东城区2019—2020学年八年级第一学期数学期末考试及参考答案
人教版初中数学八年级上册期末测试题(2019-2020学年山东省临沂市河东区

2019-2020学年山东省临沂市河东区八年级(上)期末数学试卷一.选择题(共14小题)1.(3分)下列轴对称图形中,对称轴的数量小于3的是()A.B.C.D.2.(3分)若分式有意义,则x的取值范围是()A.x>1B.x<1C.x≠1D.x≠03.(3分)下列计算,正确的是()A.a2•a2=2a2B.a2+a2=a4C.(﹣a2)2=a4D.(a+1)2=a2+14.(3分)如图,∠ACD是△ABC的外角,CE平分∠ACD,若∠A=60°,∠B=40°,则∠ECD等于()A.40°B.45°C.50°D.55°5.(3分)如图,AB平分∠DAC,要用SAS条件确定△ABC≌△ABD,还需要有条件()A.DB=CB B.AB=AB C.AD=AC D.∠D=∠C 6.(3分)如图,在△ABC中,AB=AC,∠A=30°,AB的垂直平分线l交AC于点D,则∠CBD的度数为()A.30°B.45°C.50°D.75°7.(3分)多项式12ab3c+8a3b的各项公因式是()A.4ab2B.4abc C.2ab2D.4ab8.(3分)化简的结果是()A.x﹣2B.C.D.x+29.(3分)若4x2+axy+25y2是一个完全平方式,则a=()A.20B.﹣20C.±20D.±1010.(3分)小红同学误将点A的横纵坐标次序颠倒,写成A(a,b),另一学生误将点B的坐标写成关于y轴对称点的坐标,写成B(﹣b,﹣a);则A,B两点原来的位置关系是()A.关于x轴对称B.关于y轴对称C.A和B重合D.以上都不对11.(3分)如图(1),是一个长为2a宽为2b(a>b)的矩形,用剪刀沿矩形的两条对角轴剪开,把它分成四个全等的小矩形,然后按图(2)拼成一个新的正方形,则中间空白部分的面积是()A.ab B.(a+b)2C.(a﹣b)2D.a2﹣b212.(3分)某商厦进货员预测一种应季衬衫能够畅销市场,就用10000元购进这种衬衫,面市后果然供不应求,商厦又用22000元购进了第二批这种衬衫,所购数量是第一批购进量的2倍.但单价贵了4元,求这两批衬衫的购进单价,若设第一批衬衫购进单价为x元,则所列方程正确的是()A.B.C.D.13.(3分)如图,把一张矩形纸片ABCD沿对角线AC折叠,点B的对应点为B′,AB′与DC相交于点E,则下列结论一定正确的是()A.∠DAB′=∠CAB′B.∠ACD=∠B′CDC.AD=AE D.AE=CE14.(3分)如图,已知点A(2,3)和点B(4,1),在x轴或y轴上有一点P,且点P到点A和点B的距离相等,则点P的坐标为()A.(1,0)或(0,﹣1)B.(﹣1,0)或(0,1)C.(0,3)或(4,0)D.(2,0)或(0,1)二.填空题(共5小题)15.(3分)计算:()﹣1+(1﹣)0=.16.(3分)分式的计算结果是.17.(3分)小刚在解分式方程﹣2=时,处被污染看不清,小明告诉他这里是一个与x无关的常数,且这道题的正确答案是:此方程无解,请你帮小刚猜测一下处的数应是.18.(3分)如图,△ABC中,∠ACB=90°,∠B=30°,AC=4cm,P为BC边的垂直平分线DE上一个动点,则△ACP的周长最小值为cm.19.(3分)如图,点B是线段AC的中点,过点C的射线CE与AC成60°的角,点P为射线CE上一动点,给出以下四个结论:①当AP⊥CE,垂足为P时,∠APB=30°;②当CP=AC时,∠APB=30°;③在射线CE上,使△APC为直角三角形的点P只有1个;④在射线CE上,使△APC为等腰三角形的点P只有1个;其中正确结论的序号是.三.计算题(共3小题)20.计算:(1)a(a+b)﹣b(a﹣b);(2)(x﹣2y)2﹣(x﹣y)(x+y)﹣2y221.分解因式:(1)9ax2﹣ay2;(2)2x3y+4x2y2+2xy3.22.先化简,再求值:﹣,其中x=﹣2.三.解答题(共4小题)23.如图.(1)在网格中画出△ABC关于y轴对称的△A1B1C1;(2)写出△ABC关于x轴对称的△A2B2C2的各顶点坐标;(3)在y轴上确定一点P,使P A+PB最短.(只需作图保留作图痕迹)24.在等边三角形ABC中,点P在△ABC内,点Q在△ABC外,且∠ABP=∠ACQ,BP =CQ.(1)求证:△ABP≌△CAQ;(2)请判断△APQ是什么形状的三角形?试说明你的结论.25.列方程(组)解应用题:为顺利通过国家义务教育均衡发展验收,我市某中学配备了两个多媒体教室,购买了笔记本电脑和台式电脑共120台,购买笔记本电脑用了7.2万元,购买台式电脑用了24万元,已知笔记本电脑单价是台式电脑单价的1.5倍,那么笔记本电脑和台式电脑的单价各是多少?26.如图1,在△ABC中,AE⊥BC于E,AE=BE,D是AE上的一点,且DE=CE,连接BD,CD.(1)试判断BD与AC的位置关系和数量关系,并说明理由;(2)如图2,若将△DCE绕点E旋转一定的角度后,试判断BD与AC的位置关系和数量关系是否发生变化,并说明理由;(3)如图3,若将(2)中的等腰直角三角形都换成等边三角形,其他条件不变.①试猜想BD与AC的数量关系,请直接写出结论;②你能求出BD与AC的夹角度数吗?如果能,请直接写出夹角度数;如果不能,请说明理由.2019-2020学年山东省临沂市河东区八年级(上)期末数学试卷参考答案与试题解析一.选择题(共14小题)1.(3分)下列轴对称图形中,对称轴的数量小于3的是()A.B.C.D.【分析】根据轴对称图形的概念分别确定出各选项图形的对称轴的条数,然后选择即可.【解答】解:A、有4条对称轴,故本选项不符合题意;B、有6条对称轴,故本选项不符合题意;C、有4条对称轴,故本选项不符合题意;D、有2条对称轴,故本选项符合题意.故选:D.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.(3分)若分式有意义,则x的取值范围是()A.x>1B.x<1C.x≠1D.x≠0【分析】分母为零,分式无意义;分母不为零,分式有意义.【解答】解:根据题意得:x﹣1≠0,解得:x≠1.故选:C.【点评】本题考查的知识点为:分式有意义,分母不为0.3.(3分)下列计算,正确的是()A.a2•a2=2a2B.a2+a2=a4C.(﹣a2)2=a4D.(a+1)2=a2+1【分析】根据同底数幂相乘判断A,根据合并同类项法则判断B,根据积的乘方与幂的乘方判断C,根据完全平方公式判断D.【解答】解:A、a2•a2=a4,故此选项错误;B、a2+a2=2a2,故此选项错误;C、(﹣a2)2=a4,故此选项正确;D、(a+1)2=a2+2a+1,故此选项错误;故选:C.【点评】本题主要考查了幂的运算、合并同类项法则及完全平方公式,熟练掌握其法则是解题的关键.4.(3分)如图,∠ACD是△ABC的外角,CE平分∠ACD,若∠A=60°,∠B=40°,则∠ECD等于()A.40°B.45°C.50°D.55°【分析】根据三角形外角性质求出∠ACD,根据角平分线定义求出即可.【解答】解:∵∠A=60°,∠B=40°,∴∠ACD=∠A+∠B=100°,∵CE平分∠ACD,∴∠ECD=∠ACD=50°,故选:C.【点评】本题考查了角平分线定义和三角形外角性质,能熟记三角形外角性质的内容是解此题的关键.5.(3分)如图,AB平分∠DAC,要用SAS条件确定△ABC≌△ABD,还需要有条件()A.DB=CB B.AB=AB C.AD=AC D.∠D=∠C【分析】根据角平分线得出∠CAB=∠DAB,隐含条件AB=AB,根据全等三角形的判定定理判断即可.【解答】解:∵AB平分∠DAC,∴∠CAB=∠DAB,A、根据DB=CB,BA=BA,∠CAB=∠DAB不能推出两三角形全等,故本选项错误;B、根据BA=BA,∠CAB=∠DAB不能推出两三角形全等,故本选项错误;C、∵在△CAB和△DAB中,∴△CAB≌△DAB(SAS),故本选项正确;D、根据BA=BA,∠CAB=∠DAB,∠D=∠C,根据AAS可证△CAB≌△DAB,根据本选项错误;故选:C.【点评】本题考查了全等三角形的判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.6.(3分)如图,在△ABC中,AB=AC,∠A=30°,AB的垂直平分线l交AC于点D,则∠CBD的度数为()A.30°B.45°C.50°D.75°【分析】根据三角形的内角和定理,求出∠C,再根据线段垂直平分线的性质,推得∠A =∠ABD=30°,由外角的性质求出∠BDC的度数,从而得出∠CBD=45°.【解答】解:∵AB=AC,∠A=30°,∴∠ABC=∠ACB=75°,∵AB的垂直平分线交AC于D,∴AD=BD,∴∠A=∠ABD=30°,∴∠BDC=60°,∴∠CBD=180°﹣75°﹣60°=45°.故选:B.【点评】此题主要考查线段的垂直平分线的性质和等腰三角形的性质;利用三角形外角的性质求得求得∠BDC=60°是解答本题的关键.本题的解法很多,用底角75°﹣30°更简单些.7.(3分)多项式12ab3c+8a3b的各项公因式是()A.4ab2B.4abc C.2ab2D.4ab【分析】根据公因式定义,对各选项整理然后即可选出有公因式的项.【解答】解:12ab3c+8a3b=4ab(3b2c+2a2),4ab是公因式,故选:D.【点评】此题考查的是公因式的定义,找公因式的要点是:(1)公因式的系数是多项式各项系数的最大公约数;(2)字母取各项都含有的相同字母;(3)相同字母的指数取次数最低的.在提公因式时千万别忘了“﹣1”.8.(3分)化简的结果是()A.x﹣2B.C.D.x+2【分析】原式变形后,利用同分母分式的减法法则计算即可得到结果.【解答】解:原式=﹣===x+2.故选:D.【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.9.(3分)若4x2+axy+25y2是一个完全平方式,则a=()A.20B.﹣20C.±20D.±10【分析】根据这里首末两项是2x和5y这两个数的平方,那么中间一项为加上或减去2x 和5y乘积的2倍,即可得出a的值.【解答】解:∵4x2+axy+25y2是一个完全平方式,∴(2x±5y)2=4x2±20xy+25y2,∴a=±20,故选:C.【点评】此题主要考查了完全平方公式的应用;两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.10.(3分)小红同学误将点A的横纵坐标次序颠倒,写成A(a,b),另一学生误将点B的坐标写成关于y轴对称点的坐标,写成B(﹣b,﹣a);则A,B两点原来的位置关系是()A.关于x轴对称B.关于y轴对称C.A和B重合D.以上都不对【分析】根据题意表示出A、B的正确坐标,再根据坐标的关系确定A,B两点原来的位置关系.【解答】解:∵小红同学误将点A的横纵坐标次序颠倒,写成A(a,b),∴A点的正确坐标为(b,a),∵另一学生误将点B的坐标写成关于y轴对称点的坐标,写成B(﹣b,﹣a),∴B点的正确坐标为(b,﹣a),∴A,B两点原来的位置关系是关于x轴对称,故选:A.【点评】此题主要考查了关于x轴、y轴对称的点的坐标,关键是掌握:关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变.11.(3分)如图(1),是一个长为2a宽为2b(a>b)的矩形,用剪刀沿矩形的两条对角轴剪开,把它分成四个全等的小矩形,然后按图(2)拼成一个新的正方形,则中间空白部分的面积是()A.ab B.(a+b)2C.(a﹣b)2D.a2﹣b2【分析】先求出正方形的边长,继而得出面积,然后根据空白部分的面积=正方形的面积﹣矩形的面积即可得出答案.【解答】解:由题意可得,正方形的边长为(a+b),故正方形的面积为(a+b)2,又∵原矩形的面积为4ab,∴中间空的部分的面积=(a+b)2﹣4ab=(a﹣b)2.故选:C.【点评】此题考查了完全平方公式的几何背景,求出正方形的边长是解答本题的关键,难度一般.12.(3分)某商厦进货员预测一种应季衬衫能够畅销市场,就用10000元购进这种衬衫,面市后果然供不应求,商厦又用22000元购进了第二批这种衬衫,所购数量是第一批购进量的2倍.但单价贵了4元,求这两批衬衫的购进单价,若设第一批衬衫购进单价为x 元,则所列方程正确的是()A.B.C.D.【分析】设第一批衬衫购进单价为x元,则购进第二批这种衬衫是(x+4)元,根据第二批所购数量是第一批购进数量的2倍,列出方程即可.【解答】解:设第一批衬衫购进单价为x元,则购进第二批这种衬衫是(x+4)元,依题意有:2×=.故选:A.【点评】本题考查了分式方程的应用,弄清题意并找出题中的数量关系并列出方程是解题的关键.13.(3分)如图,把一张矩形纸片ABCD沿对角线AC折叠,点B的对应点为B′,AB′与DC相交于点E,则下列结论一定正确的是()A.∠DAB′=∠CAB′B.∠ACD=∠B′CDC.AD=AE D.AE=CE【分析】根据翻折变换的性质可得∠BAC=∠CAB′,根据两直线平行,内错角相等可得∠BAC=∠ACD,从而得到∠ACD=∠CAB′,然后根据等角对等边可得AE=CE,从而得解.【解答】解:∵矩形纸片ABCD沿对角线AC折叠,点B的对应点为B′,∴∠BAC=∠CAB′,∵AB∥CD,∴∠BAC=∠ACD,∴∠ACD=∠CAB′,∴AE=CE,所以,结论正确的是D选项.故选:D.【点评】本题考查了翻折变换的性质,平行线的性质,矩形的对边互相平行,等角对等边的性质,熟记各性质并准确识图是解题的关键.14.(3分)如图,已知点A(2,3)和点B(4,1),在x轴或y轴上有一点P,且点P到点A和点B的距离相等,则点P的坐标为()A.(1,0)或(0,﹣1)B.(﹣1,0)或(0,1)C.(0,3)或(4,0)D.(2,0)或(0,1)【分析】利用两点间的距离公式可得结果.【解答】解:设在x轴有一点P(x,0),则有(x﹣2)2+32=(x﹣4)2+1,解得,x=1,∴P(1,0);设在y轴有一点P(0,y),则有22+(y﹣3)2=42+(y﹣1)2解得,y=﹣1,∴P(0,﹣1)故选:A.【点评】本题主要考查了两点间的距离公式,熟记公式和坐标轴上点的特点是解答此题的关键.二.填空题(共5小题)15.(3分)计算:()﹣1+(1﹣)0=3.【分析】本题涉及负整数指数幂、零指数幂的考点,在计算时,针对每个考点分别计算.【解答】解:原式=2+1=3.故答案为:3.【点评】本题考查了整数指数幂、零指数幂的考点,负整数指数幂:a﹣p=(a≠0,p 为正整数);零指数幂:a0=1(a≠0).16.(3分)分式的计算结果是.【分析】先通分,再把分子相加减即可.【解答】解:原式=+==.故答案为:.【点评】本题考查的是分式的加减法,在解答此类问题时要注意通分及约分的灵活应用.17.(3分)小刚在解分式方程﹣2=时,处被污染看不清,小明告诉他这里是一个与x无关的常数,且这道题的正确答案是:此方程无解,请你帮小刚猜测一下处的数应是1.【分析】先设=y,得出﹣2=,再去分母x﹣2﹣2(x﹣3)=y,最后根据此方程无解时x=3,再代入计算即可.【解答】解:设=y,则原方程可变形为:﹣2=,去分母得:x﹣2﹣2(x﹣3)=y,∵此方程无解,∴x=3,∴3﹣2﹣2×(3﹣3)=y,∴y=1;∴处的数应是1.故答案为:1.【点评】此题考查了分式方程的解,关键是求出分式方程无解时x的值,用到的知识点是解分式方程的步骤,是一道基础题.18.(3分)如图,△ABC中,∠ACB=90°,∠B=30°,AC=4cm,P为BC边的垂直平分线DE上一个动点,则△ACP的周长最小值为12cm.【分析】因为BC的垂直平分线为DE,所以点C和点B关于直线DE对称,所以当点动点P和E重合时则△ACP的周长最小值,再结合题目的已知条件求出AB的长即可.【解答】解:∵P为BC边的垂直平分线DE上一个动点,∴点C和点B关于直线DE对称,∴当点动点P和E重合时则△ACP的周长最小值,∵∠ACB=90°,∠B=30°,AC=4cm,∴AB=2AC=8cm,∵AP+CP=AP+BP=AB=8cm,∴△ACP的周长最小值=AC+AB=12cm,故答案为:12.【点评】本题考查了轴对称﹣最短路线的问题以及垂直平分线的性质,正确确定P点的位置是解题的关键,确定点P的位置这类题在课本中有原题,因此加强课本题目的训练至关重要.19.(3分)如图,点B是线段AC的中点,过点C的射线CE与AC成60°的角,点P为射线CE上一动点,给出以下四个结论:①当AP⊥CE,垂足为P时,∠APB=30°;②当CP=AC时,∠APB=30°;③在射线CE上,使△APC为直角三角形的点P只有1个;④在射线CE上,使△APC为等腰三角形的点P只有1个;其中正确结论的序号是①②④.【分析】根据等腰三角形的性质,等边三角形的性质,直角三角形的性质判断.【解答】解:∵当AP⊥CE,∠C=60°,∴∠P AC=30°,∵B是线段AC的中点,∴AB=PB,∴∠APB=∠P AC=30°,故①正确;当CP=AC时,∠C=60°,∴三角形APC为等边三角形,∵B是线段AC的中点,∴∠APB=∠CPB=30°,故②正确;在射线CE上,使△APC为直角三角形的点P有2个,一个是∠APC=90°,另一个是∠P AC=90°时;故③错误;在射线CE上,使△APC为等腰三角形的点P有1个,使AC=PC=AP,故④正确;故答案为①②④.【点评】本题考查了等腰三角形的性质,等边三角形的性质,直角三角形的性质,解题的关键是熟练掌握它们的性质.三.计算题(共3小题)20.计算:(1)a(a+b)﹣b(a﹣b);(2)(x﹣2y)2﹣(x﹣y)(x+y)﹣2y2【分析】(1)首先计算乘法,然后再合并同类项即可;(2)先算完全平方和乘法,再去括号合并同类项即可.【解答】解:(1)原式=a2+ab﹣ab+b2=a2+b2;(2)原式=x2﹣4xy+4y2﹣(x2﹣y2)﹣2y2,=x2﹣4xy+4y2﹣x2+y2﹣2y2,=﹣4xy+3y2.【点评】此题主要考查了整式的混合运算,关键是掌握计算法则和计算顺序.21.分解因式:(1)9ax2﹣ay2;(2)2x3y+4x2y2+2xy3.【分析】根据因式分解点的方法即可求出答案.【解答】解:(1)原式=a(9x2﹣y2)=a(3x+y)(3x﹣y)(2)原式=2xy(x2+2xy+y2)=2xy(x+y)2【点评】本题考查因式分解,解题的关键是熟练运用因式分解的方法,本题属于基础题型.22.先化简,再求值:﹣,其中x=﹣2.【分析】根据分式的减法可以化简题目中的式子,然后将x的值代入即可解答本题.【解答】解:﹣===,当x=﹣2时,原式=.【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.三.解答题(共4小题)23.如图.(1)在网格中画出△ABC关于y轴对称的△A1B1C1;(2)写出△ABC关于x轴对称的△A2B2C2的各顶点坐标;(3)在y轴上确定一点P,使P A+PB最短.(只需作图保留作图痕迹)【分析】(1)分别作出点A、B、C关于y轴对称的点,然后顺次连接即可;(2)根据对称的性质写出△ABC关于x轴对称的△A2B2C2的各顶点坐标;(2)作出点C关于y轴的对称点,然后连接AC1,与y轴的交点即为点P.【解答】解:(1)如图所示:(2)A2(﹣3,﹣2),B2(﹣4,3),C2(﹣1,1);(3)连结AB1或BA1交y轴于点P,则点P即为所求.【点评】本题考查的是作图﹣轴对称变换,熟知轴对称图形的作法及性质是解答此题的关键.24.在等边三角形ABC中,点P在△ABC内,点Q在△ABC外,且∠ABP=∠ACQ,BP =CQ.(1)求证:△ABP≌△CAQ;(2)请判断△APQ是什么形状的三角形?试说明你的结论.【分析】(1)根据等边三角形的性质可得AB=AC,再根据SAS证明△ABP≌△ACQ;(2)根据全等三角形的性质得到AP=AQ,再证∠P AQ=60°,从而得出△APQ是等边三角形.【解答】证明:(1)∵△ABC为等边三角形,∴AB=AC,∠BAC=60°,在△ABP和△ACQ中,,∴△ABP≌△ACQ(SAS),(2)∵△ABP≌△ACQ,∴∠BAP=∠CAQ,AP=AQ,∵∠BAP+∠CAP=60°,∴∠P AQ=∠CAQ+∠CAP=60°,∴△APQ是等边三角形.【点评】本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,考查了正三角形的判定,本题中求证△ABP≌△ACQ是解题的关键.25.列方程(组)解应用题:为顺利通过国家义务教育均衡发展验收,我市某中学配备了两个多媒体教室,购买了笔记本电脑和台式电脑共120台,购买笔记本电脑用了7.2万元,购买台式电脑用了24万元,已知笔记本电脑单价是台式电脑单价的1.5倍,那么笔记本电脑和台式电脑的单价各是多少?【分析】设台式电脑的单价是x元,则笔记本电脑的单价为1.5x元,利用购买笔记本电脑和购买台式电脑的台数和列方程+=120,然后解分式方程即可.【解答】解:设台式电脑的单价是x元,则笔记本电脑的单价为1.5x元,根据题意得+=120,解得x=2400,经检验x=2400是原方程的解,当x=2400时,1.5x=3600.答:笔记本电脑和台式电脑的单价分别为3600元和2400元.【点评】本题考查了分式方程的应用:列分式方程解应用题的一般步骤:设、列、解、验、答.26.如图1,在△ABC中,AE⊥BC于E,AE=BE,D是AE上的一点,且DE=CE,连接BD,CD.(1)试判断BD与AC的位置关系和数量关系,并说明理由;(2)如图2,若将△DCE绕点E旋转一定的角度后,试判断BD与AC的位置关系和数量关系是否发生变化,并说明理由;(3)如图3,若将(2)中的等腰直角三角形都换成等边三角形,其他条件不变.①试猜想BD与AC的数量关系,请直接写出结论;②你能求出BD与AC的夹角度数吗?如果能,请直接写出夹角度数;如果不能,请说明理由.【分析】(1)延长BD交AC于F,求出∠AEB=∠AEC=90°,证出△BED≌△AEC,推出BD=AC,∠DBE=∠CAE,根据∠EBD+∠BDE=90°推出∠ADF+∠CAE=90°,求出∠AFD=90°即可;(2)求出∠BED=∠AEC,证出△BED≌△AEC,推出BD=AC,∠BDE=∠ACE,根据∠ACE+∠EOC=90°求出∠BDE+∠DOF=90°,求出∠DFO=90°即可;(3))①如图3中,结论:BD=AC,只要证明△BED≌△AEC即可;②求出∠BED=∠AEC,证出△BED≌△AEC,推出∠BDE=∠ACE,根据三角形内角和定理求出∠DFC即可.【解答】解:(1)BD=AC,BD⊥AC,理由是:延长BD交AC于F.∵AE⊥BC,∴∠AEB=∠AEC=90°,在△BED和△AEC中,,∴△BED≌△AEC,∴BD=AC,∠DBE=∠CAE,∵∠BED=90°,∴∠EBD+∠BDE=90°,∵∠BDE=∠ADF,∴∠ADF+∠CAE=90°,∴∠AFD=180°﹣90°=90°,∴BD⊥AC;(2)不发生变化.理由:∵∠BEA=∠DEC=90°,∴∠BEA+∠AED=∠DEC+∠AED,∴∠BED=∠AEC,在△BED和△AEC中,,∴△BED≌△AEC,∴BD=AC,∠BDE=∠ACE,∵∠DEC=90°,∴∠ACE+∠EOC=90°,∵∠EOC=∠DOF,∴∠BDE+∠DOF=90°,∴∠DFO=180°﹣90°=90°,∴BD⊥AC;(3)①如图3中,结论:BD=AC,理由是:∵△ABE和△DEC是等边三角形,∴AE=BE,DE=EC,∠EDC=∠DCE=60°,∠BEA=∠DEC=60°,∴∠BEA+∠AED=∠DEC+∠AED,∴∠BED=∠AEC,在△BED和△AEC中,,∴△BED≌△AEC,∴BD=AC.②能.∵△ABE和△DEC是等边三角形,∴AE=BE,DE=EC,∠EDC=∠DCE=60°,∠BEA=∠DEC=60°,∴∠BEA+∠AED=∠DEC+∠AED,∴∠BED=∠AEC,在△BED和△AEC中,,∴△BED≌△AEC,∴∠BDE=∠ACE,∴∠DFC=180°﹣(∠BDE+∠EDC+∠DCF)=180°﹣(∠ACE+∠EDC+∠DCF)=180°﹣(60°+60°)=60°,即BD与AC所成的角的度数为60°.【点评】本题考查了等边三角形性质,等腰直角三角形的性质,全等三角形的性质和判定的应用,主要考查了学生的推理能力.。
2019-2020学年度北师大版八年级数学上册期末测试卷(含答案)

2019-2020学年度上学期期末考试试卷八年级 数学本试卷满分100分,考试时间100分钟一、选择题(本大题共8小题,每小题3分,共24分,每小题只有一个正确选项,请将这个正确的选项填在下面表格中.)1.下列各数是无理数的是( ) A.2 B.38 C.722D.0π 2.点P 的坐标是(-3,4),则点P 在( )A.第一象限B.第二象限C.第三象限D.第四象限 3.下列各组数中,能作为直角三角形边长的是( ) A.4,5,6 B.12,16,20 C.5,10,13 D.8,40,414.下列命题是真命题的有( ) ①等边三角形的三个内角都相等; ②如果3325xx -=-,那么x=4; ③两个锐角之和一定是钝角; ④如果x 2>0,那么x>0;A.1个B.2个C.3个D.4个 5.有一组数据:2,5,5,6,7,这组数据的平均数为( ) A.3 B.4 C.5 D.66一个两位数,十位上的数字比个位上的数字大1,若将个位与十位上的数字对调,得到的新数比原数小9,设个位上的数字为x,十位上的数字为y,根据题意,可列方程为( )A.⎩⎨⎧++=+=-910101x y y x y xB.⎩⎨⎧++=+=-910101y x x y y xC.⎩⎨⎧++=+=-910101x y y x x yD.⎩⎨⎧++=+=-910101y x x y x y7.如图在△ABC 中,D 是AB 上一点,E 是AC 上一点,BE,CD 相交于点F,∠A=70°,∠ACD=20°,∠ABE=32°,则∠CFE 的度数为( )。
A.680B.580C.520D.4808. 两条直线y=kx+b 与y=bx+k(k,b 为常数,且k b≠0)在同一坐标系中的图像可能是( )。
二、填空题(本大题共8小题,每小题3分,共24分) 9绝对值最小的实数是 。
10.若一个正数的两个平方根是x-5和x+1,则x= 。
最新版2019-2020年冀教版八年级数学上学期期末模拟综合测评题及答案解析-精编试题

八年级(上)期末数学模拟试卷一、仔细选一选(本大题共12小题,每小题2分,满分24分,在每小题给出的四个选项中,只有一个是符合题意的,请把正确选项的代码填在题后的括号内)1.4的算术平方根是()A.±2 B.2 C.4 D.﹣22.下列四个图案中,是轴对称图形的是()A. B. C. D.3.若使分式有意义,则x的取值范围是()A.x≠2 B.x≠﹣2 C.x≠﹣1 D.x=24.下列结论正确的是()A.形状相同的两个图形是全等图形B.全等图形的面积相等C.对应角相等的两个三角形全等D.两个等边三角形全等5.下列属于最简二次根式的是()A.B. C.D.6.某市2016年的地方公共财政收入用四舍五入取近似值后为21.39亿元,则这个数值精确到()A.百分位B.亿位C.千万位D.百万位7.一个等腰三角形的两边长分别是3和7,则它的周长为()A.13 B.15 C.17 D.13或178.用反证法证明命题“在直角三角形中,至少有一个锐角不大于45°”时,应先假设()A.有一个锐角小于45°B.每一个锐角都小于45°C.有一个锐角大于45°D.每一个锐角都大于45°9.下列运算正确的是()A.2÷=B.=﹣2 C.(﹣)2=﹣2 D.×=10.如图,AE∥DF,AE=DF,要使△EAC≌△FDB,需要添加下列选项中的()A.AB=CD B.EC=BF C.∠A=∠D D.AB=BC11.如图,数轴上点A,B所对应的实数分别是1和,点B与点C关于点A对称,则点C所对应的实数是()A. B.2﹣C.2﹣2 D.﹣112.如图,在6×6的正方形网格中,点A,B均在正方形格点上,若在网格中的格点上找一点C,使△ABC为等腰三角形,这样的点C一共有()A.7个B.8个C.10个D.12个二、认真填一填(本大题共6个小题,每小题3分,满分18分.请把答案写在题中横线上)13.0.008的立方根是.14.命题“有一条边和一个锐角分别相等的两个直角三角形全等”是命题.(填“真”或“假”)15.如图,公路AC和BC互相垂直,垂足为点C,公路AB的中点M与点C 被湖隔开.已知公路AB=3.2km,则点M,C之间的距离为km.16.规定符号“[m]”表示一个实数m的整数部分,例如:[]=0,[π]=3.则按此规定[﹣1]= .17.如图,长方形纸片ABCD中,已知AD=8,AB=6,折叠纸片使AB边与对角线AC重合,点B落在点F处,折痕为AE,则CE的长为.18.如图,等边△ABC中,AB=4,AD⊥BC于点D,点F在线段AD上运动,点E在AC上,且AE=2,当EF+CF取最小值时,∠ECF= °.三、细心解答(本大题共8个小题,共58分,解答应写出相应的文字说明或解题步骤)19.计算:(1)2+﹣;(2)(b2﹣ab)•.20.解方程:2﹣=.21.当x=时,求(﹣)÷的值.22.如图,在Rt△ABC中,已知∠ABC=90°,∠ACB=60°,DE是斜边AC 的中垂线,分别交AB,AC于点D,E,连接DC,若BD=2,求线段AC的长.23.如图,已知∠MON,点A,B分别在OM,ON边上,且OA=OB.(1)求作:过点A,B分别作OM,ON的垂线,两条垂线的交点记作点D(保留作图痕迹,不写作法);(2)连接OD,若∠MON=50°,则∠ODB= °.24.在数学活动课上,小明将一块等腰直角三角形纸板ABC的直角顶点C放置在直线l上,位置如图所示,∠ACB=90°,过点A,B分别作直线l的垂线,垂足分别为D,E.(1)通过观察,小明猜想△ACD与△CBE全等,请你证明这个猜想;(2)小明把三角形纸板ABC绕点C任意旋转(点C始终在直线l上,直角边不与l重合),借助(1)中的结论,发现线段AD,BE和DE之间存在某种数量关系,请你写出所有用BE,DE表示AD的式子:.25.在我市地铁1号线的建设中,某路段需要有甲、乙两个工程队进行施工,已知甲队单独完成这项工程所需天数是乙队单独完成这项工程所需天数的,经测算,若由甲队先做15天,剩下的工程再由甲、乙两队合作30天完成.(1)甲、乙两队单独完成这项工程各需多少天?(2)已知甲队的施工费用为6.5万元/天,乙队的施工费用为8.5万元/天,这项工程预算的施工费用为500万元.若甲、乙两队合作完成这项工程,则预算的施工费用是否够用?若不够用,需要追加多少万元?请通过计算说明.26.已知∠MAN=120°,点C是∠MAN的平分线AQ上的一个定点,点B,D分别在AN,AM上,连接BD.【发现】(1)如图1,若∠ABC=∠ADC=90°,则∠BCD= °,△CBD是三角形;【探索】(2)如图2,若∠ABC+∠ADC=180°,请判断△CBD的形状,并证明你的结论;【应用】(3)如图3,已知∠EOF=120°,OP平分∠EOF,且OP=1,若点G,H分别在射线OE,OF上,且△PGH为等边三角形,则满足上述条件的△PGH的个数一共有.(只填序号)①2个②3个③4个④4个以上参考答案与试题解析一、仔细选一选(本大题共12小题,每小题2分,满分24分,在每小题给出的四个选项中,只有一个是符合题意的,请把正确选项的代码填在题后的括号内)1.4的算术平方根是()A.±2 B.2 C.4 D.﹣2【考点】算术平方根.【分析】根据算术平方根的概念即可求出答案.【解答】解:∵22=4,∴4的算术平方根是2,故选(B)2.下列四个图案中,是轴对称图形的是()A. B. C. D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、是轴对称图形,故本选项正确;D、不是轴对称图形,故本选项错误.故选:C.3.若使分式有意义,则x的取值范围是()A.x≠2 B.x≠﹣2 C.x≠﹣1 D.x=2【考点】分式有意义的条件.【分析】直接利用分式有意义则其分母不为零,进而得出答案.【解答】解:∵分式有意义,∴x的取值范围是:x﹣2≠0,解得:x≠2.故选:A.4.下列结论正确的是()A.形状相同的两个图形是全等图形B.全等图形的面积相等C.对应角相等的两个三角形全等D.两个等边三角形全等【考点】全等图形.【分析】能够完全重合的两个图形叫做全等形,能够完全重合的两个三角形叫做全等三角形,根据全等图形的性质以及全等三角形的性质进行判断即可.【解答】解:A.形状相同的两个图形不一定是全等图形,是相似形,故A错误;B.根据全等图形的性质,可得全等图形的面积相等,故B正确;C.对应角相等且对应边相等的两个三角形全等,故C错误;D.两个边长相等的等边三角形全等,故D错误,故选:B.5.下列属于最简二次根式的是()A.B. C.D.【考点】最简二次根式.【分析】检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:A、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故A正确;B、被开方数含能开得尽方的因数或因式,故B错误;C、被开方数含能开得尽方的因数或因式,故C错误;D、被开方数含分母,故D错误;故选:A.6.某市2016年的地方公共财政收入用四舍五入取近似值后为21.39亿元,则这个数值精确到()A.百分位B.亿位C.千万位D.百万位【考点】近似数和有效数字.【分析】根据近似数的精确度求解.【解答】解:21.39亿精确到0.01亿位,即精确到百万位.故选D.7.一个等腰三角形的两边长分别是3和7,则它的周长为()A.13 B.15 C.17 D.13或17【考点】等腰三角形的性质;三角形三边关系.【分析】由于未说明两边哪个是腰哪个是底,故需分:(1)当等腰三角形的腰为3;(2)当等腰三角形的腰为7;两种情况讨论,从而得到其周长.【解答】解:①当等腰三角形的腰为3,底为7时,3+3<7不能构成三角形;②当等腰三角形的腰为7,底为3时,周长为3+7+7=17.故这个等腰三角形的周长是17.故选C.8.用反证法证明命题“在直角三角形中,至少有一个锐角不大于45°”时,应先假设()A.有一个锐角小于45°B.每一个锐角都小于45°C.有一个锐角大于45°D.每一个锐角都大于45°【考点】反证法.【分析】用反证法证明命题的真假,应先按符合题设的条件,假设题设成立,再判断得出的结论是否成立即可.【解答】解:用反证法证明命题“在直角三角形中,至少有一个锐角不大于45°”时,应先假设每一个锐角都大于45°.故选D.9.下列运算正确的是()A.2÷=B.=﹣2 C.(﹣)2=﹣2 D.×=【考点】二次根式的乘除法.【分析】根据=(a≥0,b>0),=|a|,=(a≥0,b≥0),分别进行计算即可.【解答】解:A、2=,故原题计算错误;B、=2,故原题计算错误;C、(﹣)2=2,故原题计算错误;D、=,故原题计算正确;故选:D.10.如图,AE∥DF,AE=DF,要使△EAC≌△FDB,需要添加下列选项中的()A.AB=CD B.EC=BF C.∠A=∠D D.AB=BC【考点】全等三角形的判定.【分析】添加条件AB=CD可证明AC=BD,然后再根据AE∥FD,可得∠A=∠D,再利用SAS定理证明△EAC≌△FDB即可.【解答】解:∵AE∥FD,∴∠A=∠D,∵AB=CD,∴AC=BD,在△AEC和△DFB中,,∴△EAC≌△FDB(SAS),故选:A.11.如图,数轴上点A,B所对应的实数分别是1和,点B与点C关于点A对称,则点C所对应的实数是()A. B.2﹣C.2﹣2 D.﹣1【考点】实数与数轴.【分析】根据点A、B表示的数求出AB,再根据对称可得AC=AB,然后根据数轴上左边的数比右边的小列式计算即可得解.【解答】解:∵点A ,B 所对应的实数分别是1和,∴AB=﹣1,∵点B 与点C 关于点A 对称,∴AC=AB ,∴点C 所对应的实数是1﹣(﹣1)=1﹣+1=2﹣.故选B .12.如图,在6×6的正方形网格中,点A ,B 均在正方形格点上,若在网格中的格点上找一点C ,使△ABC 为等腰三角形,这样的点C 一共有( )A .7个B .8个C .10个D .12个【考点】等腰三角形的判定.【分析】首先由勾股定理可求得AB 的长,然后分别从BA=BC ,AB=AC ,CA=CB 去分析求解即可求得答案.【解答】解:∵AB==2,如图所示:∴①若BA=BC ,则符合要求的有:C 1,C 2共2个点;②若AB=AC ,则符合要求的有:C 3,C 4共2个点;③若CA=CB ,则符合要求的有:C 5,C 6,C 7,C 8,C 9,C 10共6个点. ∴这样的C 点有10个.故选:C.二、认真填一填(本大题共6个小题,每小题3分,满分18分.请把答案写在题中横线上)13.0.008的立方根是0.2 .【考点】立方根.【分析】根据立方根的概念即可求出答案【解答】解:0.23=0.008∴0.008的立方根是0.2故答案为:0.214.命题“有一条边和一个锐角分别相等的两个直角三角形全等”是假命题.(填“真”或“假”)【考点】命题与定理.【分析】根据直角三角形全等的判定方法判断即可.【解答】解:一条边和一个锐角分别相等的两个直角三角形,边与角不一定是对应边和对应角,例如:两个直角三角形中相等的∠α的邻边与对边相等,两个三角形不全等,所以,这两个直角三角形不一定全等,所以,“有一条边和一个锐角分别相等的两个直角三角形全等”是假命题.故答案为:假.15.如图,公路AC和BC互相垂直,垂足为点C,公路AB的中点M与点C 被湖隔开.已知公路AB=3.2km,则点M,C之间的距离为 1.6 km.【考点】直角三角形斜边上的中线.【分析】根据直角三角形斜边上的中线等于斜边的一半,可得MC=AB=1.6km.【解答】解:∵在Rt△ABC中,∠ACB=90°,M为AB的中点,∴MC=AB=1.6km.故答案为:1.6.16.规定符号“[m]”表示一个实数m的整数部分,例如:[]=0,[π]=3.则按此规定[﹣1]= 2 .【考点】估算无理数的大小.【分析】直接利用的取值范围得出2<﹣1<3,进而得出答案.【解答】解:∵3<<4,∴2<﹣1<3,∴[﹣1]=2.故答案为:2.17.如图,长方形纸片ABCD中,已知AD=8,AB=6,折叠纸片使AB边与对角线AC重合,点B落在点F处,折痕为AE,则CE的长为 5 .【考点】翻折变换(折叠问题).【分析】如图,求出AC的长度;证明EF=EB(设为λ),得到CE=8﹣λ;列出关于λ的方程,求出λ即可解决问题.【解答】解:如图,∵四边形ABCD为矩形,∴∠D=90°,DC=AB=6;由勾股定理得:AC2=AD2+DC2,而AD=8,∴AC=10;由题意得:∠AFE=∠B=90°,AF=AB=6;EF=EB(设为λ),∴CF=10﹣6=4,CE=8﹣λ;由勾股定理得:(8﹣λ)2=λ2+42,解得:λ=3,∴CE=5,故答案为5.18.如图,等边△ABC中,AB=4,AD⊥BC于点D,点F在线段AD上运动,点E在AC上,且AE=2,当EF+CF取最小值时,∠ECF= 30 °.【考点】轴对称-最短路线问题;等边三角形的性质.【分析】如图,作点E关于直线AD的对称点E′,连接CE′交AD于F′.由EF+FC=FE′+FC,所以当C、E′、F共线时,EF+CF最小,由△ABC是等边三角形,AB=BC=AC=4,AE=AE′=2,推出AE′=E′B,∠ACB=60°,推出∠ACE′=∠BCE′=30°,即可解决问题.【解答】解:如图,作点E关于直线AD的对称点E′,连接CE′交AD于F′.∵EF+FC=FE′+FC,∴当C、E′、F共线时,EF+CF最小,∵△ABC是等边三角形,AB=BC=AC=4,AE=AE′=2,∴AE′=E′B,∠ACB=60°∴∠ACE′=∠BCE′=30°,∴此时∠ECF=30°,故答案为30.三、细心解答(本大题共8个小题,共58分,解答应写出相应的文字说明或解题步骤)19.计算:(1)2+﹣;(2)(b2﹣ab)•.【考点】二次根式的加减法;分式的乘除法.【分析】根据二次根式的性质以及分式运算的性质即可求出答案.【解答】解:(1)原式=4+6﹣4=6,(2)原式=b(b﹣a)•=﹣ab2,20.解方程:2﹣=.【考点】解分式方程.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2x﹣6﹣x=﹣3,解得:x=3,经检验x=3是增根,分式方程无解.21.当x=时,求(﹣)÷的值.【考点】分式的化简求值.【分析】先将(﹣)÷进行化简,然后将x=代入求解即可.【解答】解:(﹣)÷=×=﹣×=﹣.当x=时,原式=﹣=﹣6.22.如图,在Rt△ABC中,已知∠ABC=90°,∠ACB=60°,DE是斜边AC 的中垂线,分别交AB,AC于点D,E,连接DC,若BD=2,求线段AC的长.【考点】线段垂直平分线的性质.【分析】根据直角三角形的性质求出∠A的度数,根据线段垂直平分线的性质得到DA=DC,求出∠DCB=30°,根据直角三角形的性质求出BC的长,得到答案.【解答】解:∵∠ACB=60°,∠B=90°,∴∠A=30°,∵DE是斜边AC的中垂线,∴DA=DC,∴∠ACD=∠A=30°,∴∠D CB=30°,∴BC=BD=2,∴AC=2BC=4.23.如图,已知∠MON,点A,B分别在OM,ON边上,且OA=OB.(1)求作:过点A,B分别作OM,ON的垂线,两条垂线的交点记作点D(保留作图痕迹,不写作法);(2)连接OD,若∠MON=50°,则∠ODB= 65 °.【考点】作图—基本作图;等腰三角形的性质.【分析】(1)根据过直线上一点作直线垂线的方法作出垂线即可;(2)利用全等三角形的判定与性质结合四边形内角和定理得出答案.【解答】解:(1)如图,DA,DB即为所求垂线;(2)连接OD,∵DB⊥ON,DA⊥OM,∴∠OBD=∠OAD=90°,∠MON=50°,∴∠ADB=180°﹣50°=130°.在Rt△OBD与Rt△OAD中,∵,∴Rt△OBD≌Rt△OAD(HL),∴∠ODB=∠ADB=65°.故答案为:65.24.在数学活动课上,小明将一块等腰直角三角形纸板ABC的直角顶点C放置在直线l上,位置如图所示,∠ACB=90°,过点A,B分别作直线l的垂线,垂足分别为D,E.(1)通过观察,小明猜想△ACD与△CBE全等,请你证明这个猜想;(2)小明把三角形纸板ABC绕点C任意旋转(点C始终在直线l上,直角边不与l重合),借助(1)中的结论,发现线段AD,BE和DE之间存在某种数量关系,请你写出所有用BE,DE表示AD的式子:AD=BE﹣DE,或AD=DE ﹣BE,或AD=DE+BE..【考点】全等三角形的判定与性质;等腰直角三角形.【分析】(1)观察图形,结合已知条件,可知全等三角形为:△ACD与△CBE.根据AAS即可证明;(2)根据全等三角形的性质即可得到结论.【解答】(1)证明:∵AD⊥CE,BE⊥CE,∴∠ADC=∠CEB=90°,又∵∠ACB=90°,∴∠ACD=90°﹣∠ECB=∠CBE.在△ACD与△CBE中,,∴△ACD≌△CBE(AAS);(2)AD=BE﹣DE,或AD=DE﹣BE,或AD=DE+BE.故答案为:AD=BE﹣DE,或AD=DE﹣BE,或AD=DE+BE.25.在我市地铁1号线的建设中,某路段需要有甲、乙两个工程队进行施工,已知甲队单独完成这项工程所需天数是乙队单独完成这项工程所需天数的,经测算,若由甲队先做15天,剩下的工程再由甲、乙两队合作30天完成.(1)甲、乙两队单独完成这项工程各需多少天?(2)已知甲队的施工费用为6.5万元/天,乙队的施工费用为8.5万元/天,这项工程预算的施工费用为500万元.若甲、乙两队合作完成这项工程,则预算的施工费用是否够用?若不够用,需要追加多少万元?请通过计算说明.【考点】分式方程的应用.【分析】(1)设乙队单独完成这项工程需x天,则甲队单独完成这项工程需x 天,根据“甲先做15天的工作量+甲、乙合作30天的工作量=1”列分式方程求解可得;(2)把这项工程的总工作量设为1,先求出甲、乙两队合作一天的工作量,再求得甲、乙两队合作完成这项工程需要的时间,根据“合作每天的费用×合作时间”可得所需总费用,从而得出答案.【解答】解:(1)设乙队单独完成这项工程需x天,则甲队单独完成这项工程需x天,根据题意,得:+30×(+)=1,解得:x=60,经检验x=60是原分式方程的解,当x=60时,x=90,答:甲队单独完成这项工程需90天,乙队单独完成这项工程需60天;(2)把这项工程的总工作量设为1,则甲、乙两队合作一天的工作量为(+)=,甲、乙两队合作完成这项工程需要的时间为1÷=36天,∴合作需要的施工费用为36×(6.5+8.5)=540(万元),∵540>500,540﹣500=40(万元),∴预算的施工费用不够用,需要追加40万元.26.已知∠MAN=120°,点C是∠MAN的平分线AQ上的一个定点,点B,D分别在AN,AM上,连接BD.(1)如图1,若∠ABC=∠ADC=90°,则∠BCD= 60 °,△CBD是等边三角形;【探索】(2)如图2,若∠ABC+∠ADC=180°,请判断△CBD的形状,并证明你的结论;【应用】(3)如图3,已知∠EOF=120°,OP平分∠EOF,且OP=1,若点G,H分别在射线OE,OF上,且△PGH为等边三角形,则满足上述条件的△PGH的个数一共有④.(只填序号)①2个②3个③4个④4个以上【考点】三角形综合题.【分析】(1)利用四边形的内角和即可得出∠BCD的度数,再利用角平分线的性质定理即可得出CB,即可得出结论;(2)先判断出∠CDE=∠ABC,进而得出△CDE≌△CFB(AAS),得出CD=CB,再利用四边形的内角和即可得出∠BCD=60°即可得出结论;(3)先判断出∠POE=∠POF=60°,先构造出等边三角形,找出特点,即可得【解答】解:(1)如图1,连接BD,∵∠ABC=∠ADC=90°,∠MAN=120°,根据四边形的内角和得,∠BCD=360°﹣(∠ABC+∠ADC+∠MAN)=60°,∵AC是∠MAN的平分线,CD⊥AM.CB⊥AN,∴CD=CB,(角平分线的性质定理),∴△BCD是等边三角形;故答案为:60,等边;(2)如图2,同(1)得出,∠BCD=60°(根据三角形的内角和定理),过点C作CE⊥AM于E,CF⊥AN于F,∵AC是∠MAN的平分线,∴CE=CF,∵∠ABC+∠ADC=180°,∠ADC+∠CDE=180°,∴∠CDE=∠ABC,在△CDE和△CFB中,,∴△CDE≌△CFB(AAS),∴CD=CB,∵∠BCD=60°,∴△CBD是等边三角形;(3)如图3,∵OP平分∠EOF,∠EOF=120°,∴∠POE=∠POF=60°,在OE上截取OG'=OP=1,连接PG',∴△G'OP是等边三角形,此时点H'和点O重合,同理:△OPH是等边三角形,此时点G和点O重合,将等边△PHG绕点P逆时针旋转到等边△PG'H',在旋转的过程中,边PG,PH分别和OE,OF相交(如图中G'',H'')和点P围成的三角形全部是等边三角形,(旋转角的范围为(0°到60°包括0°和60°),所以有无数个;理由:同(2)的方法.故答案为④.2017年2月21日。
北京市东城区 2018-2019 学年度八年级上学期期末教学统一检测数学试题

2018-2019学年北京市东城区八年级(上)期末数学试卷一、选择题(本题共10小题,每小题3分,共30分)1.生物学家发现了一种病毒,其长度约为0.00000032mm,数据0.00000032用科学记数法表示正确的是()A.3.2×107B.3.2×108C.3.2×10﹣7D.3.2×10﹣82.若分式有意义,则a的取值范围是()A.a≠1B.a≠0C.a≠1且a≠0D.一切实数3.下列运算中,正确的是()A.3x2+2x3=5x5B.a•a2=a3C.3a6÷a3=3a2D.(ab)3=a3b4.2017年12月15日,北京2022年冬奥会会徽“冬梦”正式发布.以下是参选的会徽设计的一部分图形,其中是轴对称图形的是()A.B.C.D.5.如图是国际数学日当天淇淇和嘉嘉的微信对话,根据对话内容,下列选项错误的是()A.4+4﹣=6B.4+40+40=6C.4+=6D.4﹣1÷+4=66.下列二次根式中,是最简二次根式的是()A.B.C.D.7.已知a m=2,a n=3,则a3m+2n的值是()A.6B.24C.36D.728.如图,已知∠1=∠2,AC=AD,要使△ABC≌△AED,还需添加一个条件,那么在①AB=AE,②BC =ED,③∠C=∠D,④∠B=∠E,这四个关系中可以选择的是()A.①②③B.①②④C.①③④D.②③④9.如图,在△ABC中,∠A=90°,∠C=30°,AD⊥BC于D,BE是∠ABC的平分线,且交AD于P,如果AP=2,则AC的长为()A.2B.4C.6D.810.定义运算“※”:a※b=.若5※x=2,则x的值为()A.B.或10C.10D.或二、填空题(本题共6小题,11-15小题每小题2分,16小题4分,共14分)11.分解因式:2ax2﹣8a=.12.多项式(mx+8)(2﹣3x)展开后不含x项,则m=.13.当x=时,分式的值为0.14.课本上有这样一道例题:作法:(1)作线段AB=a(2)作线段AB的垂直平分线MN,与AB相交于点D.(3)在MN上取一点C,使DC=h.(4)连接AC,BC,则△ABC就是所求作的等腰三角形.请你思考只要CD垂直平分AB,那么△ABC就是等腰三角形的依据是.15.如图,在△ABC中,点D是AB边的中点,过点D作边AB的垂线l,E是l上任意一点,且AC=5,BC=8,则△AEC的周长最小值为.16.已知在△ABC中,AB=AC.(1)若∠A=36°,在△ABC中画一条线段,能得到2个等腰三角形(不包括△ABC),这2个等腰三角形的顶角的度数分别是;(2)若∠A≠36°,当∠A=时,在等腰△ABC中画一条线段,能得到2个等腰三角形(不包括△ABC).(写出两个答案即可)三、解答题(本题共12小题,共56分)17.计算:+(2﹣π)0﹣()﹣2.18.计算:(1);(2)(x﹣2)2﹣(x+3)(x﹣3).19.在三个整式x2+2xy,y2+2xy,x2中,请你任意选出两个进行加(或减)运算,使所得整式可以因式分解,并进行因式分解.20.解分式方程:+1=.21.先化简,然后a在﹣2,0,1,2,3中选择一个合适的数代入并求值.22.如图,在平面直角坐标系xOy中,△ABC的三个顶点的坐标分别是A(2,3),B(1,0),C(1,2).(1)在图中作出△ABC关于y轴对称的△A1B1C1;(2)如果要使以B、C、D为顶点的三角形与△ABC全等,写出所有符合条件的点D坐标.23.如图,点B、F、C、E在直线l上(F、C之间不能直接测量),点A、D在l异侧,测得AB=DE,AB ∥DE,∠A=∠D.(1)求证:△ABC≌△DEF;(2)若BE=10m,BF=3m,求FC的长度.24.列方程解应用题:港珠澳大桥是世界上最长的跨海大桥,是被誉为“现代世界七大奇迹”的超级工程,它是我国从桥梁大国走向桥梁强国的里程碑之作.开通后从香港到珠海的车程由原来的180千米缩短到50千米,港珠澳大桥的设计时速比按原来路程行驶的平均时速多40千米,若开通后按设计时速行驶,行驶完全程时间仅为原来路程行驶完全程时间的,求港珠澳大桥的设计时速是多少.25.如图,AE是△ACD的角平分线,B在DA延长线上,AE∥BC,F为BC中点,判断AE与AF的位置关系并证明.26.阅读下列材料,然后回答问题:观察下列各式,通过分母有理化,把不是最简二次根式的化成最简二次根式:===﹣1.===﹣.(一)还可以用以下方法化简:.(二)(1)请用不同的方法化简.参照(一)式得=;参照(二)式得=;(2)从计算结果中找出规律,并利用这一规律选择下面两个问题中的一个加以解决:1.求的值;2.化简:+++…+.27.(1)老师在课上给出了这样一道题目:如图1,等边△ABC边长为2,过AB边上一点P作PE⊥AC 于E,Q为BC延长线上一点,且AP=CQ,连接PQ交AC于D,求DE的长.小明同学经过认真思考后认为,可以通过过点P作平行线构造等边三角形的方法来解决这个问题.请根据小明同学的思路直接写出DE的长.(2)【类比探究】老师引导同学继续研究:1.等边△ABC边长为2,当P为BA的延长线上一点时,作PE⊥CA的延长线于点E,Q为边BC上一点,且AP=CQ,连接PQ交AC于D.请你在图2中补全图形并求DE的长.2.已知等边△ABC,当P为AB的延长线上一点时,作PE⊥射线AC于点E,Q为(①BC边上;②BC的延长线上;③CB的延长线上)一点,且AP=CQ,连接PQ交直线AC于点D,能使得DE的长度保持不变.(将答案的编号填在横线上)28.在平面直角坐标系xOy中,△ABO为等边三角形,O为坐标原点,点A关于y轴的对称点为D,连接AD,BD,OD,其中AD,BD分别交y轴于点E,P.(1)如图1,若点B在x轴的负半轴上时,直接写出∠BDO的度数;(2)如图2,将△ABO绕点O旋转,且点A始终在第二象限,此时AO与y轴正半轴夹角为α,60°<α<90°,依题意补全图形,并求出∠BDO的度数;(用含α的式子表示)(3)在第(2)问的条件下,用等式表示线段BP,PE,PO之间的数量关系.(直接写出结果)2018-2019学年北京市东城区八年级(上)期末数学试卷参考答案与试题解析一、选择题(本题共10小题,每小题3分,共30分)1.生物学家发现了一种病毒,其长度约为0.00000032mm,数据0.00000032用科学记数法表示正确的是()A.3.2×107B.3.2×108C.3.2×10﹣7D.3.2×10﹣8【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00000032=3.2×10﹣7;故选:C.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.2.若分式有意义,则a的取值范围是()A.a≠1B.a≠0C.a≠1且a≠0D.一切实数【分析】分式有意义的条件是分母不等于零,据此可得.【解答】解:若分式有意义,则a﹣1≠0,即a≠1,故选:A.【点评】本题主要考查分式有意义的条件,解题的关键是掌握分式有意义的条件是分母不等于零.3.下列运算中,正确的是()A.3x2+2x3=5x5B.a•a2=a3C.3a6÷a3=3a2D.(ab)3=a3b【分析】直接利用同底数幂的乘除运算法则以及积的乘方运算法则分别计算得出答案.【解答】解:A、3x2+2x3,无法计算,故此选项错误;B、a•a2=a3,正确;C、3a6÷a3=3a3,故此选项错误;D、(ab)3=a3b3,故此选项错误;故选:B.【点评】此题主要考查了同底数幂的乘除运算以及积的乘方运算,正确掌握相关运算法则是解题关键.4.2017年12月15日,北京2022年冬奥会会徽“冬梦”正式发布.以下是参选的会徽设计的一部分图形,其中是轴对称图形的是()A.B.C.D.【分析】直接根据轴对称图形的概念分别解答得出答案.【解答】解:A、不是轴对称图形,不合题意;B、是轴对称图形,符合题意;C、不是轴对称图形,不合题意;D、不是轴对称图形,不合题意.故选:B.【点评】本题考查的是轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.5.如图是国际数学日当天淇淇和嘉嘉的微信对话,根据对话内容,下列选项错误的是()A.4+4﹣=6B.4+40+40=6C.4+=6D.4﹣1÷+4=6【分析】根据实数的运算方法,求出每个选项中左边算式的结果是多少,判断出哪个算式错误即可.【解答】解:∵4+4﹣=6,∴选项A不符合题意;∵4+40+40=6,∴选项B不符合题意;∵4+=6,∴选项C不符合题意;∵4﹣1÷+4=4,∴选项D符合题意.故选:D.【点评】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.6.下列二次根式中,是最简二次根式的是()A.B.C.D.【分析】直接利用最简二次根式的定义分析得出答案.【解答】解:A、是最简二次根式,正确;B、不是最简二次根式,错误;C、不是最简二次根式,错误;D、不是最简二次根式,错误;故选:A.【点评】此题主要考查了最简二次根式,正确把握定义是解题关键.7.已知a m=2,a n=3,则a3m+2n的值是()A.6B.24C.36D.72【分析】直接利用同底数幂的乘法运算法则结合幂的乘方运算法则计算得出答案.【解答】解:∵a m=2,a n=3,∴a3m+2n=(a m)3×(a n)2=23×32=72.故选:D.【点评】此题主要考查了同底数幂的乘法运算以及幂的乘方运算,正确将原式变形是解题关键.8.如图,已知∠1=∠2,AC=AD,要使△ABC≌△AED,还需添加一个条件,那么在①AB=AE,②BC =ED,③∠C=∠D,④∠B=∠E,这四个关系中可以选择的是()A.①②③B.①②④C.①③④D.②③④【分析】由∠1=∠2结合等式的性质可得∠CAB=∠DAE,再利用全等三角形的判定定理分别进行分析即可.【解答】解:∵∠1=∠2,∴∠1+∠EAB=∠2+∠EAB,即∠CAB=∠DAE,①加上条件AB=AE可利用SAS定理证明△ABC≌△AED;②加上BC=ED不能证明△ABC≌△AED;③加上∠C=∠D可利用ASA证明△ABC≌△AED;④加上∠B=∠E可利用AAS证明△ABC≌△AED;故选:C.【点评】此题主要考查了三角形全等的判定方法,解题时注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.9.如图,在△ABC中,∠A=90°,∠C=30°,AD⊥BC于D,BE是∠ABC的平分线,且交AD于P,如果AP=2,则AC的长为()A.2B.4C.6D.8【分析】易得△AEP的等边三角形,则AE=AP=2,在直角△AEB中,利用含30度角的直角三角形的性质来求EB的长度,然后在等腰△BEC中得到CE的长度,则易求AC的长度.【解答】解:∵△ABC中,∠BAC=90°,∠C=30°,∴∠ABC=60°.又∵BE是∠ABC的平分线,∴∠EBC=30°,∴∠AEB=∠C+∠EBC=60°,∠C=∠EBC,∴∠AEP=60°,BE=EC.又AD⊥BC,∴∠CAD=∠EAP=60°,则∠AEP=∠EAP=60°,∴△AEP的等边三角形,则AE=AP=2,在直角△AEB中,∠ABE=30°,则EB=2AE=4,∴BE=EC=4,∴AC=CE+AE=6.故选:C.【点评】本题考查了含30°角的直角三角形的性质、角平分线的性质以及等边三角形的判定与性质.利用三角形外角性质得到∠AEB=60°是解题的关键.10.定义运算“※”:a※b=.若5※x=2,则x的值为()A.B.或10C.10D.或【分析】分别讨论5>x和5<x时,得到的分式方程,解之,找出符合题意的即可.【解答】解:若5>x,即x<5时,原方程可整理得:=2,方程两边同时乘以(5﹣a)得:5=2(5﹣x),解得:x=,经检验:x=是原方程的解,且<5,即x=符合题意,若5<x,即x>5时,原方程可整理得:=2,方程两边同时乘以(x﹣5)得:x=2(x﹣5),解得:x=10,经检验:x=10是原方程的解,且10>5,即x=10符合题意,故选:B.【点评】本题考查了解分式方程,有理数的混合运算,正确掌握解分式方程的方法是解题的关键.二、填空题(本题共6小题,11-15小题每小题2分,16小题4分,共14分)11.分解因式:2ax2﹣8a=2a(x+2)(x﹣2).【分析】首先提公因式2a,再利用平方差进行二次分解即可.【解答】解:原式=2a(x2﹣4)=2a(x+2)(x﹣2).故答案为:2a(x+2)(x﹣2).【点评】此题主要考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.12.多项式(mx+8)(2﹣3x)展开后不含x项,则m=12.【分析】乘积含x项包括两部分,①mx×2,②8×(﹣3x),再由展开后不含x的一次项可得出关于m的方程,解出即可.【解答】解:(mx+8)(2﹣3x)=2mx﹣3mx2+16﹣24x=﹣3mx2+(2m﹣24)x+16,∵多项式(mx+8)(2﹣3x)展开后不含x项,∴2m﹣24=0,解得:m=12,故答案为:12.【点评】此题考查了多项式乘多项式的知识,属于基础题,注意观察哪些项相乘所得的结果含一次项,难度一般.13.当x=﹣2时,分式的值为0.【分析】分式的值为0的条件是:(1)分子=0;(2)分母≠0.两个条件需同时具备,缺一不可.据此可以解答本题.【解答】解:∵=0,∴x=﹣2.故答案为:﹣2.【点评】此题考查的是对分式的值为0的条件,分子等于0,分母不能等于0,题目比较简单.14.课本上有这样一道例题:作法:(1)作线段AB=a(2)作线段AB的垂直平分线MN,与AB相交于点D.(3)在MN上取一点C,使DC=h.(4)连接AC,BC,则△ABC就是所求作的等腰三角形.请你思考只要CD垂直平分AB,那么△ABC就是等腰三角形的依据是线段垂直平分线上的点与这条线段两端点距离相等,等腰三角形定义.【分析】利用线段垂直平分线的性质和等腰三角形的定义,由CD垂直平分AB可得到△ABC就是等腰三角形.【解答】解:若CD垂直平分AB,则根据线段垂直平分线上的点与这条线段两端点距离相等得到CA=CB,然后根据等腰三角形的定义可判断△ABC就是等腰三角形.故答案为线段垂直平分线上的点与这条线段两端点距离相等,等腰三角形定义.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.15.如图,在△ABC中,点D是AB边的中点,过点D作边AB的垂线l,E是l上任意一点,且AC=5,BC=8,则△AEC的周长最小值为13.【分析】连接BE,依据l是AB的垂直平分线,可得AE=BE,进而得到AE+CE=BE+CE,依据BE+CE≥BC,可知当B,E,C在同一直线上时,BE+CE的最小值等于BC的长,而AC长不变,故△AEC的周长最小值等于AC+BC.【解答】解:如图,连接BE,∵点D是AB边的中点,l⊥AB,∴l是AB的垂直平分线,∴AE=BE,∴AE+CE=BE+CE,∵BE+CE≥BC,∴当B,E,C在同一直线上时,BE+CE的最小值等于BC的长,而AC长不变,∴△AEC的周长最小值等于AC+BC=5+8=13,故答案为:13.【点评】本题主要考查了最短距离问题,凡是涉及最短距离的问题,一般要考虑线段的性质定理,多数情况要作点关于某直线的对称点.16.已知在△ABC中,AB=AC.(1)若∠A=36°,在△ABC中画一条线段,能得到2个等腰三角形(不包括△ABC),这2个等腰三角形的顶角的度数分别是108°,36°;(2)若∠A≠36°,当∠A=90°或108°时,在等腰△ABC中画一条线段,能得到2个等腰三角形(不包括△ABC).(写出两个答案即可)【分析】(1)根据等腰三角形的性质和三角形的内角和即可得到结论;(2)当∠A=90°或108°时,根据等腰三角形的性质即可得到结论.【解答】解:(1)如图1所示:∵AB=AC,∠A=36°,∴当AE=BE,则∠A=∠ABE=36°,则∠AEB=108°,则∠EBC=36°,∴这2个等腰三角形的顶角度数分别是108度和36度;故答案为:108°,36°;(2)当∠A=90°或108°时,在等腰△ABC中画一条线段,能得到2个等腰三角形,故答案为:90°或108°.【点评】此题主要考查了应用作图与设计以及等腰三角形的性质,得出分割图形是解题关键.三、解答题(本题共12小题,共56分)17.计算:+(2﹣π)0﹣()﹣2.【分析】直接利用零指数幂的性质、负指数幂的性质、算术平方根分别化简得出答案.【解答】解:原式=3+1﹣4=0.【点评】此题主要考查了实数运算,正确化简各数是解题关键.18.计算:(1);(2)(x﹣2)2﹣(x+3)(x﹣3).【分析】(1)直接利用二次根式的性质分别化简得出答案;(2)直接利用乘法公式化简求出答案.【解答】解:(1)原式==;(2)原式=x2﹣4x+4﹣x2+9=﹣4x+13.【点评】此题主要考查了实数运算,正确化简二次根式是解题关键.19.在三个整式x2+2xy,y2+2xy,x2中,请你任意选出两个进行加(或减)运算,使所得整式可以因式分解,并进行因式分解.【分析】本题考查整式的加法运算,要先去括号,然后合并同类项,最后进行因式分解.本题答案不唯一.【解答】解:方法一:(x2+2xy)+x2=2x2+2xy=2x(x+y);方法二:(y2+2xy)+x2=(x+y)2;方法三:(x2+2xy)﹣(y2+2xy)=x2﹣y2=(x+y)(x﹣y);方法四:(y2+2xy)﹣(x2+2xy)=y2﹣x2=(y+x)(y﹣x).【点评】本题考查了整式的加减,整式的加减运算实际上就是去括号、合并同类项,因式分解时先考虑提取公因式,没有公因式的再考虑运用完全平方公式或平方差公式进行因式分解.20.解分式方程:+1=.【分析】根据等式的性质,可得整式方程,根据解整式方程,可得答案.【解答】解:方程两边同乘以2(x+3),得4x+2(x+3)=7,解得x=,检验:当x=时,2(x+3)≠0,∴x=是分式方程的解.【点评】本题考查了解分式方程,利用等式的性质得出整式方程是解题关键,要检验方程的根.21.先化简,然后a在﹣2,0,1,2,3中选择一个合适的数代入并求值.【分析】先去括号,然后化除法为乘法进行化简计算,最后代入求值即可.【解答】解:原式===.当a=0时,=.【点评】考查了分式的化简求值,注意:如a取﹣2,2,3时,分式无意义.22.如图,在平面直角坐标系xOy中,△ABC的三个顶点的坐标分别是A(2,3),B(1,0),C(1,2).(1)在图中作出△ABC关于y轴对称的△A1B1C1;(2)如果要使以B、C、D为顶点的三角形与△ABC全等,写出所有符合条件的点D坐标.【分析】(1)利用轴对称变换,即可作出△ABC关于y轴对称的△A1B1C1;(2)依据以B、C、D为顶点的三角形与△ABC全等,可知两个三角形有公共边BC,运用对称性即可得出所有符合条件的点D坐标.【解答】解:(1)如图所示,△A1B1C1即为所求;(2)当△BCD与△BCA关于BC对称时,点D坐标为(0,3),当△BCA与△CBD关于BC的中点对称时,点D坐标为(0,﹣1),△BCA与△CBD关于BC的中垂线对称时,点D坐标为当(2,﹣1).【点评】本题主要考查了利用轴对称变换作图以及全等三角形的判定的运用,解题时注意,成轴对称的两个三角形或成中心对称的两个三角形全等.23.如图,点B、F、C、E在直线l上(F、C之间不能直接测量),点A、D在l异侧,测得AB=DE,AB ∥DE,∠A=∠D.(1)求证:△ABC≌△DEF;(2)若BE=10m,BF=3m,求FC的长度.【分析】(1)先证明∠ABC=∠DEF,再根据ASA即可证明.(2)根据全等三角形的性质即可解答.【解答】(1)证明:∵AB∥DE,∴∠ABC=∠DEF,在△ABC与△DEF中∴△ABC≌△DEF;(2)∵△ABC≌△DEF,∴BC=EF,∴BF+FC=EC+FC,∴BF=EC,∵BE=10m,BF=3m,∴FC=10﹣3﹣3=4m.【点评】本题考查全等三角形的判定和性质、平行线的判定等知识,解题的关键是正确寻找全等三角形的条件,记住平行线的判定方法,属于基础题,中考常考题型.24.列方程解应用题:港珠澳大桥是世界上最长的跨海大桥,是被誉为“现代世界七大奇迹”的超级工程,它是我国从桥梁大国走向桥梁强国的里程碑之作.开通后从香港到珠海的车程由原来的180千米缩短到50千米,港珠澳大桥的设计时速比按原来路程行驶的平均时速多40千米,若开通后按设计时速行驶,行驶完全程时间仅为原来路程行驶完全程时间的,求港珠澳大桥的设计时速是多少.【分析】设港珠澳大桥的设计时速是x千米/时,按原来路程行驶的平均时速是(x﹣40)千米/时.根据“行驶完全程时间仅为原来路程行驶完全程时间的”列出方程并解答.【解答】解:设港珠澳大桥的设计时速是x千米/时,按原来路程行驶的平均时速是(x﹣40)千米/时.依题意,得.解方程,得x=100.经检验:x=100是原方程的解,且符合题意.答:港珠澳大桥的设计时速是每小时100千米.【点评】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.25.如图,AE是△ACD的角平分线,B在DA延长线上,AE∥BC,F为BC中点,判断AE与AF的位置关系并证明.【分析】结论:AE与AF的位置关系是垂直.想办法证明∠CAF+∠CAE=90°即可.【解答】解:结论:AE与AF的位置关系是垂直.证明:∵AE是△ACD的角平分线,∴,∵AE∥BC,∴∠DAE=∠B,∠EAC=∠ACB,∴∠B=∠ACB,∴AB=AC,又∵F为BC中点,∴,∵∠CAB+∠CAD=180°,∴∠CAF+∠CAE=90°,∴AE⊥AF.【点评】本题考查平行线的性质,等腰三角形的判定和性质,角平分线的定义等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.26.阅读下列材料,然后回答问题:观察下列各式,通过分母有理化,把不是最简二次根式的化成最简二次根式:===﹣1.===﹣.(一)还可以用以下方法化简:.(二)(1)请用不同的方法化简.参照(一)式得=﹣;参照(二)式得=﹣;(2)从计算结果中找出规律,并利用这一规律选择下面两个问题中的一个加以解决:1.求的值;2.化简:+++…+.【分析】(一)(1)方法一:利用分母有理化化简;方法二:利用平方差公式把2写成两个数的平方差的形式,然后利用约分化简;(二)1.先把前面括号内的各二次根式分母有理化,然后合并后利用平方差公式计算;2.利用分母有理化得到原式=(﹣1+﹣+…+﹣),然后合并即可.【解答】解:(1)==﹣;==﹣;故答案为﹣;﹣;(2)1.=(﹣1+++﹣+…+﹣)(+1)=(﹣1)(+1)=2019﹣1=2018;2.+++…+=(﹣1+﹣+…+﹣)=.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.27.(1)老师在课上给出了这样一道题目:如图1,等边△ABC边长为2,过AB边上一点P作PE⊥AC 于E,Q为BC延长线上一点,且AP=CQ,连接PQ交AC于D,求DE的长.小明同学经过认真思考后认为,可以通过过点P作平行线构造等边三角形的方法来解决这个问题.请根据小明同学的思路直接写出DE的长.(2)【类比探究】老师引导同学继续研究:1.等边△ABC边长为2,当P为BA的延长线上一点时,作PE⊥CA的延长线于点E,Q为边BC上一点,且AP=CQ,连接PQ交AC于D.请你在图2中补全图形并求DE的长.2.已知等边△ABC,当P为AB的延长线上一点时,作PE⊥射线AC于点E,Q为②(①BC边上;②BC的延长线上;③CB的延长线上)一点,且AP=CQ,连接PQ交直线AC于点D,能使得DE的长度保持不变.(将答案的编号填在横线上)【分析】(1)过点P作PF∥BC交AC于点F,可证△APF是等边三角形,可得EF=AF,通过证明△PDF≌△QDC,可得FD=CD=FC=(AC﹣AF),即可求DE的长;(2)过点P作PF∥BC交CE的延长线于点F,可证△APF是等边三角形,可得EF=AF,通过证明△PDF≌△QDC,可得FD=CD=FC=(AC+AF),即可求DE的长;(3)过点P作PF∥BC交BC的延长线与点F,可证△APF是等边三角形,可得EF=AF,通过证明△PDF≌△QDC,可得FD=CD=FC=(AF﹣AC),即可求DE的长.【解答】解:(1)如图,过点P作PF∥BC交AC于点F,∴∠Q=∠FPD,∠APF=∠ABC,∠AFP=∠ACB,∵△ABC为等边三角形,∴∠ABC=∠ACB=∠BAC=60°,∴∠APF=∠AFP=∠BAC=60°,∴△APF为等边三角形,∴AP=AF=PF,又∵PE⊥AC∴EF=AF,∴PF=AP=CQ,又∠PDF=∠CDQ,∠Q=∠FPD,∴△PDF≌△QDC(AAS),∴FD=CD=FC=(AC﹣AF),∴DE=DF+EF=(AC﹣AF)+AF=AC=1;(2)1、补全的图形如下,过点P作PF∥BC交CE的延长线于点F,∴∠DQC=∠FPD,∠APF=∠ABC,∠AFP=∠ACB,∵△ABC为等边三角形,∴∠ABC=∠ACB=∠BAC=60°,∴∠APF=∠AFP=∠FAP=60°,∴△APF为等边三角形,∴AP=AF=PF,又∵PE⊥AC∴EF=AF,∴PF=AP=CQ,又∠PDF=∠CDQ,∠DQC=∠FPD,∴△PDF≌△QDC(AAS),∴FD=CD=FC=(AC+AF),∴DE=DF﹣EF=(AC+AF)﹣AF=AC=1;2、过点P作PF∥BC交BC的延长线与点F.∴∠DQC=∠FPD,∠APF=∠ABC,∠AFP=∠ACB,∵△ABC为等边三角形,∴∠ABC=∠ACB=∠BAC=60°,∴∠APF=∠AFP=∠BAC=60°,∴△APF为等边三角形,∴AP=AF=PF,又∵PE⊥AC∴EF=AF,∴PF=AP=CQ,∠PDF=∠CDQ,∠DQC=∠FPD,∴△PDF≌△QDC(AAS),∴FD=CD=FC=(AF﹣AC),∴DE=EF﹣DF=(AC+CF)﹣CF=AC=1;答案为②.【点评】本题为三角形综合题,关键是通过作辅助线构建新的等边三角形,再通过证明三角形全等,确定边之间的关系,本题难度不大.28.在平面直角坐标系xOy中,△ABO为等边三角形,O为坐标原点,点A关于y轴的对称点为D,连接AD,BD,OD,其中AD,BD分别交y轴于点E,P.(1)如图1,若点B在x轴的负半轴上时,直接写出∠BDO的度数;(2)如图2,将△ABO绕点O旋转,且点A始终在第二象限,此时AO与y轴正半轴夹角为α,60°<α<90°,依题意补全图形,并求出∠BDO的度数;(用含α的式子表示)(3)在第(2)问的条件下,用等式表示线段BP,PE,PO之间的数量关系.(直接写出结果)【分析】(1)点A关于y轴的对称点为D,求出∠DOE=∠EOA=90°﹣∠AOB=30°,即可求解;(2)∠AOE=∠DOE=α,∠AOB=60°,求出∠BOD即可求解;(3)证明△AOP≌△ABQ(AAS),而EP为△DAQ的中位线,即可求解.【解答】解:(1)∵点A关于y轴的对称点为D,∴∠DOE=∠EOA=90°﹣∠AOB=30°,∴△OAD为等边三角形,∴∠BOD=120°,∴∠BDO==30°;(2)如下图:∵∠AOE=∠DOE=α,∠AOB=60°,∴∠BOD=360°﹣2α﹣60°=300°﹣2α,∵BO=BD,∴∠OBD=∠ODB.∴(3)如上图,连接AP,过点A作AQ∥y轴,交DB的延长线于点Q,∠OBD=∠BDO=α﹣60°,∠ABQ=180°﹣∠ABO﹣∠BDO=180°﹣α,而∠AOP=180°﹣∠AOE=180°﹣α,∴∠ABQ=∠AOP,∵AQ∥y轴,∴∠Q=∠DPE=∠APE,又AB=AO,∴△AOP≌△ABQ(AAS),∴AP=AQ,BQ=PO,∠BAQ=∠OAP,∴∠PAQ=∠QAB+∠BAP=∠BAP+∠PAO=60°,∴△APQ为等边三角形,∴AQ=PQ=PB+BQ=PB+PO,∵AQ∥y轴,E为AD的中点,∴EP为△DAQ的中位线,∴AQ=2EP,∴2PE=BP+PO.【点评】本题是几何变换的综合题,涉及到三角形全等、中位线、等边三角形等知识,关键是通过正确画图,找出全等的三角形,确定线段间的关系.。
2019-2020学年北师大版八年级数学第一学期期末测试题(含答案)

2019-2020学年八年级数学第一学期期末测试卷一、选择题(本大题10小题,每小题3分,共30分.)在每小题列出的四个选项中,只有个正确选项,请将正确答案写在答题卷的相应位置1.下列实数中,不是无理数的是()A.B.﹣C.2π(π表示圆周率)D.22.下列各点中,位于第二象限的是()A.(8,﹣1)B.(8,0)C.(﹣,3)D.(0,﹣4)3.下列各组数据中,不是勾股数的是()A.3,4,5B.7,24,25C.8,15,17D.5,7,94.如图,在△ABC中,∠A=80°,点D在BC的延长线上,∠ACD=145°,则∠B是()A.45°B.55°C.65°D.75°5.某小组长统计组内5人一天在课堂上的发言次数分別为3,3,0,4,5.关于这组数据,下列说法错误的是()A.众数是3B.中位数是0C.平均数3D.方差是2.86.一次函数y=﹣2x﹣1的图象大致是()A.B.C.D.7.如图所示,下列推理及括号中所注明的推理依据错误的是()A.∵∠1=∠3,∴AB∥CD(内错角相等,两直线平行)B.∵AB∥CD,∴∠1=∠3(两直线平行,内错角相等)C.∵AD∥BC,∴∠BAD+∠ABC=180°(两直线平行,同旁内角互补)D.∵∠DAM=∠CBM,∴AB∥CD(两直线平行,同位角相等)8.下列说法正确的是()A.1的平方根是1B.﹣8的立方根是﹣2C.=±2D.=﹣29.小明中午放学回家自己煮面条吃,有下面几道工序:(1)洗锅盛水2分钟;(2)洗菜3分钟;(3)准备面条及佐料2分钟;(4)用锅把水烧开7分钟;(5)用烧开的水煮面条和菜要3分钟.以上各工序除(4)外,一次只能进行一道工序,小明要将面条煮好,最少用()A.14分钟B.13分钟C.12分钟D.11分钟10.体育课上,20人一组进行足球比赛,每人射点球5次,已知某一组的进球总数为49个,进球情况记录如下表,其中进2个球的有x人,进3个球的有y人,由题意列出关于x与y的方程组为()A.B.C.D.二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案写在答题卷的相应位置11.计算:=;|﹣|=.12.命题“若a2>b2,则a>b”的逆命题是,该逆命题是(填“真”或“假”)命题.13.计算:(3+)()=.14.小明某学期的数学平时成绩70分,期中考试80分,期末考试85分,若计算学期总评成绩的方法如下:平时:期中:期末=3:3:4,则小明总评成绩是分.15.有大小两种货车,2辆大货车与1辆小货车一次可以运货7吨,1辆大货车与2辆小货车一次可以运货5吨.则1辆大货车与1辆小货车一次可以运货吨.16.在平面直角坐标系xOy中,点A1,A2,A3,…和B1,B2,B3,…分别在直线y=kx+b和x轴上.△OA1B1,△B1A2B2,△B2A3B3,…都是等腰直角三角形,如果A1(1,1),A2(,).那么点A3的纵坐标是,点A2013的纵坐标是.三、解答题(一)(本大题共3小题,每小题6分,共18分)17.计算:(2﹣1)2﹣()÷.18.解方程组:19.如图,在平面直角坐标系中,Rt△ABC的三个顶点坐标为A(﹣3,0),B(﹣3,﹣3),C (﹣1,﹣3)(1)填空:AC=;(2)在图中作出△ABC关于x轴对称的图形△DEF.四、解答题(二)(本大题共3小题,每小题7分,共21分)20.据市旅游局发布信息,今年春节假期期间,我市外来与外出旅游的总人数为226万人,分别比去年同期增长30%和20%,去年同期外来旅游比外出旅游的人数多20万人.求我市去年外来和外出旅游的人数.21.我区某中学开展“社会主义核心价值观”演讲比赛活动,九(1)、九(2)班根据初赛成绩各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩(满分为100分)如图所示.根据图中数据解决下列问题:(1)九(1)班复赛成绩的中位数是分,九(2)班复赛成绩的众数是分;(2)小明同学已经算出了九(1)班复赛的平均成绩=85分;方差S2=[(85﹣85)2+(75﹣85)2+(80﹣85)2+(85﹣85)2+(100﹣85)2]=70(分2),请你求出九(2)班复赛的平均成绩x2和方差S22;(3)根据(2)中计算结果,分析哪个班级的复赛成绩较好?22.已知,直线PQ∥MN,△ABC的顶点A与B分别在直线MN与PQ上,点C在直线AB的右侧,且∠C=45°,设∠CBQ=∠α,∠CAN=∠β.(1)如图1,当点C落在PQ的上方时,AC与PQ相交于点D,求证:∠β=∠α+45°.请将下列推理过程补充完整:证明:∵∠CDQ是△CBD的一个外角(三角形外角的定义),∴∠CDQ=∠α+∠C(三角形的一个外角等于和它不相邻的两个内角的和)∵PQ∥MN(),∴∠CDQ=∠β().∴∠β=(等量代换).∵∠C=45°(已知),∴∠β=∠α+45°(等量代换)(2)如图2,当点C落在直线MN的下方时,BC与MN交于点F,请判断∠α与∠β的数量关系,并说明理由.五、解答题(本大题共3小题,每小题9分,共27分)请将正确答案写在答题卷的相应位置23.如图1所示,小亮家与学校之间有一超市,小亮骑车由家匀速行驶去学校,然后在校学习8小时.最后放学骑车匀速回家(上学与放学均不在超市停留).图2中的折线OABC表示小亮离家的距离y(km)与离家的时间x(h)之间的函数关系.根据已上信息,解答下列问题:(1)小亮上学的速度为km/h,放学回家的速度为km/h;(2)求线段BC所表示的y与x之间的函数关系;(3)如果小亮两次经过超市的时间间隔为8.48小时,那么超市离小亮家多远?24.如图,在△ABC中,∠C=90°,将△ACE沿着AE折叠以后C点正好落在AB边上的点D处.(1)当∠B=28°时,求∠AEC的度数;(2)当AC=6,AB=10时,①求线段BC的长;②求线段DE的长.25.已知:如图,在平面直角坐标系中,点O是坐标系原点,在△AOC中,OA=OC,点A坐标为(﹣3,4),点C在x轴的正半轴上,直线AC交y轴于点M,将△AOC沿AC折叠得到△ABC,请解答下列问题:(1)点C的坐标为;(2)求线段OM的长;(3)求点B的坐标.2019-2020学年八年级数学第一学期期末测试卷参考答案与试题解析一、选择题(本大题10小题,每小题3分,共30分.)在每小题列出的四个选项中,只有个正确选项,请将正确答案写在答题卷的相应位置1.下列实数中,不是无理数的是()A.B.﹣C.2π(π表示圆周率)D.2【分析】根据无理数、有理数的定义逐一对每个选择支进行判断.【解答】解:是分数,属于有理数,故选项A正确;﹣,2π,2是无理数.故选:A.【点评】此题主要考查了无理数的定义,注意:带根号的开不尽方的数是无理数,无限不循环小数为无理数,含π的数是无理数.如2π,,0.8080080008…(每两个8之间依次多1个0)等形式.2.下列各点中,位于第二象限的是()A.(8,﹣1)B.(8,0)C.(﹣,3)D.(0,﹣4)【分析】依据位于第二象限的点的横坐标为负,纵坐标为正,即可得到结论.【解答】解:∵位于第二象限的点的横坐标为负,纵坐标为正,∴位于第二象限的是(﹣,3)故选:C.【点评】本题主要考查了点的坐标,解题时注意:位于第二象限的点的横坐标为负,纵坐标为正.3.下列各组数据中,不是勾股数的是()A.3,4,5B.7,24,25C.8,15,17D.5,7,9【分析】欲判断是否为勾股数,必须根据勾股数是正整数,同时还需验证两小边的平方和是否等于最长边的平方.【解答】解:A、32+42=52,能构成直角三角形,是整数,故错误;B、72+242=252,能构成直角三角形,是整数,故错误;C、82+152=172,构成直角三角形,是正整数,故错误;D、52+72≠92,不能构成直角三角形,故正确;故选:D.【点评】此题主要考查了勾股数的定义,熟记勾股数的定义是解题的关键.4.如图,在△ABC中,∠A=80°,点D在BC的延长线上,∠ACD=145°,则∠B是()A.45°B.55°C.65°D.75°【分析】利用三角形的外角的性质即可解决问题;【解答】解:在△ABC中,∵∠ACD=∠A+∠B,∠A=80°,∠ACD=145°,∴∠B=145°﹣80°=65°,故选:C.【点评】本题考查三角形的外角,解题的关键是熟练掌握基本知识,属于中考常考题型.5.某小组长统计组内5人一天在课堂上的发言次数分別为3,3,0,4,5.关于这组数据,下列说法错误的是()A.众数是3B.中位数是0C.平均数3D.方差是2.8【分析】根据方差、众数、平均数、中位数的含义和求法,逐一判断即可.【解答】解:将数据重新排列为0,3,3,4,5,则这组数的众数为3,中位数为3,平均数为=3,方差为×[(0﹣3)2+2×(3﹣3)2+(4﹣3)2+(5﹣3)2]=2.8,故选:B.【点评】本题考查了众数、中位数、平均数以及方差,解题的关键是牢记概念及公式.6.一次函数y=﹣2x﹣1的图象大致是()A.B.C.D.【分析】先根据一次函数的系数判断出函数图象所经过的象限,由此即可得出结论.【解答】解:在y=﹣2x﹣1中,∵﹣2<0,﹣1<0,∴此函数的图象经过二、三、四象限,故选:D.【点评】本题考查的是一次函数的图象,熟知当k<0,b>0时,一次函数y=kx+b的图象在一、二、四象限是解答此题的关键.7.如图所示,下列推理及括号中所注明的推理依据错误的是()A.∵∠1=∠3,∴AB∥CD(内错角相等,两直线平行)B.∵AB∥CD,∴∠1=∠3(两直线平行,内错角相等)C.∵AD∥BC,∴∠BAD+∠ABC=180°(两直线平行,同旁内角互补)D.∵∠DAM=∠CBM,∴AB∥CD(两直线平行,同位角相等)【分析】依据内错角相等,两直线平行;两直线平行,内错角相等;两直线平行,同旁内角互补;同位角相等,两直线平行进行判断即可.【解答】解:A.∵∠1=∠3,∴AB∥CD(内错角相等,两直线平行),正确;B.∵AB∥CD,∴∠1=∠3(两直线平行,内错角相等),正确;C.∵AD∥BC,∴∠BAD+∠ABC=180°(两直线平行,同旁内角互补),正确;D.∵∠DAM=∠CBM,∴AD∥BC(同位角相等,两直线平行),错误;故选:D.【点评】本题主要考查了平行线的性质与判定,平行线的判定是由角的数量关系判断两直线的位置关系.平行线的性质是由平行关系来寻找角的数量关系.8.下列说法正确的是()A.1的平方根是1B.﹣8的立方根是﹣2C.=±2D.=﹣2【分析】根据平方根、算术平方根的定义逐一判别可得.【解答】解:A.1的平方根是±1,此选项错误;B.﹣8的立方根是﹣2,此选项正确;C.=2,此选项错误;D.=2,此选项错误;故选:B.【点评】本题主要考查平方根与立方根,解题的关键是掌握平方根和算术平方根及立方根的定义.9.小明中午放学回家自己煮面条吃,有下面几道工序:(1)洗锅盛水2分钟;(2)洗菜3分钟;(3)准备面条及佐料2分钟;(4)用锅把水烧开7分钟;(5)用烧开的水煮面条和菜要3分钟.以上各工序除(4)外,一次只能进行一道工序,小明要将面条煮好,最少用()A.14分钟B.13分钟C.12分钟D.11分钟【分析】根据统筹方法,烧开水时可洗菜和准备面条及佐料,这样可以节省时间,所以小明所用时间最少为(1)、(4)、(5)步时间之和.【解答】解:第一步,洗锅盛水花2分钟;第二步,用锅把水烧开7分钟,同时洗菜3分钟,准备面条及佐料2分钟,总计7分钟;第三步,用烧开的水煮面条和菜要3分钟.总计共用2+7+3=12分钟.故选:C.【点评】解决问题的关键是读懂题意,采用统筹方法是生活中常用的有效节省时间的方法,本题将数学知识与生活相结合,是一道好题.10.体育课上,20人一组进行足球比赛,每人射点球5次,已知某一组的进球总数为49个,进球情况记录如下表,其中进2个球的有x人,进3个球的有y人,由题意列出关于x与y的方程组为()A.B.C.D.【分析】设进2个球的有x人,进3个球的有y人,根据20人共进49个球,即可得出关于x,y的二元一次方程组,此题得解.【解答】解:设进2个球的有x人,进3个球的有y人,根据题意得:,即.故选:A.【点评】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案写在答题卷的相应位置11.计算:=;|﹣|=2.【分析】根据二次根式的分母有理化和二次根式的性质分别计算可得.【解答】解:==,|﹣|==2,故答案为:,2.【点评】本题主要考查二次根式的分母有理化,解题的关键是掌握二次根式的有理化方法和二次根式的性质.12.命题“若a2>b2,则a>b”的逆命题是如a>b,则a2>b2,,该逆命题是(填“真”或“假”)假命题.【分析】先写出命题的逆命题,然后在判断逆命题的真假.【解答】解:如a2>b2,则a>b”的逆命题是:如a>b,则a2>b2,假设a=1,b=﹣2,此时a>b,但a2<b2,即此命题为假命题.故答案为:如a>b,则a2>b2,假.【点评】此题考查了命题与定理的知识,写出一个命题的逆命题的关键是分清它的题设和结论,然后将题设和结论交换.在写逆命题时要用词准确,语句通顺.13.计算:(3+)()=+1.【分析】利用多项式乘法展开,然后合并即可.【解答】解:原式=3﹣6+7﹣2=+1.故答案为+1.【点评】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.14.小明某学期的数学平时成绩70分,期中考试80分,期末考试85分,若计算学期总评成绩的方法如下:平时:期中:期末=3:3:4,则小明总评成绩是79分.【分析】按3:3:4的比例算出本学期数学总评分即可.【解答】解:本学期数学总评分=70×30%+80×30%+85×40%=79(分).故答案为:79.【点评】本题考查了加权成绩的计算,平时成绩:期中考试成绩:期末考试成绩=3:3:4的含义就是分别占总数的30%、30%、40%.15.有大小两种货车,2辆大货车与1辆小货车一次可以运货7吨,1辆大货车与2辆小货车一次可以运货5吨.则1辆大货车与1辆小货车一次可以运货4吨.【分析】设1辆大货车一次可以运货x吨,1辆小货车一次可以运货y吨,由“2辆大货车与1辆小货车一次可以运货7吨,1辆大货车与2辆小货车一次可以运货5吨”,即可得出关于x,y的二元一次方程组,将方程组的两方程相加再除以3,即可求出结论.【解答】解:设1辆大货车一次可以运货x吨,1辆小货车一次可以运货y吨,根据题意得:,(①+②)÷3,得:x+y=4.故答案为:4.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.16.在平面直角坐标系xOy中,点A1,A2,A3,…和B1,B2,B3,…分别在直线y=kx+b和x轴上.△OA1B1,△B1A2B2,△B2A3B3,…都是等腰直角三角形,如果A1(1,1),A2(,).那么点A3的纵坐标是,点A2013的纵坐标是()2012.【分析】先求出直线y =kx +b 的解析式,求出直线与x 轴、y 轴的交点坐标,求出直线与x 轴的夹角的正切值,分别过等腰直角三角形的直角顶点向x 轴作垂线,然后根据等腰直角三角形斜边上的高线与中线重合并且等于斜边的一半,利用正切值列式依次求出三角形的斜边上的高线,即可得到A 3的坐标,进而得出各点的坐标的规律.【解答】解:∵A 1(1,1),A 2(,)在直线y =kx +b 上,∴,解得,∴直线解析式为y =x +;设直线与x 轴、y 轴的交点坐标分别为N 、M ,当x =0时,y =,当y =0时, x +=0,解得x =﹣4,∴点M 、N 的坐标分别为M (0,),N (﹣4,0),∴tan ∠MNO ===,作A 1C 1⊥x 轴与点C 1,A 2C 2⊥x 轴与点C 2,A 3C 3⊥x 轴与点C 3,∵A 1(1,1),A 2(,),∴OB 2=OB 1+B 1B 2=2×1+2×=2+3=5,tan ∠MNO ===,∵△B 2A 3B 3是等腰直角三角形,∴A 3C 3=B 2C 3,∴A 3C 3==()2,同理可求,第四个等腰直角三角形A 4C 4==()3,依此类推,点A n 的纵坐标是()n ﹣1.∴A2013=()2012故答案为:,()2012.【点评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.三、解答题(一)(本大题共3小题,每小题6分,共18分)17.计算:(2﹣1)2﹣()÷.【分析】先利用二次根式的除法法则和完全平方公式运算,然后把各二次根式化简为最简二次根式后合并即可.【解答】解:原式=8﹣4+1﹣(﹣)=9﹣4﹣2+=9﹣5.【点评】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.18.解方程组:【分析】方程组利用代入消元法求出解即可.【解答】解:,把①代入②得:3x﹣2x+3=8,解得:x=5,把x=5代入①得y=7,则原方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.19.如图,在平面直角坐标系中,Rt△ABC的三个顶点坐标为A(﹣3,0),B(﹣3,﹣3),C(﹣1,﹣3)(1)填空:AC=;(2)在图中作出△ABC关于x轴对称的图形△DEF.【分析】(1)利用勾股定理求解可得;(2)分别作出点B与点C关于x轴的对称图形,再与点A首尾顺次连接即可得.【解答】解:(1)AC==,故答案为:;(2)所画图形如下所示,其中△DEF即为所求,【点评】本题主要考查作图﹣轴对称变换,解题的关键是熟练掌握轴对称变换的定义和性质,并据此得出变换后的对应点及勾股定理.四、解答题(二)(本大题共3小题,每小题7分,共21分)20.据市旅游局发布信息,今年春节假期期间,我市外来与外出旅游的总人数为226万人,分别比去年同期增长30%和20%,去年同期外来旅游比外出旅游的人数多20万人.求我市去年外来和外出旅游的人数.【分析】设我市去年外来旅游的有x万人,外出旅游的有y万人,根据去年同期外来旅游比外出旅游的人数多20万人及今年外来与外出旅游的人数与去年人数之间的关系,即可得出关于x,y的二元一次方程组,解之即可得出结论.【解答】解:设我市去年外来旅游的有x万人,外出旅游的有y万人,根据题意得:,解得:.答:我市去年外来旅游的有100万人,外出旅游的有80万人,【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.21.我区某中学开展“社会主义核心价值观”演讲比赛活动,九(1)、九(2)班根据初赛成绩各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩(满分为100分)如图所示.根据图中数据解决下列问题:(1)九(1)班复赛成绩的中位数是85分,九(2)班复赛成绩的众数是100分;(2)小明同学已经算出了九(1)班复赛的平均成绩=85分;方差S2=[(85﹣85)2+(75﹣85)2+(80﹣85)2+(85﹣85)2+(100﹣85)2]=70(分2),请你求出九(2)班复赛的平均成绩x2和方差S22;(3)根据(2)中计算结果,分析哪个班级的复赛成绩较好?【分析】(1)利用众数、中位数的定义分别计算即可;(2)利用平均数和方差的公式计算即可;(3)利用方差的意义进行判断.【解答】解:(1)九(1)班复赛成绩的中位数是85分,九(2)班复赛成绩的众数是100分;故答案为:85,100;(2)九(2)班的选手的得分分别为70,100,100,75,80,所以九(2)班成绩的平均数=(70+100+100+75+80)=85,九(2)班的方差S22=[(70﹣85)2+(100﹣85)2+(100﹣85)2+(75﹣85)2+(80﹣85)2]=160;(3)平均数一样的情况下,九(1)班方差小,所以九(1)班的成绩比较稳定.【点评】本题考查了方差:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了统计图.22.已知,直线PQ∥MN,△ABC的顶点A与B分别在直线MN与PQ上,点C在直线AB的右侧,且∠C=45°,设∠CBQ=∠α,∠CAN=∠β.(1)如图1,当点C落在PQ的上方时,AC与PQ相交于点D,求证:∠β=∠α+45°.请将下列推理过程补充完整:证明:∵∠CDQ是△CBD的一个外角(三角形外角的定义),∴∠CDQ=∠α+∠C(三角形的一个外角等于和它不相邻的两个内角的和)∵PQ∥MN(已知),∴∠CDQ=∠β(两直线平行,同位角相等).∴∠β=∠α+∠C(等量代换).∵∠C=45°(已知),∴∠β=∠α+45°(等量代换)(2)如图2,当点C落在直线MN的下方时,BC与MN交于点F,请判断∠α与∠β的数量关系,并说明理由.【分析】(1)根据题意可以写出推理过程,从而可以解答本题;(2)根据三角形外角的性质和三角形的内角和即可得到结论..【解答】解:(1)证明:∵∠CDQ是△CBD的一个外角(三角形外角的定义),∴∠CDQ=∠α+∠C(三角形的一个外角等于和它不相邻的两个内角的和)∵PQ∥MN(已知),∴∠CDQ=∠β(两直线平行,同位角相等).∴∠β=∠α+∠C(等量代换).∵∠C=45°(已知),∴∠β=∠α+45°(等量代换);故答案为:已知,两直线平行,同位角相等,∠α+∠C,(2)证明:∵∠CFN是△ACF的一个外角(三角形外角的定义),∴∠CFN=∠β+∠C(三角形的一个外角等于和它不相邻的两个内角的和),∵PQ∥MN(已知),∴∠CFN=∠α(两直线平行,同位角相等)∴∠α=∠β+∠C(等量代换).∵∠C=45°(已知),∴∠α=∠β+45°(等量代换).【点评】本题考查了三角形外角的性质,平行线的性质,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.五、解答题(本大题共3小题,每小题9分,共27分)请将正确答案写在答题卷的相应位置23.如图1所示,小亮家与学校之间有一超市,小亮骑车由家匀速行驶去学校,然后在校学习8小时.最后放学骑车匀速回家(上学与放学均不在超市停留).图2中的折线OABC表示小亮离家的距离y(km)与离家的时间x(h)之间的函数关系.根据已上信息,解答下列问题:(1)小亮上学的速度为5km/h,放学回家的速度为3km/h;(2)求线段BC所表示的y与x之间的函数关系;(3)如果小亮两次经过超市的时间间隔为8.48小时,那么超市离小亮家多远?【分析】(1)根据题意和图象中的数据可以求得小亮上学的速度和放学回家的速度;(2)根据图象中的数据和题意可以求得线段BC所表示的y与x之间的函数关系;(3)由题意可知,小明从家到超市和从超市到家的时间之和是总的时间减去两次经过超市的时间间隔,从而可以解答本题.【解答】解:(1)由题意可得,小明上学的速度为:3÷0.6=5km/h,放学回家的速度为:3÷(9.6﹣0.6﹣8)=3km/h,故答案为:5,3;(2)设线段BC所表示的y与x之间的函数关系式为y=kx+b,将B(8.6,3)、C(9.6,0)代入y=kx+b,得,得,∴线段BC所表示的y与x之间的函数关系式为y=﹣3x+28.8(8.6≤x≤9.6);(3)设超市离家skm,=9.6﹣8.48,解得:s=2.1.答:超市离家2.1km.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.24.如图,在△ABC中,∠C=90°,将△ACE沿着AE折叠以后C点正好落在AB边上的点D处.(1)当∠B=28°时,求∠AEC的度数;(2)当AC=6,AB=10时,①求线段BC的长;②求线段DE的长.【分析】(1)在Rt△ABC中,利用互余得到∠BAC=62°,再根据折叠的性质得∠CAE=∠CAB =31°,然后根据互余可计算出∠AEC=59°;(2)①在Rt△ABC中,利用勾股定理即可得到BC的长;②设DE=x,则EB=BC﹣CE=8﹣x,依据勾股定理可得,Rt△BDE中DE2+BD2=BE2,再解方程即可得到DE的长.【解答】解:(1)在Rt△ABC中,∠ABC=90°,∠B=28°,∴∠BAC=90°﹣28°=62°,∵△ACE沿着AE折叠以后C点正好落在点D处,∴∠CAE=∠CAB=×62°=31°,Rt△ACE中,∠ACE=90°∴∠AEC=90°﹣31°=59°.(2)①在Rt△ABC中,AC=6,AB=10,∴BC===8.②∵△ACE沿着AE折叠以后C点正好落在点D处,∴AD=AC=6,CE=DE,∴BD=AB﹣AD=4,设DE=x,则EB=BC﹣CE=8﹣x,∵Rt△BDE中,DE2+BD2=BE2,∴x2+42=(8﹣x)2,解得x=3.即DE的长为3.【点评】本题考查了折叠问题,折叠是一种对称变换,它属于轴对称,解题时常设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.25.已知:如图,在平面直角坐标系中,点O是坐标系原点,在△AOC中,OA=OC,点A坐标为(﹣3,4),点C 在x 轴的正半轴上,直线AC 交y 轴于点M ,将△AOC 沿AC 折叠得到△ABC ,请解答下列问题:(1)点C 的坐标为 (5,0) ;(2)求线段OM 的长;(3)求点B 的坐标.【分析】(1)利用勾股定理求出OA 的长即可解决问题;(2)求出直线AC 的解析式,利用待定系数法即可解决问题;(3)只要证明AB =AC =5,AB ∥x 轴,即可解决问题;【解答】解:(1)∵A (﹣3,4),∴OA ==5,∴OA =OC =5,∴C (5,0),故答案为(5,0);(2)设直线AC 的解析式y =kx +b ,函数图象过点A 、C ,得,解得,∴直线AC 的解析式y =﹣x +,当x =0时,y =,即M (0,),∴OM =.(3)∵△AOC沿着AC折叠得到△ABC,∴OA=BA,OC=BC,且∠ACO=∠ACB,又∵OA=OC,∴AB=AC=OC,∴∠BAC=∠ACB,∴∠ACO=∠BAC,∴AB∥x轴,由(1)知,C(5,0),∴OC=5.∵AB=AC=OC,∴AB=5.∵A坐标为(﹣3,4),AB∥x轴,∴B坐标为(2,4).【点评】本题属于三角形综合题,考查了翻折变换,等腰三角形的性质,一次函数的应用等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.。
2019-2020学年湖北省武汉市东西湖区、硚口区八年级(上)期末数学试卷

2019-2020学年湖北省武汉市东西湖区、硚口区八年级(上)期末数学试卷一、选择题(共10小题,每小题3分,共30分)下列各題中均有四个备选答案,其中有且只有一个正确,请在答题卡上将正确答案的字母代号涂黑1.(3分)纳米是长度单位,纳米技术已广泛应用于各个领域,已知1纳米0.000000001=米,某原子的直径大约是2纳米,用科学记数法表示该原子的直径约为( ) A .90.210-⨯米B .8210-⨯米C .9210-⨯米D .10210-⨯米2.(3分)下列运算正确的是( ) A .236a a a =g B .235()a a =C .236(2)8a a =D .623a a a ÷=3.(3分)若分式22x x +-的值为0,则x 的值是( ) A .2-B .2C .2±D .任意实数4.(3分)下列各式中,从左到右的变形是因式分解的是( ) A .24814(2)1x x x x +-=+- B .2(3)(3)9x x x +-=- C .221(1)x x x -+=-D .256(1)(6)x x x x --=+-5.(3分)下列分式中,是最简分式的是( )A .93b aB .a b b a--C .242a a --D .242a a ++6.(3分)运用乘法公式计算(23)(23)x y x y +--+,下列结果正确的是( )A .22469x y y --+B .22469x y y -+-C .22469x y y +-+D .22469x y y --- 7.(3分)一个三角形的两边长分别为2和5,且第三边长为整数,这样的三角形的周长最大值是( ) A .11B .12C .13D .148.(3分)一个圆柱形容器的容积为32Vm ,开始用一个小水管向容积内注水,水面高度达到容积的一半后,改用一根口径(直径)为小水管2倍的大水管注水,向容器中注满水的全过程共用时间tmin 设小水管的注水速度为3/xm min ,则下列方程正确的是( ) A .2V Vt x x+= B .4V V t x x+= C .24V V t x x+= D .24V V t x x+= 9.(3分)将大小不同的两个正方形按图1,图2的方式摆放.若图1中阴影部分的面积是20,图2中阴影部分的面积是14,则大正方形的边长是( )A .6B .7C .8D .910.(3分)如图,在Rt ABC ∆中,90ACB ∠=︒,点D 在AB 上,连接CD ,将BCD ∆沿直线CD 翻折后,点B 恰好落在边AC 的E 点处,若:5:3CE AE =,20ABC S ∆=,则点D 到AC 的距离是( )A .4013B .2013C .4D .3二、填空题(共6小题,每小题3分,共18分) 11.(3分)分式1xx +有意义的条件是 . 12.(3分)若27m a a a =g ,则m 的值为 .13.(3分)如果2249x mxy y -+是一个完全平方式,则m = . 14.(3分)已知实数a ,b 满足3a b -=,2ab =,则a b +的值为 . 15.(3分)式子2347x x ++的最大值为 . 16.(3分)问题背景:如图1,点C 为线段AB 外一动点,且2AB AC ==,若BC CD =,60BCD ∠=︒,连接AD ,求AD 的最大值. 解决方法:以AC 为边作等边ACE ∆,连接BE ,推出BE AD =,当点E 在BA 的延长线上时,线段AD 取得最大值4. 问题解决:如图2,点C 为线段AB 外一动点,且2AB AC ==,若BC CD =,90BCD ∠=︒,连接AD ,当AD 取得最大值时,ACD ∠的度数为 .三、解答题(共8小题,共72分) 17.(8分)解方程:153x x =+. 18.(8分)因式分解 (1)316x x -; (2)22344xy x y y --19.(8分)如图,90ACB ∠=︒,AC BC =,AD CE ⊥,BE CE ⊥,垂足分别为D ,E ,3AD =,2DE =,求BE 的长.20.(8分)(1)计算:242332[5(2)](3)a a a a +-÷g (2)先化简,再求值:24(2)23x x x x x-++--g,其中5x =. 21.(8分)如图是由边长为1的小正方形构成的网格,每个小正方形的顶点叫做格点,ABC ∆的顶点在格点,请选择适当的格点,用无刻度的直尺在网格中完成下列画图,保留连线的痕迹,不要求说明理由.(1)如图1,作ABC ∆关于直线l 的对称图形△111A B C ;(2)如图2,作ABC∆的高CD;(3)如图3,作ABC∆的中线CE;(4)如图4,在直线l上作出一条长度为1个单位长度的线段(MN M在N的上方),使++的值最小.AM MN NB22.(10分)两个工程队共同参与一项筑路工程.若先由甲、乙两队合作30天,剩下的工程再由乙队单独做15天可以完成,共需施工费810万元若由甲、乙合作完成此项工程共需36天,共需施工费828万元.(1)求乙队单独完成这项工程需多少天(2)甲、乙两队每天的施工费各为多少万元?(3)若工程预算的总费用不超过840万元,则乙队最少施工多少天?23.(10分)在等边ABC∆中,点E,F分别在边AB,BC上.(1)如图1,若AE BF∆,AF交CE于点O,连接OD.=,以AC为边作等边ACD求证:①AF CE=;②OD平分AOC∠;(2)如图2,若2=.∠=∠,CP交AF的延长线于点P,求证:CE CP AE CF=,作BCP AEC24.(12分)在Rt ABC∠=︒,点D是BC上一点.ACB∆中,AC BC=,90(1)如图1,AD平分BAC=+;∠,求证:AB AC CD(2)如图2,点E在线段AD上,且45∠=︒,求证:2CED∠=︒,30BEDBE AE=;(3)如图3,CD BD=,过B点作BM AD⊥交AD的延长线于点M,连接CM,过C点作CN CM⊥交AD于N,求证:3=.DN DM2019-2020学年湖北省武汉市东西湖区、硚口区八年级(上)期末数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)下列各題中均有四个备选答案,其中有且只有一个正确,请在答题卡上将正确答案的字母代号涂黑1.(3分)纳米是长度单位,纳米技术已广泛应用于各个领域,已知1纳米0.000000001=米,某原子的直径大约是2纳米,用科学记数法表示该原子的直径约为( ) A .90.210-⨯米B .8210-⨯米C .9210-⨯米D .10210-⨯米【解答】解:1Q 纳米0.000= 000 001米910-=米,2∴纳米9210-=⨯米.故选:C .2.(3分)下列运算正确的是( ) A .236a a a =gB .235()a a =C .236(2)8a a =D .623a a a ÷=【解答】解:235a a a =Q g ,故选项A 错误; 236()a a =Q ,故选项B 错误; 236(2)8a a =Q ,故选项C 正确;624a a a ÷=Q ,故选项D 错误; 故选:C . 3.(3分)若分式22x x +-的值为0,则x 的值是( ) A .2-B .2C .2±D .任意实数【解答】解:Q 分式22x x +-的值为0, 20x ∴+=, 解得:2x =-. 故选:A .4.(3分)下列各式中,从左到右的变形是因式分解的是( ) A .24814(2)1x x x x +-=+- B .2(3)(3)9x x x +-=- C .221(1)x x x -+=-D .256(1)(6)x x x x --=+-【解答】解:根据分解因式的定义可知:D 选项是把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解, 故选:D .5.(3分)下列分式中,是最简分式的是( )A .93b aB .a bb a --C .242a a --D .242a a ++【解答】解:A .原式3ba =,所以A 选项不符合题意;B .原式1=-,所以B 选项不符合题意;C .原式2a =+, 所以C 选项不符合题意;D .原式是最简分式.故选:D .6.(3分)运用乘法公式计算(23)(23)x y x y +--+,下列结果正确的是( )A .22469x y y --+B .22469x y y -+-C .22469x y y +-+D .22469x y y --- 【解答】解:原式22224(3)469x y x y y =--=-+-. 故选:B .7.(3分)一个三角形的两边长分别为2和5,且第三边长为整数,这样的三角形的周长最大值是( ) A .11B .12C .13D .14【解答】解:设第三边为a ,根据三角形的三边关系,得:5252a -<<+, 即27a <<, a Q 为整数,a ∴的最大值为6,则三角形的最大周长为62513++=. 故选:C .8.(3分)一个圆柱形容器的容积为32Vm ,开始用一个小水管向容积内注水,水面高度达到容积的一半后,改用一根口径(直径)为小水管2倍的大水管注水,向容器中注满水的全过程共用时间tmin 设小水管的注水速度为3/xm min ,则下列方程正确的是( ) A .2V Vt x x+= B .4V V t x x+= C .24V V t x x+= D .24V V t x x+= 【解答】解:设小水管的注水速度为x 立方米/分钟,可得:4V V t x x+=, 故选:B .9.(3分)将大小不同的两个正方形按图1,图2的方式摆放.若图1中阴影部分的面积是20,图2中阴影部分的面积是14,则大正方形的边长是( )A .6B .7C .8D .9【解答】解:设大正方形的边长为a ,小正方形的边长为b ,根据题意可得:11()2022ab b a b +-=,1142ab =, 解得:7a =. 故选:B .10.(3分)如图,在Rt ABC ∆中,90ACB ∠=︒,点D 在AB 上,连接CD ,将BCD ∆沿直线CD 翻折后,点B 恰好落在边AC 的E 点处,若:5:3CE AE =,20ABC S ∆=,则点D 到AC 的距离是( )A .4013B .2013C .4D .3【解答】解:设点D 到AC 的距离为h ,Q 将BCD ∆沿直线CD 翻折后,点B 恰好落在边AC 的E 点处,BC CE ∴=,:5:3CE AE =Q ,∴设5BC CE x ==,3AE x =,8AC x ∴=,120582ABC S x x ∆==⨯⨯Q ,1x ∴=,5BC ∴=,8CA =,1816021313ADC ABC S AC h S ∆∆=⨯⨯==Q , ∴点D 到AC 的距离4013h =, 故选:A .二、填空题(共6小题,每小题3分,共18分) 11.(3分)分式1xx +有意义的条件是 1x ≠- . 【解答】解:由1xx +有意义,得 10x +≠, 解得1x ≠-. 故答案为:1x ≠-.12.(3分)若27m a a a =g ,则m 的值为 5 . 【解答】解:根据同底数幂的乘法法则: 同底数幂相乘,底数不变,指数相加. 得27m += 解得5m =. 故答案为5.13.(3分)如果2249x mxy y -+是一个完全平方式,则m = 12± . 【解答】解:2249x mxy y -+Q 是一个完全平方式,223mxy x y ∴-=±⨯⨯, 12m ∴=±.14.(3分)已知实数a ,b 满足3a b -=,2ab =,则a b +的值为 【解答】解:因为3a b -=,2a b =g ,所以222()2a b a b ab +=-+2322=+⨯ 94=+13=,所以222()2a b a b ab +=++1322=+⨯17=,所以a b +=故答案为:15.(3分)式子3的最大值为 3 【解答】解:2247(2)3x x x ++=++Q ,∴当2x =-时,247x x ++最小为3,此时3最大,故原式的最大值为:3.故答案为:3 16.(3分)问题背景:如图1,点C 为线段AB 外一动点,且2AB AC ==,若BC CD =,60BCD ∠=︒,连接AD ,求AD 的最大值. 解决方法:以AC 为边作等边ACE ∆,连接BE ,推出BE AD =,当点E 在BA 的延长线上时,线段AD 取得最大值4. 问题解决:如图2,点C 为线段AB 外一动点,且2AB AC ==,若BC CD =,90BCD ∠=︒,连接AD ,当AD 取得最大值时,ACD ∠的度数为 112.5︒ .【解答】解:以AC 为直角边作等腰直角ACE ∆,CE AC =,90ECA ∠=︒,连接BE ,如图2所示:90BCD ∠=︒Q ,ECA ACB BCD ACB ∴∠+∠=∠+∠,即ECB ACD ∠=∠,在ECB ∆和ACD ∆中,CE AC ECB ACD BC CD =⎧⎪∠=∠⎨⎪=⎩,()ECB ACD SAS ∴∆≅∆,BE AD ∴=,∴当AD 取得最大值时,BE 也取得最大值,BE AE AB +Q …,∴当且仅当E 、A 、B 三点共线时,BE AE AB =+,∴当AD 取得最大值时,E 、A 、B 三点共线,ACE ∆Q 是等腰直角三角形,45CAE ∴∠=︒,180********CAB CAE ∠=︒-∠=︒-︒=︒,AB AC =Q ,11(180)(180135)22.522ACB ABC CAB ∴∠=∠=︒-∠=︒-︒=︒, 22.590112.5ACD ACB BCD ∴∠=∠+∠=︒+︒=︒,故答案为:112.5︒.三、解答题(共8小题,共72分)17.(8分)解方程:153x x =+. 【解答】解;方程两边都乘以(3)x x +,得35x x +=. 解得34x =, 经检验:34x =是分式方程的解. 18.(8分)因式分解(1)316x x -;(2)22344xy x y y --【解答】解:(1)316x x -2(16)x x =-(4)(4)x x x =-+;(2)22344xy x y y --22(44)y x xy y =--+2(2)y x y =--.19.(8分)如图,90ACB ∠=︒,AC BC =,AD CE ⊥,BE CE ⊥,垂足分别为D ,E ,3AD =,2DE =,求BE 的长.【解答】解:90ACB ∠=︒Q ,90ACD BCD ∴∠+∠=︒AD CE ⊥Q ,BE CE ⊥,90D BEC ∴∠=∠=︒,90CBE BCD ∴∠+∠=︒,ACD CBE ∴∠=∠,且AC BC =,90ADC BEC ∠=∠=︒()ACD CBE AAS ∴∆≅∆,3CE AD ∴==,BE CD =,EC CD DE =+Q ,321BE ∴=-=.20.(8分)(1)计算:242332[5(2)](3)a a a a +-÷g(2)先化简,再求值:24(2)23x x x x x-++--g ,其中5x =. 【解答】解:(1)原式666661(58)9393a a a a a =-÷=-÷=-; (2)原式2242(2)228233x x x x x x x x-----==---g , 当5x =时,原式32162==--. 21.(8分)如图是由边长为1的小正方形构成的网格,每个小正方形的顶点叫做格点,ABC ∆的顶点在格点,请选择适当的格点,用无刻度的直尺在网格中完成下列画图,保留连线的痕迹,不要求说明理由.(1)如图1,作ABC ∆关于直线l 的对称图形△111A B C ;(2)如图2,作ABC ∆的高CD ;(3)如图3,作ABC ∆的中线CE ;(4)如图4,在直线l 上作出一条长度为1个单位长度的线段(MN M 在N 的上方),使AM MN NB++的值最小.【解答】解:(1)如图所示,△A B C即为所求;111(2)如图所示,线段CD即为所求;(3)如图所示,线段CE即为所求;(4)作A关于直线l对称点C,作//CD l且1CD=,连接BD交直线l与N,作//CM BD交直线l于M,连接AM,则AM MN NB++的值最小.22.(10分)两个工程队共同参与一项筑路工程.若先由甲、乙两队合作30天,剩下的工程再由乙队单独做15天可以完成,共需施工费810万元若由甲、乙合作完成此项工程共需36天,共需施工费828万元.(1)求乙队单独完成这项工程需多少天(2)甲、乙两队每天的施工费各为多少万元?(3)若工程预算的总费用不超过840万元,则乙队最少施工多少天?【解答】解:(1)设乙队单独完成这项工程需x天,由题意得:115301 36x⨯+=,解得:90x=,经检验90x=是分式方程的解;答:乙队单独完成这项工程需90天;(2)设甲队每天的施工费为m万元,乙队每天的施工费为n万元,由题意得:30()15810 36()828m n nm n++=⎧⎨+=⎩,解得:158mn=⎧⎨=⎩;答:甲队每天的施工费为15万元,乙队每天的施工费为8万元;(3)Q乙队单独完成这项工程需90天,甲、乙合作完成此项工程共需36天,∴甲队单独完成这项工程的天数为160 113690=-,设乙队施工a天,甲队施工b天,由题意得:19060158840a bb a⎧+=⎪⎨⎪+⎩①②…,由①得:2603b a =-,把2603b a =-代入②得:215(60)88403a a ⨯-+„, 解得:30a …,即乙队最少施工30天;答:乙队最少施工30天.23.(10分)在等边ABC ∆中,点E ,F 分别在边AB ,BC 上.(1)如图1,若AE BF =,以AC 为边作等边ACD ∆,AF 交CE 于点O ,连接OD . 求证:①AF CE =;②OD 平分AOC ∠;(2)如图2,若2AE CF =,作BCP AEC ∠=∠,CP 交AF 的延长线于点P ,求证:CE CP =.【解答】(1)证明:①如图1中,ABC ∆Q 是等边三角形,AB BC ∴=,60B BAC ∠=∠=︒,AE BF =Q ,()ABF CAE SAS ∴∆≅∆,AF EC ∴=.②如图1中,ABF CAE ∆≅∆Q ,BAF ACE ∴∠=∠,60AOE OAC ACO OCA BAF BAC ∠=∠+∠=∠+∠=∠=︒Q ,又ACD ∆Q 是等边三角形,60ADC DAC DCA ∴∠=∠=∠=︒,AOE ADC ∴∠=∠,180AOE AOC ∠+∠=︒Q ,180ADC AOC ∴∠+∠=︒,A ∴,D ,C ,O 四点共圆,60AOD ACD ∴∠=∠=︒,60COD CAD ∠=∠=︒,AOD COD ∴∠=∠,OD ∴平分AOC ∠.(2)证明:如图2中,取AE 的中点M ,连接CM .2AE CF =Q ,AM ME =,AM CF ∴=,60CAM ACF ∠=∠=︒Q ,AC CA =,()ACM CAF SAS ∴∆≅∆,ACM CAF ∴∠=∠,60CME CAM ACM ACM ∠=∠+∠=︒+∠Q ,60CFP ACF CAF CAF ∠=∠+∠=︒+∠, CME CFP ∴∠=∠,EM CF =Q ,PCF CEM ∠=∠,()CME PFC ASA ∴∆≅∆,CE PC∴=.24.(12分)在Rt ABCACB∠=︒,点D是BC上一点.=,90∆中,AC BC(1)如图1,AD平分BAC∠,求证:AB AC CD=+;(2)如图2,点E在线段AD上,且45∠=︒,求证:2BED∠=︒,30CED=;BE AE(3)如图3,CD BD=,过B点作BM AD⊥交AD的延长线于点M,连接CM,过C点作CN CM=.DN DM⊥交AD于N,求证:3【解答】证明:(1)如图1中,作DH AB⊥于H.∠=∠=︒∠=∠,Q,AD ADACD AHD90=,DAC DAH∴∆≅∆,()ADC ADH ASA=,∴=,DC DHAC AHC∠=︒,Q,90=CA CB∴∠=︒,B45Q,∠=︒DHB90HDB B∴∠=∠=︒,45∴=,HD HB∴=,BH CD∴=+=+.AB AH BH AC CD(2)如图2中,作BM AD⊥交AD的延长线于M,连接CM.Q,∠=∠=︒ACB AMB90∴,A,B,M四点共圆,C∴∠=∠=︒,AMC ABC45∠=︒Q,45CEM∴∠=∠,CEM CME∴=,CE CM∴∠=∠=︒,ECM ACB90∴∠=∠,ACE BCM=,Q,CE CMCA CB=∴∆≅∆,ACE BCM SAS()∴=,AE BMQ在Rt EMB∠=︒,∠中,30MEBQ.==22BE BM AE(3)如图3中,作CH MN⊥于H.Q,∠=∠=︒90ACB AMB∴,A,B,M四点共圆,CAMC ABC∴∠=∠=︒,45⊥Q,CN CM∴∠=︒90NCMCNM CMN∴∠=∠,∴=,CN CMQ,⊥CH MN∴=.HN HM∠=∠=︒,ADH BDM Q,90CHD BMD=CD DB∠=∠,∴∆≅∆,()CHD BMD AAS∴=,DH DMHN HMQ,=∴=.3DN DM。
2020-2021学年北京市东城区八年级(上)期末数学试卷及参考答案
2020-2021学年北京市东城区八年级(上)期末数学试卷一、选择题(本题共30分,每小题3分)下面各题均有四个选项,符合题意的选项只有一个1.(3分)如果有意义,那么x的取值范围是()A.x>2B.x≥2C.x≤2D.x<22.(3分)下列各式是最简二次根式的是()A.B.C.D.3.(3分)若分式,则x的值是()A.x=1B.x=﹣1C.x=0D.x≠﹣14.(3分)下列各式中,运算正确的是()A.a3•a3=2a3B.(a2)3=a6C.(2a2)3=2a6D.a6÷a2=a35.(3分)2020年突如其来的新型冠状病毒肺炎疫情席卷全球,我国在党中央的坚强领导下,取得了抗击疫情的巨大成就.科学研究表明,某种新型冠状病毒颗粒的直径约为125纳米,1纳米=1.0×10﹣9米,若用科学记数法表示125纳米,则正确的结果是()A.1.25×10﹣9米B.1.25×10﹣8米C.1.25×10﹣7米D.1.25×10﹣6米6.(3分)下列各式由左到右是分解因式的是()A.x2+6x﹣9=(x+3)(x﹣3)+6xB.(x+2)(x﹣2)=x2﹣4C.x2﹣2xy﹣y2=(x﹣y)2D.x2﹣8x+16=(x﹣4)27.(3分)一个多边形内角和是1080°,则这个多边形是()A.六边形B.七边形C.八边形D.九边形8.(3分)如图所示,点O是△ABC内一点,BO平分∠ABC,OD⊥BC于点D,连接OA,若OD=5,AB=20,则△AOB的面积是()A.20B.30C.50D.1009.(3分)如图,已知∠AOB=60°,点P在边OA上,OP=10,点M、N在边OB上,PM =PN,若MN=2,则OM=()A.3B.4C.5D.610.(3分)剪纸是我国传统的民间艺术.将一张纸片按图中①,②的方式沿虚线依次对折后,再沿图③中的虚线裁剪,最后将图④中的纸片打开铺平,所得图案应该是()A.B.C.D.二、填空题(本题共16分,每小题2分)11.(2分)因式分解:x2y﹣4y=.12.(2分)如果x2﹣10x+m是一个完全平方式,那么m的值是.13.(2分)图(1)是一个长为2a,宽为2b(a>b)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是.14.(2分)如图所示,已知P是AD上的一点,∠ABP=∠ACP,请再添加一个条件:,使得△ABP≌△ACP.15.(2分)小明同学用一根铁丝恰好围成一个等腰三角形,若其中两条边的长分别为15cm 和20cm,则这根铁丝的长为cm.16.(2分)如图,在△ABC中,D是BC上一点,AC=AD=DB,∠BAC=105°,则∠B =°17.(2分)如图,等腰直角△ABC中,∠ACB=90°,AC=BC=4,D为BC的中点,AD =2,若P为AB上一个动点,则PC+PD的最小值为.18.(2分)如图,∠MON=30°,点A1,A2,A3,A4,…在射线ON上,点B1,B2,B3,…在射线OM上,且△A1B1A2,△A2B2A3,△A3B3A4,…均为等边三角形,以此类推,若OA1=1,则△A2021B2021A2022的边长为.三、解答题(本题共54分)解答应写出文字说明,证明过程或演算步骤.19.(5分)计算:|﹣|+﹣(π﹣2)0+()﹣1.20.(5分)如图,点B,C,D,F在一条直线上,AB=EF,AC=ED,∠CAB=∠DEF,求证:AC∥DE.21.(5分)已知x2﹣x+1=0,求代数式(x+1)2﹣(x+1)(2x﹣1)的值.22.(4分)尺规作图:如图所示,在一次军事演习中,红方侦察员发现:蓝方指挥部点P在A区内,且到铁路FG和公路CE的距离相等,到两通讯站C和D的距离也相等,如果你是红方的指挥员,请你在图中标出蓝方指挥部点P的位置(保留作图痕迹,不必写作法).23.(5分)解方程:+=1.24.(5分)化简求值:()÷,其中x=2+.25.(5分)列分式方程解应用题:截止到2020年11月23日,全国832个国家级贫困县全部脱贫摘帽.某单位党支部在“精准扶贫”活动中,给结对帮扶的贫困家庭赠送甲、乙两种树苗.已知每棵乙种树苗的价格比甲种树苗的价格贵10元,用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同,求甲、乙两种树苗每棵的价格.26.(6分)已知△ABC是等边三角形,点D是AC的中点,点P在射线BC上,点Q在线段AB上,∠PDQ=120°.(1)如图1,若点Q与点B重合,求证:DB=DP;(2)如图2,若点P在线段BC上,AC=8,求AQ+PC的值.27.(7分)如图,在△ABC中,∠C=90°,AC>BC,D为AB的中点,E为CA延长线上一点,连接DE,过点D作DF⊥DE,交BC的延长线于点F,连接EF.作点B关于直线DF的对称点G,连接DG.(1)依题意补全图形;(2)若∠ADF=α;①求∠EDG的度数(用含α的式子表示);②请判断以线段AE,BF,EF为边的三角形的形状,并说明理由.28.(7分)如图,在平面直角坐标系xOy中,直线l经过点M(3,0),且平行于y轴.给出如下定义:点P(x,y)先关于y轴对称得点P1,再将点P1关于直线l对称得点P′,则称点P′是点P关于y轴和直线l的二次反射点.(1)已知A(﹣4,0),B(﹣2,0),C(﹣3,1),则它们关于y轴和直线l的二次反射点A′,B′,C′的坐标分别是;(2)若点D的坐标是(a,0),其中a<0,点D关于y轴和直线l的二次反射点是点D′,求线段DD′的长;(3)已知点E(4,0),点F(6,0),以线段EF为边在x轴上方作正方形EFGH,若点P(a,1),Q(a+1,1)关于y轴和直线l的二次反射点分别为P′,Q′,且线段P′Q′与正方形EFGH的边有公共点,求a的取值范围.2020-2021学年北京市东城区八年级(上)期末数学试卷参考答案与试题解析一、选择题(本题共30分,每小题3分)下面各题均有四个选项,符合题意的选项只有一个1.【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:由题意得,x﹣2≥0,解得x≥2.故选:B.【点评】本题考查的知识点为:二次根式的被开方数是非负数.2.【分析】根据最简二次根式的概念判断即可.【解答】解:A、是最简二次根式;B、==2,不是最简二次根式;C、=|a|,不是最简二次根式;D、,被开方数的分母中含有字母,不是最简二次根式;故选:A.【点评】本题考查的是最简二次根式的概念,被开方数不含分母、被开方数中不含能开得尽方的因数或因式的二次根式,叫做最简二次根式.3.【分析】分式的值为零:分子等于零,分母不等于零.【解答】解:依题意得,x﹣1=0,且x+1≠0,解得x=1.故选:A.【点评】本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.4.【分析】分别根据同底数幂的乘法法则,幂的乘方运算法则,积的乘方运算法则以及同底数幂的除法法则逐一判断即可.【解答】解:A、a3•a3=a6,故本选项不合题意;B、(a2)3=a6,故本选项符合题意;C、(2a2)3=8a6,故本选项不合题意;D、a6÷a2=a4,故本选项不合题意;故选:B.【点评】本题主要考查了同底数幂的乘除法以及幂的乘方与积的乘方,熟记幂的运算法则是解答本题的关键.5.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:125纳米=0.000000125米=1.25×10﹣7米.故选:C.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.6.【分析】根据分解因式的定义逐个判断即可.【解答】解:A.等式由左到右的变形不属于分解因式,故本选项不符合题意;B.等式由左到右的变形属于整式乘法,不属于分解因式,故本选项不符合题意;C.等式两边不相等,即等式由左到右的变形不属于分解因式,故本选项不符合题意;D.等式由左到右的变形属于分解因式,故本选项符合题意;故选:D.【点评】本题考查了因式分解的定义,注意:把一个多项式化成几个整式的积的形式,叫因式分解,也叫分解因式.7.【分析】设这个多边形是n(n≥3)边形,则它的内角和是(n﹣2)180°,得到关于n 的方程组,就可以求出边数n.【解答】解:设这个多边形是n边形,由题意知,(n﹣2)×180°=1080°,∴n=8,所以该多边形的边数是八边形.故选:C.【点评】根据多边形的内角和定理,求边数的问题就可以转化为解方程的问题来解决.8.【分析】根据角平分线的性质求出OE,最后用三角形的面积公式即可解答.【解答】解:过O作OE⊥AB于点E,∵BO平分∠ABC,OD⊥BC于点D,∴OE=OD=5,∴△AOB的面积=,故选:C.【点评】此题考查角平分线的性质,关键是根据角平分线的性质得出OE=OD解答.9.【分析】作PH⊥MN于H,根据等腰三角形的性质求出MH,根据直角三角形的性质求出OH,计算即可.【解答】解:作PH⊥MN于H,∵PM=PN,∴MH=NH=MN=1,∵∠AOB=60°,∴∠OPH=30°,∴OH=OP=5,∴OM=OH﹣MH=4,故选:B.【点评】本题考查的是直角三角形的性质、等腰三角形的性质,掌握直角三角形中,30°角所对的直角边等于斜边的一半是解题的关键.10.【分析】对于此类问题,只要依据翻折变换,将图(4)中的纸片按顺序打开铺平,即可得到一个图案.【解答】解:按照图中的顺序,向右对折,向上对折,从斜边处剪去一个直角三角形,从直角顶点处剪去一个等腰直角三角形,展开后实际是从原菱形的四边处各剪去一个直角三角形,从菱形的中心剪去一个正方形,可得:故选:A.【点评】本题主要考查了剪纸问题,解决这类问题要熟知轴对称图形的特点,关键是准确地找到对称轴.一般方法是动手操作,拿张纸按照题目的要求剪出图案,展开即可得到正确的图案.二、填空题(本题共16分,每小题2分)11.【分析】首先提取公因式y,再利用平方差公式分解因式即可.【解答】解:x2y﹣4y=y(x2﹣4)=y(x﹣2)(x+2).故答案为:y(x﹣2)(x+2).【点评】此题主要考查了提取公因式法以及公式法分解因式,正确应用乘法公式分解因式是解题关键.12.【分析】利用完全平方公式的结构特征判断即可求出m的值.【解答】解:∵x2﹣10x+m是一个完全平方式,∴m=25.故答案为:25.【点评】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.13.【分析】先求出正方形的边长,继而得出面积,然后根据空白部分的面积=正方形的面积﹣矩形的面积即可得出答案.【解答】解:∵图(1)是一个长为2a,宽为2b(a>b)的长方形,∴正方形的边长为:a+b,∵由题意可得,正方形的边长为(a+b),∴正方形的面积为(a+b)2,∵原矩形的面积为4ab,∴中间空的部分的面积=(a+b)2﹣4ab=(a﹣b)2.故答案为(a﹣b)2.【点评】此题考查了完全平方公式的几何背景,求出正方形的边长是解答本题的关键.14.【分析】利用全等三角形的判定定理解决问题即可.【解答】解:若添加∠BAP=∠CAP,且∠ABP=∠ACP,AP=AP,由“AAS”可证△ABP ≌△ACP;若添加∠APB=∠APC,且∠ABP=∠ACP,AP=AP,由“AAS”可证△ABP≌△ACP;若添加∠BPD=∠CPD,可得∠APB=∠APC,且∠ABP=∠ACP,AP=AP,由“AAS”可证△ABP≌△ACP;故答案为∠BAP=∠CAP或∠APB=∠APC或∠BPD=∠CPD.【点评】本题考查了全等三角形的判定,掌握全等三角形的判定方法是本题的关键.15.【分析】等腰三角形中两条边的长分别为15cm和20cm时,第三边的长可能为15cm或20cm,分别求得三角形的周长,即为铁丝的长.【解答】解:∵等腰三角形中两条边的长分别为15cm和20cm,∴当第三条边的长为15cm时,这根铁丝的长为15+15+20=50(cm),此时15+15>20,符合三角形的三边关系;当第三条边的长为20cm时,这根铁丝的长为15+20+20=55(cm).故答案为:50或55.【点评】本题考查了等腰三角形的判定及三角形的三边关系,熟练掌握相关性质及定理并分类讨论是解题的关键.16.【分析】设∠ADC=α,然后根据AC=AD=DB,∠BAC=105°,表示出∠B和∠BAD 的度数,最后根据三角形的内角和定理求出∠ADC的度数,进而求得∠B的度数即可.【解答】解:∵AC=AD=DB,∴∠B=∠BAD,∠ADC=∠C,设∠ADC=α,∴∠B=∠BAD=,∵∠BAC=105°,∴∠DAC=105°﹣,在△ADC中,∵∠ADC+∠C+∠DAC=180°,∴2α+105°﹣=180°,解得:α=50°,∴∠B=∠BAD==25°,故答案为:25.【点评】本题考查了等腰三角形的性质:①等腰三角形的两腰相等;②等腰三角形的两个底角相等,熟练掌握等腰三角形的性质是解题的关键.17.【分析】作点D关于AB的对称点E,连接PE,BE,依据轴对称的性质,即可得到DB =EB,DP=EP,∠ABC=∠ABE=45°,根据PC+PD=PC+PE,可得当C,P,E在同一直线上时,PC+PE的最小值等于CE的长,根据勾股定理进行计算,即可得出PC+PD的最小值为2.【解答】解:如图所示,作点D关于AB的对称点E,连接PE,BE,则DB=EB,DP=EP,∠ABC=∠ABE=45°,∵D是BC的中点,∴BD=BC=2,∴BE=2,∵PC+PD=PC+PE,∴当C,P,E在同一直线上时,PC+PE的最小值等于CE的长,此时,PC+PD最小,在Rt△BCE中,CE===2,∴PC+PD的最小值为2.故答案为:2.【点评】此题考查了轴对称﹣线路最短的问题,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.18.【分析】根据等边三角形的性质得到∠B1A1A2=60°,根据三角形的外角性质求出∠OB1A1,得到∠OB1A1=∠MON,根据等腰三角形的判定定理得到A1B1=OA1=1,总结规律,根据规律解答.【解答】解:∵△A1B1A2为等边三角形,∴∠B1A1A2=60°,∵∠MON=30°,∴∠OB1A1=∠B1A1A2﹣∠MON=30°,∴∠OB1A1=∠MON,∴A1B1=OA1=1,同理可得,A2B2=OA2=2,A3B3=OA3=4=22,……,∴△A2021B2021A2022的边长=22020,故答案为:22020.【点评】本题考查的是图形的变化规律、等边三角形的性质、三角形的外角性质,根据等边三角形的性质总结出规律是解题的关键.三、解答题(本题共54分)解答应写出文字说明,证明过程或演算步骤.19.【分析】根据绝对值,零指数幂、负整数指数幂的性质进行计算即可.【解答】解:原式=+﹣1+2=+2+1=3+1.【点评】本题考查绝对值,零指数幂、负整数指数幂,掌握绝对值,另指数幂、负整数指数幂的性质的性质是正确计算的前提.20.【分析】先证△ABC≌△EFD(SAS),得出∠ACB=∠EDF,则∠ACD=∠EDC,再由平行线的判定即可得出结论.【解答】证明:在△ABC和△EFD中,,∴△ABC≌△EFD(SAS),∴∠ACB=∠EDF,∴∠ACD=∠EDC,∴AC∥DE.【点评】本题考查了全等三角形的判定与性质、平行线的判定等知识;证明△ABC≌△EFD是解题的关键.21.【分析】根据多项式乘多项式进行化简,然后整体代入即可求值.【解答】解:原式=x2+2x+1﹣2x2+x﹣2x+1=﹣x2+x+2,当x2﹣x+1=0,即﹣x2+x=1时,原式=1+2=3.【点评】本题考查了多项式乘多项式,解决本题的关键是掌握多项式乘多项式.22.【分析】作线段CD的垂直平分线MN,作∠CBF的角平分线BE交MN于点P,点P即为所求作.【解答】解:如图,点P即为所求作.【点评】本题考查作图﹣应用与设计,角平分线的性质,线段垂直平分线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.23.【分析】首先方程两边乘以最简公分母,把分式方程化成整式方程,求出整式方程的解,再代入最简公分母检验即可.【解答】解:方程两边乘以(x+1)(x﹣1)得:(x+1)2+4=(x+1)(x﹣1),解这个方程得:x=﹣3,检验:当x=﹣3时,(x+1)(x﹣1)≠0,x=﹣3是原方程的解;∴原方程的解是:x=﹣3.【点评】本题考查了分式方程的解法、一元一次方程方程的解法;熟练掌握分式方程的解法,方程两边乘以最简公分母,把分式方程化成整式方程是解决问题的关键.24.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,将a的值代入计算即可求出值.【解答】解:()÷=(﹣)•=•=,当x=2+时,原式==.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.25.【分析】可设甲种树苗每棵的价格是x元,则乙种树苗每棵的价格是(x+10)元,根据等量关系:用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同,列出方程求解即可【解答】解:设甲种树苗价格是x元/棵,则乙种树苗价格是(x+10)元/棵,依题意得:=,解得:x=30,经检验,x=30是原方程的解,x+10=30+10=40(元),答:甲种树苗每棵的价格是30元,乙种树苗每棵的价格是40元.【点评】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.26.【分析】(1)由等边三角形和等腰三角形的性质得出∠DBC=∠E,即可得出DB=DE;(2)如图2,过点D作DH∥BC交AB于H,可证△ADH是等边三角形,由“ASA”可证△QDH≌△PDC,可得HQ=PC,即可求解.【解答】证明:(1)∵△ABC为等边三角形,∴BA=BC,∠ABC=60°,∵D为AC的中点,∴DB平分∠ABC,∴∠DBC=30°,∵∠EDB=120°∴∠P=180°﹣120°﹣30°=30°∴∠DBC=∠P,∴DB=DP;(2)解:如图2,过点D作DH∥BC交AB于H,∵△ABC是等边三角形,AC=8,点D是AC的中点,∴AD=CD=4,∠ABC=∠ACB=∠A=60°,BC=AC=8,∵DH∥BC,∴∠ADH=∠AHD=60°,∴△ADH是等边三角形,∠HDC=120°,∴AD=HD=AH=4,∴HD=CD=4=BH,∵∠QDP=∠HDP=120°,∴∠QDH=∠PDC,在△QDH和△PDC中,,∴△QDH≌△PDC(ASA)∴HQ=PC,∴AQ+PC=AQ+QH=AH=4.【点评】本题考查了全等三角形的判定与性质,等边三角形的判定与性质,熟练掌握等边三角形的性质和等腰三角形的性质,证明三角形全等是解题的关键.27.【分析】(1)根据题意画出图形解答即可;(2)①根据轴对称的性质解答即可;②根据轴对称的性质和全等三角形的判定和性质得出AE=GE,进而解答即可.【解答】解:(1)补全图形,如图所示:(2)①∵∠ADF=α,∴∠BDF=180°﹣α,由轴对称性质可知,∠GDF=∠BDF=180°﹣α,∵DF⊥DE,∴∠EDF=90°,∴∠EDG=∠GDF﹣∠EDF=180°﹣α﹣90°=90°﹣α;②以线段AE,BF,EF为边的三角形是直角三角形,连接GF,GE,由轴对称性质可知,GF=BF,∠DGF=∠B,∵D是AB的中点,∴AD=BD,∵GD=BD,∴AD=GD,∵∠GDE=∠EDA=90°﹣α,DE=DE,在△GDE与△ADE中,,∴△GDE≌△ADE(SAS),∴∠EGD=∠EAD,AE=GE,∵∠EAD=90°+∠B,∴∠EGD=90°+∠B,∴∠EGF=∠EGD﹣∠DGF=90°+∠B﹣∠B=90°,∴以线段GE,GF,EF为边的三角形是直角三角形,∴以线段AE,BF,EF为边的三角形是直角三角形.【点评】此题考查全等三角形的判定和性质,关键是根据轴对称的性质和全等三角形的判定和性质解答.28.【分析】(1)根据二次反射点的定义直接得出答案;(2)根据二次反射点的定义得出D′(6+a,0),则可得出答案(3)根据二次反射点的定义得出P′(6+a,1),Q′(7+a,1),由题意分两种情况列出不等式组,解不等式组可得出答案.【解答】解:(1)∵A(﹣4,0),∴点A关于y轴点的对称的坐标为(4,0),∵(4,0)关于直线l对称得点A′(2,0),∴点A(﹣4,0)关于y轴和直线l的二次反射点A′(2,0);∵B(﹣2,0),∴点B关于y轴点的对称的坐标为(2,0),∵(2,0)关于直线l对称得点B′(4,0),∴点B(﹣2,0)关于y轴和直线l的二次反射点B′(4,0);∵C(﹣3,1),∴点C关于y轴点的对称的坐标为(3,1),∵(3,1)关于直线l对称得点C′(3,1),∴点C(﹣3,1)关于y轴和直线l的二次反射点C′(3,1);故答案为:A′(2,0),B′(4,0),C′(3,1);(2)∵点D的坐标是(a,0),a<0,∴点D关于y轴对称的点的坐标为(﹣a,0),∴(﹣a,0)关于直线l对称得点D′(6+a,0),∴DD'=6+a﹣a=6.(3)∵点P(a,1),∴点P(a,1)关于y轴和直线l的二次反射点为P′(6+a,1),∵Q(a+1,1),∴Q(a+1,1)关于y轴和直线l的二次反射点为Q′(7+a,1),当P'Q'与EH有公共点时,,∴﹣3≤a≤﹣2,当P'Q'与FG有公共点时,,∴﹣1≤a≤0,∴﹣3≤a≤﹣2或﹣1≤a≤0,【点评】本题考查了正方形的性质,轴对称性质,动点问题,新定义二次反射点的理解和运用;解题关键是对新定义二次反射点的正确理解.。
北师大版2019—2020学年度八年级(上)期末考数学试卷(含答案)
河南省柘城县2015—2016学年度第一学期期末考试卷八年级数学一、选择题(每题3分,共24分): 1、 2的相反数是( )A 、2B 、-2C 、21-D 、212.下列满足条件的三角形中,不是直角三角形的是( )A.三内角之比为1:2:3B.三边长的平方之比为1:2:3C.三边长之比为3:4:5D.三内角之比为3:4:5 3.如果P (m +3,2m +4)在y 轴上,那么点P 的坐标是( )。
A . (—2,0)B .(0,—2)C .(1,0)D .(0,1)4. 已知直线y =kx -4(k <0)与两坐标轴所围成的三角形面积等于4,则直线的表达式为( )A .y =-2x -4B .y =-x -4C .y =-3x +4D .y =-3x -4 5、4的算术平方根是( )A 、2B 、16C 、±2D 、±16 6.方程组43235x y k x y -=⎧⎨+=⎩,的解中x 与y 的值相等,则k 等于( )A.2B.4C.3D.1 7.一组数据6、8、7、8、10、9的中位数和众数分别是( ) A .7和8B .8和7C .8和8D .8和98.如图,已知a ∥b ,0651=∠,则2∠的度数为( ) A. 065 B. 0125 C.0115 D. 025 二、填空题。
(每题3分,共计21分)9.某校六个绿化小组一天植树的棵数如下:10,11,12,13,8,x .若这组数据的平均数是11,则这组数据的众数是 _____ .10.在△ABC 中,AB =13 cm ,AC =20 cm ,BC 边上的高为12 cm ,则△ABC 的面积为____________ ..11.已知a ,b 为两个连续的整数,且a >28>b ,则a +b = _____ .12.设实数x ,y 满足方程组14,31 2.3x y x y ⎧-=⎪⎪⎨⎪+=⎪⎩则x +y = ______ .13.函数2y x =与1y x =+的图象的交点坐标为________.14. 某段时间,小明连续7天测得日最高温度如下表所示,那么这7天的最高温度的平均温度是 ______ ℃. 温度(℃) 26 27 25 天数13315.如图,在△ABC中,∠A =60°,∠B =40°,点D 、E 分别在BC 、AC的延长线上,则∠1= ______ 。
2019-2020学年人教版八年级上册数学期末考试试卷(有答案)-最新精品
云南民族大学附属中学2019-2020学年八年级上学期数学期末考试试卷一、单选题1.已知的三边长分别是6cm、8cm、10cm,则的面积是()A.B.C.D.【答案】A【考点】三角形的面积,勾股定理的逆定理【解析】【解答】解:∵62+82=102,∴△ABC是直角三角形,∴△ABC的面积为:×6×8=24.故答案为:A.【分析】先利用勾股定理的逆定理判断出△ABC是直角三角形,然后根据直角三角形的面积计算方法即可算出答案。
2.如果,那么()A.B.C.D.【答案】C【考点】不等式及其性质【解析】【解答】解:A.∵b>a>0,∴,∴﹣>﹣,不符合题意;B.∵b>a>0,∴,不符合题意;C.∵b>a>0,∴,∴﹣<﹣,符合题意;D.∵b>a,∴﹣b<﹣a,不符合题意.故答案为:C.【分析】由,根据被除数一定除数越大商越小得出,然后根据不等式的性质2,不等式的两边都乘以同一个负数,不等号方向改变,即可判断出A,C的正确与否,由,根据不等式的性质2,不等式的两边都乘以同一个负数,不等号方向改变,即可判断D,综上所述即可得出答案。
3.已知等腰三角形的两边长分别为5cm、2cm,则该等腰三角形的周长是()A. 7cmB. 9cmC. 12cm或者9cm D. 12cm【答案】D【考点】三角形三边关系,等腰三角形的性质【解析】【解答】解:①5cm为腰,2cm为底,此时周长为12cm;②5cm为底,2cm为腰,则两边和小于第三边无法构成三角形,故舍去.∴其周长是12cm.故选D.【分析】题目给出等腰三角形有两条边长为4cm和2cm,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.4.面积相等的两个三角形()A. 必定全等B. 必定不全等 C. 不一定全等 D. 以上答案都不对【答案】C【考点】全等三角形的判定与性质【解析】【解答】因为两个面积相等的三角形,则面积的2倍也相等,也就是底乘高相等;但是一个数可以有许多不同的因数,所以说这两个三角形的对应边、对应高不一定相等;故面积相等的两个三角形不一定全等.故答案为:C.点评:本题考查了全等三角形的判定.解答此题需要熟悉三角形的面积公式.【分析】因为两个面积相等的三角形,则面积的2倍也相等,也就是底乘高相等;但是一个数可以有许多不同的因数,所以说这两个三角形的对应边、对应高不一定相等;故面积相等的两个三角形不一定全等.5.以下现象:荡秋千;呼啦圈;跳绳;转陀螺其中是旋转的有()A.B.C.D.【答案】D【考点】生活中的旋转现象【解析】【解答】解:①荡秋千是旋转;②呼啦圈运动不是围绕某一点进行运动,不是旋转;③跳绳时绳子在绕人转动,人在上下运动;④转陀螺是旋转.故答案为:D.【分析】在平面内将一个图形绕着某点,按某个方向转动一定的角度,这样的图形变换叫做旋转,根据定义即可一一判断。
2019-2020年北京市东城区(南片)初二下期末数学试题及答案
2019-2020年北京市东城区(南片)初二下期末数学试题及答案东(南片)—学年第二学期期末统一测试初二数学(总分:100分;时间:100分钟)亲爱的同学,这份试卷将再次记录你的自信、沉着、智慧和收获.请认真审题,看清要求,仔细答题,要相信“我能行”。
一、精心选一选(本题共10小题,每小题3分,共30分) 1. 已知分式11-+x x 的值为0,那么x 的值为 A. 1 B. -1 C. ±1 D. 02. 下列函数中,自变量x 的取值范围为3≥x 的是 A. 31-=x y B. 31-=x y C. y= x-3 D.3-=x y3. 反比例函数xky =的图象经过点(-2,4),则函数的图象在 A. 第一、三象限 B. 第一、四象限 C. 第二、三象限 D. 第二、四象限A. 32,30B. 31,30C. 32,32D. 30,305. 下面计算正确的是 A. 3333=+B. 3327=÷C. 532=⋅D. 24±= 6. 下列各组数中不能作为直角三角形的三边长的是A. 1.5,2,3B. 7,24,25C. 6,8,10D. 9,12,157. 如图,将矩形ABCD 沿BE 折叠,点A 落在点A’处,若∠CBA’=30°,则∠BEA’等于 A. 30° B. 45° C. 60° D. 75°8. 如图,菱形ABCD 的周长为20,点A 的坐标是(4,0),则点B 的坐标为A. (3,0)B. (4,0)C. (0,3)D. (0,4)9. 如图,点A 在反比例函数xky =的图象上,AB ⊥x 轴于点B ,点C 在x 轴上,且CO=OB ,△ABC 的面积为2,则此反比例函数的解析式为A. xy 4=B. xy 3=C. xy 2=D.xy 1=10. 如图,正方形硬纸片ABCD 的边长是4,点E 、F 分别是AB 、BC 的中点,若沿左图中的虚线剪开,拼成如下图的一座“小别墅”,则图中阴影部分的面积是A. 4B. 6C. 8D. 10二、认真填一填(本题共8小题,每小题2分,共16分) 11. 使分式31+-x x 有意义的x 的取值范围是___________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
17. 解 :原式 = 3+1 4
…………………………3 分
=0 .
2 +3
18.解:( 1)原式 = 2
2+2 3
2
- +3 3
=2
.
(2)原式 = x2 4 x 4 x2 9
………………………… 4分 ………………………… 2 分
…………………………3 分 ………………………… 2 分
= 4 x 13 .
y
P A
B
O
x
O
x
B
图1
图2
8 / 13
东城区 2018-2019 学年度第一学期期末教学统一检测
初二数学参考答案及评分标准
2019.1
一、 选 择题 ( 本题共 10 小题 , 每小题 3 分, 共 30 分 )
题号 1
2
3
4
5
6
7
8
9
10
答案 C
A
B
B
D
A
D
C
C
B
二、 填 空题 (本题共 6 小题, 11-15 题每小题 2 分, 16 小题 4 分,共 14 分)
A
A
图( 1)
B
C
B
C
图( 2)
(备用图)
7 / 13
28. (本小题 6 分)
在平面直角坐标系 xOy 中,△ ABO 为等边三角形, O 为坐标原点,点 A 关于 y 轴的
对称点为 D ,连接 AD ,BD, OD ,其中 AD, BD 分别交 y 轴于点 E,P.
( 1)如图 1,若点 B 在 x 轴的负半轴上时,直接写出
∴△ ABC≌△ DEF . ---------------------------------------------------3 分
(2)解: ∵ △ ABC ≌ △ DEF ,
10 / 13
∴ BC= EF. -------------------------------------------------------------4
.
0.00000032
.(一)
0.00000032
1 3 2 还可以用以下方法化简:
1
3-2 ( 3)2-( 2)2 ( 3+ 2)( 3- 2)
=
=
= 3- 2
3 2= 3 2
32
32
.(二 )
(1) 请用不同的方法化简
.
0.00000032
参照(一)式得
=
0.00000032
______________________________________________ ;
…………………………3 分
19. 解: (x 2 2 xy) x2 ---------------------------------------------1
分
9 / 13
2 x2 2xy -------------------------------------------------2
分
2x( x y) . ----------------------------------------------3 分
分
∴ BF+ FC = EC+ FC.
6
所以 x
1
是原分式方程的解 .…………………………………………
4分
6
a3
(a 3) 2
21. 解:原式 = a 2 (a 2)( a+2)
…………………… 2 分
a 3 (a 2)(a+2)
=a 2
(a 3)2
a +2 =a 3.
…………………… 3 分
a+2 2 -
当 a 0 时, a 3 = 3 . ……………………4 分…
16. 已知在△ ABC 中, AB=AC.
(1)若∠ A=36o,在△ ABC 中画一条线段,能得到 2 个等腰三角形(不包括 △ ABC),这
2 个等腰三角形的顶角的度数分别是
;
(2)若
∠
A≠36o,
当∠ A=___________时,在等腰
△
ABC中画一条线段,能得到 2个等腰三角形(不包括 △ABC) .(写出两个答案即可)
(2)化简: .
6 / 13
27.(本小题 6 分)
( 1)老师在课上给出了这样一道题目:如图( 1),等边 △ ABC 边长为 2,过 AB 边上一
点 P 作 PE⊥AC 于 E, Q 为 BC 延长线上一点,且 AP=CQ ,连接 PQ 交 AC 于
D,求 DE 的长 .
小明同学经过认真思考后认为,可以通过过点
.
13.当 x 的值为
x2 4 时,分式 x 2 的值为 0.
14. 课本上有这样一道例题:
2 / 13
请你思考只要 CD 垂直平分 AB,那么 △ ABC 就是等腰三角形的依据是 ____________.
15. 如图,在△ ABC 中,点 D 是 AB 边的中点,过点 D 作边 AB 的 垂线 l, E 是 l 上任意一点,且 AC= 5, BC= 8,则△ AEC 的 周长最小值为 __________.
A .①②③
B .①②④
C .①③④
D .②③④
9. 如图,在△ ABC 中,∠ BAC=90°,∠ C=30°, AD ⊥ BC 于 D, BE 是∠ ABC 的平分
线,且交 AD 于 P,如果 AP= 2,则 AC 的长为 ( )
A.2
B.4
C. 6
D.8
a
,a b
a※b a b
b
,a b
10. 定义运算“※”:
A( 2, 3), B
( 1)在图中作出 △ABC 关于 y 轴对称的△ A1 B1C1 ;
( 2)如果要使以 B、C、D 为顶点的三角形与△ ABC 全等,写出所有符合条件的点 标.
D坐
4 / 13
B
23. (本小题 5 分) 如图,点 B, F , C, E 在直线 l 上 (F , C 之间不能直接测量 ),点 A, D 在 l 异侧,测得 AB=DE,AB ∥DE ,∠ A=∠ D. (1) 求证:△ ABC≌△ DEF ; (2) 若 BE=10m , BF =3m,求 FC 的长度.
或
或
或
其他情况参照给分. 20. 解:去分母,得:
4x+2( x+3)=7 .
…………………………………………………… 1 分
化简,得: 6x+6=7 . ………………………………………………… 2 分
1 解得: x .
6
………………………………………… 3 分
检验:把 x
1
代入最简公分母, 2( x+3) ≠0.
的一部分图形,其中是轴对称图形的是 ( )
A
B
C
5. 3 月 14 日是国际数学日,当天淇淇和嘉嘉想玩个数学游戏,他们的
对话内容如图所示,下列选项错误的是(
)
A. 4 4 4 6
0
0
B. 4 4 4 6
C. 4 3 4 4 6
D. 4 1 4 4 6
6. 下列二次根式中,是最简二次根式的是
(
)
A.
0.00000032
参照(二)式得
= _________________________________________ ;
0.00000032
(2)从计算结果中找出规律,并利用这一规律选择下面两个问题中的一个加以解决:
1 ( (1)求 2 1
1 32
1 .......
43
1 )( 2019 1)
2019 2018
的值;
1/6 ,求港珠澳大
桥的设计时速是多少 .
25. (本小题 5 分) 如图, AE 是 △ACD 的角平分线, B 在 DA 延长线上, AE∥ BC, F 为 BC 中点,判断 AE 与 AF 的位置关系并证明 .
5 / 13
26. (本小题 4 分)阅读下列材料 , 然后回答问题 :
观察下列各式,通过分母有理化,把不是最简二次根式的化成最简二次根式:
11. 2a( x 2)( x 2) ;
12. 12; 13. -2; 14.线段垂直平分线上的点与这条线段两端点距离相等,等腰三角形定义; 15. 13;
180° 16. ( 1) 36°, 108°;( 2) 7 , 90°, 108° .
三、 解 答题 ( 本题共 12 小题 , 共 56 分 )
BDO 的度数;
( 2)如图 2,将△ ABO 绕点 O 旋转,且点 A 始终在第二象限,此时 AO 与 y 轴正半轴
夹角为 , 60 < <90 ,依题意补全图形,并求出
BDO 的度数;(用含 的
式子表示)
( 3)在第( 2)问的条件下,用等式表示线段 结果)
y
A
E
D
BP, PE, PO 之间的数量关系 .(直接写出
B . 3.2 108
C. 3.2 10 7
D. 3.2 10 8
1 2.若分式 a 1 有意义,则 a 的取值范围是
A.a 1
B. a 0
C. a 1且 a 0
D .一切实数
3.下列运算中,正确的是(
)
A. 3 x2 2 x3 5 x5
B.
C.
3
3
D. (ab) a b
4. 2017 年 12 月 15 日,北京 2022 年冬奥会会徽 “冬梦 ”正式发布 . 以下是参选的会徽设计