单基因遗传性疾病的分子诊断ppt课件
合集下载
分子诊断与基因检测的临床应用ppt课件

• 分子诊断及基因诊断在遗传学中的应用进展 • 分子诊断及基因诊断在肿瘤学中的应用进展
本标准适用于已投入商业运行的火力 发电厂 纯凝式 汽轮发 电机组 和供热 汽轮发 电机组 的技术 经济指 标的统 计和评 价。燃 机机组 、余热 锅炉以 及联合 循环机 组可参 照本标 准执行 ,并增 补指标 。
基因与肿瘤细胞生物学各个方面均有关
细胞增殖 血管新生
与细胞外基质的黏附 局部侵犯
进入血管内、存活、 外渗
未知功能的基因 (25)
与细胞外基质的黏附 细胞增殖
本标准适用于已投入商业运行的火力 发电厂 纯凝式 汽轮发 电机组 和供热 汽轮发 电机组 的技术 经济指 标的统 计和评 价。燃 机机组 、余热 锅炉以 及联合 循环机 组可参 照本标 准执行 ,并增 补指标 。
本标准适用于已投入商业运行的火力 发电厂 纯凝式 汽轮发 电机组 和供热 汽轮发 电机组 的技术 经济指 标的统 计和评 价。燃 机机组 、余热 锅炉以 及联合 循环机 组可参 照本标 准执行 ,并增 补指标 。
分子诊断及基因检测 在临床中应用的进展
本标准适用于已投入商业运行的火力 发电厂 纯凝式 汽轮发 电机组 和供热 汽轮发 电机组 的技术 经济指 标的统 计和评 价。燃 机机组 、余热 锅炉以 及联合 循环机 组可参 照本标 准执行 ,并增 补指标 。
文献检索及学术趋势
检索策略:查询2012-2018年间,以“gene diagnostic” or “molecular diagnostic”为关键词;主要查找遗传学领域文献和肿瘤学领域的文献,发 表文献量较大,在两个领域中均有广泛应用
本标准适用于已投入商业运行的火力 发电厂 纯凝式 汽轮发 电机组 和供热 汽轮发 电机组 的技术 经济指 标的统 计和评 价。燃 机机组 、余热 锅炉以 及联合 循环机 组可参 照本标 准执行 ,并增 补指标 。
本标准适用于已投入商业运行的火力 发电厂 纯凝式 汽轮发 电机组 和供热 汽轮发 电机组 的技术 经济指 标的统 计和评 价。燃 机机组 、余热 锅炉以 及联合 循环机 组可参 照本标 准执行 ,并增 补指标 。
基因与肿瘤细胞生物学各个方面均有关
细胞增殖 血管新生
与细胞外基质的黏附 局部侵犯
进入血管内、存活、 外渗
未知功能的基因 (25)
与细胞外基质的黏附 细胞增殖
本标准适用于已投入商业运行的火力 发电厂 纯凝式 汽轮发 电机组 和供热 汽轮发 电机组 的技术 经济指 标的统 计和评 价。燃 机机组 、余热 锅炉以 及联合 循环机 组可参 照本标 准执行 ,并增 补指标 。
本标准适用于已投入商业运行的火力 发电厂 纯凝式 汽轮发 电机组 和供热 汽轮发 电机组 的技术 经济指 标的统 计和评 价。燃 机机组 、余热 锅炉以 及联合 循环机 组可参 照本标 准执行 ,并增 补指标 。
分子诊断及基因检测 在临床中应用的进展
本标准适用于已投入商业运行的火力 发电厂 纯凝式 汽轮发 电机组 和供热 汽轮发 电机组 的技术 经济指 标的统 计和评 价。燃 机机组 、余热 锅炉以 及联合 循环机 组可参 照本标 准执行 ,并增 补指标 。
文献检索及学术趋势
检索策略:查询2012-2018年间,以“gene diagnostic” or “molecular diagnostic”为关键词;主要查找遗传学领域文献和肿瘤学领域的文献,发 表文献量较大,在两个领域中均有广泛应用
本标准适用于已投入商业运行的火力 发电厂 纯凝式 汽轮发 电机组 和供热 汽轮发 电机组 的技术 经济指 标的统 计和评 价。燃 机机组 、余热 锅炉以 及联合 循环机 组可参 照本标 准执行 ,并增 补指标 。
遗传性疾病的分子诊断教学课程

案例二:镰状细胞病的分子诊断
总结词
镰状细胞病是一种遗传性血液病,通过分子诊断可以检测出是否存在血红蛋白异常,为临床提供及时的诊断和 治疗方案。
详细描述
镰状细胞病患者红细胞形态异常,呈镰刀状。分子诊断技术通过对红细胞中血红蛋白的基因序列进行分析,可 以检测出是否存在镰状细胞病相关基因突变。对于疑似患者,通过血液样本采集和遗传学分析,可以确诊是否 患有镰状细胞病。
05
遗传性疾病的分子诊断前景与挑战
分子诊断技术的进步与挑战
分子诊断技术进步
近年来,分子诊断技术取得了显著的进步,包括基因测序、 基因表达谱分析、蛋白质组学等技术,为遗传性疾病的检测 和诊断提供了更精确和可靠的工具。
分子诊断挑战
尽管分子诊断技术不断进步,但仍存在一些挑战,如检测结 果的解读、临床应用的规范和标准化等问题,需要进一步研 究和探索。
03
在社会层面上,需要加强公众对遗传性疾病的认识和重视,提高医生的诊断和 治疗水平,同时加强相关法律法规的建设和完善。
02
分子诊断技术简介
分子诊断的基本原理
基于DNA和RNA等生物分子的特性,通过检测和分析这些 分子,对疾病进行诊断和预测。
分子诊断技术可以更精确地检测和识别遗传性疾病,相对 于传统诊断方法具有更高的敏感性和特异性。
有些遗传性疾病具有较高的致死率,如囊性纤维化、神经管缺陷等,对家庭和社会造成极大的负担。
遗传性疾病的诊断与治疗现状
01
遗传性疾病的诊断主要依赖于临床表型、家族史、基因检测和染色体分析等方 法,但往往存在诊断困难、误诊等问题。
02
针对不同类型的遗传性疾病,治疗方法各异,包括药物治疗、手术治疗、基因 治疗和细胞治疗等,但目前仍存在许多技术难题和伦理问题需要解决。
单基因疾病的分子诊断(教材)

单基因疾病的三种遗传方式
1. 常染色体遗传(autosomal inheritance)包括: 常染色体显性遗传和常染色体隐性遗传。
2. X连锁遗传( X-linked inheritance)包括:
X连锁显性遗传和X连锁隐性遗传。
3. 线粒体遗传(mitochondrial inheritance)
2、基因背景未知的点突变
• 单链构象多态性(single-strand conformational polymorphism, SSCP) • 变性梯度凝胶电泳(denaturing gradient gel electrophoresis, DGGE) • 异源双链分析(heteroduplex analysis, HA) • DNA序列测定 • 蛋白截短测试(protein truncation test, PTT)
Southern blot
DNA片段在琼脂 糖凝胶上电泳分 离
DNA片段从琼脂 糖凝胶上转印到 膜上
杂交信号的 检测
在缓冲液中将 标记的探针加 到膜上
膜上固定DNA 片段
分子诊断
二、单基因病的分子诊断
(一)血友病A的分子诊断 (二)珠蛋白合成障碍性贫血的分子诊断
二、单基因病的分子诊断
(一)血友病A的分子诊断 1.凝血因子Ⅷ基因的主要遗传缺陷
第22号内含子倒位的ຫໍສະໝຸດ 制二、单基因病的分子诊断2. FⅧ基因的直接检测——22号内含子倒位检测
12kb/
11kb/12kb
11kb/
12kb/
长距离PCR扩增22号内含子
二、单基因病的分子诊断
3. FⅧ基因连锁分析—— FⅧ基因st14位点多态性检测
C/ B/D
分子诊断学遗传性疾病的分子诊断

simultaneously:同时地;
multiplex:多样化; exon:外显子;
deletion:缺失
01
02
Phenylketonuria is an inborn error of metabolism resulting from a deficiency of phenylalanine hydroxylase. There are many techniques that can be used to mutation screening, such as PCR-STR, PCR-SSCP, PCR-RFLP, PCR-DGCE, and so on.
主要是由于肝内苯丙氨酸羟化酶(phenylalanine hydroxylase, PAH)严重缺失所致的苯丙氨酸代谢异常,为常染色体隐性遗传病 临床表现:智力障碍、色素减少、尿特殊气味及神经和精神症状
分子诊断方法:
1
PCR-STR连锁分析
2
PCR-RFLP
3
多重ASPCR法 PCR-DGGE法
Phenylketonuria:苯丙酮尿 phenylalanine hydroxylase:苯基丙氨酸羟化酶
Cystic fibrosis(CF) is caused by mutations in the CFTR gene. Five tests are most frequently used: resctriction enzyme analysis, the heteroduplex analysis, ARMS, reverse hybridization and OLA.
按照合成速率降低的珠蛋白类型分为α、β、γ、δ地中海贫血
α-地中海贫血( α -thalassemia) α0地贫是α链完全不能合成者 α+地贫是部分α链合成者
第十六章单基因遗传病ppt课件

(二)外显率和表现度
1、外显率(penetrance) 是指一群具有某种致病基因的人中, 出现相应病理表现型的人数百分率。
例如:单纯性尺侧多指(趾)畸形(AD),共调 查了115个家庭,子代中均有此种多指(趾) 畸形,理论上115家中亲代应有115个患者, 但实际上这115个家庭中,91对的婚配类型 为受累者x正常;24对为正常x正常,他(她) 们是不外显者,占20.87%。其外显率为 91/115=0.79或79%。
(3)XhX x XhY 女性(携) 男性患者
正常亲代(携带者) XhX
子代基因: XhX
患者亲代 XhY
Xh
XhY
XhXhY
Xh X XhXh XhX
XXhYY XY
表现型:女性(携) 男性患者 女性患者 正常男性
概率: 1/4
1/4
1/4
1/4
概率比: 1 : 1 : 1 : 1
每胎出生患者的机会是1/2,男、女机会均等。
返回
1、典型婚配类型
患者亲代
(1)Dd x dd
Dd
患者 正常
Dd
正常亲代 dd
d
Dd
dd
d Dd dd
子代基因型:Dd dd
表现型:患者 正常
概率: 1/2 1/2
概率比: 1 : 1
返回
概率与概率比之间的关系:
可以相互转换,分母相同时,分 子之比即为概率比;分母不相同 时,则通分后的分子之比则为概 率比
139
2
0
2023
suspected
mendelian basis
Total
18443 1112
59
63
19677
【精选】分子诊断技术PPT优秀资料

分子诊断技术课件
常见的核酸分子诊断技术
核酸分子杂交
( Nucleic acid molecular Hybridization)
基因芯片( Gene Chip )
聚合酶链反应( polymerase chain reaction reaction;PCR)
核酸分子杂交的原理
双链核酸加热或经硷处理变性后,可解链
子杂交,有着不可替代的作用。
斑点杂交(spot blot hybridization)
大规模集成的固相杂交
斑点杂交(spot blot hybridization)
凝胶电泳印迹转移杂交(Southern blot
hybridization)
原位杂交(in-situ hybridization)
分离、切割病毒的特定核酸片段获得;
聚合酶链反应( polymerase chain reaction Fra bibliotekeaction;
逆转录PCR(RT-PCR)
即将大量靶基因或寡核苷酸片段有序地,高密度地(点与点间距一般小于500μm)排列在玻璃、硅等载体上,称之为基因芯片。
原位PCR(in-situ PCR)
成两条互补的单链核酸。
在适当温度、盐浓度下,双链能按硷基互
补配对原则(A-T,C-G)复性而重新成为双链
核酸。
用已知序列的单链核酸,经标记制成核酸
探针,与变性后的待测标本核酸进行杂交,
通过检测标记探针的信号,可判断标本是
否存在与探针互补杂交的同源核酸。
核酸分子杂交探针的制备
制备探针的靶核酸可通过:
PCR不仅可检测各种DNA病毒的核酸,还可经过逆转录,检测各种RNA病毒的核酸,因而在各型肝炎病毒的检测中,敏感性远超过分
常见的核酸分子诊断技术
核酸分子杂交
( Nucleic acid molecular Hybridization)
基因芯片( Gene Chip )
聚合酶链反应( polymerase chain reaction reaction;PCR)
核酸分子杂交的原理
双链核酸加热或经硷处理变性后,可解链
子杂交,有着不可替代的作用。
斑点杂交(spot blot hybridization)
大规模集成的固相杂交
斑点杂交(spot blot hybridization)
凝胶电泳印迹转移杂交(Southern blot
hybridization)
原位杂交(in-situ hybridization)
分离、切割病毒的特定核酸片段获得;
聚合酶链反应( polymerase chain reaction Fra bibliotekeaction;
逆转录PCR(RT-PCR)
即将大量靶基因或寡核苷酸片段有序地,高密度地(点与点间距一般小于500μm)排列在玻璃、硅等载体上,称之为基因芯片。
原位PCR(in-situ PCR)
成两条互补的单链核酸。
在适当温度、盐浓度下,双链能按硷基互
补配对原则(A-T,C-G)复性而重新成为双链
核酸。
用已知序列的单链核酸,经标记制成核酸
探针,与变性后的待测标本核酸进行杂交,
通过检测标记探针的信号,可判断标本是
否存在与探针互补杂交的同源核酸。
核酸分子杂交探针的制备
制备探针的靶核酸可通过:
PCR不仅可检测各种DNA病毒的核酸,还可经过逆转录,检测各种RNA病毒的核酸,因而在各型肝炎病毒的检测中,敏感性远超过分
分子诊断技术的临床应用ppt课件
二、PCR概述
PCR技术能在一个试管内将所要研究的 目的基因或某一DNA片段于数小时内扩增至 十万乃至百万倍,使肉眼能直接观察和判 断;可从一根毛发、一滴血、甚至一个细 胞中扩增出足量的DNA供分析研究和检测鉴 定。
PCR 发展简史
1983 Mullis于12月16日成功发明了PCR 1985 关于PCR 的文章首次由 Mullis及其同事等人 在
测 优生优育项目诊断:人巨细胞病毒(HCMV)、单纯疱
疹病毒(HSV)、弓形虫(TOX)、风疹病毒(RUB) 其它病原体检测:结核杆菌、肺炎支原体、EB病毒、
伤寒杆菌、幽门螺旋杆菌等
常规结核病实验室诊断方法及不足
1. 痰涂片作抗酸染色:阳性率低 、费时 2. 细胞培养“金标准”:周期太长(4-8W) 3. 血清学诊断:
的平衡点。
总结
分子诊断学的快速发展,得益与分子诊断技术 的日新月异。1990年启动的人类基因组计划的完 成经历了十三年的时间,而2007启动的1000人基 因组计划的完成却只用了3年,人类了解自然密 码的速度正在跨上快速列车。检验医学以提供精 密准确的数据服务于临床,而分子诊断技术正逐 渐成为临床实验室的常规应用技术,这将为检验 医学的发展提供巨大的机遇与挑战。
PCR技术
PCR核心技术是从水栖高温菌中
分离到能耐高温的Taq酶,使扩增反
应不需要每一个循环加一次DNA聚合
酶,从而实现了自动化,使应用领
域迅速扩大,PCR技术成为了分子生
物学中的一项突破性技术。
PCR概述——2000至2013年发表论文篇
30%
32%
PCR+遗传分析
PCR+临床诊断
PCR+肿瘤研究
二 肿瘤相关基因表达的检测: 1、包括癌基因、抗癌基因 2、肿瘤转移基因 3、转移抑制基因
分子诊断临床应用-遗传性疾病的分子诊断
▪
▪
( on April 10, 2003)
检测标本 痰液、咽拭子、鼻拭子、支气管肺泡灌洗液 、 血浆、粪便。
检测方法 1.逆转录-巢式PCR (Reverse-Nested PCR) 2.逆转录-实时PCR (Reverse-Real time PCR)
BK病毒复制的检测 血、尿中BK病毒核酸定量检测 尿液中decoy细胞检查 尿沉渣涂片原位杂交 组织病理学检查(判断肾脏间质性肾病)
肾脏移植术后病人BK病毒检测的研究
对象 瑞金医院肾脏移植术后2个月~3年的患者95例 正常人标本60例 研究方法 尿沉渣细胞形态学检测 血、尿中BK 病毒DNA的定量检测
遗传性疾病中常见的分子异常
致病基因异常而导致所载有的遗传信息受到改 变, 而疾病的发生则是通过遗传物质的表达产 物——蛋白质(或酶等)的表现异常所致。
基因突变主要包括点突变、片段性突变和动态 性突变。
点突变 (point mutation)
包括错义突变、无义突变、移码突变。 各种点突变所造成的后果: 蛋白质分子量改变 蛋白质合成量下降 无蛋白质合成
生物学技术检测基因的遗传缺陷, 因此直 接诊断的前提是被检测基因的正常序列 和结构必须被阐明。
直接诊断由于是直接揭示遗传缺陷, 因而比较可靠。
DMD的基因检测
• Duchenne muscular dystrophy (DMD) 是一种 • 高发病率、高致残、高致死的X连锁的遗传性 • 疾病, 在3500个活产男婴中即有一个患者。 • DMD基因的全长为250kb, 有79个外显子。 • DMD 的最主要遗传缺陷是外显子缺失, 约占 • 60%~70%。
有报道显示, 在可能SARS病人中病毒的检出 率为100%。 在疑似SARS病人中的检出率为23%。 所有健康接触者中未检测到病毒。
《分子诊断技术》课件
2010年代至今
随着生物信息学和人工智能技 术的发展,分子诊断技术不断 优化和升级,应用领域也不断
拓展。
02
分子诊断技术的基本原理
核酸的提取与纯化
核酸提取
核酸提取与纯化的重要性
是指从生物样本中分离和纯化核酸的 过程,是分子诊断技术中的基础步骤 。
是确保后续分子诊断实验结果准确性 和可靠性的关键。
案例三
总结词
SNP分型技术有助于个体化医疗的实现,为 患者提供更加精准的治疗方案。
详细描述
SNP分型技术可以对个体的基因变异进行精 细分析,预测个体对不同药物的反应和代谢 情况,为医生制定个体化的治疗方案提供科
学依据,提高治疗效果并减少副作用。
THANKS
感谢观看
特点
高灵敏度、高特异性、早期诊断、个性化治疗指导等。
分子诊断技术的应用领域
遗传性疾病诊断
通过对基因突变进行检测,对遗传性 疾病进行早期发现和干预。
肿瘤诊断与监测
通过对肿瘤相关基因和蛋白质的检测 ,对肿瘤进行早期发现、诊断、分期 、预后评估和复发监测。
感染性疾病诊断
通过对病原体基因和蛋白质的检测, 对感染性疾病进行快速诊断和用药指 导。
01
02
03
个性化医疗
结合基因组学、蛋白质组 学等技术,实现个体化、 精准化的诊断和治疗。
无创检测
研究无创或微创的分子诊 断技术,减少对患者的创 伤和痛苦。
实时监测
实现实时、动态的分子诊 断监测,及时发现病情变 化,为治疗提供及时反馈 。
05
案例分析
案例一:基因突变检测在肺癌诊断中的应用
总结词
基因突变检测在肺癌诊断中具有重要意义,有助于早期发现和个性化治疗。
随着生物信息学和人工智能技 术的发展,分子诊断技术不断 优化和升级,应用领域也不断
拓展。
02
分子诊断技术的基本原理
核酸的提取与纯化
核酸提取
核酸提取与纯化的重要性
是指从生物样本中分离和纯化核酸的 过程,是分子诊断技术中的基础步骤 。
是确保后续分子诊断实验结果准确性 和可靠性的关键。
案例三
总结词
SNP分型技术有助于个体化医疗的实现,为 患者提供更加精准的治疗方案。
详细描述
SNP分型技术可以对个体的基因变异进行精 细分析,预测个体对不同药物的反应和代谢 情况,为医生制定个体化的治疗方案提供科
学依据,提高治疗效果并减少副作用。
THANKS
感谢观看
特点
高灵敏度、高特异性、早期诊断、个性化治疗指导等。
分子诊断技术的应用领域
遗传性疾病诊断
通过对基因突变进行检测,对遗传性 疾病进行早期发现和干预。
肿瘤诊断与监测
通过对肿瘤相关基因和蛋白质的检测 ,对肿瘤进行早期发现、诊断、分期 、预后评估和复发监测。
感染性疾病诊断
通过对病原体基因和蛋白质的检测, 对感染性疾病进行快速诊断和用药指 导。
01
02
03
个性化医疗
结合基因组学、蛋白质组 学等技术,实现个体化、 精准化的诊断和治疗。
无创检测
研究无创或微创的分子诊 断技术,减少对患者的创 伤和痛苦。
实时监测
实现实时、动态的分子诊 断监测,及时发现病情变 化,为治疗提供及时反馈 。
05
案例分析
案例一:基因突变检测在肺癌诊断中的应用
总结词
基因突变检测在肺癌诊断中具有重要意义,有助于早期发现和个性化治疗。
第11章-单基因遗传病PPT课件
• 高铁血红蛋白还原酶缺乏症, 由于基因突变使高
铁血红蛋白还原酶缺乏所致,使红细胞内三价铁不 能被还原成二价铁,影响血红蛋白正常的带02能力, 出现紫绀和代偿性红细胞增多。
• 呈常染色体显性遗传
.
18
珠蛋白生成障碍性贫血 • α珠蛋白生成障碍性贫血 • β珠蛋白生成障碍性贫血(地中海贫血)
.
19
α珠蛋白生成障碍性贫血(AD)
• 常染色体显性遗传 • 突变基因杂合子及纯合子均表现出临床表
现,但存在着明显的剂量效应
• 纯合患者的临床表现比杂合患者要严重 • 突变导致LDL不能被细胞摄取, 导致胆固醇
代谢异常
.
33
五、膜转运蛋白病
• 囊性纤维性变(cysticfibrosis,CF)是一种
发现
• 红细胞在缺氧状态下变成镰刀状, 极易
被破坏而引起溶血性贫血
• 分子基础是Hbβ链N端的谷氨酸被缬氨
酸所取代
.
16
.
17
高铁血红蛋白血症 (血红蛋白M病)
• 02转运异常为特征; • 主要是由于α或β基因突变,造 成α链或β链中与铁
原子相结合的组氨酸被酪氨酸替代, 使铁原子呈 稳定的高铁状态, 影响 了正常的带氧功能,导致组 织供氧不足,出现发绀和继发性的红细胞增多;
此症共有6种类型,分别决定于不同的位点。其中2型是由于细胞膜上低 密度脂蛋白受体缺陷而导致。
低密度脂蛋白(LDL) (LDL)受体
溶酶体 水解
脂酰辅酶A (+) 胆固醇脂酰转移酶
释放的胆固醇 β -羟基β-甲基戊二酰辅酶A还原酶
胆固醇酯
(–) 胆固醇合成
储存
LDL受体缺陷使负反馈受阻
.
铁血红蛋白还原酶缺乏所致,使红细胞内三价铁不 能被还原成二价铁,影响血红蛋白正常的带02能力, 出现紫绀和代偿性红细胞增多。
• 呈常染色体显性遗传
.
18
珠蛋白生成障碍性贫血 • α珠蛋白生成障碍性贫血 • β珠蛋白生成障碍性贫血(地中海贫血)
.
19
α珠蛋白生成障碍性贫血(AD)
• 常染色体显性遗传 • 突变基因杂合子及纯合子均表现出临床表
现,但存在着明显的剂量效应
• 纯合患者的临床表现比杂合患者要严重 • 突变导致LDL不能被细胞摄取, 导致胆固醇
代谢异常
.
33
五、膜转运蛋白病
• 囊性纤维性变(cysticfibrosis,CF)是一种
发现
• 红细胞在缺氧状态下变成镰刀状, 极易
被破坏而引起溶血性贫血
• 分子基础是Hbβ链N端的谷氨酸被缬氨
酸所取代
.
16
.
17
高铁血红蛋白血症 (血红蛋白M病)
• 02转运异常为特征; • 主要是由于α或β基因突变,造 成α链或β链中与铁
原子相结合的组氨酸被酪氨酸替代, 使铁原子呈 稳定的高铁状态, 影响 了正常的带氧功能,导致组 织供氧不足,出现发绀和继发性的红细胞增多;
此症共有6种类型,分别决定于不同的位点。其中2型是由于细胞膜上低 密度脂蛋白受体缺陷而导致。
低密度脂蛋白(LDL) (LDL)受体
溶酶体 水解
脂酰辅酶A (+) 胆固醇脂酰转移酶
释放的胆固醇 β -羟基β-甲基戊二酰辅酶A还原酶
胆固醇酯
(–) 胆固醇合成
储存
LDL受体缺陷使负反馈受阻
.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 3.蛋白质水平的诊断:采用生物化学方法分析异常表达的 蛋白质或代谢产物。
• 4.疾病动物模型的辅助诊断:建立相应的转基因疾病动物 模型,辅助诊断或判定人类疾病的致病基因。
School of Laboratory
10
Medicine and Life
• 所有遗传性疾病都与某种或多种基因的突 变有关,对这类疾病进行分子诊断有两种 策略可供选择:
3
Medicine and Life
单基因遗传病
• 常染色体显性遗传病 • 常染色体隐性遗传病 • X连锁显性遗传病 • X连锁隐性遗传病 • Y连锁遗传病
School of Laboratory
4
Medicine and Life
常染色体显性遗传病
• 位于常染色体上的两个等位基因中,如有 一个突变,这个突变基因的异常效应就能 显示发病。
School of Laboratory
8
Medicine and Life
Y连锁遗传病
• Y连锁遗传病的特点是男性传递给儿子,女 性不发病。
• 因Y染色体上主要有男性决定因子方面的基 因,其他基因很少,故Y连锁遗传病极少见。 目前已经知道的Y伴性遗传的性状或遗传病 比较少,肯定的有H-Y抗原基因、外耳道 多毛基因和睾丸决定因子基因等。
• 1. 直接诊断策略; • 2. 间接诊断策略
School of Laboratory
11
Medicine and Life
• 遗传性疾病分子诊断的直接策略就是通过 各种分子生物学技术直接检测导致遗传性 疾病的各种基因突变,如基因的缺失、插 入、倍增或者是点突变等遗传缺陷。因此 直接诊断的前提是被测基因已经克隆,其 核酸序列和结构已被阐明。
School of Laboratory
14
Medicine and Life
间接诊断策略和方法:
• 采用多态性连锁分析的方法,寻找具有基 因缺陷的染色体、相关基因的等位基因型 和单倍体型等,并判定被检者是否有这条 存在基因缺陷的染色体、相关基因的等位 基因型和单倍体型等。
School of Laboratory
• 特点:遗传与性别无关,男女发病机会均 等;患者双亲往往有一方为患者。
• 家族性多发性结肠息肉、多指、并指等。
Schoபைடு நூலகம்l of Laboratory
5
Medicine and Life
常染色体隐性遗传病
• 致病基因为位于常染色体上的隐性基因,当隐性 基因纯合时才能发病。即隐性遗传病 单基因遗传 病患者,大多是由两个携带者所生的后代。
• 抗维生素D佝偻病、家族性遗传性肾炎等。
School of Laboratory
7
Medicine and Life
X连锁隐性遗传病
• 特点:女性携带,男性患病。男性的致病基因只能随着X染色体传给 女儿,不能传给儿子,称为交叉遗传。
• 血友病A。病因:血浆中抗血友病球蛋白减少,AHG即第Ⅷ因子凝血 时间延长。临床表现:轻微创伤即出血不止,不出血时与常人无异。
School of Laboratory
12
Medicine and Life
直接诊断策略和方法:
•1、点突变的诊断
• 直接检测基因点突变:等位基因特异性寡核苷酸杂交 (ASO)、PCR- ELISA、等位基因特异性扩增(ASA)、PCR-RFLP、基因芯片技术等;
• 基因背景未知的点突变:单链构象多态性(SSCP)、变性梯度凝胶电泳 (DEEG)、异源双链分析(HA)、DNA序列测定、蛋白截短测试等。
15
Medicine and Life
《医疗机构临床检验项目目录(2013年版)》
School of Laboratory
9
Medicine and Life
• 遗传病的诊断方法可以简单的分为以下的四类:
• 1.分子水平的诊断:包括限制性片段长度多态性的酶切分 析、基因型和单体型的连锁和关联分析、基因的序列分析。
• 2.细胞水平的诊断:采用细胞遗传学技术进行染色体核型 分析,比如荧光原位杂交法。
School of Laboratory
13
Medicine and Life
2、片段性突变的检测
• 片段性突变是指DNA分子中较大范围的碱基发生 突变,如碱基的缺失、插入、扩增和重组。对于少 数核苷酸缺失或插入,可以采用检测点突变的方法, 而对于大的片段突变,则使用Southern印迹技术 和多重PCR技术。
• 特点:男女发病机会均等,发病与性别无关;双 亲为无病携带者,子女发病概率为25%;常是越 代遗传;近亲婚配时,子女中隐性遗传病患病率 大为增高。
• 先天性聋哑、白化病、苯丙酮尿症等。
School of Laboratory
6
Medicine and Life
X连锁显性遗传病
• 特点:女性发病率高,这是由于女性有两 条X染色体,获得这一显性致病基因的概率 高之故,但病情较男性轻。男性患者病情 重,他的全部女儿都将患病。
School of Laboratory
2
Medicine and Life
• 单基因遗传病是指受一对等位基因控制的 遗传病,有6600多种,并且每年在以10-50 种的速度递增,单基因遗传病已经对人类
健康构成了较大的威胁。较常见的有红绿 色盲、血友病、白化病等。
School of Laboratory
单基因遗传性疾病的分子诊断
温州医科大学
检验医学院、生命科学学院
School of Laboratory
1
Medicine and Life
• 遗传性疾病主要分为两大类:
1. 符合孟德尔遗传规律的单基因遗传病(特点: 病种多、在特定家系中发病率高、对群体 的影响小)
2. 不符合孟德尔遗传规律的多基因遗传病 (又称多因素性疾病,特点:病种相对较 少、不仅在特定家系中发病率高、而且对 群体的影响大)
• 血友病B。病因:血浆中缺乏凝血酶成份PTC,即第Ⅸ因子。临床表 现同血友病A。
• 色盲。临床表现:全色盲对所有颜色看成无色,红绿色盲为不能区别 红色和绿色。
• 进行性肌营养不良。病因:为原发性横纹肌变性并进行性发展。临床 表现:初为行走笨拙,易跌到,登梯及起立时有困难,从仰卧到起立 必须先俯卧,双手撑地,再用两手扶小腿、大腿才能站起。进行性肌 肉萎缩,但一般不累及面部及手部肌肉。
• 4.疾病动物模型的辅助诊断:建立相应的转基因疾病动物 模型,辅助诊断或判定人类疾病的致病基因。
School of Laboratory
10
Medicine and Life
• 所有遗传性疾病都与某种或多种基因的突 变有关,对这类疾病进行分子诊断有两种 策略可供选择:
3
Medicine and Life
单基因遗传病
• 常染色体显性遗传病 • 常染色体隐性遗传病 • X连锁显性遗传病 • X连锁隐性遗传病 • Y连锁遗传病
School of Laboratory
4
Medicine and Life
常染色体显性遗传病
• 位于常染色体上的两个等位基因中,如有 一个突变,这个突变基因的异常效应就能 显示发病。
School of Laboratory
8
Medicine and Life
Y连锁遗传病
• Y连锁遗传病的特点是男性传递给儿子,女 性不发病。
• 因Y染色体上主要有男性决定因子方面的基 因,其他基因很少,故Y连锁遗传病极少见。 目前已经知道的Y伴性遗传的性状或遗传病 比较少,肯定的有H-Y抗原基因、外耳道 多毛基因和睾丸决定因子基因等。
• 1. 直接诊断策略; • 2. 间接诊断策略
School of Laboratory
11
Medicine and Life
• 遗传性疾病分子诊断的直接策略就是通过 各种分子生物学技术直接检测导致遗传性 疾病的各种基因突变,如基因的缺失、插 入、倍增或者是点突变等遗传缺陷。因此 直接诊断的前提是被测基因已经克隆,其 核酸序列和结构已被阐明。
School of Laboratory
14
Medicine and Life
间接诊断策略和方法:
• 采用多态性连锁分析的方法,寻找具有基 因缺陷的染色体、相关基因的等位基因型 和单倍体型等,并判定被检者是否有这条 存在基因缺陷的染色体、相关基因的等位 基因型和单倍体型等。
School of Laboratory
• 特点:遗传与性别无关,男女发病机会均 等;患者双亲往往有一方为患者。
• 家族性多发性结肠息肉、多指、并指等。
Schoபைடு நூலகம்l of Laboratory
5
Medicine and Life
常染色体隐性遗传病
• 致病基因为位于常染色体上的隐性基因,当隐性 基因纯合时才能发病。即隐性遗传病 单基因遗传 病患者,大多是由两个携带者所生的后代。
• 抗维生素D佝偻病、家族性遗传性肾炎等。
School of Laboratory
7
Medicine and Life
X连锁隐性遗传病
• 特点:女性携带,男性患病。男性的致病基因只能随着X染色体传给 女儿,不能传给儿子,称为交叉遗传。
• 血友病A。病因:血浆中抗血友病球蛋白减少,AHG即第Ⅷ因子凝血 时间延长。临床表现:轻微创伤即出血不止,不出血时与常人无异。
School of Laboratory
12
Medicine and Life
直接诊断策略和方法:
•1、点突变的诊断
• 直接检测基因点突变:等位基因特异性寡核苷酸杂交 (ASO)、PCR- ELISA、等位基因特异性扩增(ASA)、PCR-RFLP、基因芯片技术等;
• 基因背景未知的点突变:单链构象多态性(SSCP)、变性梯度凝胶电泳 (DEEG)、异源双链分析(HA)、DNA序列测定、蛋白截短测试等。
15
Medicine and Life
《医疗机构临床检验项目目录(2013年版)》
School of Laboratory
9
Medicine and Life
• 遗传病的诊断方法可以简单的分为以下的四类:
• 1.分子水平的诊断:包括限制性片段长度多态性的酶切分 析、基因型和单体型的连锁和关联分析、基因的序列分析。
• 2.细胞水平的诊断:采用细胞遗传学技术进行染色体核型 分析,比如荧光原位杂交法。
School of Laboratory
13
Medicine and Life
2、片段性突变的检测
• 片段性突变是指DNA分子中较大范围的碱基发生 突变,如碱基的缺失、插入、扩增和重组。对于少 数核苷酸缺失或插入,可以采用检测点突变的方法, 而对于大的片段突变,则使用Southern印迹技术 和多重PCR技术。
• 特点:男女发病机会均等,发病与性别无关;双 亲为无病携带者,子女发病概率为25%;常是越 代遗传;近亲婚配时,子女中隐性遗传病患病率 大为增高。
• 先天性聋哑、白化病、苯丙酮尿症等。
School of Laboratory
6
Medicine and Life
X连锁显性遗传病
• 特点:女性发病率高,这是由于女性有两 条X染色体,获得这一显性致病基因的概率 高之故,但病情较男性轻。男性患者病情 重,他的全部女儿都将患病。
School of Laboratory
2
Medicine and Life
• 单基因遗传病是指受一对等位基因控制的 遗传病,有6600多种,并且每年在以10-50 种的速度递增,单基因遗传病已经对人类
健康构成了较大的威胁。较常见的有红绿 色盲、血友病、白化病等。
School of Laboratory
单基因遗传性疾病的分子诊断
温州医科大学
检验医学院、生命科学学院
School of Laboratory
1
Medicine and Life
• 遗传性疾病主要分为两大类:
1. 符合孟德尔遗传规律的单基因遗传病(特点: 病种多、在特定家系中发病率高、对群体 的影响小)
2. 不符合孟德尔遗传规律的多基因遗传病 (又称多因素性疾病,特点:病种相对较 少、不仅在特定家系中发病率高、而且对 群体的影响大)
• 血友病B。病因:血浆中缺乏凝血酶成份PTC,即第Ⅸ因子。临床表 现同血友病A。
• 色盲。临床表现:全色盲对所有颜色看成无色,红绿色盲为不能区别 红色和绿色。
• 进行性肌营养不良。病因:为原发性横纹肌变性并进行性发展。临床 表现:初为行走笨拙,易跌到,登梯及起立时有困难,从仰卧到起立 必须先俯卧,双手撑地,再用两手扶小腿、大腿才能站起。进行性肌 肉萎缩,但一般不累及面部及手部肌肉。