吸机能够自动的补偿漏气,并提高呼吸触发以及切换的灵敏度。在其呼吸机上还应用了

(完整word版)临床案例分析题

临床案例汇编 临床常用病例分析题汇编一、熊某,男,81岁,近来几天严重腹泻,请问该患者的护理问题有哪些?如何护理? 答:护理问题:体液不足与腹泻有关;活动无耐力与严重腹泻有关;有皮肤完整性受损的可能与腹泻有关如何护理:1.去除病因,如为肠道感染则遵医嘱给予抗生素治疗;2.卧床休息,减少肠蠕动,注意保暖;3.调理膳食。鼓励饮水,酌情给予清爽的流质或半流质饮食,避免油腻、辛辣、高纤维食物。严重腹泻时暂禁食;4.防治水和电解质紊乱。按医嘱给予止泻剂、口服补液盐或静脉输液;5.保持皮肤完整性。每次便后用软纸轻擦肛门,温水清洗,并在肛门周围涂油膏以保护局部皮肤;6.密切观察病情。记录排便的性质、次数等,必要时留取标本送检。病情危重者,注意生命体征的变化。如疑为传染病则按肠道隔离原则护理; 7.心理支持,促进舒适;8.健康教育。讲解腹泻有关知识,指导病人注意饮食卫生,养成良好的卫生习惯。 二、段某,女,29岁,因天气寒冷,在关闭门窗的环境下,用炉火取暖。后被人发现晕倒在家,发现时神志不清,口唇呈樱桃红色。请问该患者出现了什么情况?该类病人的院前急救与氧疗方法是什么? 答:该患者是一氧化碳中毒。院前急救:1.迅速脱离中毒环境,将病人放臵在空气新鲜处;2.中度一氧化碳中毒昏迷者,要保持气道开放,持续吸氧;3.中、重度一氧化碳中毒病人转送至有高压氧的医院,尽早进行高压氧治疗。氧疗方法:包括常压吸氧和高压氧治疗。氧气吸入最好吸纯氧或含5%二氧化碳的混合氧,有条件者应积极采用高压氧治疗。高压氧治疗宜早期应用。无高压氧舱条件者可经鼻导管给予高浓度氧,流量8-10L/min,以后根据具体情况采用持续低浓度氧气吸入,清醒后转为间歇给氧。 三、朱某,男55岁,有慢性阻塞性肺气肿病史,近日天气变冷,突发呼吸困难入院,入院时口唇紫绀,检查血气为PaO2为50mmHg,PaCO2为80mmHg,请问该病人的诊断是什么?该类病人如何给氧?为什么? 答:该病人诊断为Ⅱ型呼吸衰竭,吸氧方式是持续低流量给氧。(1-2L/M) 持续低流量给氧的理由是:1.呼吸主要由缺氧刺激:因此类病人的呼吸中枢化学感受器对二氧化碳反应差,故呼吸的维持主要由缺氧对外周化学感受器的刺激,若吸入高浓度氧,PaO2迅速上升,使外周化学感受器失去了刺激,导致病人呼吸变慢而浅,肺泡通气量下降,PaCO2随之上升,严重时引起肺性脑病;2.避免加重通气/血流比例失调:吸入高浓度的氧,解除低氧性肺血管收缩,使肺内血流重新分布,加重通气/血流比例失调,肺泡无效腔增大,有效肺泡通气量减少,从而使PaCO2进一步升高;3.血红蛋白氧离曲线特性:在严重缺氧时,PaO2稍有升高,SaO2便有较多的增加。 四、一女性患者,在外伤补充了血容量后血压在90/60mmHg,医生开医嘱使用血管活性药物,请问使用血管活性药物的注意事项有哪些? 答:1.使用血管活性药物需用微量输液泵控制滴速;2.严密监测生命体征。根据血压、心率等参数的变化,随时调整血管活性药物的滴速;3.血管活性药物应尽量从中心静脉输入;4.采用专用通路输入血管活性药物,不要与中心静脉压测量及其他静脉补液在同一条静脉通路; 5.缩血管药与扩血管药应在不同管路输入; 6.加强对输注部位的观察,避免药液渗漏至血管外。 五、患者于某,男,30岁,因咳嗽、咳痰,周身无力前往我院就诊,遵医嘱给予生理盐水250ml+美洛西林4.0静滴,皮试结果阴性,当输入50ml时,患者突然出现头昏、胸闷、冷汗、寒战、BP80/50mmHg,心率100次/分,该患者出现了什么反应?该如何处理? 答:该患者出现了过敏性休克。如何处理:1.立即停用或消除引起过敏反应的物质,立即给予平卧、吸氧、并注意保暖;2.立即皮下或肌注0.1%肾上腺素1ml;3.积极给予地塞

呼吸机

摘要 呼吸机是一种能代替、控制或改变人的正常生理呼吸,增加肺通气量,改善呼吸功能,减轻呼吸功消耗,节约心脏储备能力的装置。 呼吸机 呼吸机-基本原理 绝大多数较常用的系由气囊(或折叠风箱)内外双环气路进行工作,内环气路、气流与病人气道相通,外环气路、气流主用以挤压呼吸囊或风箱,将气囊(或风箱内的新鲜气体压向病人肺泡内,以便进行气体交换,有称驱动气。因其与病人气道不通,可用压缩氧或压缩空气。 呼吸机-基本功能

呼吸机 当婴幼儿并发急性呼吸衰竭时,经过积极的保守治疗无效,呼吸减弱和痰多且稠,排痰困难,阻塞气道或发生肺不张,应考虑气管插管及呼吸机。呼吸机必须具备四个基本功能,即向肺充气、吸气向呼气转换,排出肺泡气以及呼气向吸气转换,依次循环往复。因此必须有:⑴能提供输送气体的动力,代替人体呼吸肌的工作;⑵能产生一定的呼吸节律,包括呼吸频率和吸呼比,以代替人体呼吸中枢神经支配呼吸节律的功能;⑶能提供合适的潮气量(VT)或分钟通气量(MV),以满足呼吸代谢的需要; ⑷供给的气体最好经过加温和湿化,代替人体鼻腔功能,并能供给高于大气中所含的O2量,以提高吸入O2浓度,改善氧合。 动力源:可用压缩气体作动力(气动)或电机作为动力(电动)呼吸频率及吸呼比亦可利用气动气控、电动电控、气动电控等类型,呼与吸气时相的切换,常于吸气时于呼吸环路内达到预定压力后切换为呼气(定压型)或吸气时达到预定容量后切换为呼气(定容型),不过现代呼吸机都兼有以上两种形式。 治疗用的呼吸机,常用于病情较复杂较重的病人,要求功能较齐全,可进行各种呼吸模式,以适应病情变化的需要。而麻醉呼吸机主要用于麻醉

相关文档
最新文档