高中数列学习的数学思想
高中数学数列与数列极限的性质及定理总结

高中数学数列与数列极限的性质及定理总结数列是高中数学中的重要概念之一,它是由一系列按照一定规律排列的数所组成的。
数列的研究对于理解数学的发展和应用具有重要意义。
本文将总结数列的性质及定理,并通过具体题目的分析,说明其考点和解题技巧,以帮助高中学生和家长更好地理解和应用数列。
一、数列的性质1. 有界性:数列可以是有界的,也可以是无界的。
有界数列是指其所有项都在某个范围内,无界数列则相反。
例如,数列{1, 2, 3, ...}是无界的,而数列{(-1)^n}是有界的,其项的取值范围在-1和1之间。
2. 单调性:数列可以是单调递增的,也可以是单调递减的。
单调递增数列是指其后一项大于或等于前一项,单调递减数列则相反。
例如,数列{1, 2, 3, ...}是单调递增的,而数列{3, 2, 1, ...}是单调递减的。
3. 有界单调性:数列既有界又单调,即既满足有界性,又满足单调性。
例如,数列{(-1)^n/n}既是有界的,其项的取值范围在-1和1之间,又是单调递减的。
二、数列极限的性质及定理1. 数列极限的定义:数列{a_n}的极限是指当n趋向于无穷大时,数列的项a_n趋向于某个常数L。
用数学符号表示为lim(a_n) = L。
例如,数列{1/n}的极限是0,即lim(1/n) = 0。
2. 数列极限的唯一性:如果数列{a_n}的极限存在,那么它是唯一的。
即数列的极限不依赖于数列的前几项,只与数列的性质有关。
例如,数列{(-1)^n/n}的极限是0,无论数列的前几项是多少。
3. 夹逼定理:夹逼定理是数列极限的重要定理之一,它用于求解一些复杂的极限问题。
夹逼定理的核心思想是通过夹逼数列来确定数列的极限。
例如,对于数列{1/n^2},我们可以通过夹逼定理得出其极限为0。
4. 递推数列的极限:递推数列是指通过前一项或前几项来确定后一项的数列。
递推数列的极限可以通过求解递推关系式来确定。
例如,对于数列{a_n = a_(n-1) +1/n},我们可以通过求解递推关系式得出其极限为无穷大。
高考数列题中涉及的数学思想方法归类与分析

维普资讯
≤
× 1
,
故须明 只 证
.
得 = ( _) (一I 是 nq 量 ,一q _) 于 2 I T 2差s 一q q
—
≤ 即证 AI A I 2对 n 3成 立 1 + ≥ b ≥
,
由 于 A—
s S(。 一号q ) S(+ ( 2. q 一1= ,q ÷) - ) q
得o ,Ⅱ < ‘ < ( ) ,赢 ,
・
(
一)1 得≥ . n , n号 ≤解
现 明 _时 ll 对 一,…都 证 当 ≥吾 , _ ≤ 1 ,, 6 2
成 立. ) (1 当 一 1 结 论 成 立 ( 时 已验 证 ) (I) 设 当 . I假
.
.
。 k 一_ { 一 一 一 1 结 成 , ≤ ,么 +一 <+ l _ + ≥) 论 立即 古那 l a< _ 差 i ・ ( 时 l l
当一÷ <q 且 q 时, —S<o 即 <s. <2 ≠o , 当q 一一÷或 q 时, —S一0即 —S. 一2 ,
【 评析 】 涉 及 到 等 比数 列 前 项 的求 和 , 要 讨 常 论 公 比 q的各 种 情 况 ; 比较 两个 数 大 小 时 , 在作 差 在 常 以后 因式 分 解 , 论 各个 因式 的符 号 以达 到 求 解 目的. 讨
不 等 式
n南 . + . 一 A {一 去 一 n + 一 > 时, (, , < < 立; () o o亏) ∈ 所以
即 + 一 一
对 一 12 … , 成 立 . ,, 都
on , 寺 专, 2 不 式 成 ・ < () < 故 一 时 等 也 立 z 口≤ 一
n < _ 成 立 .
【高中数学】高中数列知识蕴含的主要数学思想

【高中数学】高中数列知识蕴含的主要数学思想1.函数思想由于一般的项公式、第一个n项和序列的公式都是关于n的函数的,所以可以从函数的角度,利用函数的思想来解决一些序列问题,相关的问题有:序列的单调性、求基本量、最大值、,利用序列对应函数的特征和序列对应函数的性质可以解决上述问题2.方程思想在等差和等比的顺序中有五个基本量。
利用方程的思想,我们可以“知三求二”,当一些量已知时,其他量可以通过一系列方程或方程来求解。
此外,本章中常用的待定系数法实际上是方程思想的体现3.转化与化归思想本章中变换思想的应用主要体现在将非特殊序列问题转化为特殊序列问题求解上。
例如,递归序列的通项公式可以通过构造转化为特殊序列的通项公式,而非特殊序列的求和问题可以转化为特殊序列的求和问题,它是指将相等数量的项目或研究对象转化为相等数量的点,例如相等数量序列或最差数量序列的基础4.分类讨论思想本章分类讨论的思想主要体现在解决一些参数级数问题,尤其是比例级数的求和或相关问题上。
如果包括参数,我们不能忽视q=1的讨论5.数形结合思想借助于序列对应函数的图像,解决一些问题将非常直观和快速。
例如,为了解决算术序列前n项之和的最大值问题,我们可以组合二次函数的图像6.归纳思想归纳思维是指从本章中的个别事实中归纳出一般结论的数学思维,根据序列的前几项归纳出序列的一般术语公式,图的归纳数是根据图的归纳数或归纳数在图中的应用7.类比思想类比思维指的是一种数学思维,即一种对象具有某些特征,而一个相似的对象也具有这些特征。
它的推理方式是从特殊推理到特殊推理,作为两种特殊数列,等差数列和等比数列有许多相似之处。
例如,在等差数列中,if,then;在比例数列中,如果,那么通过类比可以得出许多有用的结论,并且可以发现许多有趣的性质8.整体思想在研究序列(即等距或比例序列的前k项之和)时,我们使用整体思想,即将其视为序列中的一项,依此类推,我们可以得到序列的特征首页上一页12下一页末页共2页。
高中数学中的数列极限求解知识点总结

高中数学中的数列极限求解知识点总结数列极限是高中数学中的重要内容,它是数学分析的基础,也是数学发展的重要方向之一。
掌握数列极限的求解方法和相关知识点,对于高中生提高数学学习水平具有重要的意义。
下面将对高中数学中的数列极限求解知识点进行总结与归纳。
一、数列极限的概念及性质数列极限指的是当数列中的项数趋于无穷大时,数列中的项的极限值。
数列极限的概念基于数列的收敛性,即当数列趋于某个确定的值时,其极限存在。
1.1 数列极限的定义数列{an}的极限为a,记作lim(n→∞) an = a,当且仅当对于任意给定的正数ε,总存在一个正整数N,使得当n>N时,对应的数列项an 与极限a之间的差值小于ε,即|an - a| < ε。
1.2 数列极限的性质(1)唯一性:如果数列的极限存在,则极限值唯一。
(2)有界性:如果数列的极限存在,则数列必定有界。
(3)保序性:如果数列{an}的极限为a,且数列{bn}的极限为b,则当n足够大时,对于数列中的任意项an与bn,都有an ≤ bn。
二、常见数列极限求解方法2.1 基本数列的极限(1)常数数列的极限:对于常数数列{an} = a,其中a为常数,则该常数数列的极限为a,即lim(n→∞)a = a。
(2)等差数列的极限:对于等差数列{an} = a1 + (n - 1)d,其中a1为首项,d为公差,则当公差d≠0时,该等差数列的极限为±∞(取决于公差d的正负性),若公差d=0,则该等差数列的极限为a1。
2.2 数列极限的四则运算法则(1)加减法则:如果数列{an}的极限为a,数列{bn}的极限为b,则数列{an ± bn}的极限为a ± b。
(2)乘法法则:如果数列{an}的极限为a,数列{bn}的极限为b,则数列{an × bn}的极限为a × b。
(3)除法法则:如果数列{an}的极限为a,数列{bn}的极限为b且b≠0,则数列{an ÷ bn}的极限为a ÷ b。
高中数学数列教学中数学思想方法的挖掘与渗透

智者创建时机,强者掌握时机,弱者坐等时机。
数列教课中数学思想方法的发掘与浸透数学思想方法是数学知识的精华,是知识转变为能力桥梁.可否存心识地正确运用数学思想方法解答数学识题,是权衡数学素质和数学能力的重要标记.数列中蕴涵了很多重要的数学思想,在数列教课中着重数学思想方法的发掘与浸透拥有十分重要的意义.1.函数思想函数思想是用联系和变化的看法观察数学对象.数列是一类特别的函数,以函数的看法认识理解数列,是解决数列问题的有效方法.例 1 等差数列的前n项和为.已知问数列的多少项和最大?分析 :易知所给数列不是常数列,等差数列的前n 项和是n的二次函数,且常数项为零,因此可利用函数思想研究的最值.解法 1:由得,∴.进而;故前 13 项的和最大 ,其最大值为169.解法2:,的图象是张口向下的抛物线上一群失散的点,由知最高点的横坐标为,即前 13 项的和最大.2.方程思想方程思想就是经过设元成立方程,研究方程解决问题的方法.在解数列问题时,利用等差、等比数列的通项公式、乞降公式及性质结构方程(组),是解数列问题基本方法.例 2 等差数列的前n项和为,若,求.分析 :解本题的重点是求出数列的通项公式,可利用已知条件列出对于和d的方程组求出基本量和 d,也可用待定系数法确立.解得∴.进而.解法 2:易知所给等差数列不是常数列,因此它的前n 项和可设为,由已知条件得解得∴,.3.分类议论思想复杂问题没法一次性解决,常需分类研究,化整为零 , 各个击破 . 数列中包含着丰富的分类议论的问题 .例 3 已知数列的前n项和,试求数列的前n项和的表达式.分析 :解题的重点是求出数列的通项公式, 并弄清数列中各项的符号以便化去的绝对值 .故需分类商讨.解: 当 n=1 时 ,;当 n≥2时,.∴当 1≤n≤9时 ,,当 n≥10时 ,.进而当 1≤n≤9时 , ==;当 n≥10时, =.∴=4.等价转变思想等价转变就是将研究对象在必定条件下转变并归纳为另一种研究对象 ,使之成为大家熟习的或简单解决的问题 .这是解决数列问题重要方法 .例 4 等差数列的前n项和为,.若中,最大,数列的前多少项和最大?分析 :求的最大值有多种转变方法.本题可将知足的要求转变为公差 d 知足的要求;再将 k 所知足的条件转变为它的几何意义,借助图示直接写出结果.解:设数列的公差为d,则最大.设的前k项和最大,则有, 且, 故有.(* ),.如图,数轴的两个暗影区间中,左侧是的取值范围,右侧是的取值范围,(*)的成立等价于k 取两个区间之间的自然数,因此k=3,即的前3项和最大.5.整体思想整体思想就是从整体着眼 ,经过问题的整体形式、整体结构或其余整体办理后,达到简捷地解题的目的 .例 5 已知数列为等差数列,前12 项和为 354,前 12 项中奇数项和与偶数项和之比为27:32,求公差 d.分析 :本题惯例思路是利用乞降公式列方程组求解,计算量较大,注意考虑用整体思想去解决, 解法十分简捷 .解: 由题意令奇数项和为,偶数项和为.∵.而.6.递推思想递推思想就是经过探究、结构和运用所给问题中的递推关系解决问题的思想方法.数列问题,从某种意义上讲是递推关系的表现形式.利用递推思想解决某些数列问题可表现递推思想解决问题的优胜性.例 6 设数列的前n项和为,若对于全部的自然数n,都有,证明数列是等差数列 .分析 :证明等差数列一般考虑用等差数列的定义.这里可利用递推关系,将变换得,而后再对,的递推关系持续探究.解:由得,∴当 n≥2时 ,,即.同理.两式相减得,即,进而有(n ≥2).由此可知数列是等差数列 .7.概括、猜想与证明思想经过对个别、特别状况的分析、察看,发现规律,概括出一般的结论或性质,再追求证明方法.这是我们由已知探究未知的重要门路.例 7 已知数列知足条件:,试求数列的通项公式 .分析 :本题求解思路不清楚,从特例下手,察看、猜想结论,再加以证明不失为一种好方法. 解: 由已知条件 ,分别取 n=1,2,3, ,得,经过察看、概括、可得出猜想:.用数学概括法简单证明这一结论是正确的(证明略 ).8.建模与解模思想数列的工具性决定了应用的宽泛性 ,着重建立数列模型解实质问题 ,有益于培育学生用数学的意识和数学能力的提升 .例 8 从社会效益和经济效益出发,某地投入资本进行生态环境建设,并以此发展旅行家产,依据规划,今年度投入万元,此后每年投入比上年减少.今年度当地旅行业收入估计为万元,因为该项建设对旅行业的促使作用,估计此后的旅行业收入每年会比上年增加(Ⅰ)设 n 年内(今年度为第一年)总投入为an 万元,旅行业总收入为bn 万元.写出an,bn 的表达式;(Ⅱ)起码经过几年旅行业的总收入才能超出总投入?分析:建立等比数列的通项和前n 项和模型,再用换元法和不等式知识求解.(1) 第一年投入为800 万元 ,第二年投入为800(1万元,,第n年投入为800万元,因此, n 年内的总投入为;第一年旅行业收入为400 万元,第二年旅行业收入为400万元,,第n年旅行业收入为 400万元.因此n年内的旅行业总收入为.(2) 设至少经过n年旅游业的总收入才能超过总投入,即, 所以,化简得,换元化归为一元二次不等式,可得,解得 n≥5,故起码经过 5 年旅行业的总收入才能超出总投入.还有一些重要的思想方法,如数形联合、 分析与综合、联想与类比,结构模型等思想方法已在上述例题中有所波及,限于篇幅,不再赘述.(此文发布在江西师大《中学数学研究》2003 年第 12 期)都是“定义域”惹的祸函数三因素中, 定义域是十分重要的, 研究函数的性质时应第一考虑其定义域. 在求解函数有关问题时,若忽略定义域,便会直接致使错解.下边我们举例分析错从何起.一、求函数分析式时例 1. 已知 f ( x 1) x 2 x ,求函数 f (x) 的分析式 . 错解 :令 tx 1,则 xt 1, x (t 1)2,f (t) (t 1)2 2(t 1) t21, f ( x) x 2 1分析 :因为 f ( x 1)x 2 x 隐含着定义域是 x 0 ,因此由 t x 1得 t 1 ,f (t)t 21 的定义域为 t 1 ,即函数 f ( x)的分析式应为 f ( x) x 2 1( x 1 )这样才能保证转变的等价性 .正解: 由 f ( x 1) x 2 x ,令 tx 1得 t 1 , xt 1 2 代入原分析式得f (t)t 2 1 ( t 1),即 f ( x) x 2 1 ( x 1).二、求函数最值(或值域)时例 2. 若 3x 2 2 y 2 6x, 求 x 2 y 2 的最大值.错解: 由已知有y 23 x 2 3x ①,代入 x 2 y 2 得1 x 21 2 9 9 .x 2y 23x x 3 2 ,∴当 x 3 时, x2y 2 的最大值为2222分析:上述错解忽略了二次函数的定义域一定是整个实数的会合,同时也未发掘出拘束条件 3x 22 y 2 6x 中 x 的限制条件.正解: 由 23 2 3 0 得,yxxx22x 2y 21 x2 3x1 x 3 29 ,x 0,2 ,因函数图象的对称轴为 x 3 ,222∴当 x 0,2 是函数是增函数,故当当x 2 时, x 2y 2 的最大值为 4 .例 3.已知函数 fx 2 log 3 x 1 x9 ,则函数 yf x 2f x 2的最大值为()A .33B .22C .13D .6错 解 : yf x2f x 22 log3 x2log 3 x 2log 3 x 3 23 在=2 =1 x9y2fx 2 在 x 9 时获得最大值为 33.上是增函数,故函数 f xyf x 2f x21 x9x 3正解: 由已知所求函数的定义域是1x 2 得 1,9y f x 2 fx 22 log3 x 22 log3 x 2log 3 x23 在 1 x 3 是增函数,= = 3故函数 y2 f x 2 在 x3 时获得最大值为 13.f x例 4. 已知 f x 3x2 2x4 ,求 y f1x 2f1x 2的最大值和最小值.错解: 由 f x3x 2 2 x 4 得 1y 9 .∴ f1x2 log3 x 1 x 9 .∴ yf 1 2f1x 22 log3 x 2 2 log 3 x 2log 3 2 x6log 3 x 6xlog 3 x 3 23. ∵1 x 9,∴ 0 log 3 x 2 .∴ y max22 , y min6 .分析: ∵ f 1x 中 1 x 9 ,则 f1x 2 中 1 x 29 ,即1 x 3 ,∴本题的定义域应为 1,3 .∴ 0 log 3 x 1 .正解:(前方同上)ylog 3 x 3 2 3,由 1 x3 得 0 log 3 x 1 .∴y max13 , y min6 .例 5. 求函数 y4x 52x 3 的值域.错解: 令 t2x 3 ,则 2xt 2 3 ,∴ y 2 t 23 5 t2t 2 t 127 ,2 t 17 7 .故所求函数的值域是 .488 8分析: 经换元后,应有大而无量增大.因此当 t 三、求反函数时例 6. 求函数 yx 2t 0 ,而函数 y 2t 2 t 1在 0, 上是增函数,跟着 t 增 0 时, y min 1 .故所求函数的值域是 1,.4x 2 (0 x2) 的反函数.错解 :函数 yx 24 x 2 ( 0 x 2) 的值域为 y2,6 ,又 y (x2) 2 6 ,即 ( x 2) 2 6 yx 26 y , 所求的反函数为y 26 x 2x 6 .分析 :上述解法中忽略了原函数的定义域,没有对 x 进行合理弃取 , 进而得出了一个非函数表达式.正解: 由 yx 24x 2 (0 x 2) 的值域为 y2,6 , 因 ( x 2)26 y ,又x 2 0x 26 y , 所求的反函数为 y26 x 2x 6 .四、求函数单一区间时例 7. 求函数 f ( ) lg( 4x 2) 的单一递加区间 .x错解 :令 t 4x 2 ,则 y lg t ,它是增函数 .t4 x 2 在 ( ,0] 上为增函数,由复合函数的单一性可知,函数 f ( x) lg( 4x 2 ) 在 ( ,0] 上为增函数,即原函数的单一增区间是 (,0] .分析: 判断函数的单一性,一定先求出函数的定义域,单一区间应是定义域的子区间.正解:由 4x 20 ,得 f ( x) 的定义域为 ( 2,2) .t 4x 2 在 ( 2,0] 上为增函数,由可复合函数的单一性可确立函数f ( x)lg( 4 x 2 ) 的单一增区间是 ( 2,0] .例 8. 求 y log 0. 7 x 2 3x 2 的单一区间.错解: 令 tx 2 3x 2 , ylog t , x, 3 时, t x 2 3x 2 为减函数,2x3 , 时, t x 23x 2 为增函数, 又 y log t 为减函数, 故以复合函数单一性2知原函数增区间为, 3,减区间为 3 ,.22分析: 在定义域内取x 1, y 值不存在,明显上边所求不对,根来源因正是大意了定 义域,单一区间一定在函数定义域内.由x 23x 2 0,得x 1或 x 2 ,故增区间为,1 ,减区间为 2,.例 9. 指出函数 y x 2 2ln x 的单一增区间.错解: ∵ yx22ln x ,∴ y2x2,∴当 y 0 时, x 1或 x 1 ,∴函数y x 2x2ln x 的单一增区间为, 1,1,.分析: 本题错在没有考虑函数的定义域 0,,故本题的答案为1,.五、判断函数的奇偶性时例 10. 判断 f x1 x1 x 的奇偶性.1x错解: ∵ fx1 x 1x1 x 21 x1 x1x fx , ∴ f x1 x 1 x1 x为偶函数.分析:事实上奇偶函数定义中隐含着一个重要条件, 即第一定义域一定是对于原点的对 称区间.而此函数的定义域为 1,1 ,不知足上述条件,即应为非奇非偶函数.六、词语点将(据意写词)。
高中数学中的数列求和与数学归纳法

高中数学中的数列求和与数学归纳法数列求和和数学归纳法是高中数学中重要的概念和方法。
数列求和是指将数列中的所有项相加,得到一个总和的过程。
而数学归纳法则是一种证明数学命题的方法,通过证明命题在第一个情况下成立,并假设在第n个情况下也成立,从而推导出在第n+1个情况下也成立。
数列求和是数学中常见的问题之一。
在高中数学中,我们学习了一些常见的数列求和公式,如等差数列求和公式和等比数列求和公式。
等差数列是指数列中的每一项与前一项之差都相等的数列,而等比数列则是指数列中的每一项与前一项之比都相等的数列。
通过这些公式,我们可以快速计算出数列的总和,而不需要逐项相加。
举例来说,我们考虑一个等差数列:1,3,5,7,9。
我们可以通过等差数列求和公式得到这个数列的总和。
等差数列求和公式为:Sn = n/2 * (a1 + an),其中Sn表示数列的总和,n表示数列的项数,a1表示数列的首项,an表示数列的末项。
对于这个例子,数列的项数n为5,首项a1为1,末项an为9。
代入公式可以得到:S5 = 5/2 * (1 + 9) = 5 * 10 = 50。
因此,这个等差数列的总和为50。
数学归纳法是一种证明数学命题的常用方法。
它的基本思想是通过证明命题在第一个情况下成立,并假设在第n个情况下也成立,从而推导出在第n+1个情况下也成立。
数学归纳法在高中数学中广泛应用于证明数列的性质和等式的成立。
例如,我们考虑一个数列的性质:1,3,5,7,9,...,其中每一项都是奇数。
我们可以使用数学归纳法来证明这个性质。
首先,我们证明命题在第一个情况下成立,即第一项1是奇数。
然后,我们假设在第n个情况下命题成立,即第n个项是奇数。
接下来,我们需要证明在第n+1个情况下命题也成立,即第n+1个项也是奇数。
根据数列的定义,每一项都是前一项加2,所以第n+1个项可以表示为an+1 = an + 2。
由于我们假设第n个项是奇数,即an是奇数,而奇数加2仍然是奇数,所以第n+1个项也是奇数。
数列运算中的数学思想
唰 。 …
在数学学习过程 中, 同学们要 加强数 学思想方 法 的学
点评
此题常规解法是设 出基本 量 a , , 出方程组 q列
习, 培养数学思 维能 力 。数 列是 高 中数 学 的重要 内容 , 是 求解 , 但计 算较 繁 ; 能利 用整体 思维 , 可少走 弯路 , 若 则 使 进一步学 习高等数学 的基 础 , 每年高考 中都 占有一定 比 计算合理又迅 速。本 解法 不在 求 0 , 做 文章 , 是将 在 q上 而 重 。在求解 高考数列 问题时 , 要注 意数学 思想的应用 。下 S 变形整理用 S 和 q 表示 , 使解答过程 大大简化 。 面举例说 明在数列运 算中的数 学思想方法。
一
二 、 数 思 想 函
、
整体思想
数列是一 种特 殊 的函数 。运 用 函数思 想处 理 数列 问
从 整体上考虑 问题 , 往能 够避 免局部 运 算 的 困扰 , 往 使 问题 得以迅速求解 。通过研 究问题 的整体形 式 、 体结 整 构, 达到快速解题 的 目的。
题, 往往能把握问题的本质 , 使求解过程简捷 。 例 2 已知数列 { 的通项 % =n-J ̄- n}
s №+ 。 =
(。 ) 。— d n
,
= n 萼2 +
故点( s) , 在形
解析
要使
兰
:l( 一。 成 gs )
() 1 () 2
如) 一 + ( < ) 抛物线上, , 。 0的 = 对称轴为 }。 = 旦
若 p+q为偶数 , 当 n: 则
为奇数 , n= 则 卫 点评
五、 方程 思 想
例 3 设等差数列 { ) % 的首项 n 0 前 n项和 为 s , > ,
人教课标版高中数学必修5《第二章数列》知识概述
1.本章是通过对一般数列的研究,转入对两类特殊数列──等差数列、等比数列的通项公式及前n项求和公式的研究的。
教科书首先通过三角形数、正方形数的实例引入数列的概念,然后将数列作为一种特殊函数,介绍了数列的几种简单表示法(列表、图象、通项公式)。
作为最基本的递推关系──等差数列,是从现实生活中的一些实例引入的,然后由定义入手,探索发现等差数列的通项公式。
等差数列的前n项和公式是通过的高斯算法推广到一般等差数列的前n项和的算法。
与等差数列呈现方式类似,等比数列的定义是通过细胞分裂个数、计算机病毒感染、银行中的福利,以及我国古代关于“一尺之棰,日取其半,万世不竭”问题的研究探索发现得出的,然后类比等差数列的通项公式,探索发现等比数列的通项公式,接着通过实例引入等比数列的前n项求和,并用错位相减法探索发现等比数列前n项求和公式。
最后,通过“九连环”问题的阅读与思考以及“购房中的数学”的探究与发现,进一步感受数列与现实生活中的联系和具体应用。
2.人们对数列的研究有的源于现实生产、生活的需要,有的出自对数的喜爱。
教科书从三角形数、正方形数入手,指出数列实际就是按照一定顺序排列着的一列数。
随后,又从函数的角度,将数列看成是定义在正整数集或其有限子集上的函数。
通过数列的列表、图象、通项公式的简单表示法,进一步体会数列是型,借助数列的相关知识解决问题的思想。
三、编写中考虑的几个问题1.体现“现实问题情境——数学模型——应用于现实问题”的特点数列作为一种特殊函数,是反映自然规律的基本数学模型。
教科书通过日常生活中大量实际问题(存款利息、放射性物质的衰变等)的分析,建立起等差数列与等比数列这两种数列模型。
通过探索和掌握等差数列与等比数列的一些基本数量关系,进一步感受这两种数列模型的广泛应用,并利用它们解决了一些实际问题。
教科书的这一编写特点,可由下面图示清楚表明:数列:三角形数、正方形数数列概念数列的三种表示回归到实际问题(希尔宾斯基三角形、斐波那契数列、银行存款等)等差数列:4个生活实例等差数列概念等差数列通项公式等差数列基本数量关系的探究(出租车收费问题等)前100个自然数的高斯求解等差数列的前n项和公式等差数列数量关系的探究及实际应用(校园网问题)等比数列:细胞分裂、古代“一尺之棰”问题、计算机病毒、银行复利的实例等比数列概念等比数列的通项公式等比数列基本数量关系的探究及实际应用(放射性物质衰变、程序框图等)诺贝尔奖金发放金额问题等比数列前n项和公式等比数列基本数量关系探究及实际应用(商场计算机销售问题、九连环的智力游戏、购房中的数学等)教科书的这种内容呈现方式,一方面可以使学生感受数列是反映现实生活的数学模型,体会数学是来源于现实生活,并应用于现实生活的,数学不仅仅是形式的演绎推导,数学是丰富多彩而不是枯燥无味的;另一方面,这种通过具体问题的探索和分析建立数学模型、以及应用于解决实际问题的过程,有助于学生对客观事物中蕴涵的数学模式进行思考和做出判断,提高数学地提出、分析、解决问题的能力,提高学生的基本数学素养,为后续的学习奠定良好的数学基础。
高中数学基本数学思想:函数与方程思想在数列中的应用
高中数学基本数学思想:函数与方程思想在数列中的应用函数思想和方程思想是学习数列的两大精髓.“从基本量出发,知三求二.”这是方程思想的体现.而“将数列看成一种特殊的函数,等差、等比数列的通项公式和前n项和公式都是关于n的函数.”则蕴含了数列中的函数思想.借助有关函数、方程的性质来解决数列问题,常能起到化难为易的功效。
以下是小编给大家带来的方程思想在数列上的应用,仅供考生阅读。
函数与方程思想在数列中的应用(含具体案例)本文列举几例分类剖析:一、方程思想1.知三求二等差(或等比)数列{an}的通项公式,前n项和公式集中了等差(或等比)数列的五个基本元素a1、d(或q)、n、an、Sn.“知三求二”是等差(或等比)数列最基本的题型,通过解方程的方法达到解决问题的目的.例1等差数列{an}的前n项和为Sn,已知a10=30,a20=50,(1)求数列{an}的通项公式;(2)若Sn=242,求n的值.解(1)由a10=a1+9d=30,a20=a1+19d=50,解得a1=12,因为n∈N*,所以n=11.2.转化为基本量在等差(等比)数列中,如果求得a1和d(q),那么其它的量立即可得.例2在等比数列{an}中,已知a6―a4=24,a3a5=64,求{an}的前8项的和S8.解a6―a4=a1q3(q2―1)=24.(1)由a3a5=(a1q3)2=64,得a1q3=±8.将a1q3=―8代入(1),得q2=―2(舍去);将a1q3=8代入(1),得q=±2.当q=2时,a1=1,S8=255;当q=―2时,a1=―1,S8=85.3.加减消元法利用Sn求an利用Sn求an是求通项公式的一种重要方法,其实这种方法就是方程思想中加减消元法的运用.例3(2011年佛山二模)已知数列{an}、{bn}中,对任何正整数n都有:a1b1+a2b2+a3b3+…+an―1bn―1+anbn=(n―1)?2n+1.若数列{bn}是首项为1、公比为2的等比数列,求数列{an}的通项公式.解将等式左边看成Sn,令Sn=a1b1+a2b2+a3b3+…+an―1bn―1+anbn.依题意Sn=(n―1)?2n+1,(1)又构造Sn―1=a1b1+a2b2+a3b3+…+an―1bn―1=(n―2)?2n―1+1,(2)两式相减可得Sn―Sn―1=an?bn=n?2n―1(n≥2).又因为数列{bn}的通项公式为bn=2n―1,所以an=n (n≥2).当n=1,由题设式子可得a1=1,符合an=n.从而对一切n∈N*,都有an=n.所以数列{an}的通项公式是an=n.4.等差、等比的综合问题这一类的综合问题往往还是回归到数列的基本量去建立方程组.例4设{an}是公比大于1的等比数列,Sn为数列{an}的前n项和.已知S3=7,且a1+3,3a2,a3+4构成等差数列,求数列{an}的通项公式.解根据求和定义和等差中项建立关于a1,a2,a3的方程组.由已知得a1+a2+a3=7,(a1+3)+(a3+4)2=3a2.解得a2=2.设数列{an}的公比为q,由a2=2,可得a1=2q,a3=2q.又S3=7,可知2q+2+2q=7,即2q2―5q+2=0,解得q1=2,q2=12.由题意得q>1,所以q=2.可得a1=1,从而数列{an}的通项为an=2n―1.二、函数思想数列是一类定义在正整数或它的有限子集上的特殊函数.可见,任何数列问题都蕴含着函数的本质及意义,具有函数的一些固有特征.如一次、二次函数的性质、函数的单调性、周期性等在数列中有广泛的应用.如等差数列{an}的通项公式an=a1+(n―1)d=dn+(a1―d),前n项和的公式Sn=na1+n(n―1)2d=d2n2+(a1―d2)n,当d≠0时,可以看作自变量n的一次和二次函数.因此我们在解决数列问题时,应充分利用函数有关知识,以它的概念、图象、性质为纽带,架起函数与数列间的桥梁,揭示了它们间的内在联系,从而有效地分解数列问题.1.运用函数解析式解数列问题在等差数列中,Sn是关于n的二次函数,故可用研究二次函数的方法进行解题.例5等差数列{an}的前n项的和为Sn,且S10=100,S100=10,求S110,并求出当n为何值时Sn有最大值.分析显然公差d≠0,所以Sn是n的二次函数且无常数项.解设Sn=an2+bn(a≠0),则a×102+b×10=100,a×1002+b×100=10.解得a=―11100,b=11110.所以Sn=―11100n2+11110n.从而S110=―11100×1102+11110×110=―110.函数Sn=―11100n2+11110n的对称轴为n=111102×11100=55211=50211.因为n∈N*,所以n=50时Sn有最大值.2.利用函数单调性解数列问题通过构造函数,求导判断函数的单调性,从而证明数列的单调性.例6已知数列{an}中an=ln(1+n)n (n≥2),求证an>an+1.解设f(x)=ln(1+x)x(x≥2),则f ′(x)=x1+x―ln(1+x)x2. 因为x≥2,所以x1+x<1,ln(1+x)>1,所以f ′(x)<0.即f(x)在[2,+∞)上是单调减函数.故当n≥2时,an>an+1.例7已知数列{an}是公差为1的等差数列,bn=1+anan.(1)若a1=―52,求数列{bn}中的最大项和最小项的值;(2)若对任意的n∈N*,都有bn≤b8成立,求a1的取值范围.(1)分析最大、最小是函数的一个特征,一般可以从研究函数的单调性入手,用来研究函数最大值或最小值的方法同样适用于研究数列的最大项或最小项.解由题设易得an=n―72,所以bn=2n―52n―7.由bn=2n―52n―7=1+22n―7,可考察函数f(x)=1+22x―7的单调性.当x<72时,f(x)为减函数,且f(x)<1;当x>72时,f(x)为减函数,且f(x)>1.所以数列{bn}的最大项为b4=3,最小项为b3=―1.(2)分析由于对任意的n∈N*,都有bn≤b8成立,本题实际上就是求数列{bn}中的最大项.由于bn=1+1n―1+a1,故可以考察函数f(x)=1+1x―1+a1的形态.解由题,得an=n―1+a1,所以bn=1+1n―1+a1.考察函数f(x)=1+1x―1+a1,当x<1―a1时,f(x)为减函数,且f(x)<1;当x>1―a1时,f(x)为减函数,且f(x)>1.所以要使b8是最大项,当且仅当7<1―a1<8,所以a1的取值范围是―73.利用函数周期性解数列问题例8数列{an}中a1=a2=1,a3=2,anan+1an+2an+3=an+an+1+an+2+an+3且anan+1an+2≠1成立.试求S100=a1+a2+…+a100的值.分析从递推式不易直接求通项,观察前几项a1=1,a2=1,a3=2,a4=4,a5=1,a6=1,a7=2,a8=4,a9=1,…可猜测该数列是以4为周期的周期数列.解由已知两式相减得通过上述实例的分析与说明,我们可以发现,在数列的教学中,应重视方程函数思想的渗透,应该把函数概念、图象、性质有机地融入到数列中,通过数列与函数知识的相互交汇,使学生的知识网络得以不断优化与完善,同时也使学生的思维能力得以不断发展与提高.高中数学思想方法介绍,高中数学解题思想方法与讲解数学思想,是指现实世界的空间形式和数量关系反映到人们的意识之中,经过思维活动而产生的结果。
高中数学教学课例《数列》课程思政核心素养教学设计及总结反思
学方法,结合师生共同讨论、归纳。在课堂结构上,我
根据学生的认知水平,我设计了①创设情境——引入概
念②观察归纳——形成概念③讨论研究——深化概念
④即时训练—巩固新知⑤总结反思——提高认识⑥任
务后延——自主探究六个层次的学法,它们环环相扣,
层层深入,从而顺利完成教学目标。
(一)创设情境——引入概念
我经常在思考:长期以来,我们的学生为什么对数
此,在教学中,不仅要使学生“知其然”而且要使学生
“知其所以然”。为了体现以学生发展为本,遵循学生
的认知规律,体现循序渐进与启发式的教学原则,我进
行了这样的教法设计:在教师的引导下,创设情景,通
过开放性问题的设置来启发学生思考,在思考中体会数
学概念形成过程中所蕴涵的数学方法,使之获得内心感
受。
本节课我采用提问、讲述、观察发现、启发引导相
学不感兴趣,甚至害怕数学,其中的一个重要因素就是
数学离学生的生活实际太远了。事实上,数学学习应该
与学生的生活融合起来,从学生的生活经验和已有的知
识背景出发,让他们在生活中去发现数学、探究数学、
认识并掌握数学。
教学过程
1、由生活中的具体的数列实例引入: a、时间:时钟、挂历 b、植物:植物的茎 2、用古
1、知识与技能:通过枚举归纳: ①认识数列的特点,掌握数列的概念及表示方法。 ②了解数列通项公式的意义及数列分类。③能由数列的 通项公式求出数列的各项,反之,能由数列的前几项写 教学目标 出数列的一个通项公式。 2、过程与方法:通过对数列通项公式的探究和应 用,帮助学生通过问题解决获得数学知识;在交流过程 中,养成表述、抽象、类比、概括、总结的思维习惯。 3、情感态度与价值观:通过各种有趣的,贴近学
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
科技风2016年12 JJb:科教论坛 〃
D01:10.19392/ki.l671-7341.201623023
高中数列学习的数学思想
汪子睿
湖南省常德市芷兰实验学校湖南长沙415000
摘要:数列是高中数学学习的重点知识,也是我们理解的难点,在数学学习中,很多同学都对数列知识存在疑惑,对数列知识的理解不深入,甚至会丧失学习信心。
本文主要针对高中数列学习中的数学思想与学习方法进行分析。
关键词:高t数列学习;数学思想;应用
高中数学的学习压力大,为了让我们在高考中取得好的成绩,教师 往往鼓励我们采用传统的题海战术。
数学的内容越来越多,甚至都有了 大学数学里的概率,微积分等等超出我们能接受的知识,让我们的基本 功很不牢固。
而且十年寒窗苦读都是为了高考,老师只是单纯的顾及我 们的高考成绩,没有过多的关注数学思想的渗透〇在我们高中数学中 有一种特殊的函数就是数列,数列也是我们高中数学学习的重点和难 点,更是我们学习高等数学必须要打好的基础,也是高考的内容之一。
在考试中数列知识主要是考查我们学生对数列的公式记忆能力和理 解推理分析能力,以及我们是否能更好的运用数列知识解决实际问题 的能力。
通过我们的数学学习过程可以看出,数列就是一种特殊的函数,所 以我们在解决数列问题的时候其实就是利用相关的函数理论来研究问 题解决问题。
在对待一些题意不明确,难以找到解题方法的难题时,我 们往往会不知所措,不知道从何下手。
究其根本原因,多是由于我们在 解题过程中过于考虑细节,没有从这个整体上考虑问题,Xf—些常用公 式的掌握也不够灵活。
为了解决我们学习中的困惑,我们不仅要打好数 学基础,还要努力学习数列中蕴含的数学思想。
一、数列中的整体思想和函数思想
数列属于一种特殊的函数,我们在学习过程中要想解决数列问题,就需要用到函数思想;我们都知道,整体思想强调,在高中数学学习过 程中要始终具有全面的思想,从整体的角度来看待数学问题。
尤其是在 利用公式解决问题的时候,很多同学不能对公式有一个整体的认识,无 法准确灵活的运用公式,一遇到难题,就打退堂鼓,实际上,这都是由于 缺乏系统的解题思想。
二、数列中的分类讨论思想
分类讨论思想是我们高中数学学习过程中一个重要的数学思想,从高一的数列基本问题的解决到高三数列分类讨论的思想,我们都需 要应用到这一思想。
但是我们很多同学对于分类讨论思想没有一个深 刻的认识,对于一些比较平常的问题可以轻而易于的解决,但是一旦遇 到比较陌生的问题,一些同学就不知道如何切入。
我认为我们可以从以 下两个方面强化分类讨论思想的学习:一方面,可以对以往高考中出现 的常见数列问题进行系统的分析,提高我们对常态问题的熟悉程度;第 二方面,我们要多关注临界点问题,提高我们对分类讨论思想切入点的 准确度。
三、数列中的构造思想和转化划归
在数列中,我们经常遇到构造数列求解通项的问题,这些问题的本质就是把这些特殊的数列模型通过转化、构造,转变成基本的等差数列
和等比数列进行解决。
我们可以把构造作为一种解题技巧,进而把它上
升为一种思想方法,转化划归是我们数学思想的一种较高的境界,它可
以把我们不能解决的数列问题转化成一种我们能够轻易解决的基本数
列模型。
四、数列中蕴含的其它数学思想和方法
数列这一章中还蕴含着方程思想等数学思想,这些数学思想对于
我们对于数列概念和公式的理解、运用有着重要的作用,这些思想能够
帮助我们形成举一反三、融会贯通的能力,为我们解决问题提供更为广
泛的思路。
方程思想方法数列这一章涉及到了首项、末项、等比、等差等
数学公式的运用,数学公式从本质上说也是等式,所以,我们在此类数
学量的求解过程中就可以把它们看成相应的已知量和未知量,把他们
转化成利用公式求未知量的方程,就可以使问题的思路明朗化,使解题
步骤简单化。
不完全归纳方法可以培养我们直观的学习能力,提高我们的解题
效率,比如我们在等差数列和等比数列通项公式的推导过程中就可以
运用不完全归纳的方法来解决•,倒叙相加法在等差数列前N相和公式
的推导过程中,我们可以根据等差数列的特点,利用倒叙相加方法进行
求解,而且这一方法在数列这一章的学习中应用也很多;错位相减法是
另外一种数列求解的方法,他在求和项变形的转化上有重要的作用,并
且对多个数求和的问题有很大的帮助,等比数列的前n项和公式的推
导中运用到了这种思想方法。
五、结语
总之,在高中数学的很多内容当中都蕴含着数学思想,我们不但可
以解决一些基本的问题,也要能够利用思想方法来帮助我们提高学习
效率,掌握更多的数学知识。
数列是高中数学学习的难点,很多问题十
分抽象,我们在理解起来存在或多或少的困难,掌握数学思想可以培养
我们的开放性思维,为我们后续的数学学习奠定好基础。
参考文献:
[1] 李秋•强化初中数学函数教学的策略分析[J].数学大世界(上旬),2016(09).
[2]刘海东.巧妙运用函数思想,打造高中数学解题中的万能钥匙Q].中学数学研究(华南师范大学版),2016(22).
[3] 谢椿盛•淺谈函数思想在中学数学的教学策略□•知识文库,2016(17).
[4] 季霞.函数思想方法在初中数学教育中的应用研究□.数理化学 习,2014(12).
■25。