概率论讲义

合集下载

曹显兵概率论讲义打印版

曹显兵概率论讲义打印版

第一讲 随机事件与概率考试要求1. 了解样本空间的概念, 理解随机事件的概念, 掌握事件的关系与运算.2. 理解概率、条件概率的概念, 掌握概率的基本性质, 会计算古典型概率和几何型概率, 掌握概率的加法公式、减法公式、乘法公式、全概率公式, 以及贝叶斯公式.3. 理解事件独立性的概念, 掌握用事件独立性进行概率计算;理解独立重复试验的概率, 掌握计算有关事件概率的方法. 一、古典概型与几何概型1.试验,样本空间与事件.2.古典概型:设样本空间Ω为一个有限集,且每个样本点的出现具有等可能性,则 基本事件总数中有利事件数A A P =)(3.几何概型:设Ω为欧氏空间中的一个有界区域, 样本点的出现具有等可能性,则、体积)Ω的度量(长度、面积、体积)A的度量(长度、面积=)(A P【例1】 一个盒中有4个黄球, 5个白球, 现按下列三种方式从中任取3个球, 试求取出的球中有2个黄球, 1 个白球的概率. (1) 一次取3个;(2) 一次取1 个, 取后不放回; (3) 一次取1个, 取后放回.【例2 】从 (0,1) 中随机地取两个数,试求下列概率: (1) 两数之和小于1.2; (2) 两数之和小于1且其积小于163. 一、 事件的关系与概率的性质1. 事件之间的关系与运算律(与集合对应), 其中特别重要的关系有: (1) A 与B 互斥(互不相容) ⇔ Φ=AB(2) A 与B 互逆(对立事件) ⇔ Φ=AB,Ω=B A(3) A 与B 相互独立⇔ P (AB )=P (A )P (B ).⇔ P (B|A )=P (B ) (P (A )>0). ⇔(|)(|)1P B A P B A += (0<P (A )<1).⇔P (B|A ) =P (B|A ) ( 0 < P (A ) < 1 )注: 若(0<P (B )<1),则,A B 独立⇔ P (A|B )=P (A ) (P (B )>0)⇔ 1)|()|(=+B A P B A P (0<P (B )<1). ⇔ P (A |B )=P (A |B ) (0<P (B )<1) ⇔ P (A |B )=P (A |B ) (0<P (B )<1)(4) A, B, C 两两独立 ⇔ P (AB )=P (A )P (B );P (BC )=P (B )P (C ); P (AC )=P (A )P (C ).(5) A, B, C 相互独立 ⇔ P (AB )=P (A )P (B );P (BC )=P (B )P (C ); P (AC )=P (A )P (C ); P (ABC )=P (A )P (B )P (C ).2. 重要公式 (1) )(1)(A P A P -=(2) )()()(AB P A P B A P -=-(3) )()()()(AB P B P A P B A P -+=)()()()()()()()(ABC P AC P BC P AB P C P B P A P C B A P +---++=(4) 若A 1, A 2,…,A n 两两互斥, 则∑===ni i ni iA P AP 11)()(.(5) 若A 21,A , …, A n 相互独立, 则 )(1)(11in i n i iA P A P ∏==-= )](1[11ini A P ∏=--=.∏===ni i n i i A P A P 11)()( .(6) 条件概率公式: )()()|(A P AB P A B P =(P (A )>0)【例3】 已知(A +B )(B A +)+B A B A +++=C, 且P ( C )=31, 试求P (B ). 【例4】 设两两相互独立的三事件A, B, C 满足条件: ABC =Φ, P (A )=P (B )=P (C )<21,且已知9()16P AB C =, 则P (A )= .【例5】 设三个事件A 、B 、C 满足P (AB )=P (ABC ), 且0<P (C )<1, 则 【 】(A )P (A B|C )=P (A|C )+ P (B|C ). (B )P (A B|C )=P (AB ).(C )P (AB|C )=P (A|C )+ P (B|C ). (D )P (AB|C )=P (AB ).【例6】 设事件A, B, C 满足条件: P (AB )=P (AC )=P (BC )18=, P (ABC )=116, 则事件A, B, C 中至多一个发生的概率为 .【例7】 设事件A, B 满足 P (B| A )=1则【 】(A ) A 为必然事件. (B ) P (B|A )=0.(C ) A B ⊃. (D ) A B ⊂.【例8】 设A, B, C 为三个相互独立的事件, 且0<P (C )<1, 则不独立的事件为 【 】 (A ) B A +与C . (B ) AC 与C(C ) B A -与C (D )AB 与C【例9】 设A ,B 为任意两个事件,试证P (A )P (B )-P (AB ) ≤ P (A -B ) P (B -A ) ≤41.三、乘法公式,全概率公式,Bayes 公式与二项概率公式 1. 乘法公式:).|()|()|()()().|()()|()()(1212131212121212121-===n n n A A A A P A A A P A A P A P A A A P A A P A P A A P A P A A P2. 全概率公式:11()(|)(),,,.i i i j i i i P B P B A P A A A i j A ∞∞====Φ≠=Ω∑ 3.Bayes 公式:11(|)()(|),,,.(|)()j j j i j i i iii P B A P A P A B A i j A P B A P A ∞∞====Φ≠=Ω∑ A 4.二项概率公式:()(1),0,1,2,,.k k n kn n P k C P P k n -=-= ,【例10】 10件产品中有4件次品, 6件正品, 现从中任取2件, 若已知其中有一件为次品,试求另一件也为次品的概率.【例11】设10件产品中有3件次品, 7件正品, 现每次从中任取一件, 取后不放回.试求下列事件的概率. (1) 第三次取得次品; (2) 第三次才取得次品;(3) 已知前两次没有取得次品, 第三次取得次品; (4) 不超过三次取到次品;【例12】 甲, 乙两人对同一目标进行射击,命中率分别为0.6和0.5, 试在下列两种情形下, 分别求事件“已知目标被命中,它是甲射中”的概率.(1)在甲, 乙两人中随机地挑选一人, 由他射击一次; ( 2)甲, 乙两人独立地各射击一次.【例13】设有来自三个地区的各10名、15名和25名考生的报名表,其中女生的报名表分别为3份,7份和5份. 随机地取一个地区的报名表,从中先后任意抽出两份. (1) 求先抽到的一份是女生表的概率p;(2)已知后抽到的一份是男生表,求先抽到的一份是女生表的概率q .第二讲 随机变量及其分布考试要求1. 理解随机变量及其概率分布的概念.理解分布函数(()()F x P X x =≤) 的概念及性质.会计算与随机变量有关的事件的概率.2. 理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布、几何分布、超几何分布、泊松(Poisson )分布及其应用.3. 了解泊松定理的结论和应用条件,会用泊松分布近似表示二项分布.4. 理解连续型随机变量及其概率密度的概念,掌握均匀分布、正态分布2(,)N μσ、指数分布及其应用,其中参数为(0)λλ>的指数分布的概率密度为,0,()0,0.x e x f x x λλ-⎧>=⎨≤⎩5. 会求随机变量函数的分布. 一、分布函数1.随机变量:定义在样本空间上,取值于实数的函数称为随机变量. 2.分布函数:∞+-∞=<<),≤ ()(x x X P x FF (x )为分布函数 ⇔(1) 0≤F (x ) ≤1(2) F (x )单调不减(3) 右连续F (x+0)=F (x ) (4)1)(,0)(=+∞=-∞F F3.离散型随机变量与连续型随机变量(1) 离散型随机变量∑∞=====1i 10,≥,,,2,1,)(i i i i p p n i p x X P分布函数为阶梯跳跃函数.(2) 连续型随机变量⎰∞-=xtt f x F d )( )(f (x )为概率密度 ⇔ (1) f (x )≥0, (2) ⎰+∞∞- f (x )1d =x⎰=≤≤=<<bax f b X a P b X a P )()()(4.几点注意【 例1 】 设随机变量X 的分布函数为0,1,57(),11,16161, 1.x F x x x x <-⎧⎪⎪=+-≤<⎨⎪≥⎪⎩则2(1)P X== .【 例2 】 设随机变量X 的密度函数为 f (x ), 且 f (-x ) = f (x ), 记()X F x 和()X F x -分别是X 和X -的分布函数, 则对任意实数x 有 【 】 (A )()()X X F x F x -=. (B )()()X X F x F x -=-.(C )()1()X X F x F x -=-. (D )()2()1X X F x F x -=-.【 例3 】 设 随机变量X 服从参数为0λ>的指数分布, 试求随机变量 Y= min { X, 2 } 的分布函数【 例4 】设某个系统由 6 个相同的元件经两两串联再并联而成, 且各元件工作状态相互独立 每个元件正常工作时间服从参数为 0λ>的指数分布, 试求系统正常工作的时间 T 的概率分布.【 例5】设随机变量X 的概率密度为⎩⎨⎧<-=.,0,1|||,|1)(其他x x x f 试求(1) X 的分布函数)(x F ; (2)概率)412(<<-X P .二、 常见的一维分布(1) 0-1分布:1,0,)1()(1 =-==-k p p k XP k k .(2) 二项分布n k p p C k X P p n B k n kk n ,,1,0,)1()(:),( =-==- .(3) Poisson 分布)(λP : ,2,1,0,0>,e !)(===-k k k XP k λλλ.(4) 均匀分布⎪⎩⎪⎨⎧-=.,<<1)(:),(其他0,, b x a a b x f b a U(5) 正态分布N (μ,σ2):0,,eπ21)(222)(+∞<<∞->=--μσσσμ x x f(6) 指数分布⎩⎨⎧=-.,0 >0,,e )(:)(其他x x f E x λλλ >0λ.(7) 几何分布.2110,)1()(:)(1 ,,k ,<p<p p k XP p G k =-==- (8) 超几何分布H (N,M,n ): },min{,,1,0,)(M n k C C C k X P nNkn M N k M ===-- . 【例6】某人向同一目标独立重复射击,每次射击命中目标的概率为p (0<p<1), 则此人第4次射击恰好第2次命中目标的概率为【 】 (A ) 2)1(3p p -.(B ) 2)1(6p p -.(C ) 22)1(3p p-.(D ) 22)1(6p p-.【例7】 设X ~N (μ, σ2), 则 P ( X ≤1+μ) 【 】(A ) 随μ的增大而增大 . (B ) 随μ的增大而减小. (C ) 随σ的增大而不变 . (D ) 随σ的增大而减小. 【例8】 设X ~N (μ, σ2), ()F x 为其分布函数,0μ<,则对于任意实数a ,有 【 】(A ) ()() 1.F a F a -+> (B ) ()() 1.F a F a -+= (C ) ()() 1.F a F a -+< (D ) 1()().2F a F a μμ-++=【例9】 甲袋中有1个黑球,2个白球,乙袋中有3个白球,每次从两袋中各任取一球交换放入另一袋中,试求交换n 次后,黑球仍在甲袋中的概率.三、 随机变量函数的分布: 1. 离散的情形2. 连续的情形3. 一般的情形【例10】 设随机变量X 的概率密度为⎪⎪⎪⎩⎪⎪⎪⎨⎧<≤<<-=.,0,20,41,01,21)(其他x x x f X令),(,2y x F X Y=为二维随机变量(X, Y )的分布函数.(Ⅰ) 求Y 的概率密度)(y f Y ;(Ⅱ))4,21(-F . 第三讲 多维随机变量及其分布考试要求1. 理解多维随机变量的概念,理解多维随机变量的分布的概念和性质,理解二维离散型随机变量的概率分布、边缘分布和条件分布,理解二维连续型随机变量的概率密度、边缘密度和条件密度.会求与二维随机变量相关事件的概率.2. 理解随机变量的独立性及不相关的概念,掌握随机变量相互独立的条件.3. 掌握二维均匀分布,了解二维正态分布的概率密度,理解其中参数的概率意义 .4. 会求两个随机变量简单函数的分布,会求多个相互独立随机变量简单函数的分布. 一、 各种分布与随机变量的独立性 1. 各种分布(1)一般二维随机变量 F (x, y )=P{ X ≤ x, Y ≤ y }, x ∈ (−∞, +∞), y ∈ (−∞, +∞)的性质F (x, y )为联合分布函数 ⇔ 1) 0 ≤F (x, y )≤1 , ∀x ∈ (−∞, +∞),, y ∈ (−∞, +∞);2) F (−∞, y )= F (x, −∞)=0, F (+∞,+∞)=1;3) F (x, y )关于x, y 均为单调不减函数; 4) F (x, y )关于x, y 均分别右连续.(2)二维离散型随机变量的联合概率分布、边缘分布、条件分布联合概率分布律 P{X = x i , Y = y j } = p i j , i, j =1, 2 ,⋅⋅⋅ , p i j 0,1=∑∑ijji p.边缘分布律 p i = P{X = x i }=∑jji p, i =1, 2 ,⋅⋅⋅ ,pj= P{ Y = y j }=∑iji p, j =1, 2 ,⋅⋅⋅ ,条件分布律 P{X = x i |Y = y j } =jj i p p ∙, P{ Y = y j | X = x i } =∙i j i p p .二维连续型随机变量的联合概率密度、边缘密度和条件密度f (x, y )为联合概率密度 ⇔ 1︒ f (x, y )≥0,2︒1=⎰⎰∞+∞-∞+∞- ),(dxdy y x f .设( X, Y )~ f (x, y )则分布函数: ⎰⎰∞-∞-=xydxdy y x f y x F ),(),(;边缘概率密度:⎰∞+∞-= ),()(dy y x f x f X , ⎰∞+∞-= ),()(dx y x f x f Y .条件概率密度:)(),()|(|y f y x f y x f Y Y X =, )(),()|(|x f y x f x y f X X Y =.⎰⎰=∈Ddxdy y x f D Y X P ),(}),{(.),(),(yx y x F y x f ∂∂∂=22. 随机变量的独立性和相关性X 和Y 相互独立 ⇔ F (x, y )= F X (x )F Y (y );⇔ p i j = p ipj(离散型)⇔ f (x, y )= f X (x )f Y (y ) (连续型)【注】1 X 与Y 独立, f (x ), g (x )为连续函数f (X )与g (Y )也独立.2若X 1, ⋅⋅⋅⋅, X m , Y 1, ⋅⋅⋅⋅, Y n 相互独立, f , g 分别为m 元与 n 元连续函数 f (X 1, ⋅⋅⋅⋅, X m )与g (Y 1, ⋅⋅⋅⋅, Y n )也独立.3 常数与任何随机变量独立.3. 常见的二维分布(1)二维均匀分布 (X, Y )~ U (D ), D 为一平面区域. 联合概率密度为⎪⎩⎪⎨⎧∈=.,.),(,)(),(其他01D y x D S y x f (2)二维正态分布 (X, Y )~ N (μ 1 , μ2, σ12,σ22, ), −∞ <μ1, μ2 < +∞, σ1>0, σ2 > 0, | | <1. 联合概率密度为221121ρσπσϕ-=),(y x ⎥⎥⎦⎤⎢⎢⎣⎡-+------22222121212122121σμσσμμρσμρ)())(()()(y y x x e性质:( a ) X ~ N (μ1, σ12 ), Y ~ N (μ2, σ22) ( b ) X 与Y 相互独立ρX Y =0 , 即 X 与Y 不相关.( c ) C 1X+C 2Y ~ N (C 1 μ1+ C 2 μ2, C 12σ12+ C 22σ22+2C 1C 2 σ1σ2 ). ( d ) X 关于Y=y 的条件分布为正态分布: )](),([22122111ρσμσσρμ--+y N 【 例1 】 设A ,B 为事件,且P (A )=41, P (B|A )=21, P (A|B )=12令 X =⎩⎨⎧否则发生若,0,1A , Y =⎩⎨⎧否则发生若,0B ,1(1) 试求(X, Y )的联合分布律; (2)计算Cov ( X, Y ); (3) 计算 22(2,43)Cov XY +.【 例2 】设随机变量X 与Y 相互独立,下表列出了二维随机变量(X, Y )联合分布律及关于X 和关于Y 的边缘分布律中的部分数值, 试将其余数值填入表中的空白处.【 例3 】设随机变量X 与Y 独立同分布, 且X 的概率分布为313221PX 记{}{}Y X V Y X U,min ,,max ==.(I )求(U, V )的概率分布;(II )求(U, V )的协方差Cov (U, V ).【详解】(I )易知U, V 的可能取值均为: 1, 2. 且{}{}})1,min ,1,(max )1,1(=====Y X Y X P V U P)1,1(===Y X P 94)1()1(====Y P X P , {}{}0})2,min ,1,(max )2,1(======Y X Y X P V U P , {}{}})1,min ,2,(max )1,2(=====Y X Y X P V U P)2,1()1,2(==+===Y X P Y X P )2()1()1()2(==+===Y P X P Y P X P 94=,{}{}})2,min ,2,(max )2,2(=====Y X Y X P V U P)2()2()2,2(======Y P X P Y X P 91=, 故(U, V )的概率分布为:(II ) 9122941209411)(⨯⨯+⨯⨯++⨯⨯=UV E 916=, 而 914952941)(=⨯+⨯=U E , 910912981)(=⨯+⨯=V E . 故 814910914916)()()(),(=⨯-=-=V E U E UV E V U Cov . 【 例4】 设随机变量X 在区间(0, 1)上服从均匀分布, 在)10(<<=x x X 的条件下,随机变量Y 在区间),0(x 上服从均匀分布, 求(Ⅰ)随机变量X 和Y 的联合概率密度;(Ⅱ)Y 的概率密度; (Ⅲ)概率}1{>+Y XP .二、 二维(或两个)随机变量函数的分布 1.分布的可加性(1)若X~B (m, p ), Y~B (n, p ), 且X 与Y 相互独立,则 X+Y ~ B (m+n, p ). (2)若X~P (λ1), Y~P (λ2), 且X 与Y 相互独立,则 X+Y ~ P (λ1+λ2).(3)若X~N (211,μσ), Y~P (222,μσ), 且X 与Y 相互独立,则 X+Y ~ N (221212,μμσσ++).一般地,若X i ~N (2,i i μσ), i =1, 2, …, n, 且X 1,X 2,…,X n 相互独立,则Y=C 1X 1+C 2X 2+…+C n X n +C 仍服从正态分布,且此正态分布为2211(,),nni ii i i i N C C Cμσ==+∑∑ 其中C 1,…,C n 为不全为零的常数.2. 两个随机变量函数的分布. 【例5】 设X 与Y 相互独立, 且~(1),~(2),X P Y P 则{max(,)0}______;P X Y ≠={min(,)0}__________.P X Y ≠=【 例6】 设X 与Y 相互独立, 其密度函数分别为:1,01,()X x f x <<⎧=⎨⎩0,其他. ,0,()y Y e y f x -⎧>=⎨⎩0,其他.求Z =2X +Y 的概率密度.【 例7】设二维随机变量(X, Y )的概率密度为2,01,01,(,)0,x y x y f x y --<<<<⎧=⎨⎩其它. (I )求{}Y X P 2>;(II )求Z =X+Y的概率密度)(z f Z .【详解】(I ){}Y X P2>⎰⎰>=yx dxdy y x f 2),(⎰⎰--=12210)2(ydx y x dy 247=.(II )方法一: 先求Z 的分布函数: ⎰⎰≤+=≤+=zy x Z dxdy y x f Z Y X P z F ),()()(当z<0时, 0)(=z F Z ; 当10<≤z 时, ⎰⎰=1),()(D Z dxdy y x f z F ⎰⎰---=yz zdx y x dy 00)2(3231z z -=; 当21<≤z 时, ⎰⎰-=2),(1)(D Z dxdy y x f z F ⎰⎰-----=111)2(1yz z dx y x dy3)2(311z --=; 当2≥z时, 1)(=z F Z .故Z =X+Y的概率密度)(z f Z =)(z F Z '⎪⎩⎪⎨⎧<≤-<<-=.,0,21,)2(,10,222其他z z z z z方法二:⎰∞+∞--=dx x z x f z f Z ),()(,⎩⎨⎧<-<<<---=-.,0,10,10),(2),(其他x z x x z x x z x f ⎩⎨⎧+<<<<-=.,0,1,10,2其他x z x x z 当z ≤0 或z ≥ 2时, 0)(=z f Z ;当01z <<时, ⎰-=z Z dx z z f 0)2()()2(z z -=; 当21<≤z 时, ⎰--=11)2()(z Z dx z z f 2)2(z -=;故Z =X+Y的概率密度)(z f Z ⎪⎩⎪⎨⎧<≤-<<-=.,0,21,)2(,10,222其他z z z z z【例8】 设随机变量X 与Y 相互独立, X 有密度函数f (x ), Y 的分布律为 ()i i P Y a p ==, i =1,2. 试求Z =X +Y 的概率分布.第四讲 数字特征与极限定理考试要求1.理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念, 会运用数字特征的基本性质, 并掌握常用分布的数字特征.2.会根据随机变量X 的概率分布求其函数)(X g 的数学期望)(X Eg ;会根据随机变量X 和Y 的联合概率分布求其函数),(Y X g 的数学期望),(Y X Eg .3.了解切比雪夫不等式.4.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量的大数定律)5.了解棣莫弗—拉普拉斯定理(二项分布以正态分布为极限分布)和列维—林德伯格定理(独立同分布的中心极限定理);(经济类还要求)会用相关定理近似计算有关随机事件的概率 一、 数学期望与方差(标准差) 1. 定义(计算公式)离散型{}i i p x X P ==, ∑=iii px X E )(连续型)(~x f X , xx xf X E d )()(⎰+∞∞-=方差:[]222)()())(()(X E X E X E X E X D -=-=标准差:)(X D ,2. 期望的性质:1° )())((,)(X E X E E C C E ==2° )()()(2121Y E C X E C Y C X C E +=+ 3° )()()(Y E X E XY E ,Y X =则独立与若4° [])()(≤)(222Y E X E XY E3. 方差的性质:1° 0))((,0))((,0)(===X D D X E D C D 2°)()()(Y D X D Y X D Y X +=±相互独立,则与3° )()(2121X D C C X C D =+4° 一般有 ),Cov(2)()()(Y X Y D X D Y X D ±+=±)()(2)()(Y D X D Y D X D ρ±+=5°2()()C D X E X <-, )(X E C ≠【例1】设试验成功的概率为43, 失败的概率为41, 独立重复试验直到成功两次为止. 试求试验次数的数学期望. 【例2】 n 片钥匙中只有一片能打开房门, 现从中任取一片去试开房门, 直到打开为止. 试在下列两种情况下分别求试开次数的数学期望与方差: (1)试开过的钥匙即被除去; (2)试开过的钥匙重新放回.【例3】 设随机变量X 的概率密度为⎪⎩⎪⎨⎧≤≤=.,0,0,2cos 21)(其他πx x x f 对X 独立地重复观察4次, 用Y 表示观察值大于3π的次数, 求2Y 的数学期望.【例4】 设有20人在某11层楼的底层乘电梯上楼, 电梯在中途只下不上, 每个乘客在哪一层(2-11层)下是等可能的, 且乘客之间相互独立, 试求电梯须停次数的数学期望. 二、随机变量函数的期望(或方差) 1、一维的情形 )(X g Y =离散型:{}i i P Xx p == , ∑=ii ipx g Y E )()(连续型:~()X f x x x f x g Y E d )()()(⎰+∞∞-=2、二维的情形 ),(Y X g Z =离散型{}iji i p y Y x X P Y X ===,~),(,∑∑=jij jiipy x g Z E ),()(连续型),(~),(y x f Y X ,y x y x f y x g Z E d d ),(),()(⎰⎰+∞∞-+∞∞-=【例5】 设X 与Y 独立且均服从N (0,1),求Z =22Y X + 的数学期望与方差.【例6】设两个随机变量X 与Y 相互独立且均服从N (0,21), 试求Z =|X -Y |的数学期望与方差.三 、协方差,相关系数与随机变量的矩 1、重要公式与概念:协方差 []))()((()Cov(Y E Y X E X E X,Y --= 相关系数 )()()Cov(Y D X D X,Y XY =ρ)(k X E k 阶原点矩[]kX E X E k ))((- 阶中心矩2、性质:1°),(Cov ),(Cov X Y Y X =2° ),(Cov ),(Cov Y X ab bY aX = 3° ),(Cov ),(Cov ),(Cov 2121Y X Y X Y X X +=+4° |(,)|1X Y ρ≤5° 1)(1),(=+=⇔=b aX Y P Y X ρ )>0(a 1)(1),(=+=⇔-=b aX Y P Y X ρ )<0(a 3、下面5个条件互为充要条件:(1)0),(=Y X ρ(2)0)Cov(=X,Y(3))()()(Y E X E XY E = (4))()()(Y D X D Y X D +=+ (5))()()(Y D X D Y X D +=- 【例7】设)2(,,,21>n X X X n 为独立同分布的随机变量, 且均服从)1,0(N , 记∑==ni iX n X 11,.,,2,1,n i X X Y i i =-= 求:(I ) i Y 的方差n i Y D i ,,2,1),( =; (II ) 1Y 与n Y 的协方差),(1n Y Y Cov ; (III ) }.0{1≤+n Y Y P四、极限定理1. 切比雪夫不等式{}{}()()|()|,|()|<1-22D X D X P XE X P X E X εεεε-≥≤-≥或2. 大数定律3. Poisson 定理4. 中心极限定理列维—林德伯格定理: 设随机变量X 1,X 2,…,X n ,…相互独立同分布, 且2(),(),i i E X D X μσ== 1,2,,,i n =, 则对任意正数x ,有2-2lim dntixnX nP x tμ-∞→∞⎧⎫-⎪⎪⎪≤=⎬⎪⎪⎪⎩⎭∑⎰棣莫弗—拉普拉斯定理: 设~(,),nB n pη(即X1,X2,…,X n,…相互独立, 同服从0一1分布)则有22lim dtxnP x t--∞→∞⎧⎫⎪≤=⎬⎪⎭⎰.【例8】银行为支付某日即将到期的债券须准备一笔现金,已知这批债券共发放了500张,每张须付本息1000元,设持券人(1人1券)到期到银行领取本息的概率为0.4.问银行于该日应准备多少现金才能以99.9%的把握满足客户的兑换.【分析】若X为该日到银行领取本息的总人数,则所需现金为1000X,设银行该日应准备现金x元.为使银行能以99.9%的把握满足客户的兑换,则 P(1000X≤x)≥0.999.【详解】设X为该日到银行领取本息的总人数,则X~B(500,0.4)所需支付现金为1000X,为使银行能以99.9%的把握满足客户的兑换,设银行该日应准备现金x元,则 P(1000 X≤x)≥0.999.由棣莫弗—拉普拉斯中心极限定理知:(1000)()1000xP X x P X≤=≤5000.4xP⎛⎫-⨯⎪=≤⎝⎭=≤0.999(3.1).ΦΦ≈≥=即3.1,≥得 x≥ 233958.798.因此银行于该日应准备234000元现金才能以99.9%的把握满足客户的兑换.第五讲数理统计考试要求1. 理解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念.其中样本方差定义为.)(11212XXnSini--=∑=2. 了解2χ分布、t分布和F分布的概念及性质,了解分位数的概念并会查表计算.3. 了解正态总体的常用抽样分布.4. 理解经验分布函数的概念和性质, 会根据样本值求经验分布函数.5. 理解参数的点估计、估计量与估计值的概念.6. 掌握矩估计法(一阶、二阶矩)和最大似然的估计法.7. 了解估计量的无偏性、有效性(最小方差性)和一致性(相合性)的概念,并会验证估计量的无偏性.8. 理解区间估计的概念,会求单个正态总体的均值和方差的置信区间,会求两个正态总体的均值差和方差比的置信区间.9. 理解显著性检验的基本思想,掌握假设检验的基本步骤,了解假设检验可能产生的 两类错误.10. 了解单个及两个正态总体的均值和方差的假设检验 一、样本与抽样分布1. 总体、个体与简单随机样本:2. 常用统计量:1° 样本均值 i ni X nX ∑==112° 样本方差 212)(11X X n S i ni --=∑=3° 样本标准差: S =4° 样本k 阶原点矩 11,1,2,n kk i i A X k n ===∑5° 样本k 阶中心矩 11(),1,2,n kk i i B X X k n ==-=∑3.分位数 4. 重要抽样分布(1)分布2χ (2) t 分布 (3) F 分布5. 正态总体的常用抽样分布:22,,,(,),n X X X N μσ1设为来自正态总体的样本11nii X X n ==∑,2211()1ni i S X X n ==--∑, 则 (1)2~,~(0,1).X N N n σμ⎛⎫ ⎪⎝⎭ (2)222221(1)1()~(1).ni i n S X X n χσσ=-=--∑(3)22211()~().ni i X n μχσ=-∑(4)~(1).t n - (5) X 与2S 相互独立, 且 μ=)(X E , 22)(σ=S E , nX D 2)(σ=.【例1】 设总体2~(,),XN μσ设12,,,n X X X 是来自总体X 的一个样本, 且22111,()nninii i X X S XX n====-∑∑,求21()n E X S .【例2】 设总体2~(,),X N μσ 设12,,,nX X X 是取自总体X 的一个样本, 且221111,()1nni i i i X X S X X nn ====--∑∑,则 2()_________D S=.【例3】设随机变量~()(1),X t n n >, 则 21~________Y X =【例4】 设总体X 服从正态分布)2,0(2N , 而1521,,,X X X 是来自总体X 的简单随机样本, 求随机变量)(221521121021X X X X Y ++++= 的分布. 【例5】 设总体2~(,),X N μσ 设121,,,,n n X X X X +是来自总体X 的一个样本, 且*221111,()()nni i i i X X S X X nn====-∑∑,试求统计量的分布. 二、参数估计1. 矩估计2. 最大似然估计3. 区间估计4. 估计量的评选标准 【例6】设总体12~(,)XU θθ,n X X X ,,,21 为来自总体X 的样本,试求12,θθ的矩估计和最大似然估计.【例7】设总体X 的概率密度为⎪⎩⎪⎨⎧<≤-<<=.,0,21,1,10,),(其他x x x f θθθ其中θ是未知参数)10(<<θ, n X X X ,,2,1 为来自总体X的简单随机样本, 记N 为样本值n x x x ,,2,1 中小于1的个数, 求:(1)θ的矩估计;(2) θ的最大似然估计.【例8】设总体X 的概率密度为36(),0,()0,xx x f x θθθ⎧-<<⎪=⎨⎪⎩其他. n X X X ,,,21 为来自X 的简单随机样本,(1) 求θ的矩估计量ˆθ; (2) 判断θ的无偏性; (3) 判断θ的一致性. 三、假设检验1. 假设检验的基本思想:对总体分布中的未知参数作出某种假设,根据样本在假设为真的前提下构造一个小概率事件,基于“小概率事件”在一次试验中几乎不可能发生而对假设作出拒绝或接受.2. 单个正态总体均值和方差的假设检验.3. 假设检验两类错误:第一类错误:原假设0H 为真,但拒绝了0H .第二类错误;原假设0H 为假,但接受到了0H .。

《概率》 讲义

《概率》 讲义

《概率》讲义一、什么是概率在我们的日常生活中,经常会听到“可能”“也许”“大概”这样的词汇,这些词所表达的不确定性,在数学中就可以用概率来描述。

概率,简单来说,就是衡量某个事件发生可能性大小的一个数值。

比如抛一枚硬币,正面朝上和反面朝上的可能性各占一半,我们就说抛硬币正面朝上的概率是 05 。

概率的取值范围在 0 到 1 之间。

如果一个事件完全不可能发生,那么它的概率就是0 ;如果一个事件肯定会发生,那么它的概率就是1 。

而大部分事件发生的概率则介于 0 和 1 之间。

二、概率的计算方法计算概率有多种方法,其中最基本的就是古典概型和几何概型。

古典概型适用于试验结果有限且等可能的情况。

例如,一个盒子里有 5 个红球和 3 个白球,从中随机取出一个球,求取出红球的概率。

因为总共有 8 个球,取出每个球的可能性相等,而红球有 5 个,所以取出红球的概率就是 5÷8 = 0625 。

几何概型则适用于试验结果是无限的情况。

比如在一个单位圆中随机取一点,求这个点落在圆的某个扇形区域内的概率,这时就需要通过计算扇形区域的面积与整个圆的面积之比来得到概率。

除了这两种基本的概型,还有一些更复杂的概率计算方法,比如条件概率和全概率公式。

条件概率是指在已知某个事件发生的条件下,另一个事件发生的概率。

例如,已知今天下雨,明天也下雨的概率就是一个条件概率。

全概率公式则是将一个复杂的事件分解为多个简单的互斥事件,然后通过这些简单事件的概率来计算复杂事件的概率。

三、概率在生活中的应用概率在我们的生活中有着广泛的应用,从简单的游戏到复杂的决策都离不开它。

在彩票中,虽然中奖的概率极低,但仍然吸引着很多人购买,这是因为人们总是抱着一丝侥幸心理,希望自己成为那个幸运儿。

但从概率的角度来看,购买彩票中大奖更多的是一种娱乐,而不是可靠的致富方式。

在保险行业,保险公司通过对各种风险发生的概率进行计算和评估,来确定保险的费率和赔偿金额。

概率论看王式安的讲义

概率论看王式安的讲义

概率论看王式安的讲义摘要:1.概率论的重要性2.王式安的概率论辅导讲义介绍3.概率论在实际生活中的应用4.学习概率论的方法和建议正文:概率论是一门研究随机现象和不确定性事件的数学学科,它在科学决策、数据分析、金融领域等方面具有广泛的应用。

在我国,著名数学家王式安教授对概率论的传授与研究具有深远的影响。

本文将介绍王式安的概率论辅导讲义,以及概率论在实际生活中的应用和学习方法。

一、概率论的重要性概率论的重要性体现在以下几个方面:1.科学决策:概率论提供了量化分析不确定事件的方法,有助于作出更合理的决策。

例如,在企业管理、金融投资和风险评估等方面,通过概率论可以预测未来趋势,降低决策风险。

2.数据分析:概率论和统计学是数据分析的基础,可以帮助我们从大量数据中挖掘有价值的信息,为各类决策提供依据。

3.生活应用:概率论在日常生活中也有广泛应用,如赌博、保险、天气预报等,学会运用概率思维可以让我们更好地应对不确定性。

二、王式安的概率论辅导讲义王式安教授的概率论辅导讲义具有以下特点:1.深入浅出:讲义从基本概念入手,逐步引导学生掌握概率论的知识体系,适合初学者入门。

2.系统性强:讲义全面介绍了概率论的基本原理和方法,包括概率、随机变量、概率密度函数、累积分布函数等,有助于学生建立完整的概率论知识体系。

3.实例丰富:讲义中提供了大量实际应用案例,帮助学生更好地理解概率论在实际问题中的运用。

三、概率论在实际生活中的应用概率论在实际生活中的应用主要包括以下几个方面:1.金融领域:概率论在股票、期货、保险等金融领域的应用十分广泛,通过概率论可以估算风险、优化投资策略等。

2.科学研究:概率论为科学研究提供了量化分析方法,例如在物理学、生物学、心理学等领域,可以运用概率论研究随机现象。

3.日常生活:概率论在日常生活中也有很多应用,如预测天气、评估交通状况、赌博等。

四、学习概率论的方法和建议1.选择适合的教材:根据自己的基础和需求,选择适合的教材,如王式安的概率论辅导讲义。

概率论讲义_带作业

概率论讲义_带作业

例 已知某类产品的次品率为0. 2 ,现从一大批这类产品中随机抽查2 0 件. 问恰好 有 件次品的概率是多少?
3) 泊松分布
概率论的基本概念 样本空间
样本点
事件
事件的概率
练习 1. 抛一枚骰子,观察向上一面的点数;事件表示“出现偶数点”
2. 对目标进行射击,击中后便停止射击,观察射击的次数;事件表示“射击次数不超 过5 次”
事件之间的关系与运算
事件语言
集合语言
样本空间
事件
的对立事件
事件 或者
分布律:如果记离散型随机变量 所有可能的取值为
值的概率,即事件
的概率为
, 取各个可能
上式称为离散型随机变量 的分布律. 分布律也可以直观的表示成下列表格:
根据概率的性质,分布律中的 应该满足下列条件: 1. 2. 例 某系统有两台机器独立运转. 设第一台与第二台机器发生故障的概率分别是 0. 1 ,0. 2. 以 表示系统中发生故障的机器数,求 的分布律.
随机变量的例子
掷一枚色子,用 记点数;
掷三枚色子,用 记点数之和;
掷一枚硬币,记
为“出现正面”,
为“出现反面”;
变量的取值是随机的,依赖于随机试验的结果
用随机变量来表示事件
设 为一个实数集合,则用
表示一个事件 ,即
例如,某射手射击某个目标,击中计1 分,未中计0 分,则计分 表示一个随机
变量,且“击中”这个事件可以表示为
第二章 随机变量及其分布
Hale Waihona Puke 第六讲 随机变量 离散随机变量
概率论的另一个重要概念是随机变量. 随机变量的引入, 使概率论的研究由个别的 随机事件扩大为随机变量所表征的随机现象的研究.

《概率》 讲义

《概率》 讲义

《概率》讲义一、什么是概率在我们的日常生活中,经常会听到“可能”“也许”“大概”这样的词汇,而这些词所表达的不确定性,在数学中可以用“概率”来进行量化和研究。

概率,简单来说,就是用来衡量某个事件发生可能性大小的一个数值。

这个数值在 0 到 1 之间。

如果一个事件发生的概率是 0,那就意味着这个事件几乎不可能发生;如果概率是 1,那就表示这个事件肯定会发生;而如果概率在 0 和 1 之间,比如 05,那就说明这个事件有一半的可能性会发生。

举个例子,抛一枚均匀的硬币,正面朝上和反面朝上的概率都是 05。

因为硬币只有正反两面,而且在理想情况下,硬币正反面出现的机会是均等的。

再比如,从一个装有 5 个红球和 5 个白球的袋子中随机摸出一个球是红球的概率,就是 05。

二、概率的计算方法1、古典概型古典概型是一种最简单的概率模型。

在古典概型中,如果一个试验有 n 个等可能的结果,事件 A 包含其中的 m 个结果,那么事件 A 发生的概率 P(A) = m / n 。

例如,一个盒子里有 3 个红球和 2 个白球,从中随机取出一个球是红球的概率,总共有 5 个球,其中红球有 3 个,所以取出红球的概率就是 3/5 。

2、几何概型几何概型是另一种常见的概率模型。

当试验的结果是无限个,且每个结果出现的可能性相等时,我们常常使用几何概型来计算概率。

比如说,在一个时间段内等待公交车,假设公交车在这段时间内任何时刻到达的可能性相等,那么我们计算在某一特定时间段内等到公交车的概率时,就可以使用几何概型。

3、条件概率条件概率是指在某个条件下,某个事件发生的概率。

假设事件 A 和事件 B,在事件 B 已经发生的条件下,事件 A 发生的概率,记作 P(A|B) 。

例如,已知一个家庭有两个孩子,其中一个是女孩,那么另一个孩子也是女孩的概率就是一个条件概率。

三、概率在实际生活中的应用1、保险行业保险公司在制定保险政策和计算保费时,会大量使用概率知识。

概率论通识讲义

概率论通识讲义

概率论通识讲义概率论是现代科学的重要分支之一,它研究的是随机事件的规律性和概率分布,是科学研究、决策分析、风险管理等领域不可或缺的工具。

本文旨在为读者提供概率论的基础知识,包括概率的定义、性质、概率分布、随机变量等内容。

一、概率的定义和性质概率是描述随机事件发生可能性的数值,通常用0到1之间的实数表示。

概率的定义有三种形式:古典概型、几何概型和统计概型。

其中,古典概型适用于事件的样本空间有限的情况,几何概型适用于事件的样本空间为几何形状的情况,统计概型适用于事件的样本空间无限的情况。

概率具有以下几个性质:1. 非负性:对于任何事件A,其概率P(A)必须大于等于0。

2. 规范性:对于样本空间Ω中的所有事件A,它们的概率之和等于1,即P(Ω)=1。

3. 可列可加性:对于任意的可列个事件A1、A2、…,它们的并集的概率等于它们概率之和,即P(A1∪A2∪…) = P(A1) + P(A2) + …。

4. 互斥事件的加法规则:对于互斥事件A和B,它们的并集的概率等于它们概率之和,即P(A∪B) = P(A) + P(B)。

二、概率分布概率分布是用来描述随机变量的概率分布规律的函数。

随机变量是指取值不确定的变量,可以是离散的或连续的。

离散型随机变量取有限或可数个值,其概率分布函数称为概率质量函数。

连续型随机变量可以取任意实数值,其概率分布函数称为概率密度函数。

离散型随机变量的概率质量函数可以用下列公式表示:P(X=x) = f(x),其中x为随机变量的取值,f(x)为概率质量函数。

连续型随机变量的概率密度函数可以用下列公式表示:P(a≤X≤b) = ∫ab f(x)dx,其中a和b为随机变量的取值范围,f(x)为概率密度函数。

三、随机变量随机变量是指取值不确定的变量,可以是离散的或连续的。

随机变量的期望、方差和协方差是概率论中重要的概念。

其中,期望是随机变量的平均值,方差是随机变量偏离其期望的平方的平均值,协方差是两个随机变量之间的相关性度量。

《概率论讲义》课件


THANKS
感谢观看
THE FIRST LESSON OF THE SCHOOL YEAR
大数定律在统计学、决策理论、经济学等领域都有广泛的应用,是这些领域中重要的理论基础之一。
大数定律的实例
比如在抛硬币的实验中,当抛硬币的次数足够多时,正面朝上的频率会趋近于0.5,这就是大数定律的一个实例。
中心极限定理的定义:中心极限定理是指在随机实验中,无论实验的个体分布是什么,只要实验次数足够多,随机变量的和就会趋近于正态分布。简单来说,就是无论每个个体是什么分布,只要数量足够多,它们的和就会呈现出正态分布的特征。
两个事件的发生互不影响。
独立性
在某个事件B已经发生的条件下,另一个事件A发生的概率,记为P(A|B)。
条件概率
条件概率满足非负性、规范性、可加性和乘法定理。
条件概率的性质
01
随机变量及其分布
01
02
03
01
02
03
连续型随机变量的定义:取值范围为某个区间内的随机变量。
连续型随机变量的概率密度函数:描述连续型随机变量取值的概率分布情况。
棣莫佛-拉普拉斯定理的定义
棣莫佛-拉普拉斯定理是指对于任意实数x和正整数n,有$(1+x)^n approx 1+nx$当$x$很小时。这个定理是二项式定理的特殊情况。
棣莫佛-拉普拉斯定理的证明
可以通过数学归纳法进行证明。首先证明$n=1$时成立,然后假设$n=k$时成立,再证明$n=k+1$时成立。
THE FIRST LESSON OF THE SCHOOL YEAR
《概率论讲义》ppt课件

CONTENTS
概率论的基本概念随机变量及其分布多维随机变量及其分布大数定律与中心极限定理贝叶斯统计推断概率论的应用

(完整版)《概率论与数理统计》讲义

第一章 随机事件和概率 第一节 基本概念1、排列组合初步(1)排列组合公式)!(!n m m P n m -= 从m 个人中挑出n 个人进行排列的可能数。

)!(!!n m n m C n m -=从m 个人中挑出n 个人进行组合的可能数。

例1.1:方程xx x C C C 76510711=-的解是 A . 4 B . 3 C . 2 D . 1例1.2:有5个队伍参加了甲A 联赛,两两之间进行循环赛两场,试问总共的场次是多少?(2)加法原理(两种方法均能完成此事):m+n某件事由两种方法来完成,第一种方法可由m 种方法完成,第二种方法可由n 种方法来完成,则这件事可由m+n 种方法来完成。

(3)乘法原理(两个步骤分别不能完成这件事):m ×n某件事由两个步骤来完成,第一个步骤可由m 种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m ×n 种方法来完成。

例1.3:从5位男同学和4位女同学中选出4位参加一个座谈会,要求与会成员中既有男同学又有女同学,有几种不同的选法?例1.4:6张同排连号的电影票,分给3名男生和3名女生,如欲男女相间而坐,则不同的分法数为多少?例1.5:用五种不同的颜色涂在右图中四个区域里,每一区域涂上一种颜色,且相邻区域的颜色必须不同,则共有不同的涂法A.120种B.140种 C.160种D.180种(4)一些常见排列①特殊排列②相邻③彼此隔开④顺序一定和不可分辨例1.6:晚会上有5个不同的唱歌节目和3个不同的舞蹈节目,问:分别按以下要求各可排出几种不同的节目单?①3个舞蹈节目排在一起;②3个舞蹈节目彼此隔开;③3个舞蹈节目先后顺序一定。

例1.7:4幅大小不同的画,要求两幅最大的排在一起,问有多少种排法?例1.8:5辆车排成1排,1辆黄色,1辆蓝色,3辆红色,且3辆红车不可分辨,问有多少种排法?①重复排列和非重复排列(有序)例1.9:5封不同的信,有6个信箱可供投递,共有多少种投信的方法?②对立事件例1.10:七人并坐,甲不坐首位,乙不坐末位,有几种不同的坐法?例1.11:15人中取5人,有3个不能都取,有多少种取法?例1.12:有4对人,组成一个3人小组,不能从任意一对中取2个,问有多少种可能性?③ 顺序问题例1.13:3白球,2黑球,先后取2球,放回,2白的种数?(有序) 例1.14:3白球,2黑球,先后取2球,不放回,2白的种数?(有序) 例1.15:3白球,2黑球,任取2球,2白的种数?(无序)2、随机试验、随机事件及其运算(1)随机试验和随机事件如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。

概率论与数理统计讲义

概率论与数理统计讲义一、概率论1.1 引言概率论是研究随机现象的理论,广泛应用于自然科学、社会科学以及工程技术等领域。

它通过量化随机事件发生的可能性,帮助我们理解事件之间的关系和规律。

1.2 随机变量与概率分布随机变量是描述随机事件的事物,可以分为离散型随机变量和连续型随机变量。

概率分布则是描述随机变量取值的概率情况,包括离散型随机变量的概率质量函数和连续型随机变量的概率密度函数。

1.3 期望与方差期望是随机变量取值的平均值,用来描述随机变量的集中程度。

方差则是随机变量与其期望之间的差异程度,用来描述随机变量的离散程度。

1.4 概率分布函数的性质概率分布函数有许多重要的性质,包括非负性、归一性、单调性、可加性等。

这些性质能够帮助我们更好地理解随机事件的规律和特征。

二、数理统计2.1 统计学概述统计学是研究数据收集、分析和解释的学科,通过对样本数据的研究,推断出总体的一些特征和规律。

统计学广泛应用于社会调查、市场研究以及科学实验等领域。

2.2 描述统计学描述统计学是对数据进行总结和描述的统计学方法。

它包括数据的集中趋势度量、离散程度度量以及数据分布特征等内容。

2.3 参数估计参数估计是根据样本数据推断总体参数的一种统计学方法。

点估计通过寻找最优参数估计量来描述总体参数的真实值,区间估计则给出了参数估计的置信区间。

2.4 假设检验假设检验是用来判断总体参数是否满足某种假设的统计学方法。

它将原假设和备择假设相比较,通过计算统计量的值来判断是否拒绝原假设。

2.5 方差分析与回归分析方差分析和回归分析是用来研究多个变量之间关系的统计学方法。

方差分析用于比较多个总体均值是否相等,而回归分析则用于建立变量之间的数学模型。

三、应用案例3.1 金融风险管理概率论与数理统计在金融风险管理中发挥着重要作用。

通过对金融市场的随机波动性进行建模和分析,可以帮助投资者制定更合理的投资策略,降低风险。

3.2 医学研究数理统计在医学研究中具有广泛的应用。

《概率论讲义》课件


线性回归
介绍线性回归模型的基本原理和应用案例。
多元非线性回归
探讨多元非线性回归分析的方法和实际应用。
蒙特卡罗方法
1
简介和基本概念
介绍蒙特卡罗方法的基本思想和使用领域。
2
模拟方法
说明蒙特卡罗方法的模拟过程和实际应用。
3
抽样方法
讨论蒙特卡罗方法中的抽样技术和抽样步骤。
应用案例
金融风险管理
探讨概率论在金融风险管理中的应用和重要性。
2
弱大数定律
探讨具体的弱大数定律和其适用性。
3

中心极限定理
详细解释中心极限定理及其在概率论中的重要性。
统计推断
1 点估计
介绍点估计的概念和方法,以及其在概率论中的应用。
2 区间估计
说明区间估计的原理和步骤,并讨论其实际应用。
3 假设检验
讲解假设检验的基本思想和步骤,以及其在统计学中的作用。
回归分析
《概率论讲义》PPT课件
概率论讲义PPT课件大纲
简介
介绍概率论的基本概念和应 用领域,初步了解概率论的 历史和发展。
随机变量
定义随机变量,离散型和连 续型随机变量及其概率分布。
概率分布
二项分布,泊松分布和正态 分布。
大数定律与中心极限定理
1
定义大数定律和中心极限定理
深入了解大数定律和中心极限定理的概念和应用。
人口统计学
展示概率论如何应用于人口统计学数据的分析和预测。
物理学和天文学
介绍概率论在物理学和天文学研究中的关键作用。
结论
总结所学内容,展望概率论的未来发展和应用前景。
参考文献
推荐阅读经典著作和相关文献
提供经典著作和相关文献,供学习和研究参考。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

所以X1(t)是平稳过程。
E[ X 2 (t )] E[t Y ] t mY RX 2 (t , t ) E[ X 2 (t ) X 2 (t )] E[tY (t )Y ]
2 t (t ) Y
所以X2(t)是非平稳过程。
13
上海大学通信学院
它们不仅都是时间的函数,而且相关函数及协方差函数 还取决于不同的时刻点。
统计特征不随时间的推移而变化的随机过程?
2
§ 3.1 平稳随机过程
3.1.1 严(狭义)平稳随机过程(SSS)定义 设 X(t ) 为一随机过程,如果对于任意的n 和 ,其 n 维概率密度(或分布函数)满足:
p X ( x 1 , x 2 , , x n ; t1 , t 2 , , t n )
2 E X( t ) mX ( t ) , X ( t ) EX 2 ( t ) , X ( t ) D X( t ) ,
上海大学通信学院
RX ( t1 , t2 ) , CX ( t1 , t2 ) , RXY ( t1 , t2 ) , CXY ( t1 , t2 ) 。
T X T T X T X T T X
18
上海大学通信学院
问题:
m X , RX ( )
可否分别代替
m , R ( )
X X
?
条件: 1. 随机过程是平稳的 ∵ 时间平均后的结果是与时间t无关的常数,因此统计 平均的结果也应该是常数,即 E X ( t ) m
X
lim 集合平均=统计平均 (均值,方差,相关系数) N
集合平均的意义: 求统计平均必须知道概率密度函数; 集合平均则可通过多次实 验求得.可避免由概率密度函数求均值和相关函数 (有极高的实际意 义) 其难点是: 但N→∞, 需要无穷多个平行的试验样本值。
16
上海大学通信学院

问题的提出: 能否可以用同一次试验在不同时刻的随机试验结果来 代替很多次试验在同一时刻平行得到的随机试验结果 呢? 如果可以,就能用单一实验试验结果来表征一个随机 过程的特性。
上海大学通信学院
p X ( x1 , x 2 , , x n ; t1 , t 2 , , t n ) 则称 X(t ) 是严(狭义)平稳随机过程。

即:严平稳随机过程的统计特性不随时间的平移而变 化。
3
上海大学通信学院

例:针对同一个平稳随机过程,上午 8点测得的统 计特性与下午2点测得的统计特性是相同的。
C X (t1 , t 2 ) RX (t1 , t 2 ) m X (t1 )m X (t 2 ) RX ( ) m X m X
2 RX ( ) m X C X ( )
严平稳随机过程的数学期望和方差都是常数,与时间无关;
相关函数只是时间差的函数,而与时间起点无关。
10

2
1 d 2
RX (t , t ) E[ X (t ) X (t )] E[a cos(0 t )a cos(0 (t ) )] a2 E[cos 0 cos(20 t 0 2 )] 2 a2 cos 0 RX ( ) 2
2 ( x1 m X )2 p X ( x1 )dx1 X


RX (t1, t2 ) x1 x2 pX (x1, x2;t1, t2 )dx dx x1 x2 pX (x1, x2; )dx dx 1 2 1 2

RX ( ), t2 t1
1 2 , 0 2 f ( ) (t) 的均值,自相关函数 和均方根分别为
m X (t ) E[ X (t )] x (t ) f ( )d 0 a cos( 0 t ) 0
3.1.4

集合平均与时间平均
同一时刻,平行的、独立的对同一过程做有限 次试验,所得的样本函数称为集合。 该集合是t=ti时的随机变量不完全集合。
x (t x (t 例: x (t x (t
1 2 i
N
1 1
1
1
) ) x ( t ) 表示第 i 次试验,在t1 其中, ) 时刻的随机试验的结果。 )
i 1
15
包含有限个样本的集合的各种平均特性,称为有限集合平均。
上海大学通信学院
集合平均定义:
可以证明:
1 m ( t ) lim x (t ) N 1 R ( t , t ) lim x ( t )x ( t ) N
N X 1 N i 1 i 1 N X 1 2 N i 1 i 1 i 2

12
上海大学通信学院

例2:设两个随机过程X1(t)=Y,X2(t)=tY, Y是随机变 量,试讨论它们的平稳性。 解: E[ X1 (t )] E[Y ] mY
2 RX1 (t , t ) E[ X1 (t ) X1 (t )] E[Y 2 ] Y 2 E[ X12 (t )] RX1 (0) Y
a2 E[ X (t )] RX (t , t ) RX (0) 2
2
上海大学通信学院
过程X(t)的均值是常数,自相关函数仅与时间差 有关,均方值有限,因为X(t)是平稳的。
11
上海大学通信学院
对于随机过程X(t)=cos(ot +)而言,当在(0, 2 )或 (- ,) 上均匀分布时,X( t )是平稳的。 当在(0,)上或在(0, /2) 上均匀分布时, X(t) 是非平稳过程。 因为当在(0,)上均匀分布时,E[X(t)]=(-2 / )sin ot≠常数 当在(0,/2) 上均匀分布时,E[X(t)]=2 / (sin ot-cos ot ) ≠常数
上海大学通信学院
第三章
平稳随机过程
平稳随机过程的定义 集平均/时间平均/各态历经 平稳过程相关函数的性质 高斯随机过程
1
上一章讨论的随机过程 X(t): 时间函数族: { x 1 (t), x 2(t),… x n(t)…… } 或:不同时刻t所对应的n维R.V向量:{ X(t1), X (t2),… X (tn)} 统计研究方法:
6
上海大学通信学院

问题---如何判定一个过程是严格平稳的
按定义只有了解了概率密度函数的特性才能 判断随机过程的严(狭义)平稳性。 往往很难获得定义中的条件。
7
上海大学通信学院
3.1.2 宽(广义)平稳随机(WSS)过程
设X(t)为一随机过程,若满足:
EX ( t ) m R ( t , t ) R ( ), t t EX ( t )
同理:E X ( t )X ( t ) R ( ) ,即自相关函数只与时间差 有关。
X
2.随机过程具有各态历经性 样本函数 x( t ) 在任意时刻的取值,都能够充分反映任 一时刻随机变量的可能取值。 即 x ( t ) 能够遍历其随机过程 X ( t )所有可能的取值状态。
19
各态历经 的平稳过 mx+ 程
由定义得到下列性质: (1)一维概率密度与时间t无关:
pX ( x1;t1) pX ( x1;t1 ) pX ( x1;0) pX ( x)

令 t1
物理含义: 平稳随机过程在任一时刻的随机变量 的概率密度都是相同的。
4
上海大学通信学院
(2)二维概率密度只与时间差 t 2 t 1 有 关,而与时间起点无关:
个随机变量的联合概率密度都是相同的。
5
由严平稳随机过程的一维概率密度与时间无关,二维 概率密度只与时间差 t 2 t 1 有关,可得下列推论:
EX(t )
DX (t )
上海大学通信学院




xpX ( x)dx mX
2 2 2 E X ( t ) x p ( x ) dx 1 X 1 1 X
E[ Z (t )] E[ X (t ) Y ] m X mY RZ (t , t ) E[ Z (t ) Z (t )] E{[ X (t ) Y ][ X (t ) Y ] E[ X (t ) X (t )] E[ X (t )] E[Y ] E[ X (t )]E[Y ] E[Y 2 ] RX ( ) 2m X mY E[Y 2 ] RZ ( ) E[ Z 2 (t )] RZ (0) 2m X mY E[Y 2 ]
X X 1 2 2 X 2
1
则称X(t)是宽平稳随机过程或广义平稳随机过程。

2 2 X E X ( t ) (t ) 表示随机过程平均功率有界。

宽(广义)平稳随机过程的定义是从统计平均的意义 上考察随机过程的平稳性。
8
上海大学通信学院
3.1.3 严(狭义)平稳与宽(广义) 平稳间关系
RX ( ) E X(t ) X(t ) RX ( )
绝大部分的平稳过程都具有各态历经性,但并 非全体都具有各态历经性。
21
例3:设随机过程 Z (t ) X (t ) Y ,其中 X(t)是一平稳 过程,Y是与X(t)无关的随机变量,试讨论过程Z(t) 的各态历经性。 解:各态历经的前提是它必为平稳过程,因此首先必须 判断Z(t)是否平稳。
pX ( x1 , x2 ; t1 ,t 2 ) pX ( x1 , x2 ; t1 ,t 2 ) ( 令 t1 ) pX ( x1 , x2 ;0 ,t 2 t1 ) pX ( x1 , x2 ; ), t 2 t1
相关文档
最新文档