年上海市浦东新区中考数学二模试卷 解析版

合集下载

上海市浦东新区2019年中考数学二模试卷含答案解析+【精选五套中考模拟卷】

上海市浦东新区2019年中考数学二模试卷含答案解析+【精选五套中考模拟卷】

上海市浦东新区2019年中考数学二模试卷含答案解析一、选择题:(本大题共6题,每题4分,满分24分)1.2019的相反数是()A.B.﹣2019 C.﹣D.20192.已知一元二次方程x2+3x+2=0,下列判断正确的是()A.该方程无实数解B.该方程有两个相等的实数解C.该方程有两个不相等的实数解D.该方程解的情况不确定3.下列函数的图象在每一个象限内,y随着x的增大而增大的是()A.y=﹣B.y=x2﹣1 C.y= D.y=﹣x﹣14.如果从1、2、3这三个数字中任意选取两个数字,组成一个两位数,那么这个两位数是素数的概率等于()A.B.C.D.5.下图是上海今年春节七天最高气温(℃)的统计结果:这七天最高气温的众数和中位数是()A.15,17 B.14,17 C.17,14 D.17,156.如图,△ABC和△AMN都是等边三角形,点M是△ABC的重心,那么的值为()A.B.C.D.二、填空题:(本大题共12题,每题4分,满分48分)7.计算:|﹣1|= .8.不等式x﹣1<2的解集是.9.分解因式:8﹣2x2= .10.计算:3()+2(﹣2)= .11.方程的根是.12.已知函数f(x)=,那么f()= .13.如图,传送带和地面所成的斜坡的坡度为1:,它把物体从地面送到离地面9米高的地方,则物体从A 到B所经过的路程为米.14.正八边形的中心角等于度.15.在开展“国学诵读”活动中,某校为了解全校1200名学生课外阅读的情况,随机调查了50名学生一周的课外阅读时间,并绘制成如图所示的条形统计图.根据图中数据,估计该校1200名学生一周的课外阅读时间不少于6小时的人数是.16.已知:⊙O1、⊙O2的半径长分别为2和R,如果⊙O1与⊙O2相切,且两圆的圆心距d=3,则R的值为.17.定义运算“﹡”:规定x﹡y=ax+by(其中a、b为常数),若1﹡1=3,1﹡(﹣1)=1,则1﹡2= .18.在Rt△ABC中,∠ACB=90°,BC=15,AC=20.点D在边AC上,DE⊥AB,垂足为点E,将△ADE沿直线DE翻折,翻折后点A的对应点为点P,当∠CPD为直角时,AD的长是.三、解答题:(本大题共7题,满分78分)19.(10分)计算:2sin45°﹣20190++()﹣1.20.(10分)解方程:.21.(10分)如图,AB是⊙O的弦,C是AB上一点,∠AOC=90°,OA=4,OC=3,求弦AB的长.22.(10分)某工厂生产一种产品,当生产数量不超过40吨时,每吨的成本y(万元/吨)与生产数量x(吨)的函数关系式如图所示:(1)求y关于x的函数解析式,并写出它的定义域;(2)当生产这种产品的总成本为210万元时,求该产品的生产数量.(注:总成本=每吨的成本×生产数量)23.(12分)如图,已知:四边形ABCD是平行四边形,点E在边BA的延长线上,CE交AD于点F,∠ECA=∠D (1)求证:△EAC∽△ECB;(2)若DF=AF,求AC:BC的值.24.(12分)如图,二次函数y=ax2﹣4ax+2的图象与y轴交于点A,且过点B(3,6).(1)试求二次函数的解析式及点A的坐标;(2)若点B关于二次函数对称轴的对称点为点C,试求∠CAB的正切值;(3)若在x轴上有一点P,使得点B关于直线AP的对称点B1在y轴上,试求点P的坐标.25.(14分)如图,Rt△ABC中,∠ACB=90°,BC=6,点D为斜边AB的中点,点E为边AC上的一个动点.联结DE,过点E作DE的垂线与边BC交于点F,以DE,EF为邻边作矩形DEFG.(1)如图1,当AC=8,点G在边AB上时,求DE和EF的长;(2)如图2,若,设AC=x,矩形DEFG的面积为y,求y关于x的函数解析式;(3)若,且点G恰好落在Rt△ABC的边上,求AC的长.参考答案与试题解析一、选择题:(本大题共6题,每题4分,满分24分)1.2019的相反数是()A.B.﹣2019 C.﹣D.2019【考点】相反数.【分析】根据相反数的含义,可得求一个数的相反数的方法就是在这个数的前边添加“﹣”,据此解答即可.【解答】解:2019的相反数是﹣2019.故选:B.【点评】此题主要考查了相反数的含义以及求法,要熟练掌握,解答此题的关键是要明确:相反数是成对出现的,不能单独存在;求一个数的相反数的方法就是在这个数的前边添加“﹣”.2.已知一元二次方程x2+3x+2=0,下列判断正确的是()A.该方程无实数解B.该方程有两个相等的实数解C.该方程有两个不相等的实数解D.该方程解的情况不确定【考点】根的判别式.【分析】把a=1,b=3,c=2代入判别式△=b2﹣4ac进行计算,然后根据计算结果判断方程根的情况.【解答】解:∵a=1,b=3,c=2,∴△=b2﹣4ac=32﹣4×1×2=1>0,∴方程有两个不相等的实数根.故选C.【点评】本题考查了根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.3.下列函数的图象在每一个象限内,y随着x的增大而增大的是()A.y=﹣B.y=x2﹣1 C.y= D.y=﹣x﹣1【考点】反比例函数的性质;一次函数的性质;二次函数的性质.【分析】分析四个选项中得函数解析式,根据系数的正负结合各函数的性质即可得出其增减性,由此即可得出结论.【解答】解:A 、y=﹣中k=﹣1<0,∴函数y=﹣的图象在第二、四象限内y 随着x 的增大而增大;B 、y=x 2﹣1中a=1>0,∴函数y=x 2﹣1的图象在第二、三象限内y 随着x 的增大而减小,在第一、四象限内y 随着x 的增大而增大;C 、y=﹣中k=1>0,∴函数y=的图象在第一、三象限内y 随着x 的增大而减小;D 、y=﹣x ﹣1中k=﹣1<0,b=﹣1<0,∴函数y=﹣x ﹣1的图象在第二、三、四象限内y 随着x 的增大而减小.故选A .【点评】本题考查了反比例函数的性质、一次函数的性质以及二次函数的性质,解题的关键是逐项分析四个选项的增减性.本题属于基础题,难度不大,解决该题型题目时,熟悉各函数的性质及各函数的图象是解题的关键.4.如果从1、2、3这三个数字中任意选取两个数字,组成一个两位数,那么这个两位数是素数的概率等于( )A .B .C .D . 【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与这个两位数是素数的情况,再利用概率公式求解即可求得答案.【解答】解:画树状图得:∵共有6种等可能的结果,这个两位数是素数的有13,23,31共3种情况,∴这个两位数是素数的概率为: =.故选A .【点评】此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.5.下图是上海今年春节七天最高气温(℃)的统计结果:这七天最高气温的众数和中位数是()A.15,17 B.14,17 C.17,14 D.17,15【考点】众数;折线统计图;中位数.【分析】根据中位数和众数的概念求解.把数据按大小排列,第4个数为中位数;17℃出现的次最多,为众数.【解答】解:17℃出现了2次,最多,故众数为17℃;共7个数据,从小到大排列为8,9,11,14,15,17,第4个数为14,故中位数为14℃.故选C.【点评】本题为统计题,考查了众数与中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数;众数为数据中出现次数最多的数.6.如图,△ABC和△AMN都是等边三角形,点M是△ABC的重心,那么的值为()A.B.C.D.【考点】三角形的重心.【分析】延长AM交BC于点D,根据△ABC是等边三角形可知AD⊥BC,设AM=2x,则DM=x,利用锐角三角函数的定义用x表示出AB的长,再根据相似三角形的性质即可得出结论.【解答】解:延长AM交BC于点D,∵△ABC是等边三角形,∴AD⊥BC.设AM=2x,则DM=x,∴AD=3x,∴AB===2x.∵△ABC和△AMN都是等边三角形,∴△ABC∽△AMN,∴=()2=()2=.故选B.【点评】本题考查的是三角形的重心,熟知重心到顶点的距离与重心到对边中点的距离之比为2:1是解答此题的关键.二、填空题:(本大题共12题,每题4分,满分48分)7.计算:|﹣1|= .【考点】有理数的减法;绝对值.【分析】首先根据有理数的减法法则,求出﹣1的值是多少;然后根据一个负数的绝对值等于它的相反数,求出|﹣1|的值是多少即可.【解答】解:|﹣1|=|﹣|=.故答案为:.【点评】(1)此题主要考查了有理数的减法,要熟练掌握,解答此题的关键是要明确:①在进行减法运算时,首先弄清减数的符号;②将有理数转化为加法时,要同时改变两个符号:一是运算符号(减号变加号);二是减数的性质符号(减数变相反数).(2)此题还考查了绝对值的含义和应用,要熟练掌握,解答此题的关键是要明确:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.8.不等式x﹣1<2的解集是x<3 .【考点】解一元一次不等式.【分析】解不等式x﹣1<2,即可得到不等式x﹣1<2的解集,本题得以解决.【解答】解:x﹣1<2两边同时加1,得x﹣1+1<2+1x<3,故答案为:x<3.【点评】本题考查解一元一次不等式,解题的关键是会解一元一次不等式的方法.9.分解因式:8﹣2x2= 2(2+x)(2﹣x).【考点】提公因式法与公式法的综合运用.【分析】先提取公因式,再根据平方差公式进行分解即可.【解答】解:原式=2(4﹣x2)=2(2+x)(2﹣x).故答案为:2(2+x)(2﹣x).【点评】本题考查的是提取公因式法与公式法的综合运用,熟记平方差公式是解答此题的关键.10.计算:3()+2(﹣2)= ﹣﹣.【考点】*平面向量.【分析】直接利用平面向量的加减运算法则求解即可求得答案.【解答】解:3()+2(﹣2)=3﹣3+2﹣4=﹣﹣.故答案为:﹣﹣.【点评】此题考查了平面向量的运算法则.注意掌握去括号法则是解此题的关键.11.方程的根是x=﹣4 .【考点】无理方程.【分析】9的算术平方根是3,故5﹣x=9,x=﹣4.【解答】解:因为算术平方根的被开方数是非负数,根据题意可得,5﹣x=9,解得:x=﹣4.故本题答案为:x=﹣4.【点评】记准算术平方根的被开方数是非负数这一要求,是解决这类问题的关键.12.已知函数f(x)=,那么f()= 3 .【考点】函数值.【分析】将x=代入计算即可.【解答】解:f()====3.故答案为:3.【点评】本题主要考查的是求函数值,掌握二次根式的性质是解题的关键.13.如图,传送带和地面所成的斜坡的坡度为1:,它把物体从地面送到离地面9米高的地方,则物体从A 到B所经过的路程为18 米.【考点】解直角三角形的应用-坡度坡角问题.【分析】直接利用坡角的定义得出AC的长,进而利用勾股定理得出AB的长.【解答】解:∵传送带和地面所成的斜坡的坡度为1:,它把物体从地面送到离地面9米高的地方,∴可得:BC=9m,则=,解得:AC=9,则AB===18(m).故答案为:18.【点评】此题主要考查了坡角的定义,根据题意得出AC的长是解题关键.14.正八边形的中心角等于45 度.【考点】正多边形和圆.【分析】根据中心角是正多边形相邻的两个半径的夹角来解答.【解答】解:正八边形的中心角等于360°÷8=45°;故答案为45.【点评】本题考查了正多边形和圆的知识,解题的关键是牢记中心角的定义及求法.15.在开展“国学诵读”活动中,某校为了解全校1200名学生课外阅读的情况,随机调查了50名学生一周的课外阅读时间,并绘制成如图所示的条形统计图.根据图中数据,估计该校1200名学生一周的课外阅读时间不少于6小时的人数是720 .【考点】条形统计图;用样本估计总体.【分析】用所有学生数乘以样本中课外阅读时间不少于6小时的人数所占的百分比即可.【解答】解:估计该校1200名学生一周的课外阅读时间不少于6小时的人数是:1200×=720(人),故答案为:720.【点评】本题考查了用样本估计总体的知识,解题的关键是求得样本中不少于6小时的人数所占的百分比.16.已知:⊙O1、⊙O2的半径长分别为2和R,如果⊙O1与⊙O2相切,且两圆的圆心距d=3,则R的值为1或5 .【考点】圆与圆的位置关系.【分析】由于⊙O1与⊙O2相切,则分两圆内切和外切讨论得到R+2=3或R﹣2=3,然后解两个一次方程即可.【解答】解:∵⊙O1与⊙O2相切,∴R+2=3或R﹣2=3,∴R=1或R=5.故答案为1或5.【点评】本题考查了圆与圆的位置关系:设两圆的圆心距为d,两圆半径分别为R、r,当两圆外离⇔d>R+r;两圆外切⇔d=R+r;两圆相交⇔R﹣r<d<R+r(R≥r);两圆内切⇔d=R﹣r(R>r);两圆内含⇔d<R﹣r(R>r).17.定义运算“﹡”:规定x﹡y=ax+by(其中a、b为常数),若1﹡1=3,1﹡(﹣1)=1,则1﹡2= 4 .【考点】解二元一次方程组;有理数的混合运算.【分析】已知等式利用题中的新定义化简为二元一次方程组,求出方程组的解得到a与b的值,即可确定出所求式子的值.【解答】解:根据题中的新定义得:,解得:,则1﹡2=1×2+2×1=2+2=4,故答案为:4【点评】此题考查了解二元一次方程组,以及有理数的混合运算,熟练掌握运算法则是解本题的关键.18.在Rt△ABC中,∠ACB=90°,BC=15,AC=20.点D在边AC上,DE⊥AB,垂足为点E,将△ADE沿直线DE翻折,翻折后点A的对应点为点P,当∠CPD为直角时,AD的长是.【考点】翻折变换(折叠问题).【分析】设AD=x,再根据折叠的性质得∠PDE=∠ADE=90°,∠1=∠A,PD=AD=x,于是可判断点P在边AC上,所以PC=20﹣2x,然后利用等角的余角相等得到∠1=∠3,则∠A=∠3,则可判断Rt△BCP∽Rt△ABC,利用相似比可计算出x.【解答】解:如图,设AD=x,在△ABC中,∠ACB=90°,BC=15,AC=20,∴AB=25,∵DE⊥AB,∴∠AED=∠ACB=90°,∵△ADE沿DE翻折得到△PDE,∴∠PED=∠AED=90°,∠1=∠A,PD=AD=x,∴CD=20﹣x,∵∠CPD=90°,∴∠1+∠2=90°,∠A+∠B=90°,∴∠2=∠B,∴PC=BC=15,∵CD2=CP2+PD2,即(20﹣x)2=152+x2,∴x=,∴AD=.故答案为:.【点评】此题主要考查了图形的翻折变换,以及勾股定理的应用,关键是掌握翻折后哪些线段是对应相等的.三、解答题:(本大题共7题,满分78分)19.(10分)(2019•浦东新区二模)计算:2sin45°﹣20190++()﹣1.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】原式利用零指数幂、负整数指数幂法则,特殊角的三角函数值,以及二次根式性质计算即可得到结果.【解答】解:原式=2×﹣1+2+2=1+3.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.(10分)(2019•浦东新区二模)解方程:.【考点】解分式方程;解一元二次方程-因式分解法.【分析】本题的最简公分母是(x+2)(x﹣2).方程两边都乘最简公分母,可把分式方程转换为整式方程求解.结果需检验.【解答】解:方程两边都乘(x+2)(x﹣2),得x(x﹣2)+(x+2)2=8,x2﹣2x+x2+4x+4=8,整理得x2+x﹣2=0.解得x1=﹣2,x2=1.经检验,x2=1为原方程的根,x1=﹣2是增根(舍去).∴原方程的根是x=1.【点评】(1)解分式方程的基本思想是“转化思想”,方程两边都乘最简公分母,把分式方程转化为整式方程求解;(2)解分式方程一定注意要代入最简公分母验根.21.(10分)(2019•浦东新区二模)如图,AB是⊙O的弦,C是AB上一点,∠AOC=90°,OA=4,OC=3,求弦AB的长.【考点】垂径定理.【分析】首先过点O作OD⊥AB于D,应用直角三角形的性质和三角函数的求法,求出AD的长度是多少;然后应用垂径定理,求出弦AB的长是多少即可.【解答】解:如图,过点O作OD⊥AB于D,,∵OA2+OC2=AC2,∴AC2=42+32=25,∴AC=5.在Rt△AOC中,cos∠OAC==,在Rt△ADO中,cos∠OAD=,∴==,∴AD=×4=.∵OD⊥AB,∴AB=2AD=2×=.【点评】此题主要考查了垂径定理的应用,直角三角形的性质和三角函数的求法,要熟练掌握.22.(10分)(2019•浦东新区二模)某工厂生产一种产品,当生产数量不超过40吨时,每吨的成本y(万元/吨)与生产数量x(吨)的函数关系式如图所示:(1)求y关于x的函数解析式,并写出它的定义域;(2)当生产这种产品的总成本为210万元时,求该产品的生产数量.(注:总成本=每吨的成本×生产数量)【考点】一次函数的应用.【分析】(1)直接利用待定系数法求出一次函数解析式进而得出答案;(2)直接利用每吨的成本×生产吨数=总成本为210万元,进而得出等式求出答案.【解答】解:(1)设函数解析式为:y=kx+b,将(0,10),(40,6)分别代入y=kx+b得:,解得:,所以y=﹣x+10(0≤x≤40);(2)由(﹣x+10)x=210,解得:x1=30,x2=70,由于0≤x≤40,所以x=30,答:该产品的生产数量是30吨.【点评】此题主要考查了一次函数的应用,正确利用待定系数法求出一次函数解析式是解题关键.23.(12分)(2019•浦东新区二模)如图,已知:四边形ABCD是平行四边形,点E在边BA的延长线上,CE交AD于点F,∠ECA=∠D(1)求证:△EAC∽△ECB;(2)若DF=AF,求AC:BC的值.【考点】相似三角形的判定与性质;平行四边形的性质.【分析】(1)由四边形ABCD是平行四边形、∠ECA=∠D可得∠ECA=∠B,∠E为公共角可得△EAC∽△ECB;(2)由CD∥AE、DF=AF可得CD=AE,进而有BE=2AE,根据△EAC∽△ECB得,即: =,可得答案.【解答】解:(1)∵四边形ABCD是平行四边形,∴∠B=∠D,∵∠ECA=∠D,∴∠ECA=∠B,∵∠E=∠E,∴△EAC∽△ECB;(2)∵四边形ABCD是平行四边形,∴CD∥AB,即:CD∥AE∴,∵DF=AF∴CD=AE,∵四边形ABCD是平行四边形,∴AB=CD,∴AE=AB,∴BE=2AE,∵△EAC∽△ECB,∴,∴,即: =,∴.【点评】本题主要考查相似三角形的判定与性质及平行四边形的性质,熟练掌握相似形的对应边成比例和平行四边形的性质是关键.24.(12分)(2019•浦东新区二模)如图,二次函数y=ax2﹣4ax+2的图象与y轴交于点A,且过点B(3,6).(1)试求二次函数的解析式及点A的坐标;(2)若点B关于二次函数对称轴的对称点为点C,试求∠CAB的正切值;(3)若在x轴上有一点P,使得点B关于直线AP的对称点B1在y轴上,试求点P的坐标.【考点】待定系数法求二次函数解析式;二次函数的性质;二次函数图象上点的坐标特征.【分析】(1)把B(3,6)代入y=ax2﹣4ax+2,求出a的值,得到二次函数的解析式,进而求出点A的坐标;(2)先求出抛物线的对称轴,根据对称性得出C点坐标,求出BC=2,AB=5,tan∠CBA=,过点C作CH⊥AB于点H,再求出CH=,AH=,根据正切函数定义即可求出∠CAB的正切值;(3)由AB=AB1=5,从而点B1的坐标为(0,﹣3)或(0,7),设P(x,0)根据PB=PB1,分B1的坐标为(0,﹣3)或(0,7)两种情况利用勾股定理求得x值.【解答】解:(1)∵二次函数y=ax2﹣4ax+2的图象过点B(3,6),∴6=9a﹣12a+2,解得a=﹣,所以二次函数的解析式为y=﹣x2+x+2,∵二次函数y=﹣x2+x+2的图象与y轴交于点A,∴点A的坐标为(0,2);(2)∵y=﹣x2+x+2=﹣(x﹣2)2+,∴对称轴为直线x=2,∵点B(3,6)关于二次函数对称轴的对称点为点C,∴C(1,6),∴BC=2,AB==5,tan∠CBA=,过点C作CH⊥AB于点H,则CH=,BH=,AH=,∴tan∠CAB==;(3)由题意,AB=AB1=5,从而点B1的坐标为(0,﹣3)或(0,7).设P(x,0).①如果点B1(0,7),∵点B关于直线AP的对称点B1在y轴上,∴PB=PB1,即(x﹣3)2+62=x2+72,解得x=﹣,即P(﹣,0);②如果点B1′(0,﹣3),∵点B关于直线AP的对称点B1在y轴上,∴PB=PB1,即(x﹣3)2+62=x2+32,解得x=6,即P(6,0);综上所述,所求点P的坐标为(﹣,0)或(6,0).【点评】本题主要考查待定系数求二次函数解析式、解直角三角形、勾股定理等,求二次函数解析式是基础,构建直角三角形求三角函数值是基本做法,通过勾股定理得出点坐标间联系是关键.25.(14分)(2019•浦东新区二模)如图,Rt△ABC中,∠ACB=90°,BC=6,点D为斜边AB的中点,点E为边AC上的一个动点.联结DE,过点E作DE的垂线与边BC交于点F,以DE,EF为邻边作矩形DEFG.(1)如图1,当AC=8,点G在边AB上时,求DE和EF的长;(2)如图2,若,设AC=x,矩形DEFG的面积为y,求y关于x的函数解析式;(3)若,且点G恰好落在Rt△ABC的边上,求AC的长.【考点】四边形综合题.【分析】(1)根据勾股定理求出AB,根据相似三角形的判定定理得到△ADE∽△ACB,根据相似三角形的性质求出DE和BG,求出EF;(2)作DH⊥AC于H,根据相似三角形的性质得到y关于x的函数解析式;(3)根据点G在边BC上和点G在边AB上两种情况,根据相似三角形的性质解答.【解答】解:(1)∵∠ACB=90°,BC=6,AC=8,∴AB==10,∵D为斜边AB的中点,∴AD=BD=5,∵DEFG为矩形,∴∠ADE=90°,∴∠ADE=∠C,又∠A=∠A,∴△ADE∽△ACB,∴=,即=,解得,DE=,∵△ADE∽△FGB,∴=,则BG=,∴EF=DG=AB﹣AD﹣BG=;(2)如图2,作DH⊥AC于H,∴DH∥BC,又AD=DB,∴DH=BC=3,∵DH⊥AC,∠C=90°,∠DEF=90°,∴△DHE∽△ECF,∴==,∴EC=2DH=6,EH=x﹣6,∴DE2=32+(x﹣6)2=x2﹣6x+45,∴y=DE•EF=2DE2=x2﹣12x+90,(3)如图3,当点G在边BC上时,∵,DE=3,∴EF=,∴AC=9,如图4,当点G在边AB上时,设AD=DB=a,DE=2b,EF=3b,∵△ADE∽△FGB,∴=,即=,整理得,a2﹣3ab﹣4b2=0,解得,a=4b,a=﹣b(舍去),∴AD=2DE,∵△ADE∽△ACB,∴AC=2BC=12,综上所述,点G恰好落在Rt△ABC的边上,AC的长为9或12.【点评】本题的是矩形的性质、勾股定理的应用、相似三角形的判定和性质、二次函数解析式的求法以及三角形中位线定理,掌握相似三角形的判定定理和性质定理、三角形中位线定理是解题的关键,注意分情况讨论思想的运用.中考数学模拟试卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置.......上)1. 计算(-4)+6的结果为A.-2 B.2 C.-10 D.22.我国最大的领海是南海,总面积有3 500 000平方公里,将数3 500 000用科学记数法表示应为A.3.5×106B.3.5×107C.35×105D.0.35×1083.下列图形中,是中心对称图形的是A. B. C. D.21·cn·jy·com4.如图,数轴上有四个点M,P,N,Q,若点M,N表示的数互为相反数,则图中表示绝对值最大的数对应的点是A.点M B.点N C.点P D.点Q5.如图是某个几何体的三视图,该几何体是A.三棱柱B.三棱锥C.圆锥D.圆柱6.已知方程3x2-4x-4=0的两个实数根分别为x1,x2.则x1+x2的值为A.4 B.23C.43D.-437.八年级学生去距学校10km的博物馆参观,一部分学生骑自行车先走,过了20min后,其余学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度.设骑车学生的速度为x km/h,则所列方程正确的是A.1010202x x-= B.1010202x x-=C.1010123x x-= D.1010123x x-=8.若圆锥的母线长是12,侧面展开图的圆心角是120°,则它的底面圆的半径为A. 2B. 4C. 6D. 89.如图,点A为反比例函数y=8x(x﹥0)图象上一点,点B为反比例函数y=kx(x﹤0)图象上一点,直线AB 过原点O,且OA=2OB,则k的值为QP NM左视图主视图俯视图(第5题)A .2B .4C .-2D .-410=4,BC =6,E 为BC 的中点.将△ABE 沿AE 折叠,使点B 落在矩形内点F 处,连接CF ,则△CDF的面积为 A.3.6B. 4.32C. 5.4D. 5.76二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答题卡相应位......置.上) 11.9的算术平方根为 ▲ .12.如图,若AB ∥CD ,∠1=65°,则∠2的度数为 ▲°. 13.分解因式:12a 2-3b 2= ▲ .14.如图,⊙O 的内接四边形ABCD 中,∠BOD =100°,则∠BCD = ▲ °. 15.如图,利用标杆BE 测量建筑物的高度.若标杆BE 的高为1.2m ,测得AB =1.6m ,BC =12.4m ,则楼高CD 为 ▲ m .16.小洪根据演讲比赛中九位评委所给的分数制作了如下表格:平均数 中位数 众数 方差 8.58.38.10.15如果去掉一个最高分和一个最低分,那么表格中数据一定不发生变化的是 ▲ . 17.将正六边形ABCDEF 放入平面直角坐标系xOy 后,若点A ,B ,E 的坐标分别为(a ,b ),(-3,-1),(-a ,b ),则点D 18. 如图,平面直角坐标系xOy 中,点A 是直线y =33x +433上一动点,将点A 向右 平移1个单位得到点B ,点C (1,0),则 OB +CB 的最小值为 ▲ .三、解答题(本大题共10小题,共96分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤)19. (本小题满分10分)(1)计算(x +y)2-y(2x +y);(第10题)8xy (第9题)(第18题)DCEBA(第15题)(第14题)DCB A 1(第12题)2(2)先化简,再求代数式的值:2221()244a a a a a a +----+÷4a a-,其中a=2.20.(本小题满分9分)近年来,我国很多地区持续出现雾霾天气.某市记者为了了解“雾霾天气的主要成因”, 随机调查了该市部分市民,并对调查结果进行整理,绘制了如下尚不完整的统计图表:请根据图表中提供的信息解答下列问题:(1)填空:m = ▲ ,n = ▲ ,扇形统计图中E 组所占的百分比为 ▲ % ; (2)若该市人口约有400万人,请你计算其中持D 组“观点”的市民人数; (3)对于“雾霾”这个环境问题,请用简短的语言发出倡议.21.(本小题满分8分)一个不透明的口袋中装有四个完全相同的小球,把它们分别标号为1,2,3,4.从袋中随机摸出一只小球,再从剩下的小球中随机摸出一只小球,请用列表法或画树形图的方法,求两次摸出的小球上所标数字之和大于4的概率.22.(本小题满分8分)如图,小明要测量河内小岛B 到河边公路AD 的距离,在点A 处测得∠BA D =37°,沿AD 方向前进150米到达点C ,测得∠BCD=45°. 求小岛B 到河边公路AD 的距离. (参考数据:sin37°≈ 0.60,cos37° ≈ 0.80,tan37° ≈0.75)23.(本小题满分8分)如图,⊙O 的直径AB =10,弦AC =6,∠BAC 的平分线交⊙O 于点D ,过点D 作⊙O 的切线交AC 的延长线于点E.求DE 的长.C 10%B A20%DE调查结果扇形统计图BCA(第22题)D24.(本小题满分9分)如果一元一次方程的解是一元一次不等式组的解,那么称该一元一次方程为该不等式组的关联方程.(1)若不等式组122136xx x⎧-<⎪⎨⎪+>-+⎩,的一个关联方程的解是整数,则这个关联方程可以是▲(写出一个即可);(2)若方程3-x=2x,3+x=2(x+12)都是关于x的不等式组22x x mx m<-⎧⎨-⎩,≤的关联方程,试求m的取值范围.25.(本小题满分8分)在△ABC中,AB=AC=2,∠BAC=45º.△AEF是由△ABC绕点A按逆时针方向旋转得到,连接BE,CF相交于点D.(1)求证:BE=CF;(2)当四边形ABDF是菱形时,求CD的长.26.(本小题满分10分)请用学过的方法研究一类新函数kyx=(k为常数,k≠0)的图象和性质.(1)在给出的平面直角坐标系中画出函数6yx=的图象(可以不列表);(2)对于函数kyx=,当自变量x的值增大时,函数值y怎样变化?(3)函数kyx=的图象可以经过怎样的变化得到函数2kyx=+的图象?(第25题)FEDCBA27.(本小题满分13分)如图,矩形ABCD 中,AB =4,AD =6,点P 在AB 上,点Q 在DC 的延长线上,连接DP ,QP ,且∠APD =∠QPD ,PQ 交BC 于点G. (1)求证:DQ =PQ ; (2)求AP ·DQ 的最大值;(3)若P 为AB 的中点,求PG 的长.28.(本小题满分13分)已知二次函数y =ax 2+bx +c (c ≠4a ),其图象L 经过点A (-2,0). (1)求证:b 2-4ac >0;(2)若点B (-c2a,b +3)在图象L 上,求b 的值;(3)在(2)的条件下,若图象L 的对称轴为直线x =3,且经过点C (6,-8),点D (0,n )在y 轴负半轴上,直线BD 与OC 相交于点E ,当△ODE 为等腰三角形时,求n 的值.(第27题)数学试题参考答案与评分标准一、选择题(本大题共10小题,每小题3分,共30分.)11. 3 12.6513.3(2a +b)(2a -b)14.13015.10.516.中位数17.(3,-1)18三、解答题(本大题共10小题,共96分.) 19.(本小题满分10分)(1)解:原式=x 2+2xy +y 2-2xy -y 2················· 4分 =x 2 ························· 5分 (2)解:原式=221[](2)(2)4a a aa a a a ----- ··············· 6分 =2(2)(2)(1)(2)4a a a a aa a a +----- ··················· 7分=24(2)4a aa a a --- ························ 8分=21(2)a - ··························· 9分当a =2时,21(2)a -15= ············ 10分 20.(本小题满分9分)(1)80, 100,15; ························· 3分 (2)400×120400=120(万), 答:其中持D 组“观点”的市民人数约为120万人; ········· 6分 (3)根据所抽取样本中持C 、D 两种观点的人数占总人数的比例较大,所以倡议今后的环境改善中严格控制工厂的污染排放,同时市民多乘坐公共汽车, 减少私家车出行的次数. ······················· 9分 21.(本小题满分8分)· 5分 因为所有等可能的结果数共有12种,其中所标数字之和大于4的占8种,·································· 6分所以 P(数字之和大于4)=812=23. ················· 8分22.(本小题满分8分)解:过B作BE⊥CD垂足为E,设BE=x米,·············· 1分在Rt△ABE中,tanA=BEAE,········· 2分AE=BEtanA=BEtan37°=43x,······· 3分在Rt△ABE中,tan∠BCD=BECE,······· 4分CE=BEtan∠BCD=xtan45°=x,······ 5分∵AC=AE-CE,∴43x-x=150解得x=450 ················ 7分答:小岛B到河边公路AD的距离为450米. ·············· 8分23.(本小题满分8分)解:连接OD,过点O作OH⊥AC,垂足为H.··············· 1分由垂径定理得AH=12AC=3.在Rt△A OH中,OH=52-32=4.········· 2分∵DE切⊙O于D,∴OD⊥DE,∠ODE=90°.············ 3分∵AD平分∠BAC,∴∠BAD=∠CAD.∵OA=OD,∴∠BAD=∠ODA,∴∠CAD=∠ODA,∴OD∥AC.·········· 5分∴∠E=180°-90°=90°.又OH⊥AC,∴∠OHE=90°,∴四边形ODEH为矩形.·············· 7分∴DE=OH=4.·················· 8分24.(本小题满分9分)(1)x-2=0;(答案不唯一)····················· 3分(2)解方程3-x=2x得x=1,解方程3+x=2(x+12)得x=2,······ 5分解不等式组22x x mx m<-⎧⎨-⎩,≤得m<x≤m+2,·············· 7分∵1,2都是该不等式组的解,(第23题)EBCA(第22题)D。

2012年上海市浦东新区中考数学二模试卷(含解析版)

2012年上海市浦东新区中考数学二模试卷(含解析版)

°.
17.(4 分)如图,在矩形 ABCD 中,点 E 为边 CD 上一点,沿 AE 折叠,点 D
恰好落在 BC 边上的 F 点处,若 AB=3,BC=5,则 tan∠EFC 的值为

18.(4 分)如图,在直角坐标系中,⊙P 的圆心是 P(a,2)(a>0),半径为 2;
直线 y=x 被⊙P 截得的弦长为 2 ,则 a 的值是
么平移后的二次函数解析式为

14.(4 分)已知一个样本 4,2,7,x,9 的平均数为 5,则这个样本的中位数


15.(4 分)如图,已知点 D、E 分别为△ABC 的边 AB、AC 的中点,设 , ,
则向量 =
(用向量 、 表示).
16.(4 分)如图,BE 为正五边形 ABCDE 的一条对角线,则∠ABE=
B.当 a<1 时,点 B 在圆 A 内
C.当 a<﹣1 时,点 B 在圆 A 外
D.当﹣1<a<3 时,点 B 在圆 A 内
二、填空题:(本大题共 12 题,每题 4 分,满分 48 分)Leabharlann 7.(4 分)4 的平方根是

8.(4 分)因式分解:x3﹣9x=

第 1页(共 24页)
9.(4 分)求不等式 2x+3>7 的解集

第 2页(共 24页)
三、解答题:(本大题共 7 题,满分 78 分)
19.(10 分)计算:

20.(10 分)解方程:

21.(10 分)已知:如图,点 D、E 分别在线段 AC、AB 上,AD•AC=AE•AB. (1)求证:△AEC∽△ADB; (2)AB=4,DB=5,sinC= ,求 S△ABD.

上海市浦东新区2019-2020学年中考第二次模拟数学试题含解析

上海市浦东新区2019-2020学年中考第二次模拟数学试题含解析

上海市浦东新区2019-2020学年中考第二次模拟数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,AB∥CD,FH平分∠BFG,∠EFB=58°,则下列说法错误的是()A.∠EGD=58°B.GF=GH C.∠FHG=61°D.FG=FH2.如图,在五边形ABCDE中,∠A+∠B+∠E=300°,DP,CP分别平分∠EDC、∠BCD,则∠P的度数是( )A.60°B.65°C.55°D.50°3.下列“慢行通过,注意危险,禁止行人通行,禁止非机动车通行”四个交通标志图(黑白阴影图片)中为轴对称图形的是()A.B.C.D.4.已知直线m∥n,将一块含30°角的直角三角板ABC,按如图所示方式放置,其中A、B两点分别落在直线m、n上,若∠1=25°,则∠2的度数是()A.25°B.30°C.35°D.55°5.如图是由4个相同的正方体搭成的几何体,则其俯视图是()A.B.C.D.6.已知二次函数y=ax1+bx+c+1的图象如图所示,顶点为(﹣1,0),下列结论:①abc>0;②b1﹣4ac=0;③a>1;④ax1+bx+c=﹣1的根为x1=x1=﹣1;⑤若点B(﹣14,y1)、C(﹣12,y1)为函数图象上的两点,则y1>y1.其中正确的个数是()A.1 B.3 C.4 D.57.如图,在△ABC中,∠C=90°,M是AB的中点,动点P从点A出发,沿AC方向匀速运动到终点C,动点Q从点C出发,沿CB方向匀速运动到终点B.已知P,Q两点同时出发,并同时到达终点.连结MP,MQ,PQ.在整个运动过程中,△MPQ的面积大小变化情况是()A.一直增大B.一直减小C.先减小后增大D.先增大后减小8.如图,有一矩形纸片ABCD,AB=6,AD=8,将纸片折叠使AB落在AD边上,折痕为AE,再将△ABE以BE为折痕向右折叠,AE与CD交于点F,则CFCD的值是()A.1 B.12C.13D.149.如图,已知点A、B、C、D在⊙O上,圆心O在∠D内部,四边形ABCO为平行四边形,则∠DAO 与∠DCO的度数和是()A.60°B.45°C.35°D.30°10.在△ABC中,∠C=90°,sinA=45,则tanB等于()A.43B.34C.35D.4511.如图,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于点D,PE⊥OB于点E.如果点M是OP的中点,则DM的长是()A.2 B.2C.3D.2312.下列图案中,是轴对称图形的是()A.B.C.D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.已知:如图,AB是⊙O的直径,弦EF⊥AB于点D,如果EF=8,AD=2,则⊙O半径的长是_____.14.一个圆的半径为2,弦长是3,求这条弦所对的圆周角是_____.15.如图,6的正方形ABCD绕点A逆时针方向旋转30°后得到正方形A′B′C′D′,则图中阴影部分面积为_______平方单位.16.方程242x-=的根是__________.17.我们知道,四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形ABCD的边AB 在x轴上,AB的中点是坐标原点O,固定点A,B,把正方形沿箭头方向推,使点D落在y轴正半轴上点D'处,则点C的对应点C'的坐标为_____.18.如图,角α的一边在x轴上,另一边为射线OP,点P(2,23),则tanα=_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)列方程解应用题:为宣传社会主义核心价值观,某社区居委会计划制作1200个大小相同的宣传栏.现有甲、乙两个广告公司都具备制作能力,居委会派出相关人员分别到这两个广告公司了解情况,获得如下信息:信息一:甲公司单独制作完成这批宣传栏比乙公司单独制作完成这批宣传栏多用10天;信息二:乙公司每天制作的数量是甲公司每天制作数量的1.2倍.根据以上信息,求甲、乙两个广告公司每天分别能制作多少个宣传栏?20.(6分)先化简,再求值:(1x﹣21x-)÷2212x xx x+-+,其中x的值从不等式组11022(1)xx x⎧+⎪⎨⎪-≤⎩>的整数解中选取.21.(6分)为了了解市民“获取新闻的最主要途径”,某市记者开展了一次抽样调查,根据调査结果绘制了如下尚不完整的统计图:根据以上信息解答下列问题:这次接受调查的市民总人数是_______人;扇形统计图中,“电视”所对应的圆心角的度数是_________;请补全条形统计图;若该市约有80万人,请你估计其中将“电脑和手机上网”作为“获取新闻的最主要途径”的总人数.22.(8分)甲、乙两组工人同时开始加工某种零件,乙组在工作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2倍.两组各自加工零件的数量y(件)与时间x(时)之间的函数图象如下图所示.(1)求甲组加工零件的数量y与时间x之间的函数关系式.(2)求乙组加工零件总量a的值.23.(8分)如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A作BC的平行线交CE的延长线与F,且AF=BD,连接BF。

上海市浦东新区2014年中考二模数学试卷及答案解析(WORD版)

上海市浦东新区2014年中考二模数学试卷及答案解析(WORD版)

2014年上海市浦东新区中考数学二模试卷参考答案与试题解析一、选择题:(本大题共6题,每题4分,满分24分)1.(4分)(2014•浦东新区二模)下列代数式中,属于单项式的是()A.a+1 B.C.D.考点:单项式.分析:根据单项式的定义逐个判断即可.解答:解:A、不是单项式,故本选项错误;B、不是单项式,故本选项错误;C、不是单项式,故本选项错误;D、是单项式,故本选项正确;故选D.点评:本题考查了对单项式定义的理解和运用,注意:单项式表示数与字母的积,单独一个数或字母也是单项式.2.(4分)(2014•浦东新区二模)数据1,3,7,1,3,3的平均数和标准差分别为()A.2,2 B.2,4 C.3,2 D.3,4考点:标准差;加权平均数.分析:根据平均数的计算公式求出这组数据的平均数,再根据方差公式求出方差,从而得出标准差.解答:解:这组数据1,3,7,1,3,3的平均数是:(1+3+7+1+3+3)=3;方差S2=[(1﹣3)2+(3﹣3)2+(7﹣3)2+(1﹣3)2+(3﹣3)2+(3﹣3)2]=4,则标准差是2.故选C.点评:此题主要考查了平均数,方差和标准差,用到的知识点是平均数、方差和标准差的计算公式,关键是根据题意和公式列出算式.3.(4分)(2014•浦东新区二模)已知抛物线y=﹣(x+1)2上的两点A(x1,y1)和B(x2,y2),如果x1<x2<﹣1,那么下列结论一定成立的是()A.y1<y2<0 B.0<y1<y2C.0<y2<y1D.y2<y1<0考点:二次函数图象上点的坐标特征.分析:根据二次函数的性质得到抛物线y=﹣(x+1)2的开口向下,有最大值为0,对称轴为直线x=﹣1,则在对称轴左侧,y随x的增大而增大,所以x1<x2<﹣1时,y1<y2<0.解答:解:∵y=﹣(x+1)2,∴a=﹣1<0,有最大值为0,∴抛物线开口向下,∵抛物线y=﹣(x+1)2对称轴为直线x=﹣1,而x1<x2<﹣1,∴y1<y2<0.故选A.点评:本题考查了二次函数图象上点的坐标特征:二次函数y=ax2+bx+c(a≠0)的图象为抛物线,则抛物线上的点的坐标满足其解析式;当a<0,抛物线开口向下;对称轴为直线x=﹣,在对称轴左侧,y随x的增大而增大,在对称轴右侧,y随x的增大而减小.4.(4分)(2014•浦东新区二模)某粮食公司2013年生产大米总量为a万吨,比2012年大米生产总量增加了10%,那么2012年大米生产总量为()A.a(1+10%)万吨B.万吨C.a(1﹣10%)万吨D.万吨考点:列代数式.分析:根据2013年生产大米比2012年大米生产总量增加了10%,可知2012年大米生产总量×(1+10%)=2013年大米生产总量,由此列式即可.解答:解:a÷(1+10%)=(万吨).故选:B.点评:此题考查列代数式,关键是找出题目蕴含的数量关系:2012年大米生产总量×(1+10%)=2013年大米生产总量.5.(4分)(2014•浦东新区二模)在四边形ABCD中,对角线AC、BD相交于点O,∠ADB=∠CBD,添加下列一个条件后,仍不能判定四边形ABCD是平行四边形的是()A.∠ABD=∠CDB B.∠DAB=∠BCD C.∠ABC=∠CDA D.∠DAC=∠BCA考点:平行四边形的判定.分析:利用平行四边形的判定定理逐步判定后即可确定答案.解答:解:由∠ADB=∠CBD科研得到AD∥BC,∴A、∠ABD=∠CDB能得到AB∥CD,所以能判定四边形ABCD是平行四边形;B、利用三角形的内角和定理能进一步得到∠ABD=∠CDB,从而能得到AB∥CD,所以能判定四边形ABCD是平行四边形;C、能进一步得到∠CDB=∠ABD,从而能得到AB∥CD,所以能判定四边形ABCD是平行四边形;D、不能进一步得到AB∥CD,所以不能判定四边形ABCD是平行四边形,故选D.点评:本题考查了平行四边形的判定.(1)两组对边分别平行的四边形是平行四边形.(2)两组对边分别相等的四边形是平行四边形.(3)一组对边平行且相等的四边形是平行四边形.(4)两组对角分别相等的四边形是平行四边形.(5)对角线互相平分的四边形是平行四边形.6.(4分)(2014•浦东新区二模)如果A、B分别是⊙O1、⊙O2上两个动点,当A、B两点之间距离最大时,那么这个最大距离被称为⊙O1、⊙O2的“远距”.已知,⊙O1的半径为1,⊙O2的半径为2,当两圆相交时,⊙O1、⊙O2的“远距”可能是()A.3 B.4C.5D.6考点:圆与圆的位置关系.专题:新定义.分析:首先弄清缘聚的定义,然后结合两圆的圆心距的取值范围求解.解答:解:∵⊙O1的半径为1,⊙O2的半径为2,∴圆心距d的取值范围为:1<d<3,∴⊙O1、⊙O2的“远距”的取值范围为:4<远距<6,故选C.点评:本题考查了圆与圆的位置关系,解题的关键是弄清“远距的定义”.二、填空题:(本大题共12题,每题4分,满分48分)7.(4分)(2014•浦东新区二模)计算:|﹣π|=π﹣.考点:实数的性质.分析:根据绝对值是大数减小数,可得答案.解答:解:|﹣π|=,故答案为:.点评:本题考查了实数的性质,绝对值是非负数,可用大数减小数.8.(4分)(2014•浦东新区二模)化简:=.考点:约分.专题:计算题.分析:找出分式分子分母的公因式,约分即可得到结果.解答:解:原式==.故答案为:.点评:此题考查了约分,找出分子分母的公因式是约分的关键.9.(4分)(2014•浦东新区二模)计算:﹣=.考点:分式的加减法.专题:计算题.分析:原式两项通分并利用同分母分式的减法法则计算,约分即可得到结果.解答:解:原式=﹣==.故答案为:.点评:此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.10.(4分)(2014•浦东新区二模)正八边形的中心角等于45度.考点:正多边形和圆.分析:根据中心角是正多边形相邻的两个半径的夹角来解答.解答:解:正八边形的中心角等于360°÷8=45°;故答案为45.点评:本题考查了正多边形和圆的知识,解题的关键是牢记中心角的定义及求法.11.(4分)(2014•浦东新区二模)如果关于x的方程3x2﹣mx+3=0有两个相等的实数根,那么m的值为±6.考点:根的判别式.分析:若一元二次方程有两等根,则根的判别式△=b2﹣4ac=0,建立关于m的方程,求出m的取值.解答:解:∵方程3x2﹣mx+3=0有两个相等的实数根,∴△=m2﹣4×3×3=0,解得m=±6,故答案为±6.点评:考查了根的判别式,总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.12.(4分)(2014•浦东新区二模)请写出一个平面几何图形,使它满足“把一个图形沿某一条直线翻折过来,直线两旁的部分能够相互重合”这一条件,这个图形可以是圆.考点:轴对称图形.专题:开放型.分析:把一个图形沿某一条直线翻折过来,直线两旁的部分能够相互重合,这样的图形为轴对称图形,写出一个轴对称图形即可.解答:解:这个图形可以是圆.故答案为:圆.点评:本题考查了轴对称图形的知识,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.13.(4分)(2014•浦东新区二模)如果关于x的方程bx=x+1有解,那么b的取值范围为b≠1.考点:一元一次方程的解.分析:移项,合并同类项,当x的系数不等于0时,方程有解,据此即可求解.解答:解:移项,得:bx﹣x=1,即(b﹣1)x=1,当b﹣1≠0时,即b≠1时,方程有解.故答案是:b≠1.点评:此题考查的是一元一次方程的解法,理解方程有解的条件是关键.14.(4分)(2014•浦东新区二模)在▱ABCD中,已知=,=,则用向量、表示向量为+.考点:*平面向量.分析:根据平行四边形的对角线互相平分的性质,可得出==,==,从而可表示出向量.解答:解:∵四边形ABCD是平行四边形,∴==,==,∴=+=+.故答案为:+.点评:本题考查了平面向量的知识,注意掌握向量的加减,平行四边形对角线互相平分的性质.15.(4分)(2014•浦东新区二模)把分别写有数字“1”、“2”、“3”、“4”、“5”、“6”的6张相同卡片,字面朝下随意放置在桌面上,从中任意摸出一张卡片数字是素数的概率是.考点:概率公式.分析:由有数字“1”、“2”、“3”、“4”、“5”、“6”的6张相同卡片,卡片数字是素数的有:2,3,5;直接利用概率公式求解即可求得答案.解答:解:∵有数字“1”、“2”、“3”、“4”、“5”、“6”的6张相同卡片,卡片数字是素数的有:2,3,5;∴从中任意摸出一张卡片数字是素数的概率是:=.故答案为:.点评:此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.16.(4分)(2014•浦东新区二模)为了解某校九年级女生1分钟仰卧起坐的次数,从中随机抽查了50名女生参加测试,被抽查的女生中有90%的女生次数不小于30次,并绘制成频数分布直方图(如图),那么仰卧起坐的次数在40~45的频率是0.62.考点:频数(率)分布直方图.分析:根据被抽查的女生中有90%的女生次数不小于30次,抽查了50名女生,求出次数不小于30次的人数,再根据直方图求出在40~45次之间的频数,然后根据频率公式:频率=频数÷总数,即可求解.解答:解:∵被抽查的女生中有90%的女生次数不小于30次,抽查了50名女生,∴次数不小于30次的人数是50×90%=45(人),∴在40~45次之间的频数是:45﹣3﹣5﹣6=31,∴仰卧起坐的次数在40~45的频率是=0.62;故答案是:0.62.点评:本题考查了频数分布直方图,关键是读懂统计图,从图中获得必要的信息,用到的知识点是频率公式:频率=频数÷总数.17.(4分)(2014•浦东新区二模)如图,已知点A在反比例函数y=的图象上,点B在x轴的正半轴上,且△OAB 是面积为的等边三角形,那么这个反比例函数的解析式是y=﹣.考点:等边三角形的性质;反比例函数图象上点的坐标特征.分析:首先根据题意得出×|2x•y|=,进而得出xy=﹣,即可得出k的值.解答:解:过点A作AC⊥OB于点C,设A(x,y),∵△OAB是面积为的等边三角形,∴×|2x•y|=,∴|xy|=,∴xy=﹣,∴这个反比例函数的解析式是:y=﹣.故答案为:y=﹣.点评:此题主要考查了等边三角形的性质以及三角形面积求法和反比例函数图象上点的坐标特征,得出xy=﹣是解题关键.18.(4分)(2014•浦东新区二模)在Rt△ABC中,∠ACB=90°,AC=,cosA=,如果将△ABC绕着点C旋转至△A′B′C的位置,使点B′落在∠ACB的角平分线上,A′B′与AC相交于点H,那么线段CH的长等于﹣1.考点:旋转的性质.分析:根据题意画出图形,进而利用旋转的性质以及锐角三角函数关系和等腰直角三角形求出三角形各边长,再利用三角形面积求出即可.解答:解:过点B′作B′F⊥AC于点F,A′D⊥AC于点D,∵∠ACB=90°,点B′落在∠ACB的角平分线上,∴∠BCB′=∠B′CA=ACA′=45°,∴△CB′F,△CDA′都是等腰直角三角形,∵AC=,cosA=,∴==,解得:AB=,∴BC=,∴B′C=,∴B′F=×=,A′D=×CA′=1,∴S△A′CB′=S△CHB′+S△CHA′=××=××CH+×1×CH,解得:CH=﹣1,故答案为:﹣1.点评:此题主要考查了旋转的性质以及锐角三角函数关系和三角形面积求法等知识,利用S△A′CB′=S△CHB′+S△CHA′求出是解题关键.三、解答题:(本大题共7题,满分78分)19.(10分)(2014•浦东新区二模)计算:()2﹣5+()﹣1﹣.考点:实数的运算;分数指数幂;负整数指数幂.专题:计算题.分析:原式第一项利用平方根定义化简,第二项利用指数幂法则变形,第三项利用负指数幂法则计算,最后一项分母有理化,计算即可得到结果.解答:解:原式=5﹣+﹣=6﹣.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.(10分)(2014•浦东新区二模)解不等式组:并把解集在数轴上表示出来.考点:解一元一次不等式组;在数轴上表示不等式的解集.分析:先求出每个不等式的解集,再求出其公共部分即可.解答:解:由①得2x﹣7<3﹣3x,化简得5x<10,解得:x<2.由②得4x+9≥3﹣2x,化简得6x≥﹣6,解得:x≥﹣1,∴原不等式组的解集为﹣1<x<2.在数轴上表示出来为:点评:本题考查了解一元一次不等式组和在数轴上表示不等式的解集,求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.21.(10分)(2014•浦东新区二模)已知:如图,∠PAQ=30°,在边AP上顺次截取AB=3cm,BC=10cm,以BC为直径作⊙O交射线AQ于E、F两点,求:(1)圆心O到AQ的距离;(2)线段EF的长.考点:垂径定理;含30度角的直角三角形;勾股定理.分析:(1)过点O作OH⊥EF,垂足为点H,求出AO,根据含30度角的直角三角形性质求出即可;(2)连接OE,根据勾股定理求出EH,根据垂径定理得出即可.解答:解:(1)过点O作OH⊥EF,垂足为点H,∵OH⊥EF,∴∠AHO=90°,在Rt△AOH中,∵∠AHO=90°,∠PAQ=30°,∴OH=AO,∵BC=10cm,∴BO=5cm.∵AO=AB+BO,AB=3cm,∴AO=3+5=8cm,∴OH=4cm,即圆心O到AQ的距离为4cm.(2)连接OE,在Rt△EOH中,∵∠EHO=90°,∴EH2+HO2=EO2,∵EO=5cm,OH=4cm,∴EH===3cm,∵OH过圆心O,OH⊥EF,∴EF=2EH=6cm.点评:本题考查了含30度角的直角三角形性质,勾股定理,垂径定理的应用,题目是一道比较典型的题目,难度适中.22.(10分)(2014•浦东新区二模)甲、乙两车都从A地前往B地,如图分别表示甲、乙两车离A地的距离S(千米)与时间t(分钟)的函数关系.已知甲车出发10分钟后乙车才出发,甲车中途因故停止行驶一段时间后按原速继续驶向B地,最终甲、乙两车同时到达B地,根据图中提供的信息解答下列问题:(1)甲、乙两车行驶时的速度分别为多少?(2)乙车出发多少分钟后第一次与甲车相遇?(3)甲车中途因故障停止行驶的时间为多少分钟?考点:一次函数的应用.分析:(1)分别根据速度=路程÷时间列式计算即可得解;(2)方法一:观察图形可知,第一次相遇时,甲车停止,然后时间=路程÷速度列式计算即可得解;方法二:设甲车离A地的距离S与时间t的函数解析式为s=kt+b(k≠0),利用待定系数法求出乙函数解析式,再令s=20求出相应的t的值,然后求解即可;(3)求出甲继续行驶的时间,然后用总时间减去停止前后的时间,列式计算即可得解.解答:解:(1)v甲==(千米/分钟),所以,甲车的速度是千米/每分钟;v乙==1(千米/分钟),所以,乙车的速度是1千米/每分钟;(2)方法一:∵t乙==20(分钟),∴乙车出发20分钟后第一次与甲车相遇;方法二:设甲车离A地的距离S与时间t的函数解析式为:s=kt+b(k≠0),将点(10,0)(70,60)代入得:,解得,,所以,s=t﹣10,当s=20时,解得t=30,∵甲车出发10分钟后乙车才出发,∴30﹣10=20分钟,乙车出发20分钟后第一次与甲车相遇;(3)∵t=(60﹣20)÷=30(分钟),∵70﹣30﹣15=25(分钟),∴甲车中途因故障停止行驶的时间为25分钟.点评:本题考查了一次函数的应用,主要利用了路程、速度、时间三者之间的关系,待定系数法求一次函数解析式,读懂题目信息理解甲、乙两车的运动过程是解题的关键.23.(12分)(2014•浦东新区二模)已知:如图,在正方形ABCD中,点E是边AD的中点,联结BE,过点A作AF⊥BE,分别交BE、CD于点H、F,联结BF.(1)求证:BE=BF;(2)联结BD,交AF于点O,联结OE.求证:∠AEB=∠DEO.考点:相似三角形的判定与性质;全等三角形的判定与性质;正方形的性质.专题:证明题.分析:(1)根据正方形性质得出AB=DA=BC=CD,∠BAD=∠ADF=∠BCF=90°,求出∠ABH=∠HAE,证△ABE∽△DAF,得出比例式,求出AE=DF,CF=AE,证出Rt△ABE≌Rt△CBF即可;(2)根据正方形性质求出∠ADB=∠CDB,证△DEO≌△DFO,推出∠DEO=∠DFO,根据△ABE∽△DAF推出∠AEB=∠DFA,即可得出答案.解答:证明:(1)∵四边形ABCD是正方形,∴AB=DA=BC=CD,∠BAD=∠ADF=∠BCF=90°,∴∠BAH+∠HAE=90°,∵AF⊥BE,∴∠AHB=90°,即∠BAH+∠ABH=90°,∴∠ABH=∠HAE,又∵∠BAE=∠ADF,∴△ABE∽△DAF,∴=,∴AE=DF,∵点E是边AD的中点,∴点F是边DC的中点,∴CF=AE,在Rt△ABE与Rt△CBF中,∴Rt△ABE≌Rt△CBF(HL),∴BE=BF.(2)∵四边形ABCD是正方形,∴DB平分∠ADC,∴∠ADB=∠CDB,在△DEO与△DFO中,∴△DEO≌△DFO(SAS),∴∠DEO=∠DFO,∵△ABE∽△DAF,∴∠AEB=∠DFA,∴∠AEB=∠DEO.点评:本题考查了正方形的性质,相似三角形的性质和判定,全等三角形的性质和判定的应用,主要考查学生的推理能力,题目比较好,难度适中.24.(12分)(2014•浦东新区二模)如图,已知在平面直角坐标系xOy中,抛物线y=x2+bx+c与x轴交于点A、B(点A在点B右侧),与y轴交于点C(0,﹣3),且OA=2OC.(1)求这条抛物线的表达式及顶点M的坐标;(2)求tan∠MAC的值;(3)如果点D在这条抛物线的对称轴上,且∠CAD=45°,求点D的坐标.考点:二次函数综合题.分析:(1)根据与y轴的交点C的坐标(0,﹣3)就可以求出OC的值及c的值,进而求出OA的值及A的坐标,由待定系数法就可以求出b的值而求出解析式及定点坐标;(2)如图1,过点M作MH⊥x轴,垂足为点H,交AC于点N,过点N作NE⊥AM于点E,垂足为点E.在Rt△AHM 中,HM=AH=4,就可以求出AM的值,再由待定系数法求出直线AC的解析式,就可以求出点N的坐标,进而求出MN的值,由勾股定理就可以求出ME及NE的值,从而求出AE的值就可以得出结论;(3)如图2,分类讨论,当D点在AC上方时,根据角之间的关系就可以求出∠D1AH=∠CAM,当D点在AC下方时,∠MAC=∠AD2M就可以求出点D的坐标.解答:解:(1)∵C(0,﹣3),∴OC=3.y=x2+bx﹣3.∵OA=2OC,∴OA=6.∵a=>0,点A在点B右侧,抛物线与y轴交点C(0,﹣3).∴A(6,0).∴0=36+6b﹣3,∴b=﹣1.∴y=x2﹣x﹣3,∴y=(x﹣2)2﹣4,∴M(2,﹣4).答:抛物线的解析式为y=x2﹣x﹣3,M的坐标为(2,﹣4);(2)如图1,过点M作MH⊥x轴,垂足为点H,交AC于点N,过点N作NE⊥AM于点E,垂足为点E.∴∠AHM=∠NEM=90°.在Rt△AHM中,HM=AH=4,由勾股定理,得AM=4,∴∠AMH=∠HAM=45°.设直线AC的解析式为y=kx+b,由题意,得,解得:,∴直线AC的表达式为y=x﹣3.当x=2时,y=﹣2,∴N(2,﹣2).∴MN=2.∵∠NEM=90°,∠NME=45°,∴∠MNE=∠NME=45°,∴NE=ME.在Rt△MNE中,∴NE2+ME2=NM2,∴ME=NE=.∴AE=AM﹣ME=3在Rt△AEN中,tan∠MAC=.答:tan∠MAC=;(3)如图2,①当D点在AC上方时,∵∠CAD1=∠D1AH+∠HAC=45°,且∠HAM=∠HAC+∠CAM=45°,∴∠D1AH=∠CAM,∴tan∠D1AH=tan∠MAC=.∵点D1在抛物线的对称轴直线x=2上,∴D1H⊥AH,∴AH=4.在Rt△AHD1中,D1H=AH•tan∠D1AH=4×=.∴D1(2,);②当D点在AC下方时,∵∠D2AC=∠D2AM+∠MAC=45°,且∠AMH=∠D2AM+∠AD2M=45°,∴∠MAC=∠AD2M.∴tan∠AD2H=tan∠MAC=.在Rt△D2AH中,D2H=.∴D2(2,﹣12).综上所述:D1(2,);D2(2,﹣12).点评:本题考查了待定系数法求二次函数的解析式的运用,一次函数的解析式的运用,二次函数的顶点式的运用,等腰直角三角形的性质的运用,三角函数值的运用,解答时求出函数的解析式是关键,灵活运用等腰直角三角形的性质求解是难点.25.(14分)(2014•浦东新区二模)如图,已知在△ABC中,AB=AC,BC比AB大3,sinB=,点G是△ABC的重心,AG的延长线交边BC于点D.过点G的直线分别交边AB于点P、交射线AC于点Q.(1)求AG的长;(2)当∠APQ=90°时,直线PG与边BC相交于点M.求的值;(3)当点Q在边AC上时,设BP=x,AQ=y,求y关于x的函数解析式,并写出它的定义域.考点:相似形综合题.分析:(1)根据已知条件和重心的性质得出BD=DC=BC,AD⊥BC,再根据sinB==,求出AB、BC、AD的值,从而求出AG的长;(2)根据∠GMD+∠MGD=90°和∠GMD+∠B=90°,得出∠MGD=∠B,再根据特殊角的三角函数值求出DM、CM=CD﹣DM的值,在△ABC中,根据AA求出△QCM∽△QGA,即可求出的值;(3)过点B作BE∥AD,过点C作CF∥AD,分别交直线PQ于点E、F,则BE∥AD∥CF,得出=,求出BE的值,同理可得出CF的值,最后根据BD=CD,求出EG=FG,即可得出CE+BE=2GD,从而得出求y关于x的函数解析式并得出它的定义域.解答:解:(1)在△ABC中,∵AB=AC,点G是△ABC的重心,∴BD=DC=BC,∴AD⊥BC.在Rt△ADB中,∵sinB==,∴=.∵BC﹣AB=3,∴AB=15,BC=18.∴AD=12.∵G是△ABC的重心,∴AG=AD=8.(2)在Rt△MDG,∵∠GMD+∠MGD=90°,同理:在Rt△MPB中,∠GMD+∠B=90°,∴∠MGD=∠B.∴sin∠MGD=sinB=,在Rt△MDG中,∵DG=AD=4,∴DM=,∴CM=CD﹣DM=,在△ABC中,∵AB=AC,AD⊥BC,∴∠BAD=∠CAD.∵∠QCM=∠CDA+∠DAC=90°+∠DAC,又∵∠QGA=∠APQ+∠BAD=90°+∠BAD,∴∠QCM=∠QGA,又∵∠CQM=∠GQA,∴△QCM∽△QGA.∴==.(3)过点B作BE∥AD,过点C作CF∥AD,分别交直线PQ于点E、F,则BE∥AD∥CF.∵BE∥AD,∴=,即=,∴BE=.同理可得:=,即=,∴CF=.∵BE∥AD∥CF,BD=CD,∴EG=FG.∴CE+BE=2GD,即+=8,∴y=,(0≤x≤).点评:此题考查了相似形的综合,用到的知识点是重心、特殊角的三角函数值、相似三角形的判定与性质、平行线的性质等,关键是根据题意,画出图形,做出辅助线,构造直角三角形是本题的关键.。

2011-2012学年上海市浦东新区初三二模数学试卷(解析版)

2011-2012学年上海市浦东新区初三二模数学试卷(解析版)
平面直角坐标系中,⊙O的圆心在坐标原点,半径为2,点A的坐标为 ,直线AB为⊙O的切线,B为切点.则B点的坐标为.
题型:填空题
难度:中等
来源:2011-2012学年上海市浦东新区初三二模数学试卷(解析版)
在矩形 中,点 是 上的一点,沿 折叠,点 恰好落在 边上的 点,若 , .则 的值为.
题型:填空题
难度:中等
来源:2011-2012学年上海市浦东新区初三二模数学试卷(解析版)
如图, 为正五边形 的一条对角线,则∠ =.
题型:填空题
难度:中等
来源:2011-2012学年上海市浦东新区初三二模数学试卷(解析版)
如图,已知点 、 分别是△ 的边 、 的中点,若 , ,则向量 .
题型:填空题
难度:中等
将二次函数 的图像沿 轴向上平移 个单位,那么平移后的二次函数解析式为.
题型:填空题
难度:中等
来源:2011-2012学年上海市浦东新区初三二模数学试卷(解析版)
已知反比例函数的图像经过点 和 则 的值为.
题型:填空题
难度:中等
来源:2011-2012学年上海市浦东新区初三二模数学试卷(解析版)
关于 的方程 有两个不相等的实数根,则 的取值范围是.
初中数学试题p82197
题型:解答题
难度:中等
来源:2011-2012学年上海市浦东新区初三二模数学试卷(解析版)
解程: .
题型:解答题
难度:中等
来源:2011-2012学年上海市浦东新区初三二模数学试卷(解析版)
计算: .
题型:填空题
难度:中等
来源:2011-2012学年上海市浦东新区初三二模数学试卷(解析版)
来源:2011-2012学年上海市浦东新区初三二模数学试卷(解析版)

浦东初中数学二模试卷答案

浦东初中数学二模试卷答案

一、选择题(每题3分,共30分)1. 下列各数中,有理数是()A. √2B. πC. -√3D. 0.1010010001…答案:D解析:有理数是可以表示为两个整数之比的数,包括整数、小数和分数。

选项D是一个无限循环小数,可以表示为分数,因此是有理数。

2. 已知a、b、c是等差数列,且a+b+c=0,则b的值为()A. 0B. 1C. -1D. 无法确定答案:A解析:由等差数列的性质知,a+b+c=3b=0,因此b=0。

3. 下列各函数中,是奇函数的是()A. y=x^2B. y=|x|C. y=x^3D. y=√x答案:C解析:奇函数满足f(-x)=-f(x)。

选项C中的函数f(x)=x^3,对于任意x,有f(-x)=(-x)^3=-x^3=-f(x),满足奇函数的定义。

4. 在平面直角坐标系中,点A(1,2),点B(-3,4)关于原点对称的点是()A. (-1,-2)B. (1,-2)C. (-3,-4)D. (3,-4)答案:A解析:关于原点对称的点,其坐标互为相反数。

因此,点B(-3,4)关于原点对称的点是(3,-4),与选项A相符。

5. 若等比数列的首项为a,公比为q,则其第n项为()A. aq^(n-1)B. aq^nC. aq^(n+1)D. aq^(n-2)答案:A解析:等比数列的通项公式为an=a1q^(n-1),其中a1为首项,q为公比,n为项数。

因此,第n项为aq^(n-1)。

二、填空题(每题4分,共16分)6. 若x^2-6x+9=0,则x的值为______。

答案:3解析:这是一个完全平方公式,即(x-3)^2=0,解得x=3。

7. 已知函数y=2x+1,若x=2,则y的值为______。

答案:5解析:将x=2代入函数y=2x+1,得y=22+1=5。

8. 在等腰三角形ABC中,底边BC的长度为6,腰AB=AC,若底角A的度数为60°,则三角形ABC的周长为______。

上海市浦东新区2014年中考二模数学试卷及答案解析(WORD版)

2014年上海市浦东新区中考数学二模试卷参考答案与试题解析一、选择题:(本大题共6题,每题4分,满分24分)1.(4分)(2014•浦东新区二模)下列代数式中,属于单项式的是()A. a+1 B.C.D.考点:单项式.分析:根据单项式的定义逐个判断即可.解答:解:A、不是单项式,故本选项错误;B、不是单项式,故本选项错误;C、不是单项式,故本选项错误;D、是单项式,故本选项正确;故选D.点评:本题考查了对单项式定义的理解和运用,注意:单项式表示数与字母的积,单独一个数或字母也是单项式.2.(4分)(2014•浦东新区二模)数据1,3,7,1,3,3的平均数和标准差分别为()A. 2,2 B.2,4 C.3,2 D.3,4考点:标准差;加权平均数.分析:根据平均数的计算公式求出这组数据的平均数,再根据方差公式求出方差,从而得出标准差.解答:解:这组数据1,3,7,1,3,3的平均数是:(1+3+7+1+3+3)=3;方差S2=[(1﹣3)2+(3﹣3)2+(7﹣3)2+(1﹣3)2+(3﹣3)2+(3﹣3)2]=4,则标准差是2.故选C.点评:此题主要考查了平均数,方差和标准差,用到的知识点是平均数、方差和标准差的计算公式,关键是根据题意和公式列出算式.3.(4分)(2014•浦东新区二模)已知抛物线y=﹣(x+1)2上的两点A(x1,y1)和B(x2,y2),如果x1<x2<﹣1,那么下列结论一定成立的是()A. y1<y2<0 B.0<y1<y2C.0<y2<y1D.y2<y1<0考点:二次函数图象上点的坐标特征.分析:根据二次函数的性质得到抛物线y=﹣(x+1)2的开口向下,有最大值为0,对称轴为直线x=﹣1,则在对称轴左侧,y随x的增大而增大,所以x1<x2<﹣1时,y1<y2<0.解答:解:∵y=﹣(x+1)2,∴a=﹣1<0,有最大值为0,∴抛物线开口向下,∵抛物线y=﹣(x+1)2对称轴为直线x=﹣1,而x1<x2<﹣1,∴y1<y2<0.故选A.点评:本题考查了二次函数图象上点的坐标特征:二次函数y=ax2+bx+c(a≠0)的图象为抛物线,则抛物线上的点的坐标满足其解析式;当a<0,抛物线开口向下;对称轴为直线x=﹣,在对称轴左侧,y随x的增大而增大,在对称轴右侧,y随x的增大而减小.4.(4分)(2014•浦东新区二模)某粮食公司2013年生产大米总量为a万吨,比2012年大米生产总量增加了10%,那么2012年大米生产总量为()A. a(1+10%)万吨B.万吨C.a(1﹣10%)万吨D.万吨考点:列代数式.分析:根据2013年生产大米比2012年大米生产总量增加了10%,可知2012年大米生产总量×(1+10%)=2013年大米生产总量,由此列式即可.解答:解:a÷(1+10%)=(万吨).故选:B.点评:此题考查列代数式,关键是找出题目蕴含的数量关系:2012年大米生产总量×(1+10%)=2013年大米生产总量.5.(4分)(2014•浦东新区二模)在四边形ABCD中,对角线AC、BD相交于点O,∠ADB=∠CBD,添加下列一个条件后,仍不能判定四边形ABCD是平行四边形的是()A.∠ABD=∠CDB B.∠DAB=∠BCD C.∠ABC=∠CDA D.∠DAC=∠BCA考点:平行四边形的判定.分析:利用平行四边形的判定定理逐步判定后即可确定答案.解答:解:由∠ADB=∠CBD科研得到AD∥BC,∴A、∠ABD=∠CDB能得到AB∥CD,所以能判定四边形ABCD是平行四边形;B、利用三角形的内角和定理能进一步得到∠ABD=∠CDB,从而能得到AB∥CD,所以能判定四边形ABCD是平行四边形;C、能进一步得到∠CDB=∠ABD,从而能得到AB∥CD,所以能判定四边形ABCD是平行四边形;D、不能进一步得到AB∥CD,所以不能判定四边形ABCD是平行四边形,故选D.点评:本题考查了平行四边形的判定.(1)两组对边分别平行的四边形是平行四边形.(2)两组对边分别相等的四边形是平行四边形.(3)一组对边平行且相等的四边形是平行四边形.(4)两组对角分别相等的四边形是平行四边形.(5)对角线互相平分的四边形是平行四边形.6.(4分)(2014•浦东新区二模)如果A、B分别是⊙O1、⊙O2上两个动点,当A、B两点之间距离最大时,那么这个最大距离被称为⊙O1、⊙O2的“远距”.已知,⊙O1的半径为1,⊙O2的半径为2,当两圆相交时,⊙O1、⊙O2的“远距”可能是()A. 3 B.4C.5D.6考点:圆与圆的位置关系.专题:新定义.分析:首先弄清缘聚的定义,然后结合两圆的圆心距的取值范围求解.解答:解:∵⊙O1的半径为1,⊙O2的半径为2,∴圆心距d的取值范围为:1<d<3,∴⊙O1、⊙O2的“远距”的取值范围为:4<远距<6,故选C.点评:本题考查了圆与圆的位置关系,解题的关键是弄清“远距的定义”.二、填空题:(本大题共12题,每题4分,满分48分)7.(4分)(2014•浦东新区二模)计算:|﹣π|=π﹣.考点:实数的性质.分析:根据绝对值是大数减小数,可得答案.解答:解:|﹣π|=,故答案为:.点评:本题考查了实数的性质,绝对值是非负数,可用大数减小数.8.(4分)(2014•浦东新区二模)化简:=.考点:约分.专题:计算题.分析:找出分式分子分母的公因式,约分即可得到结果.解答:解:原式==.故答案为:.点评:此题考查了约分,找出分子分母的公因式是约分的关键.9.(4分)(2014•浦东新区二模)计算:﹣=.考点:分式的加减法.专题:计算题.分析:原式两项通分并利用同分母分式的减法法则计算,约分即可得到结果.解答:解:原式=﹣==.故答案为:.点评:此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.10.(4分)(2014•浦东新区二模)正八边形的中心角等于45度.考点:正多边形和圆.分析:根据中心角是正多边形相邻的两个半径的夹角来解答.解答:解:正八边形的中心角等于360°÷8=45°;故答案为45.点评:本题考查了正多边形和圆的知识,解题的关键是牢记中心角的定义及求法.11.(4分)(2014•浦东新区二模)如果关于x的方程3x2﹣mx+3=0有两个相等的实数根,那么m的值为±6.考点:根的判别式.分析:若一元二次方程有两等根,则根的判别式△=b2﹣4ac=0,建立关于m的方程,求出m的取值.解答:解:∵方程3x2﹣mx+3=0有两个相等的实数根,∴△=m2﹣4×3×3=0,解得m=±6,故答案为±6.点评:考查了根的判别式,总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.12.(4分)(2014•浦东新区二模)请写出一个平面几何图形,使它满足“把一个图形沿某一条直线翻折过来,直线两旁的部分能够相互重合”这一条件,这个图形可以是圆.考点:轴对称图形.专题:开放型.分析:把一个图形沿某一条直线翻折过来,直线两旁的部分能够相互重合,这样的图形为轴对称图形,写出一个轴对称图形即可.解答:解:这个图形可以是圆.故答案为:圆.点评:本题考查了轴对称图形的知识,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.13.(4分)(2014•浦东新区二模)如果关于x的方程bx=x+1有解,那么b的取值范围为b≠1.考点:一元一次方程的解.分析:移项,合并同类项,当x的系数不等于0时,方程有解,据此即可求解.解答:解:移项,得:bx﹣x=1,即(b﹣1)x=1,当b﹣1≠0时,即b≠1时,方程有解.故答案是:b≠1.点评:此题考查的是一元一次方程的解法,理解方程有解的条件是关键.14.(4分)(2014•浦东新区二模)在▱ABCD中,已知=,=,则用向量、表示向量为+.考点:*平面向量.分析:根据平行四边形的对角线互相平分的性质,可得出==,==,从而可表示出向量.解答:解:∵四边形ABCD是平行四边形,∴==,==,∴=+=+.故答案为:+.点评:本题考查了平面向量的知识,注意掌握向量的加减,平行四边形对角线互相平分的性质.15.(4分)(2014•浦东新区二模)把分别写有数字“1”、“2”、“3”、“4”、“5”、“6”的6张相同卡片,字面朝下随意放置在桌面上,从中任意摸出一张卡片数字是素数的概率是.考点:概率公式.分析:由有数字“1”、“2”、“3”、“4”、“5”、“6”的6张相同卡片,卡片数字是素数的有:2,3,5;直接利用概率公式求解即可求得答案.解答:解:∵有数字“1”、“2”、“3”、“4”、“5”、“6”的6张相同卡片,卡片数字是素数的有:2,3,5;∴从中任意摸出一张卡片数字是素数的概率是:=.故答案为:.点评:此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.16.(4分)(2014•浦东新区二模)为了解某校九年级女生1分钟仰卧起坐的次数,从中随机抽查了50名女生参加测试,被抽查的女生中有90%的女生次数不小于30次,并绘制成频数分布直方图(如图),那么仰卧起坐的次数在40~45的频率是0.62.考点:频数(率)分布直方图.分析:根据被抽查的女生中有90%的女生次数不小于30次,抽查了50名女生,求出次数不小于30次的人数,再根据直方图求出在40~45次之间的频数,然后根据频率公式:频率=频数÷总数,即可求解.解答:解:∵被抽查的女生中有90%的女生次数不小于30次,抽查了50名女生,∴次数不小于30次的人数是50×90%=45(人),∴在40~45次之间的频数是:45﹣3﹣5﹣6=31,∴仰卧起坐的次数在40~45的频率是=0.62;故答案是:0.62.点评:本题考查了频数分布直方图,关键是读懂统计图,从图中获得必要的信息,用到的知识点是频率公式:频率=频数÷总数.17.(4分)(2014•浦东新区二模)如图,已知点A在反比例函数y=的图象上,点B在x轴的正半轴上,且△OAB是面积为的等边三角形,那么这个反比例函数的解析式是y=﹣.考点:等边三角形的性质;反比例函数图象上点的坐标特征.分析:首先根据题意得出×|2x•y|=,进而得出xy=﹣,即可得出k的值.解答:解:过点A作AC⊥OB于点C,设A(x,y),∵△OAB是面积为的等边三角形,∴×|2x•y|=,∴|xy|=,∴xy=﹣,∴这个反比例函数的解析式是:y=﹣.故答案为:y=﹣.点评:此题主要考查了等边三角形的性质以及三角形面积求法和反比例函数图象上点的坐标特征,得出xy=﹣是解题关键.18.(4分)(2014•浦东新区二模)在Rt△ABC中,∠ACB=90°,AC=,cosA=,如果将△ABC绕着点C旋转至△A′B′C的位置,使点B′落在∠ACB的角平分线上,A′B′与AC相交于点H,那么线段CH的长等于﹣1.考点:旋转的性质.分析:根据题意画出图形,进而利用旋转的性质以及锐角三角函数关系和等腰直角三角形求出三角形各边长,再利用三角形面积求出即可.解答:解:过点B′作B′F⊥AC于点F,A′D⊥AC于点D,∵∠ACB=90°,点B′落在∠ACB的角平分线上,∴∠BCB′=∠B′CA=ACA′=45°,∴△CB′F,△CDA′都是等腰直角三角形,∵AC=,cosA=,∴==,解得:AB=,∴BC=,∴B′C=,∴B′F=×=,A′D=×CA′=1,∴S△A′CB′=S△CHB′+S△CHA′=××=××CH+×1×CH,解得:CH=﹣1,故答案为:﹣1.点评:此题主要考查了旋转的性质以及锐角三角函数关系和三角形面积求法等知识,利用S△A′CB′=S△CHB′+S△CHA′求出是解题关键.三、解答题:(本大题共7题,满分78分)19.(10分)(2014•浦东新区二模)计算:()2﹣5+()﹣1﹣.考点:实数的运算;分数指数幂;负整数指数幂.专题:计算题.分析:原式第一项利用平方根定义化简,第二项利用指数幂法则变形,第三项利用负指数幂法则计算,最后一项分母有理化,计算即可得到结果.解答:解:原式=5﹣+﹣=6﹣.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.(10分)(2014•浦东新区二模)解不等式组:并把解集在数轴上表示出来.考点:解一元一次不等式组;在数轴上表示不等式的解集.分析:先求出每个不等式的解集,再求出其公共部分即可.解答:解:由①得2x﹣7<3﹣3x,化简得5x<10,解得:x<2.由②得4x+9≥3﹣2x,化简得6x≥﹣6,解得:x≥﹣1,∴原不等式组的解集为﹣1<x<2.在数轴上表示出来为:点评:本题考查了解一元一次不等式组和在数轴上表示不等式的解集,求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.21.(10分)(2014•浦东新区二模)已知:如图,∠PAQ=30°,在边AP上顺次截取AB=3cm,BC=10cm,以BC为直径作⊙O交射线AQ于E、F两点,求:(1)圆心O到AQ的距离;(2)线段EF的长.考点:垂径定理;含30度角的直角三角形;勾股定理.分析:(1)过点O作OH⊥EF,垂足为点H,求出AO,根据含30度角的直角三角形性质求出即可;(2)连接OE,根据勾股定理求出EH,根据垂径定理得出即可.解答:解:(1)过点O作OH⊥EF,垂足为点H,∵OH⊥EF,∴∠AHO=90°,在Rt△AOH中,∵∠AHO=90°,∠PAQ=30°,∴OH=AO,∵BC=10cm,∴BO=5cm.∵AO=AB+BO,AB=3cm,∴AO=3+5=8cm,∴OH=4cm,即圆心O到AQ的距离为4cm.(2)连接OE,在Rt△EOH中,∵∠EHO=90°,∴EH2+HO2=EO2,∵EO=5cm,OH=4cm,∴EH===3cm,∵OH过圆心O,OH⊥EF,∴EF=2EH=6cm.点评:本题考查了含30度角的直角三角形性质,勾股定理,垂径定理的应用,题目是一道比较典型的题目,难度适中.22.(10分)(2014•浦东新区二模)甲、乙两车都从A地前往B地,如图分别表示甲、乙两车离A地的距离S (千米)与时间t(分钟)的函数关系.已知甲车出发10分钟后乙车才出发,甲车中途因故停止行驶一段时间后按原速继续驶向B地,最终甲、乙两车同时到达B地,根据图中提供的信息解答下列问题:(1)甲、乙两车行驶时的速度分别为多少?(2)乙车出发多少分钟后第一次与甲车相遇?(3)甲车中途因故障停止行驶的时间为多少分钟?考点:一次函数的应用.分析:(1)分别根据速度=路程÷时间列式计算即可得解;(2)方法一:观察图形可知,第一次相遇时,甲车停止,然后时间=路程÷速度列式计算即可得解;方法二:设甲车离A地的距离S与时间t的函数解析式为s=kt+b(k≠0),利用待定系数法求出乙函数解析式,再令s=20求出相应的t的值,然后求解即可;(3)求出甲继续行驶的时间,然后用总时间减去停止前后的时间,列式计算即可得解.解答:解:(1)v甲==(千米/分钟),所以,甲车的速度是千米/每分钟;v乙==1(千米/分钟),所以,乙车的速度是1千米/每分钟;(2)方法一:∵t乙==20(分钟),∴乙车出发20分钟后第一次与甲车相遇;方法二:设甲车离A地的距离S与时间t的函数解析式为:s=kt+b(k≠0),将点(10,0)(70,60)代入得:,解得,,所以,s=t﹣10,当s=20时,解得t=30,∵甲车出发10分钟后乙车才出发,∴30﹣10=20分钟,乙车出发20分钟后第一次与甲车相遇;(3)∵t=(60﹣20)÷=30(分钟),∵70﹣30﹣15=25(分钟),∴甲车中途因故障停止行驶的时间为25分钟.点评:本题考查了一次函数的应用,主要利用了路程、速度、时间三者之间的关系,待定系数法求一次函数解析式,读懂题目信息理解甲、乙两车的运动过程是解题的关键.23.(12分)(2014•浦东新区二模)已知:如图,在正方形ABCD中,点E是边AD的中点,联结BE,过点A 作AF⊥BE,分别交BE、CD于点H、F,联结BF.(1)求证:BE=BF;(2)联结BD,交AF于点O,联结OE.求证:∠AEB=∠DEO.考点:相似三角形的判定与性质;全等三角形的判定与性质;正方形的性质.专题:证明题.分析:(1)根据正方形性质得出AB=DA=BC=CD,∠BAD=∠ADF=∠BCF=90°,求出∠ABH=∠HAE,证△ABE∽△DAF,得出比例式,求出AE=DF,CF=AE,证出Rt△ABE≌Rt△CBF即可;(2)根据正方形性质求出∠ADB=∠CDB,证△DEO≌△DFO,推出∠DEO=∠DFO,根据△ABE∽△DAF推出∠AEB=∠DFA,即可得出答案.解答:证明:(1)∵四边形ABCD是正方形,∴AB=DA=BC=CD,∠BAD=∠ADF=∠BCF=90°,∴∠BAH+∠HAE=90°,∵AF⊥BE,∴∠AHB=90°,即∠BAH+∠ABH=90°,∴∠ABH=∠HAE,又∵∠BAE=∠ADF,∴△ABE∽△DAF,∴=,∴AE=DF,∵点E是边AD的中点,∴点F是边DC的中点,∴CF=AE,在Rt△ABE与Rt△CBF中,∴Rt△ABE≌Rt△CBF(HL),∴BE=BF.(2)∵四边形ABCD是正方形,∴DB平分∠ADC,∴∠ADB=∠CDB,在△DEO与△DFO中,∴△DEO≌△DFO(SAS),∴∠DEO=∠DFO,∵△ABE∽△DAF,∴∠AEB=∠DFA,∴∠AEB=∠DEO.点评:本题考查了正方形的性质,相似三角形的性质和判定,全等三角形的性质和判定的应用,主要考查学生的推理能力,题目比较好,难度适中.24.(12分)(2014•浦东新区二模)如图,已知在平面直角坐标系xOy中,抛物线y=x2+bx+c与x轴交于点A、B(点A在点B右侧),与y轴交于点C(0,﹣3),且OA=2OC.(1)求这条抛物线的表达式及顶点M的坐标;(2)求tan∠MAC的值;(3)如果点D在这条抛物线的对称轴上,且∠CAD=45°,求点D的坐标.考点:二次函数综合题.分析:(1)根据与y轴的交点C的坐标(0,﹣3)就可以求出OC的值及c的值,进而求出OA的值及A的坐标,由待定系数法就可以求出b的值而求出解析式及定点坐标;(2)如图1,过点M作MH⊥x轴,垂足为点H,交AC于点N,过点N作NE⊥AM于点E,垂足为点E.在Rt△AHM中,HM=AH=4,就可以求出AM的值,再由待定系数法求出直线AC的解析式,就可以求出点N的坐标,进而求出MN的值,由勾股定理就可以求出ME及NE的值,从而求出AE的值就可以得出结论;(3)如图2,分类讨论,当D点在AC上方时,根据角之间的关系就可以求出∠D1AH=∠CAM,当D点在AC下方时,∠MAC=∠AD2M就可以求出点D的坐标.解答:解:(1)∵C(0,﹣3),∴OC=3.y=x2+bx﹣3.∵OA=2OC,∴OA=6.∵a=>0,点A在点B右侧,抛物线与y轴交点C(0,﹣3).∴A(6,0).∴0=36+6b﹣3,∴b=﹣1.∴y=x2﹣x﹣3,∴y=(x﹣2)2﹣4,∴M(2,﹣4).答:抛物线的解析式为y=x2﹣x﹣3,M的坐标为(2,﹣4);(2)如图1,过点M作MH⊥x轴,垂足为点H,交AC于点N,过点N作NE⊥AM于点E,垂足为点E.∴∠AHM=∠NEM=90°.在Rt△AHM中,HM=AH=4,由勾股定理,得AM=4,∴∠AMH=∠HAM=45°.设直线AC的解析式为y=kx+b,由题意,得,解得:,∴直线AC的表达式为y=x﹣3.当x=2时,y=﹣2,∴N(2,﹣2).∴MN=2.∵∠NEM=90°,∠NME=45°,∴∠MNE=∠NME=45°,∴NE=ME.在Rt△MNE中,∴NE2+ME2=NM2,∴ME=NE=.∴AE=AM﹣ME=3在Rt△AEN中,tan∠MAC=.答:tan∠MAC=;(3)如图2,①当D点在AC上方时,∵∠CAD1=∠D1AH+∠HAC=45°,且∠HAM=∠HAC+∠CAM=45°,∴∠D1AH=∠CAM,∴tan∠D1AH=tan∠MAC=.∵点D1在抛物线的对称轴直线x=2上,∴D1H⊥AH,∴AH=4.在Rt△AHD1中,D1H=AH•tan∠D1AH=4×=.∴D1(2,);②当D点在AC下方时,∵∠D2AC=∠D2AM+∠MAC=45°,且∠AMH=∠D2AM+∠AD2M=45°,∴∠MAC=∠AD2M.∴tan∠AD2H=tan∠MAC=.在Rt△D2AH中,D2H=.∴D2(2,﹣12).综上所述:D1(2,);D2(2,﹣12).点评:本题考查了待定系数法求二次函数的解析式的运用,一次函数的解析式的运用,二次函数的顶点式的运用,等腰直角三角形的性质的运用,三角函数值的运用,解答时求出函数的解析式是关键,灵活运用等腰直角三角形的性质求解是难点.25.(14分)(2014•浦东新区二模)如图,已知在△ABC中,AB=AC,BC比AB大3,sinB=,点G是△ABC的重心,AG的延长线交边BC于点D.过点G的直线分别交边AB于点P、交射线AC于点Q.(1)求AG的长;(2)当∠APQ=90°时,直线PG与边BC相交于点M.求的值;(3)当点Q在边AC上时,设BP=x,AQ=y,求y关于x的函数解析式,并写出它的定义域.考点:相似形综合题.分析:(1)根据已知条件和重心的性质得出BD=DC=BC,AD⊥BC,再根据sinB==,求出AB、BC、AD的值,从而求出AG的长;(2)根据∠GMD+∠MGD=90°和∠GMD+∠B=90°,得出∠MGD=∠B,再根据特殊角的三角函数值求出DM、CM=CD﹣DM的值,在△ABC中,根据AA求出△QCM∽△QGA,即可求出的值;(3)过点B作BE∥AD,过点C作CF∥AD,分别交直线PQ于点E、F,则BE∥AD∥CF,得出=,求出BE的值,同理可得出CF的值,最后根据BD=CD,求出EG=FG,即可得出CE+BE=2GD,从而得出求y关于x 的函数解析式并得出它的定义域.解答:解:(1)在△ABC中,∵AB=AC,点G是△ABC的重心,∴BD=DC=BC,∴AD⊥BC.在Rt△ADB中,∵sinB==,∴=.∵BC﹣AB=3,∴AB=15,BC=18.∴AD=12.∵G是△ABC的重心,∴AG=AD=8.(2)在Rt△MDG,∵∠GMD+∠MGD=90°,同理:在Rt△MPB中,∠GMD+∠B=90°,∴∠MGD=∠B.∴sin∠MGD=sinB=,在Rt△MDG中,∵DG=AD=4,∴DM=,∴CM=CD﹣DM=,在△ABC中,∵AB=AC,AD⊥BC,∴∠BAD=∠CAD.∵∠QCM=∠CDA+∠DAC=90°+∠DAC,又∵∠QGA=∠APQ+∠BAD=90°+∠BAD,∴∠QCM=∠QGA,又∵∠CQM=∠GQA,∴△QCM∽△QGA.∴==.(3)过点B作BE∥AD,过点C作CF∥AD,分别交直线PQ于点E、F,则BE∥AD∥CF.∵BE∥AD,∴=,即=,∴BE=.同理可得:=,即=,∴CF=.∵BE∥AD∥CF,BD=CD,∴EG=FG.∴CE+BE=2GD,即+=8,∴y=,(0≤x≤).点评:此题考查了相似形的综合,用到的知识点是重心、特殊角的三角函数值、相似三角形的判定与性质、平行线的性质等,关键是根据题意,画出图形,做出辅助线,构造直角三角形是本题的关键.。

上海市浦东新区中考数学二模试卷(含解析)

上海市浦东新区2016年中考数学二模试卷一、选择题:(本大题共6题,每题4分,满分24分)1.2016的相反数是()A.B.﹣2016 C.﹣D.20162.已知一元二次方程x2+3x+2=0,下列判断正确的是()A.该方程无实数解B.该方程有两个相等的实数解C.该方程有两个不相等的实数解D.该方程解的情况不确定3.下列函数的图象在每一个象限内,y随着x的增大而增大的是()A.y=﹣B.y=x2﹣1 C.y= D.y=﹣x﹣14.如果从1、2、3这三个数字中任意选取两个数字,组成一个两位数,那么这个两位数是素数的概率等于()A.B.C.D.5.下图是上海今年春节七天最高气温(℃)的统计结果:这七天最高气温的众数和中位数是()A.15,17 B.14,17 C.17,14 D.17,156.如图,△ABC和△AMN都是等边三角形,点M是△ABC的重心,那么的值为()A.B.C.D.二、填空题:(本大题共12题,每题4分,满分48分)7.计算:|﹣1|= .8.不等式x﹣1<2的解集是.9.分解因式:8﹣2x2= .10.计算:3()+2(﹣2)= .11.方程的根是.12.已知函数f(x)=,那么f()= .13.如图,传送带和地面所成的斜坡的坡度为1:,它把物体从地面送到离地面9米高的地方,则物体从A到B所经过的路程为米.14.正八边形的中心角等于度.15.在开展“国学诵读”活动中,某校为了解全校1200名学生课外阅读的情况,随机调查了50名学生一周的课外阅读时间,并绘制成如图所示的条形统计图.根据图中数据,估计该校1200名学生一周的课外阅读时间不少于6小时的人数是.16.已知:⊙O1、⊙O2的半径长分别为2和R,如果⊙O1与⊙O2相切,且两圆的圆心距d=3,则R的值为.17.定义运算“﹡”:规定x﹡y=ax+by(其中a、b为常数),若1﹡1=3,1﹡(﹣1)=1,则1﹡2= .18.在Rt△ABC中,∠ACB=90°,BC=15,AC=20.点D在边AC上,DE⊥AB,垂足为点E,将△ADE沿直线DE翻折,翻折后点A的对应点为点P,当∠CPD为直角时,AD的长是.三、解答题:(本大题共7题,满分78分)19.(10分)计算:2sin45°﹣20160++()﹣1.20.(10分)解方程:.21.(10分)如图,AB是⊙O的弦,C是AB上一点,∠AOC=90°,OA=4,OC=3,求弦AB的长.22.(10分)某工厂生产一种产品,当生产数量不超过40吨时,每吨的成本y(万元/吨)与生产数量x(吨)的函数关系式如图所示:(1)求y关于x的函数解析式,并写出它的定义域;(2)当生产这种产品的总成本为210万元时,求该产品的生产数量.(注:总成本=每吨的成本×生产数量)23.(12分)如图,已知:四边形ABCD是平行四边形,点E在边BA的延长线上,CE交AD 于点F,∠ECA=∠D(1)求证:△EAC∽△ECB;(2)若DF=AF,求AC:BC的值.24.(12分)如图,二次函数y=ax2﹣4ax+2的图象与y轴交于点A,且过点B(3,6).(1)试求二次函数的解析式及点A的坐标;(2)若点B关于二次函数对称轴的对称点为点C,试求∠CAB的正切值;(3)若在x轴上有一点P,使得点B关于直线AP的对称点B1在y轴上,试求点P的坐标.25.(14分)如图,Rt△ABC中,∠ACB=90°,BC=6,点D为斜边AB的中点,点E为边AC 上的一个动点.联结DE,过点E作DE的垂线与边BC交于点F,以DE,EF为邻边作矩形DEFG.(1)如图1,当AC=8,点G在边AB上时,求DE和EF的长;(2)如图2,若,设AC=x,矩形DEFG的面积为y,求y关于x的函数解析式;(3)若,且点G恰好落在Rt△ABC的边上,求AC的长.2016年上海市浦东新区中考数学二模试卷参考答案与试题解析一、选择题:(本大题共6题,每题4分,满分24分)1.2016的相反数是()A.B.﹣2016 C.﹣D.2016【考点】相反数.【分析】根据相反数的含义,可得求一个数的相反数的方法就是在这个数的前边添加“﹣”,据此解答即可.【解答】解:2016的相反数是﹣2016.故选:B.【点评】此题主要考查了相反数的含义以及求法,要熟练掌握,解答此题的关键是要明确:相反数是成对出现的,不能单独存在;求一个数的相反数的方法就是在这个数的前边添加“﹣”.2.已知一元二次方程x2+3x+2=0,下列判断正确的是()A.该方程无实数解B.该方程有两个相等的实数解C.该方程有两个不相等的实数解D.该方程解的情况不确定【考点】根的判别式.【分析】把a=1,b=3,c=2代入判别式△=b2﹣4ac进行计算,然后根据计算结果判断方程根的情况.【解答】解:∵a=1,b=3,c=2,∴△=b2﹣4ac=32﹣4×1×2=1>0,∴方程有两个不相等的实数根.故选C.【点评】本题考查了根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.3.下列函数的图象在每一个象限内,y随着x的增大而增大的是()A.y=﹣B.y=x2﹣1 C.y= D.y=﹣x﹣1【考点】反比例函数的性质;一次函数的性质;二次函数的性质.【分析】分析四个选项中得函数解析式,根据系数的正负结合各函数的性质即可得出其增减性,由此即可得出结论.【解答】解:A、y=﹣中k=﹣1<0,∴函数y=﹣的图象在第二、四象限内y随着x的增大而增大;B、y=x2﹣1中a=1>0,∴函数y=x2﹣1的图象在第二、三象限内y随着x的增大而减小,在第一、四象限内y随着x的增大而增大;C、y=﹣中k=1>0,∴函数y=的图象在第一、三象限内y随着x的增大而减小;D、y=﹣x﹣1中k=﹣1<0,b=﹣1<0,∴函数y=﹣x﹣1的图象在第二、三、四象限内y随着x的增大而减小.故选A.【点评】本题考查了反比例函数的性质、一次函数的性质以及二次函数的性质,解题的关键是逐项分析四个选项的增减性.本题属于基础题,难度不大,解决该题型题目时,熟悉各函数的性质及各函数的图象是解题的关键.4.如果从1、2、3这三个数字中任意选取两个数字,组成一个两位数,那么这个两位数是素数的概率等于()A.B.C.D.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与这个两位数是素数的情况,再利用概率公式求解即可求得答案.【解答】解:画树状图得:∵共有6种等可能的结果,这个两位数是素数的有13,23,31共3种情况,∴这个两位数是素数的概率为: =.故选A.【点评】此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.5.下图是上海今年春节七天最高气温(℃)的统计结果:这七天最高气温的众数和中位数是()A.15,17 B.14,17 C.17,14 D.17,15【考点】众数;折线统计图;中位数.【分析】根据中位数和众数的概念求解.把数据按大小排列,第4个数为中位数;17℃出现的次最多,为众数.【解答】解:17℃出现了2次,最多,故众数为17℃;共7个数据,从小到大排列为8,9,11,14,15,17,第4个数为14,故中位数为14℃.故选C.【点评】本题为统计题,考查了众数与中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数;众数为数据中出现次数最多的数.6.如图,△ABC和△AMN都是等边三角形,点M是△ABC的重心,那么的值为()A.B.C.D.【考点】三角形的重心.【分析】延长AM交BC于点D,根据△ABC是等边三角形可知AD⊥BC,设AM=2x,则DM=x,利用锐角三角函数的定义用x表示出AB的长,再根据相似三角形的性质即可得出结论.【解答】解:延长AM交BC于点D,∵△ABC是等边三角形,∴AD⊥BC.设AM=2x,则DM=x,∴AD=3x,∴AB===2x.∵△ABC和△AMN都是等边三角形,∴△ABC∽△AMN,∴=()2=()2=.故选B.【点评】本题考查的是三角形的重心,熟知重心到顶点的距离与重心到对边中点的距离之比为2:1是解答此题的关键.二、填空题:(本大题共12题,每题4分,满分48分)7.计算:|﹣1|= .【考点】有理数的减法;绝对值.【分析】首先根据有理数的减法法则,求出﹣1的值是多少;然后根据一个负数的绝对值等于它的相反数,求出|﹣1|的值是多少即可.【解答】解:|﹣1|=|﹣|=.故答案为:.【点评】(1)此题主要考查了有理数的减法,要熟练掌握,解答此题的关键是要明确:①在进行减法运算时,首先弄清减数的符号;②将有理数转化为加法时,要同时改变两个符号:一是运算符号(减号变加号);二是减数的性质符号(减数变相反数).(2)此题还考查了绝对值的含义和应用,要熟练掌握,解答此题的关键是要明确:①当a 是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.8.不等式x﹣1<2的解集是x<3 .【考点】解一元一次不等式.【分析】解不等式x﹣1<2,即可得到不等式x﹣1<2的解集,本题得以解决.【解答】解:x﹣1<2两边同时加1,得x﹣1+1<2+1x<3,故答案为:x<3.【点评】本题考查解一元一次不等式,解题的关键是会解一元一次不等式的方法.9.分解因式:8﹣2x2= 2(2+x)(2﹣x).【考点】提公因式法与公式法的综合运用.【分析】先提取公因式,再根据平方差公式进行分解即可.【解答】解:原式=2(4﹣x2)=2(2+x)(2﹣x).故答案为:2(2+x)(2﹣x).【点评】本题考查的是提取公因式法与公式法的综合运用,熟记平方差公式是解答此题的关键.10.计算:3()+2(﹣2)= ﹣﹣.【考点】*平面向量.【分析】直接利用平面向量的加减运算法则求解即可求得答案.【解答】解:3()+2(﹣2)=3﹣3+2﹣4=﹣﹣.故答案为:﹣﹣.【点评】此题考查了平面向量的运算法则.注意掌握去括号法则是解此题的关键.11.方程的根是x=﹣4 .【考点】无理方程.【分析】9的算术平方根是3,故5﹣x=9,x=﹣4.【解答】解:因为算术平方根的被开方数是非负数,根据题意可得,5﹣x=9,解得:x=﹣4.故本题答案为:x=﹣4.【点评】记准算术平方根的被开方数是非负数这一要求,是解决这类问题的关键.12.已知函数f(x)=,那么f()= 3 .【考点】函数值.【分析】将x=代入计算即可.【解答】解:f()====3.故答案为:3.【点评】本题主要考查的是求函数值,掌握二次根式的性质是解题的关键.13.如图,传送带和地面所成的斜坡的坡度为1:,它把物体从地面送到离地面9米高的地方,则物体从A到B所经过的路程为18 米.【考点】解直角三角形的应用-坡度坡角问题.【分析】直接利用坡角的定义得出AC的长,进而利用勾股定理得出AB的长.【解答】解:∵传送带和地面所成的斜坡的坡度为1:,它把物体从地面送到离地面9米高的地方,∴可得:BC=9m,则=,解得:AC=9,则AB===18(m).故答案为:18.【点评】此题主要考查了坡角的定义,根据题意得出AC的长是解题关键.14.正八边形的中心角等于45 度.【考点】正多边形和圆.【分析】根据中心角是正多边形相邻的两个半径的夹角来解答.【解答】解:正八边形的中心角等于360°÷8=45°;故答案为45.【点评】本题考查了正多边形和圆的知识,解题的关键是牢记中心角的定义及求法.15.在开展“国学诵读”活动中,某校为了解全校1200名学生课外阅读的情况,随机调查了50名学生一周的课外阅读时间,并绘制成如图所示的条形统计图.根据图中数据,估计该校1200名学生一周的课外阅读时间不少于6小时的人数是720 .【考点】条形统计图;用样本估计总体.【分析】用所有学生数乘以样本中课外阅读时间不少于6小时的人数所占的百分比即可.【解答】解:估计该校1200名学生一周的课外阅读时间不少于6小时的人数是:1200×=720(人),故答案为:720.【点评】本题考查了用样本估计总体的知识,解题的关键是求得样本中不少于6小时的人数所占的百分比.16.已知:⊙O1、⊙O2的半径长分别为2和R,如果⊙O1与⊙O2相切,且两圆的圆心距d=3,则R的值为1或5 .【考点】圆与圆的位置关系.【分析】由于⊙O1与⊙O2相切,则分两圆内切和外切讨论得到R+2=3或R﹣2=3,然后解两个一次方程即可.【解答】解:∵⊙O1与⊙O2相切,∴R+2=3或R﹣2=3,∴R=1或R=5.故答案为1或5.【点评】本题考查了圆与圆的位置关系:设两圆的圆心距为d,两圆半径分别为R、r,当两圆外离⇔d>R+r;两圆外切⇔d=R+r;两圆相交⇔R﹣r<d<R+r(R≥r);两圆内切⇔d=R ﹣r(R>r);两圆内含⇔d<R﹣r(R>r).17.定义运算“﹡”:规定x﹡y=ax+by(其中a、b为常数),若1﹡1=3,1﹡(﹣1)=1,则1﹡2= 4 .【考点】解二元一次方程组;有理数的混合运算.【分析】已知等式利用题中的新定义化简为二元一次方程组,求出方程组的解得到a与b的值,即可确定出所求式子的值.【解答】解:根据题中的新定义得:,解得:,则1﹡2=1×2+2×1=2+2=4,故答案为:4【点评】此题考查了解二元一次方程组,以及有理数的混合运算,熟练掌握运算法则是解本题的关键.18.在Rt△ABC中,∠ACB=90°,BC=15,AC=20.点D在边AC上,DE⊥AB,垂足为点E,将△ADE沿直线DE翻折,翻折后点A的对应点为点P,当∠CPD为直角时,AD的长是.【考点】翻折变换(折叠问题).【分析】设AD=x,再根据折叠的性质得∠PDE=∠ADE=90°,∠1=∠A,PD=AD=x,于是可判断点P在边AC上,所以PC=20﹣2x,然后利用等角的余角相等得到∠1=∠3,则∠A=∠3,则可判断Rt△BCP∽Rt△ABC,利用相似比可计算出x.【解答】解:如图,设AD=x,在△ABC中,∠ACB=90°,BC=15,AC=20,∴AB=25,∵DE⊥AB,∴∠AED=∠ACB=90°,∵△ADE沿DE翻折得到△PDE,∴∠PED=∠AED=90°,∠1=∠A,PD=AD=x,∴CD=20﹣x,∵∠CPD=90°,∴∠1+∠2=90°,∠A+∠B=90°,∴∠2=∠B,∴PC=BC=15,∵CD2=CP2+PD2,即(20﹣x)2=152+x2,∴x=,∴AD=.故答案为:.【点评】此题主要考查了图形的翻折变换,以及勾股定理的应用,关键是掌握翻折后哪些线段是对应相等的.三、解答题:(本大题共7题,满分78分)19.(10分)(2016•浦东新区二模)计算:2sin45°﹣20160++()﹣1.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】原式利用零指数幂、负整数指数幂法则,特殊角的三角函数值,以及二次根式性质计算即可得到结果.【解答】解:原式=2×﹣1+2+2=1+3.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.(10分)(2016•浦东新区二模)解方程:.【考点】解分式方程;解一元二次方程-因式分解法.【分析】本题的最简公分母是(x+2)(x﹣2).方程两边都乘最简公分母,可把分式方程转换为整式方程求解.结果需检验.【解答】解:方程两边都乘(x+2)(x﹣2),得x(x﹣2)+(x+2)2=8,x2﹣2x+x2+4x+4=8,整理得x2+x﹣2=0.解得x1=﹣2,x2=1.经检验,x2=1为原方程的根,x1=﹣2是增根(舍去).∴原方程的根是x=1.【点评】(1)解分式方程的基本思想是“转化思想”,方程两边都乘最简公分母,把分式方程转化为整式方程求解;(2)解分式方程一定注意要代入最简公分母验根.21.(10分)(2016•浦东新区二模)如图,AB是⊙O的弦,C是AB上一点,∠AOC=90°,OA=4,OC=3,求弦AB的长.【考点】垂径定理.【分析】首先过点O作OD⊥AB于D,应用直角三角形的性质和三角函数的求法,求出AD的长度是多少;然后应用垂径定理,求出弦AB的长是多少即可.【解答】解:如图,过点O作OD⊥AB于D,,∵OA2+OC2=AC2,∴AC2=42+32=25,∴AC=5.在Rt△AOC中,cos∠OAC==,在Rt△ADO中,cos∠OAD=,∴==,∴AD=×4=.∵OD⊥AB,∴AB=2AD=2×=.【点评】此题主要考查了垂径定理的应用,直角三角形的性质和三角函数的求法,要熟练掌握.22.(10分)(2016•浦东新区二模)某工厂生产一种产品,当生产数量不超过40吨时,每吨的成本y(万元/吨)与生产数量x(吨)的函数关系式如图所示:(1)求y关于x的函数解析式,并写出它的定义域;(2)当生产这种产品的总成本为210万元时,求该产品的生产数量.(注:总成本=每吨的成本×生产数量)【考点】一次函数的应用.【分析】(1)直接利用待定系数法求出一次函数解析式进而得出答案;(2)直接利用每吨的成本×生产吨数=总成本为210万元,进而得出等式求出答案.【解答】解:(1)设函数解析式为:y=kx+b,将(0,10),(40,6)分别代入y=kx+b 得:,解得:,所以y=﹣x+10(0≤x≤40);(2)由(﹣x+10)x=210,解得:x1=30,x2=70,由于0≤x≤40,所以x=30,答:该产品的生产数量是30吨.【点评】此题主要考查了一次函数的应用,正确利用待定系数法求出一次函数解析式是解题关键.23.(12分)(2016•浦东新区二模)如图,已知:四边形ABCD是平行四边形,点E在边BA的延长线上,CE交AD于点F,∠ECA=∠D(1)求证:△EAC∽△ECB;(2)若DF=AF,求AC:BC的值.【考点】相似三角形的判定与性质;平行四边形的性质.【分析】(1)由四边形ABCD是平行四边形、∠ECA=∠D可得∠ECA=∠B,∠E为公共角可得△EAC∽△ECB;(2)由CD∥AE、DF=AF可得CD=AE,进而有BE=2AE,根据△EAC∽△ECB得,即: =,可得答案.【解答】解:(1)∵四边形ABCD是平行四边形,∴∠B=∠D,∵∠ECA=∠D,∴∠ECA=∠B,∵∠E=∠E,∴△EAC∽△ECB;(2)∵四边形ABCD是平行四边形,∴CD∥AB,即:CD∥AE∴,∵DF=AF∴CD=AE,∵四边形ABCD是平行四边形,∴AB=CD,∴AE=AB,∴BE=2AE,∵△EAC∽△ECB,∴,∴,即: =,∴.【点评】本题主要考查相似三角形的判定与性质及平行四边形的性质,熟练掌握相似形的对应边成比例和平行四边形的性质是关键.24.(12分)(2016•浦东新区二模)如图,二次函数y=ax2﹣4ax+2的图象与y轴交于点A,且过点B(3,6).(1)试求二次函数的解析式及点A的坐标;(2)若点B关于二次函数对称轴的对称点为点C,试求∠CAB的正切值;(3)若在x轴上有一点P,使得点B关于直线AP的对称点B1在y轴上,试求点P的坐标.【考点】待定系数法求二次函数解析式;二次函数的性质;二次函数图象上点的坐标特征.【分析】(1)把B(3,6)代入y=ax2﹣4ax+2,求出a的值,得到二次函数的解析式,进而求出点A的坐标;(2)先求出抛物线的对称轴,根据对称性得出C点坐标,求出BC=2,AB=5,tan∠CBA=,过点C作CH⊥AB于点H,再求出CH=,AH=,根据正切函数定义即可求出∠CAB的正切值;(3)由AB=AB1=5,从而点B1的坐标为(0,﹣3)或(0,7),设P(x,0)根据PB=PB1,分B1的坐标为(0,﹣3)或(0,7)两种情况利用勾股定理求得x值.【解答】解:(1)∵二次函数y=ax2﹣4ax+2的图象过点B(3,6),∴6=9a﹣12a+2,解得a=﹣,所以二次函数的解析式为y=﹣x2+x+2,∵二次函数y=﹣x2+x+2的图象与y轴交于点A,∴点A的坐标为(0,2);(2)∵y=﹣x2+x+2=﹣(x﹣2)2+,∴对称轴为直线x=2,∵点B(3,6)关于二次函数对称轴的对称点为点C,∴C(1,6),∴BC=2,AB==5,tan∠CBA=,过点C作CH⊥AB于点H,则CH=,BH=,AH=,∴tan∠CAB==;(3)由题意,AB=AB1=5,从而点B1的坐标为(0,﹣3)或(0,7).设P(x,0).①如果点B1(0,7),∵点B关于直线AP的对称点B1在y轴上,∴PB=PB1,即(x﹣3)2+62=x2+72,解得x=﹣,即P(﹣,0);②如果点B1′(0,﹣3),∵点B关于直线AP的对称点B1在y轴上,∴PB=PB1,即(x﹣3)2+62=x2+32,解得x=6,即P(6,0);综上所述,所求点P的坐标为(﹣,0)或(6,0).【点评】本题主要考查待定系数求二次函数解析式、解直角三角形、勾股定理等,求二次函数解析式是基础,构建直角三角形求三角函数值是基本做法,通过勾股定理得出点坐标间联系是关键.25.(14分)(2016•浦东新区二模)如图,Rt△ABC中,∠ACB=90°,BC=6,点D为斜边AB的中点,点E为边AC上的一个动点.联结DE,过点E作DE的垂线与边BC交于点F,以DE,EF为邻边作矩形DEFG.(1)如图1,当AC=8,点G在边AB上时,求DE和EF的长;(2)如图2,若,设AC=x,矩形DEFG的面积为y,求y关于x的函数解析式;(3)若,且点G恰好落在Rt△ABC的边上,求AC的长.【考点】四边形综合题.【分析】(1)根据勾股定理求出AB,根据相似三角形的判定定理得到△ADE∽△ACB,根据相似三角形的性质求出DE和BG,求出EF;(2)作DH⊥AC于H,根据相似三角形的性质得到y关于x的函数解析式;(3)根据点G在边BC上和点G在边AB上两种情况,根据相似三角形的性质解答.【解答】解:(1)∵∠ACB=90°,BC=6,AC=8,∴AB==10,∵D为斜边AB的中点,∴AD=BD=5,∵DEFG为矩形,∴∠ADE=90°,∴∠ADE=∠C,又∠A=∠A,∴△ADE∽△ACB,∴=,即=,解得,DE=,∵△ADE∽△FGB,∴=,则BG=,∴EF=DG=AB﹣AD﹣BG=;(2)如图2,作DH⊥AC于H,∴DH∥BC,又AD=DB,∴DH=BC=3,∵DH⊥AC,∠C=90°,∠DEF=90°,∴△DHE∽△ECF,∴==,∴EC=2DH=6,EH=x﹣6,∴DE2=32+(x﹣6)2=x2﹣6x+45,∴y=DE•EF=2DE2=x2﹣12x+90,(3)如图3,当点G在边BC上时,∵,DE=3,∴EF=,∴AC=9,如图4,当点G在边AB上时,设AD=DB=a,DE=2b,EF=3b,∵△ADE∽△FGB,∴=,即=,整理得,a2﹣3ab﹣4b2=0,解得,a=4b,a=﹣b(舍去),∴AD=2DE,∵△ADE∽△ACB,∴AC=2BC=12,综上所述,点G恰好落在Rt△ABC的边上,AC的长为9或12.【点评】本题的是矩形的性质、勾股定理的应用、相似三角形的判定和性质、二次函数解析式的求法以及三角形中位线定理,掌握相似三角形的判定定理和性质定理、三角形中位线定理是解题的关键,注意分情况讨论思想的运用.。

上海市浦东新区2014年中考二模数学试卷及答案解析(WORD版)

2014年上海市浦东新区中考数学二模试卷参考答案与试题解析一、选择题:(本大题共6题,每题4分,满分24分)1.(4分)(2014•浦东新区二模)下列代数式中,属于单项式的是()A. a+1 B.C.D.考点:单项式.分析:根据单项式的定义逐个判断即可.解答:解:A、不是单项式,故本选项错误;B、不是单项式,故本选项错误;C、不是单项式,故本选项错误;D、是单项式,故本选项正确;故选D.点评:本题考查了对单项式定义的理解和运用,注意:单项式表示数与字母的积,单独一个数或字母也是单项式.2.(4分)(2014•浦东新区二模)数据1,3,7,1,3,3的平均数和标准差分别为()A. 2,2 B.2,4 C.3,2 D.3,4考点:标准差;加权平均数.分析:根据平均数的计算公式求出这组数据的平均数,再根据方差公式求出方差,从而得出标准差.解答:解:这组数据1,3,7,1,3,3的平均数是:(1+3+7+1+3+3)=3;方差S2=[(1﹣3)2+(3﹣3)2+(7﹣3)2+(1﹣3)2+(3﹣3)2+(3﹣3)2]=4,则标准差是2.故选C.点评:此题主要考查了平均数,方差和标准差,用到的知识点是平均数、方差和标准差的计算公式,关键是根据题意和公式列出算式.3.(4分)(2014•浦东新区二模)已知抛物线y=﹣(x+1)2上的两点A(x1,y1)和B(x2,y2),如果x1<x2<﹣1,那么下列结论一定成立的是()A. y1<y2<0 B.0<y1<y2C.0<y2<y1D.y2<y1<0考点:二次函数图象上点的坐标特征.分析:根据二次函数的性质得到抛物线y=﹣(x+1)2的开口向下,有最大值为0,对称轴为直线x=﹣1,则在对称轴左侧,y随x的增大而增大,所以x1<x2<﹣1时,y1<y2<0.解答:解:∵y=﹣(x+1)2,∴a=﹣1<0,有最大值为0,∴抛物线开口向下,∵抛物线y=﹣(x+1)2对称轴为直线x=﹣1,而x1<x2<﹣1,∴y1<y2<0.故选A.点评:本题考查了二次函数图象上点的坐标特征:二次函数y=ax2+bx+c(a≠0)的图象为抛物线,则抛物线上的点的坐标满足其解析式;当a<0,抛物线开口向下;对称轴为直线x=﹣,在对称轴左侧,y随x的增大而增大,在对称轴右侧,y随x的增大而减小.4.(4分)(2014•浦东新区二模)某粮食公司2013年生产大米总量为a万吨,比2012年大米生产总量增加了10%,那么2012年大米生产总量为()A. a(1+10%)万吨B.万吨C.a(1﹣10%)万吨D.万吨考点:列代数式.分析:根据2013年生产大米比2012年大米生产总量增加了10%,可知2012年大米生产总量×(1+10%)=2013年大米生产总量,由此列式即可.解答:解:a÷(1+10%)=(万吨).故选:B.点评:此题考查列代数式,关键是找出题目蕴含的数量关系:2012年大米生产总量×(1+10%)=2013年大米生产总量.5.(4分)(2014•浦东新区二模)在四边形ABCD中,对角线AC、BD相交于点O,∠ADB=∠CBD,添加下列一个条件后,仍不能判定四边形ABCD是平行四边形的是()A.∠ABD=∠CDB B.∠DAB=∠BCD C.∠ABC=∠CDA D.∠DAC=∠BCA考点:平行四边形的判定.分析:利用平行四边形的判定定理逐步判定后即可确定答案.解答:解:由∠ADB=∠CBD科研得到AD∥BC,∴A、∠ABD=∠CDB能得到AB∥CD,所以能判定四边形ABCD是平行四边形;B、利用三角形的内角和定理能进一步得到∠ABD=∠CDB,从而能得到AB∥CD,所以能判定四边形ABCD是平行四边形;C、能进一步得到∠CDB=∠ABD,从而能得到AB∥CD,所以能判定四边形ABCD是平行四边形;D、不能进一步得到AB∥CD,所以不能判定四边形ABCD是平行四边形,故选D.点评:本题考查了平行四边形的判定.(1)两组对边分别平行的四边形是平行四边形.(2)两组对边分别相等的四边形是平行四边形.(3)一组对边平行且相等的四边形是平行四边形.(4)两组对角分别相等的四边形是平行四边形.(5)对角线互相平分的四边形是平行四边形.6.(4分)(2014•浦东新区二模)如果A、B分别是⊙O1、⊙O2上两个动点,当A、B两点之间距离最大时,那么这个最大距离被称为⊙O1、⊙O2的“远距”.已知,⊙O1的半径为1,⊙O2的半径为2,当两圆相交时,⊙O1、⊙O2的“远距”可能是()A. 3 B.4C.5D.6考点:圆与圆的位置关系.专题:新定义.分析:首先弄清缘聚的定义,然后结合两圆的圆心距的取值范围求解.解答:解:∵⊙O1的半径为1,⊙O2的半径为2,∴圆心距d的取值范围为:1<d<3,∴⊙O1、⊙O2的“远距”的取值范围为:4<远距<6,故选C.点评:本题考查了圆与圆的位置关系,解题的关键是弄清“远距的定义”.二、填空题:(本大题共12题,每题4分,满分48分)7.(4分)(2014•浦东新区二模)计算:|﹣π|=π﹣.考点:实数的性质.分析:根据绝对值是大数减小数,可得答案.解答:解:|﹣π|=,故答案为:.点评:本题考查了实数的性质,绝对值是非负数,可用大数减小数.8.(4分)(2014•浦东新区二模)化简:=.考点:约分.专题:计算题.分析:找出分式分子分母的公因式,约分即可得到结果.解答:解:原式==.故答案为:.点评:此题考查了约分,找出分子分母的公因式是约分的关键.9.(4分)(2014•浦东新区二模)计算:﹣=.考点:分式的加减法.专题:计算题.分析:原式两项通分并利用同分母分式的减法法则计算,约分即可得到结果.解答:解:原式=﹣==.故答案为:.点评:此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.10.(4分)(2014•浦东新区二模)正八边形的中心角等于45度.考点:正多边形和圆.分析:根据中心角是正多边形相邻的两个半径的夹角来解答.解答:解:正八边形的中心角等于360°÷8=45°;故答案为45.点评:本题考查了正多边形和圆的知识,解题的关键是牢记中心角的定义及求法.11.(4分)(2014•浦东新区二模)如果关于x的方程3x2﹣mx+3=0有两个相等的实数根,那么m的值为±6.考点:根的判别式.分析:若一元二次方程有两等根,则根的判别式△=b2﹣4ac=0,建立关于m的方程,求出m的取值.解答:解:∵方程3x2﹣mx+3=0有两个相等的实数根,∴△=m2﹣4×3×3=0,解得m=±6,故答案为±6.点评:考查了根的判别式,总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.12.(4分)(2014•浦东新区二模)请写出一个平面几何图形,使它满足“把一个图形沿某一条直线翻折过来,直线两旁的部分能够相互重合”这一条件,这个图形可以是圆.考点:轴对称图形.专题:开放型.分析:把一个图形沿某一条直线翻折过来,直线两旁的部分能够相互重合,这样的图形为轴对称图形,写出一个轴对称图形即可.解答:解:这个图形可以是圆.故答案为:圆.点评:本题考查了轴对称图形的知识,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.13.(4分)(2014•浦东新区二模)如果关于x的方程bx=x+1有解,那么b的取值范围为b≠1.考点:一元一次方程的解.分析:移项,合并同类项,当x的系数不等于0时,方程有解,据此即可求解.解答:解:移项,得:bx﹣x=1,即(b﹣1)x=1,当b﹣1≠0时,即b≠1时,方程有解.故答案是:b≠1.点评:此题考查的是一元一次方程的解法,理解方程有解的条件是关键.14.(4分)(2014•浦东新区二模)在▱ABCD中,已知=,=,则用向量、表示向量为+.考点:*平面向量.分析:根据平行四边形的对角线互相平分的性质,可得出==,==,从而可表示出向量.解答:解:∵四边形ABCD是平行四边形,∴==,==,∴=+=+.故答案为:+.点评:本题考查了平面向量的知识,注意掌握向量的加减,平行四边形对角线互相平分的性质.15.(4分)(2014•浦东新区二模)把分别写有数字“1”、“2”、“3”、“4”、“5”、“6”的6张相同卡片,字面朝下随意放置在桌面上,从中任意摸出一张卡片数字是素数的概率是.考点:概率公式.分析:由有数字“1”、“2”、“3”、“4”、“5”、“6”的6张相同卡片,卡片数字是素数的有:2,3,5;直接利用概率公式求解即可求得答案.解答:解:∵有数字“1”、“2”、“3”、“4”、“5”、“6”的6张相同卡片,卡片数字是素数的有:2,3,5;∴从中任意摸出一张卡片数字是素数的概率是:=.故答案为:.点评:此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.16.(4分)(2014•浦东新区二模)为了解某校九年级女生1分钟仰卧起坐的次数,从中随机抽查了50名女生参加测试,被抽查的女生中有90%的女生次数不小于30次,并绘制成频数分布直方图(如图),那么仰卧起坐的次数在40~45的频率是0.62.考点:频数(率)分布直方图.分析:根据被抽查的女生中有90%的女生次数不小于30次,抽查了50名女生,求出次数不小于30次的人数,再根据直方图求出在40~45次之间的频数,然后根据频率公式:频率=频数÷总数,即可求解.解答:解:∵被抽查的女生中有90%的女生次数不小于30次,抽查了50名女生,∴次数不小于30次的人数是50×90%=45(人),∴在40~45次之间的频数是:45﹣3﹣5﹣6=31,∴仰卧起坐的次数在40~45的频率是=0.62;故答案是:0.62.点评:本题考查了频数分布直方图,关键是读懂统计图,从图中获得必要的信息,用到的知识点是频率公式:频率=频数÷总数.17.(4分)(2014•浦东新区二模)如图,已知点A在反比例函数y=的图象上,点B在x轴的正半轴上,且△OAB是面积为的等边三角形,那么这个反比例函数的解析式是y=﹣.考点:等边三角形的性质;反比例函数图象上点的坐标特征.分析:首先根据题意得出×|2x•y|=,进而得出xy=﹣,即可得出k的值.解答:解:过点A作AC⊥OB于点C,设A(x,y),∵△OAB是面积为的等边三角形,∴×|2x•y|=,∴|xy|=,∴xy=﹣,∴这个反比例函数的解析式是:y=﹣.故答案为:y=﹣.点评:此题主要考查了等边三角形的性质以及三角形面积求法和反比例函数图象上点的坐标特征,得出xy=﹣是解题关键.18.(4分)(2014•浦东新区二模)在Rt△ABC中,∠ACB=90°,AC=,cosA=,如果将△ABC绕着点C旋转至△A′B′C的位置,使点B′落在∠ACB的角平分线上,A′B′与AC相交于点H,那么线段CH的长等于﹣1.考点:旋转的性质.分析:根据题意画出图形,进而利用旋转的性质以及锐角三角函数关系和等腰直角三角形求出三角形各边长,再利用三角形面积求出即可.解答:解:过点B′作B′F⊥AC于点F,A′D⊥AC于点D,∵∠ACB=90°,点B′落在∠ACB的角平分线上,∴∠BCB′=∠B′CA=ACA′=45°,∴△CB′F,△CDA′都是等腰直角三角形,∵AC=,cosA=,∴==,解得:AB=,∴BC=,∴B′C=,∴B′F=×=,A′D=×CA′=1,∴S△A′CB′=S△CHB′+S△CHA′=××=××CH+×1×CH,解得:CH=﹣1,故答案为:﹣1.点评:此题主要考查了旋转的性质以及锐角三角函数关系和三角形面积求法等知识,利用S△A′CB′=S△CHB′+S△CHA′求出是解题关键.三、解答题:(本大题共7题,满分78分)19.(10分)(2014•浦东新区二模)计算:()2﹣5+()﹣1﹣.考点:实数的运算;分数指数幂;负整数指数幂.专题:计算题.分析:原式第一项利用平方根定义化简,第二项利用指数幂法则变形,第三项利用负指数幂法则计算,最后一项分母有理化,计算即可得到结果.解答:解:原式=5﹣+﹣=6﹣.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.(10分)(2014•浦东新区二模)解不等式组:并把解集在数轴上表示出来.考点:解一元一次不等式组;在数轴上表示不等式的解集.分析:先求出每个不等式的解集,再求出其公共部分即可.解答:解:由①得2x﹣7<3﹣3x,化简得5x<10,解得:x<2.由②得4x+9≥3﹣2x,化简得6x≥﹣6,解得:x≥﹣1,∴原不等式组的解集为﹣1<x<2.在数轴上表示出来为:点评:本题考查了解一元一次不等式组和在数轴上表示不等式的解集,求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.21.(10分)(2014•浦东新区二模)已知:如图,∠PAQ=30°,在边AP上顺次截取AB=3cm,BC=10cm,以BC为直径作⊙O交射线AQ于E、F两点,求:(1)圆心O到AQ的距离;(2)线段EF的长.考点:垂径定理;含30度角的直角三角形;勾股定理.分析:(1)过点O作OH⊥EF,垂足为点H,求出AO,根据含30度角的直角三角形性质求出即可;(2)连接OE,根据勾股定理求出EH,根据垂径定理得出即可.解答:解:(1)过点O作OH⊥EF,垂足为点H,∵OH⊥EF,∴∠AHO=90°,在Rt△AOH中,∵∠AHO=90°,∠PAQ=30°,∴OH=AO,∵BC=10cm,∴BO=5cm.∵AO=AB+BO,AB=3cm,∴AO=3+5=8cm,∴OH=4cm,即圆心O到AQ的距离为4cm.(2)连接OE,在Rt△EOH中,∵∠EHO=90°,∴EH2+HO2=EO2,∵EO=5cm,OH=4cm,∴EH===3cm,∵OH过圆心O,OH⊥EF,∴EF=2EH=6cm.点评:本题考查了含30度角的直角三角形性质,勾股定理,垂径定理的应用,题目是一道比较典型的题目,难度适中.22.(10分)(2014•浦东新区二模)甲、乙两车都从A地前往B地,如图分别表示甲、乙两车离A地的距离S (千米)与时间t(分钟)的函数关系.已知甲车出发10分钟后乙车才出发,甲车中途因故停止行驶一段时间后按原速继续驶向B地,最终甲、乙两车同时到达B地,根据图中提供的信息解答下列问题:(1)甲、乙两车行驶时的速度分别为多少?(2)乙车出发多少分钟后第一次与甲车相遇?(3)甲车中途因故障停止行驶的时间为多少分钟?考点:一次函数的应用.分析:(1)分别根据速度=路程÷时间列式计算即可得解;(2)方法一:观察图形可知,第一次相遇时,甲车停止,然后时间=路程÷速度列式计算即可得解;方法二:设甲车离A地的距离S与时间t的函数解析式为s=kt+b(k≠0),利用待定系数法求出乙函数解析式,再令s=20求出相应的t的值,然后求解即可;(3)求出甲继续行驶的时间,然后用总时间减去停止前后的时间,列式计算即可得解.解答:解:(1)v甲==(千米/分钟),所以,甲车的速度是千米/每分钟;v乙==1(千米/分钟),所以,乙车的速度是1千米/每分钟;(2)方法一:∵t乙==20(分钟),∴乙车出发20分钟后第一次与甲车相遇;方法二:设甲车离A地的距离S与时间t的函数解析式为:s=kt+b(k≠0),将点(10,0)(70,60)代入得:,解得,,所以,s=t﹣10,当s=20时,解得t=30,∵甲车出发10分钟后乙车才出发,∴30﹣10=20分钟,乙车出发20分钟后第一次与甲车相遇;(3)∵t=(60﹣20)÷=30(分钟),∵70﹣30﹣15=25(分钟),∴甲车中途因故障停止行驶的时间为25分钟.点评:本题考查了一次函数的应用,主要利用了路程、速度、时间三者之间的关系,待定系数法求一次函数解析式,读懂题目信息理解甲、乙两车的运动过程是解题的关键.23.(12分)(2014•浦东新区二模)已知:如图,在正方形ABCD中,点E是边AD的中点,联结BE,过点A 作AF⊥BE,分别交BE、CD于点H、F,联结BF.(1)求证:BE=BF;(2)联结BD,交AF于点O,联结OE.求证:∠AEB=∠DEO.考点:相似三角形的判定与性质;全等三角形的判定与性质;正方形的性质.专题:证明题.分析:(1)根据正方形性质得出AB=DA=BC=CD,∠BAD=∠ADF=∠BCF=90°,求出∠ABH=∠HAE,证△ABE∽△DAF,得出比例式,求出AE=DF,CF=AE,证出Rt△ABE≌Rt△CBF即可;(2)根据正方形性质求出∠ADB=∠CDB,证△DEO≌△DFO,推出∠DEO=∠DFO,根据△ABE∽△DAF推出∠AEB=∠DFA,即可得出答案.解答:证明:(1)∵四边形ABCD是正方形,∴AB=DA=BC=CD,∠BAD=∠ADF=∠BCF=90°,∴∠BAH+∠HAE=90°,∵AF⊥BE,∴∠AHB=90°,即∠BAH+∠ABH=90°,∴∠ABH=∠HAE,又∵∠BAE=∠ADF,∴△ABE∽△DAF,∴=,∴AE=DF,∵点E是边AD的中点,∴点F是边DC的中点,∴CF=AE,在Rt△ABE与Rt△CBF中,∴Rt△ABE≌Rt△CBF(HL),∴BE=BF.(2)∵四边形ABCD是正方形,∴DB平分∠ADC,∴∠ADB=∠CDB,在△DEO与△DFO中,∴△DEO≌△DFO(SAS),∴∠DEO=∠DFO,∵△ABE∽△DAF,∴∠AEB=∠DFA,∴∠AEB=∠DEO.点评:本题考查了正方形的性质,相似三角形的性质和判定,全等三角形的性质和判定的应用,主要考查学生的推理能力,题目比较好,难度适中.24.(12分)(2014•浦东新区二模)如图,已知在平面直角坐标系xOy中,抛物线y=x2+bx+c与x轴交于点A、B(点A在点B右侧),与y轴交于点C(0,﹣3),且OA=2OC.(1)求这条抛物线的表达式及顶点M的坐标;(2)求tan∠MAC的值;(3)如果点D在这条抛物线的对称轴上,且∠CAD=45°,求点D的坐标.考点:二次函数综合题.分析:(1)根据与y轴的交点C的坐标(0,﹣3)就可以求出OC的值及c的值,进而求出OA的值及A的坐标,由待定系数法就可以求出b的值而求出解析式及定点坐标;(2)如图1,过点M作MH⊥x轴,垂足为点H,交AC于点N,过点N作NE⊥AM于点E,垂足为点E.在Rt△AHM中,HM=AH=4,就可以求出AM的值,再由待定系数法求出直线AC的解析式,就可以求出点N的坐标,进而求出MN的值,由勾股定理就可以求出ME及NE的值,从而求出AE的值就可以得出结论;(3)如图2,分类讨论,当D点在AC上方时,根据角之间的关系就可以求出∠D1AH=∠CAM,当D点在AC下方时,∠MAC=∠AD2M就可以求出点D的坐标.解答:解:(1)∵C(0,﹣3),∴OC=3.y=x2+bx﹣3.∵OA=2OC,∴OA=6.∵a=>0,点A在点B右侧,抛物线与y轴交点C(0,﹣3).∴A(6,0).∴0=36+6b﹣3,∴b=﹣1.∴y=x2﹣x﹣3,∴y=(x﹣2)2﹣4,∴M(2,﹣4).答:抛物线的解析式为y=x2﹣x﹣3,M的坐标为(2,﹣4);(2)如图1,过点M作MH⊥x轴,垂足为点H,交AC于点N,过点N作NE⊥AM于点E,垂足为点E.∴∠AHM=∠NEM=90°.在Rt△AHM中,HM=AH=4,由勾股定理,得AM=4,∴∠AMH=∠HAM=45°.设直线AC的解析式为y=kx+b,由题意,得,解得:,∴直线AC的表达式为y=x﹣3.当x=2时,y=﹣2,∴N(2,﹣2).∴MN=2.∵∠NEM=90°,∠NME=45°,∴∠MNE=∠NME=45°,∴NE=ME.在Rt△MNE中,∴NE2+ME2=NM2,∴ME=NE=.∴AE=AM﹣ME=3在Rt△AEN中,tan∠MAC=.答:tan∠MAC=;(3)如图2,①当D点在AC上方时,∵∠CAD1=∠D1AH+∠HAC=45°,且∠HAM=∠HAC+∠CAM=45°,∴∠D1AH=∠CAM,∴tan∠D1AH=tan∠MAC=.∵点D1在抛物线的对称轴直线x=2上,∴D1H⊥AH,∴AH=4.在Rt△AHD1中,D1H=AH•tan∠D1AH=4×=.∴D1(2,);②当D点在AC下方时,∵∠D2AC=∠D2AM+∠MAC=45°,且∠AMH=∠D2AM+∠AD2M=45°,∴∠MAC=∠AD2M.∴tan∠AD2H=tan∠MAC=.在Rt△D2AH中,D2H=.∴D2(2,﹣12).综上所述:D1(2,);D2(2,﹣12).点评:本题考查了待定系数法求二次函数的解析式的运用,一次函数的解析式的运用,二次函数的顶点式的运用,等腰直角三角形的性质的运用,三角函数值的运用,解答时求出函数的解析式是关键,灵活运用等腰直角三角形的性质求解是难点.25.(14分)(2014•浦东新区二模)如图,已知在△ABC中,AB=AC,BC比AB大3,sinB=,点G是△ABC的重心,AG的延长线交边BC于点D.过点G的直线分别交边AB于点P、交射线AC于点Q.(1)求AG的长;(2)当∠APQ=90°时,直线PG与边BC相交于点M.求的值;(3)当点Q在边AC上时,设BP=x,AQ=y,求y关于x的函数解析式,并写出它的定义域.考点:相似形综合题.分析:(1)根据已知条件和重心的性质得出BD=DC=BC,AD⊥BC,再根据sinB==,求出AB、BC、AD的值,从而求出AG的长;(2)根据∠GMD+∠MGD=90°和∠GMD+∠B=90°,得出∠MGD=∠B,再根据特殊角的三角函数值求出DM、CM=CD﹣DM的值,在△ABC中,根据AA求出△QCM∽△QGA,即可求出的值;(3)过点B作BE∥AD,过点C作CF∥AD,分别交直线PQ于点E、F,则BE∥AD∥CF,得出=,求出BE的值,同理可得出CF的值,最后根据BD=CD,求出EG=FG,即可得出CE+BE=2GD,从而得出求y关于x 的函数解析式并得出它的定义域.解答:解:(1)在△ABC中,∵AB=AC,点G是△ABC的重心,∴BD=DC=BC,∴AD⊥BC.在Rt△ADB中,∵sinB==,∴=.∵BC﹣AB=3,∴AB=15,BC=18.∴AD=12.∵G是△ABC的重心,∴AG=AD=8.(2)在Rt△MDG,∵∠GMD+∠MGD=90°,同理:在Rt△MPB中,∠GMD+∠B=90°,∴∠MGD=∠B.∴sin∠MGD=sinB=,在Rt△MDG中,∵DG=AD=4,∴DM=,∴CM=CD﹣DM=,在△ABC中,∵AB=AC,AD⊥BC,∴∠BAD=∠CAD.∵∠QCM=∠CDA+∠DAC=90°+∠DAC,又∵∠QGA=∠APQ+∠BAD=90°+∠BAD,∴∠QCM=∠QGA,又∵∠CQM=∠GQA,∴△QCM∽△QGA.∴==.(3)过点B作BE∥AD,过点C作CF∥AD,分别交直线PQ于点E、F,则BE∥AD∥CF.∵BE∥AD,∴=,即=,∴BE=.同理可得:=,即=,∴CF=.∵BE∥AD∥CF,BD=CD,∴EG=FG.∴CE+BE=2GD,即+=8,∴y=,(0≤x≤).点评:此题考查了相似形的综合,用到的知识点是重心、特殊角的三角函数值、相似三角形的判定与性质、平行线的性质等,关键是根据题意,画出图形,做出辅助线,构造直角三角形是本题的关键.。

(完整word版)上海市浦东新区2017年中考数学二模试卷(含解析)

2017年上海市浦东新区中考数学二模试卷一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1.下列实数中,是无理数的为()A.3.14 B.C.D.2.下列二次根式中,与是同类二次根式的是()A. B.C. D.3.函数y=kx﹣1(常数k>0)的图象不经过的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.某幢楼10户家庭每月的用电量如下表所示:用电量(度)140 160 180 200户数 1 3 4 2那么这10户家庭该月用电量的众数和中位数分别是()A.180,180 B.180,160 C.160,180 D.160,1605.已知两圆的半径分别为1和5,圆心距为4,那么两圆的位置关系是()A.外离 B.外切 C.相交 D.内切6.如图,已知△ABC和△DEF,点E在BC边上,点A在DE边上,边EF和边AC相交于点G.如果AE=EC,∠AEG=∠B,那么添加下列一个条件后,仍无法判定△DEF与△ABC一定相似的是()A. = B. = C. = D. =二、填空题:(本大题共12题,每题4分,满分48分)【请将结果直接填入答题纸的相应位置上】7.计算:a•a2= .8.因式分解:x2﹣2x= .9.方程=﹣x的根是.10.函数f(x)=的定义域是.11.如果方程x2﹣2x+m=0有两个实数根,那么m的取值范围是.12.计算:2+(+).13.将抛物线y=x2+2x﹣1向上平移4个单位后,所得新抛物线的顶点坐标是.14.一个不透明的袋子里装有3个白球、1个红球,这些球除了颜色外无其他的差异,从袋子中随机摸出1个球,恰好是白球的概率是.15.正五边形的中心角的度数是.16.如图,圆弧形桥拱的跨度AB=16米,拱高CD=4米,那么圆弧形桥拱所在圆的半径是米.17.如果一个三角形一边上的中线的长与另两边中点的连线段的长相等,我们称这个三角形为“等线三角形”,这条边称为“等线边”.在等线三角形ABC中,AB为等线边,且AB=3,AC=2,那么BC= .18.如图,矩形ABCD中,AB=4,AD=7,点E,F分别在边AD、BC上,且B、F关于过点E 的直线对称,如果以CD为直径的圆与EF相切,那么AE= .三、解答题:(本大题共7题,满分78分)19.计算:|2﹣|﹣8+2﹣2+.20.解不等式组:.21.已知:如图,在平面直角坐标系xOy中,点A在x轴的正半轴上,点B、C在第一象限,且四边形OABC是平行四边形,OC=2,sin∠AOC=,反比例函数y=的图象经过点C 以及边AB的中点D.求:(1)求这个反比例函数的解析式;(2)四边形OABC的面积.22.某文具店有一种练习簿出售,每本的成本价为2元,在销售的过程中价格有些调整,按原来的价格每本8.25元,卖出36本;经过两次涨价,按第二次涨价后的价格卖出了25本.发现按原价格和第二次涨价后的价格销售,分别获得的销售利润恰好相等.(1)求第二次涨价后每本练习簿的价格;(2)在两次涨价过程中,假设每本练习簿平均获得利润的增长率完全相同,求这个增长率.(注:利润增长率=×100%)23.已知:如图,在直角梯形ABCD中,AD∥BC,∠C=90°,BC=CD,点E、F分别在边BC、CD上,且BE=DF=AD,联结DE,联结AF、BF分别与DE交于点G、P.(1)求证:AB=BF;(2)如果BE=2EC,求证:DG=GE.24.已知:抛物线y=ax2+bx﹣3经过点A(7,﹣3),与x轴正半轴交于点B(m,0)、C(6m、0)两点,与y轴交于点D.(1)求m的值;(2)求这条抛物线的表达式;(3)点P在抛物线上,点Q在x轴上,当∠PQD=90°且PQ=2DQ时,求点P、Q的坐标.25.如图所示,∠MON=45°,点P是∠MON内一点,过点P作PA⊥OM于点A、PB⊥ON于点B,且PB=2.取OP的中点C,联结AC并延长,交OB于点D.(1)求证:∠ADB=∠OPB;(2)设PA=x,OD=y,求y关于x的函数解析式;(3)分别联结AB、BC,当△ABD与△CPB相似时,求PA的长.2017年上海市浦东新区中考数学二模试卷参考答案与试题解析一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1.下列实数中,是无理数的为()A.3.14 B.C.D.【考点】26:无理数.【分析】A、B、C、D根据无理数的概念“无理数是无限不循环小数,其中有开方开不尽的数”即可判定选择项.【解答】解:A、B、D中3.14,, =3是有理数,C中是无理数.故选:C.2.下列二次根式中,与是同类二次根式的是()A. B.C. D.【考点】77:同类二次根式.【分析】根据二次根式的性质把各个二次根式化简,根据同类二次根式的概念判断即可.【解答】解:A、与不是同类二次根式;B、=a与不是同类二次根式;C、=a与是同类二次根式;D、=a2与不是同类二次根式;故选:C.3.函数y=kx﹣1(常数k>0)的图象不经过的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】F7:一次函数图象与系数的关系.【分析】一次函数y=kx﹣1(常数k>0)的图象一定经过第一、三,四象限,不经过第二象限.【解答】解:∵一次函数y=kx﹣1(常数k>0),b=﹣1<0,∴一次函数y=kx﹣1(常数k>0)的图象一定经过第一、三,四象限,不经过第二象限.故选:B.4.某幢楼10户家庭每月的用电量如下表所示:用电量(度)140 160 180 200户数 1 3 4 2那么这10户家庭该月用电量的众数和中位数分别是()A.180,180 B.180,160 C.160,180 D.160,160【考点】W5:众数;W4:中位数.【分析】根据众数和中位数的定义求解可得.【解答】解:由表可知180出现次数最多,故众数为180,∵共有1+3+4+2=10个数据,∴中位数为第5、6个数据的平均数,即=180,故选:A.5.已知两圆的半径分别为1和5,圆心距为4,那么两圆的位置关系是()A.外离 B.外切 C.相交 D.内切【考点】MJ:圆与圆的位置关系.【分析】由两圆半径分别是1和5,圆心距为4,两圆位置关系与圆心距d,两圆半径R,r 的数量关系间的联系即可得出两圆位置关系.【解答】解:∵两圆半径分别是1和5,圆心距为4,又∵5﹣1=4,∴这两个圆的位置关系内切.故选D.6.如图,已知△ABC和△DEF,点E在BC边上,点A在DE边上,边EF和边AC相交于点G.如果AE=EC,∠AEG=∠B,那么添加下列一个条件后,仍无法判定△DEF与△ABC一定相似的是()A. = B. = C. = D. =【考点】S8:相似三角形的判定.【分析】利用两组对应边的比相等且夹角对应相等的两个三角形相似可由=得到△ABC ∽△EDF;利用=或=可根据两组对应边的比相等且夹角对应相等的两个三角形相似先判断△DEF∽△AEG,再利用有两组角对应相等的两个三角形相似判定△AEG∽△ABC,从而得到△ABC∽△EDF,于是可对各选项进行判断.【解答】解:当=时,则=,而∠B=∠AEG,所以△ABC∽△EDF;当=,则=,而∠DEF=∠AEG,所以△DEF∽△AEG,又因为AE=EC,所以∠EAG=∠C,而∠AEG=∠B,所以△AEG∽△ABC,所以△ABC∽△EDF;当=,则=,而∠DEF=∠AEG,所以△DEF∽△AEG,又因为AE=EC,所以∠EAG=∠C,而∠AEG=∠B,所以△AEG∽△ABC,所以△ABC∽△EDF.故选C.二、填空题:(本大题共12题,每题4分,满分48分)【请将结果直接填入答题纸的相应位置上】7.计算:a•a2= a3.【考点】46:同底数幂的乘法.【分析】根据同底数幂的乘法法则,同底数幂相乘,底数不变,指数相加,即a m•a n=a m+n计算即可.【解答】解:a•a2=a1+2=a3.故答案为:a3.8.因式分解:x2﹣2x= x(x﹣2).【考点】53:因式分解﹣提公因式法.【分析】原式提取x即可得到结果.【解答】解:原式=x(x﹣2),故答案为:x(x﹣2)9.方程=﹣x的根是x=﹣4 .【考点】AG:无理方程.【分析】方程两边平方转化为整式方程,求出整式方程的解得到x的值,经检验即可得到无理方程的解.【解答】解:两边平方得:8﹣2x=x2,整理得:(x+4)(x﹣2)=0,可得x+4=0或x﹣2=0,解得:x=﹣4或x=2,经检验x=2是增根,无理方程的解为x=﹣4.故答案为:x=﹣410.函数f(x)=的定义域是x≠﹣2 .【考点】E4:函数自变量的取值范围.【分析】根据分式有意义的条件分母不为0计算即可.【解答】解:由x+2≠0得,x≠﹣2;故答案为x≠﹣2.11.如果方程x2﹣2x+m=0有两个实数根,那么m的取值范围是m≤1 .【考点】AA:根的判别式.【分析】由方程x2﹣2x+m=0有两个实数根,即可得判别式△≥0,继而可求得m的取值范围.【解答】解:∵方程x2﹣2x+m=0有两个实数根,∴△=b2﹣4ac=(﹣2)2﹣4×1×m=4﹣4m≥0,解得:m≤1.故答案为:m≤1.12.计算:2+(+)+.【考点】LM:*平面向量.【分析】根据向量的加法运算法则进行计算即可得解.【解答】解:2+(+),=2++,=+.故答案为:+.13.将抛物线y=x2+2x﹣1向上平移4个单位后,所得新抛物线的顶点坐标是(﹣1,2).【考点】H6:二次函数图象与几何变换.【分析】将抛物线解析式整理成顶点式形式,求出顶点坐标,再根据向上平移纵坐标加求解即可.【解答】解:∵y=x2+2x﹣1=(x+1)2﹣2,∴原抛物线的顶点坐标为(﹣1,﹣2),∵向上平移4个单位后,∴平移后抛物线顶点横坐标不变,纵坐标为﹣2+4=2,∴所得新抛物线的顶点坐标是(﹣1,2).故答案为:(﹣1,2).14.一个不透明的袋子里装有3个白球、1个红球,这些球除了颜色外无其他的差异,从袋子中随机摸出1个球,恰好是白球的概率是.【考点】X4:概率公式.【分析】根据不透明的袋子里装有3个白球、1个红球,共有4个球,再根据概率公式即可得出答案.【解答】解:∵不透明的袋子里装有3个白球、1个红球,共有4个球,∴从袋子中随机摸出1个球,恰好是白球的概率是.故答案为:.15.正五边形的中心角的度数是72°.【考点】MM:正多边形和圆.【分析】根据正多边形的圆心角定义可知:正n边形的圆中心角为,则代入求解即可.【解答】解:正五边形的中心角为:=72°.故答案为:72°.16.如图,圆弧形桥拱的跨度AB=16米,拱高CD=4米,那么圆弧形桥拱所在圆的半径是10 米.【考点】M3:垂径定理的应用.【分析】根据题意构造直角三角形,进而利用勾股定理求出答案.【解答】解:设圆弧形桥拱所在圆心为O,连接BO,DO,可得:AD=BD,OD⊥AB,∵AB=16米,拱高CD=4米,∴BD=AD=8m,设BO=xm,则DO=(x﹣4)m,根据题意可得:BD2+DO2=BO2,即82+(x﹣4)2=x2,解得:x=10,即圆弧形桥拱所在圆的半径是10m.故答案为:10.17.如果一个三角形一边上的中线的长与另两边中点的连线段的长相等,我们称这个三角形为“等线三角形”,这条边称为“等线边”.在等线三角形ABC中,AB为等线边,且AB=3,AC=2,那么BC= .【考点】KX:三角形中位线定理.【分析】由三角形的中位线定理证得EF=AB,根据题意得出CD=AB,从而证得△ABC是直角三角形,再利用勾股定理得出BC的长.【解答】解:∵E,F分别是AC,BC的中点,∴EF=AB,∵CD=EF,∴CD=AB,∵AD=BD,∴△ABC是直角三角形,∠ACB=90°,∵AB=3,AC=2,∴BC===,故答案为:.18.如图,矩形ABCD中,AB=4,AD=7,点E,F分别在边AD、BC上,且B、F关于过点E 的直线对称,如果以CD为直径的圆与EF相切,那么AE= 3 .【考点】MC:切线的性质;LB:矩形的性质;P2:轴对称的性质.【分析】设⊙O与EF相切于M,连接EB,作EH⊥BC于H.由题意易知四边形AEHB是矩形,设AE=BH=x,由切线长定理可知,ED=EM,FC=FM,由B、F关于EH对称,推出HF=BH=x,ED=EM=7﹣x,FC=FM=7﹣2x,EF=14﹣3x,在Rt△EFH中,根据EF2=EH2+HF2,列出方程即可解决问题.【解答】解:如图,设⊙O与EF相切于M,连接EB,作EH⊥BC于H.由题意易知四边形AEHB是矩形,设AE=BH=x,由切线长定理可知,ED=EM,FC=FM,∵B、F关于EH对称,∴HF=BH=x,ED=EM=7﹣x,FC=FM=7﹣2x,EF=14﹣3x,在Rt△EFH中,∵EF2=EH2+HF2,∴42+x2=(14﹣3x)2,解得x=3或(舍弃),∴AE=3,故答案为3.三、解答题:(本大题共7题,满分78分)19.计算:|2﹣|﹣8+2﹣2+.【考点】2C:实数的运算;2F:分数指数幂;6F:负整数指数幂.【分析】首先计算乘方,然后从左向右依次计算,求出算式的值是多少即可.【解答】解:|2﹣|﹣8+2﹣2+=2﹣﹣2+++1=120.解不等式组:.【考点】CB:解一元一次不等式组.【分析】先求出各不等式的解集,再求其公共解集即可.【解答】解:,解不等式①得x>﹣1,解不等式②得x≤1,所以不等式组的解集为﹣1<x≤1.21.已知:如图,在平面直角坐标系xOy中,点A在x轴的正半轴上,点B、C在第一象限,且四边形OABC是平行四边形,OC=2,sin∠AOC=,反比例函数y=的图象经过点C 以及边AB的中点D.求:(1)求这个反比例函数的解析式;(2)四边形OABC的面积.【考点】G7:待定系数法求反比例函数解析式;G5:反比例函数系数k的几何意义;L5:平行四边形的性质;T7:解直角三角形.【分析】(1)过C作CM⊥x轴于M,则∠CMO=90°,解直角三角形求出CM,根据勾股定理求出OM,求出C的坐标,即可求出答案;(2)根据D为中点求出DN的值,代入反比例函数解析式求出ON,求出OA,根据平行四边形的面积公式求出即可.【解答】解:(1)过C作CM⊥x轴于M,则∠CMO=90°,∵OC=2,sin∠AOC==,∴MC=4,由勾股定理得:OM==2,∴C的坐标为(2,4),代入y=得:k=8,所以这个反比例函数的解析式是y=;(2)过B作BE⊥x轴于E,则BE=CM=4,AE=OM=2,过D作DN⊥x轴于N,∵D为AB的中点,∴DN==2,AN==1,把y=2代入y=得:x=4,即ON=4,∴OA=4﹣1=3,∴四边形OABC的面积为OA×CM=3×4=12.22.某文具店有一种练习簿出售,每本的成本价为2元,在销售的过程中价格有些调整,按原来的价格每本8.25元,卖出36本;经过两次涨价,按第二次涨价后的价格卖出了25本.发现按原价格和第二次涨价后的价格销售,分别获得的销售利润恰好相等.(1)求第二次涨价后每本练习簿的价格;(2)在两次涨价过程中,假设每本练习簿平均获得利润的增长率完全相同,求这个增长率.(注:利润增长率=×100%)【考点】AD:一元二次方程的应用.【分析】(1)设第二次涨价后每本练习簿的价格为x元,根据总利润=单本利润×数量结合两次销售总利润相等,即可得出关于x的一元一次方程,解之即可得出结论;(2)设每本练习簿平均获得利润的增长率为y,根据涨价前单本利润已经连续两次涨价后的单本利润,即可得出关于y的一元二次方程,解之取其正值即可.【解答】解:(1)设第二次涨价后每本练习簿的价格为x元,根据题意得:(8.25﹣2)×36=(x﹣2)×25,解得:x=11.答:第二次涨价后每本练习簿的价格为11元.(2)设每本练习簿平均获得利润的增长率为y,根据题意得:(8.25﹣2)(1+y)2=11﹣2,解得:y1=0.2=20%,y2=﹣2.2(舍去).答:每本练习簿平均获得利润的增长率为20%.23.已知:如图,在直角梯形ABCD中,AD∥BC,∠C=90°,BC=CD,点E、F分别在边BC、CD上,且BE=DF=AD,联结DE,联结AF、BF分别与DE交于点G、P.(1)求证:AB=BF;(2)如果BE=2EC,求证:DG=GE.【考点】S9:相似三角形的判定与性质;KD:全等三角形的判定与性质;LI:直角梯形.【分析】(1)先证△BCF≌△DCE,再证四边形ABED是平行四边形,从而得AB=DE=BF.(2)延长AF交BC延长线于点M,从而CM=CF,又由AD∥BC可以得到==1,从而DG=GE.【解答】证明:(1)∵BC=CD,BE=DF,∴CF=CE,在△BCF与△DCE中,,∴△BCF≌△DCE,∴BF=DE,∵AD∥BC,BE=AD,∴四边形ABED是平行四边形;∴AB=DE,∴AB=BF.(2)延长AF交BC延长线于点M,则CM=CF;∵AD∥BC,∴=,∵BE=2EC,∴==1,∴DG=GE.24.已知:抛物线y=ax2+bx﹣3经过点A(7,﹣3),与x轴正半轴交于点B(m,0)、C(6m、0)两点,与y轴交于点D.(1)求m的值;(2)求这条抛物线的表达式;(3)点P在抛物线上,点Q在x轴上,当∠PQD=90°且PQ=2DQ时,求点P、Q的坐标.【考点】HF:二次函数综合题.【分析】(1)先求得点D的坐标,然后设抛物线的解析式为y=a(x﹣m)(x﹣6m),把点D 和点A的坐标代入可求得m的值;(2)由6am2=﹣3,m=1可求得a的值,然后代入抛物线的解析式即可;(3)过点P作PE⊥x轴,垂足为E.设点Q的坐标为(a,0)则OQ=﹣a,然后证明△ODQ ∽△EQP,依据相似三角形的性质可求得QE=6,PE=﹣2a.,则P的坐标为(a+6,﹣2a),将点P的坐标代入抛物线的解析式可求得a的值.【解答】解:(1)当x=0时,y=﹣3,∴D(0,﹣3).设抛物线的解析式为y=a(x﹣m)(x﹣6m).把点D和点A的坐标代入得:6am2=﹣3①,a(7﹣m)(7﹣6m)=﹣3②,∴a(7﹣m)(7﹣6m)=6am2.∵a≠0,∴(7﹣m)(7﹣6m)=m2.解得:m=1.(2)∵6am2=﹣3,∴a=﹣=﹣.将a=﹣,m=1代入得:y=﹣x2+x﹣3.∴抛物线的表达式为y=﹣x2+x﹣3.(3)如图所示:过点P作PE⊥x轴,垂足为E.设点Q的坐标为(a,0)则OQ=﹣a﹣∵∠DQP=90°,∴∠PQO+∠OQD=90°.又∵∠ODQ+∠DQO=90°,∴∠PQE=∠ODQ.又∵∠PEQ=∠DOQ=90°,∴△ODQ∽△EQP.∴===,即==,∴QE=6,PE=﹣2a.∴P的坐标为(a+6,﹣2a)将点P的坐标代入抛物线的解析式得:﹣(a+6)2+(a+6)﹣3=﹣2a,整理得:a2+a=0,解得a=﹣1或a=0.当a=﹣1时,Q(﹣1,0),P(5,2);当a=0时,Q(0,0),P(6,0).综上所述,Q(﹣1,0),P(5,2)或者Q(0,0),P(6,0).25.如图所示,∠MON=45°,点P是∠MON内一点,过点P作PA⊥OM于点A、PB⊥ON于点B,且PB=2.取OP的中点C,联结AC并延长,交OB于点D.(1)求证:∠ADB=∠OPB;(2)设PA=x,OD=y,求y关于x的函数解析式;(3)分别联结AB、BC,当△ABD与△CPB相似时,求PA的长.【考点】SO:相似形综合题.【分析】(1)先判断出∠DAE=∠POB,再利用等角的余角相等即可得出结论;(2)先利用等腰直角三角形的性质得出OB=BF=(x+2),同理得出OA=x+4,即可得出AE,OE,进而得出DE,最后用△ADE∽△OPB的比例式建立方程化简即可得出结论;(3)先利用直角三角形斜边的中线等于斜边的一半和三角形外角的性质判断出△ABC是等腰直角三角形,即可得出∠OBC+∠ABP=45°,再用△ABD与△CPB得出,∠ABD=∠PBC,即∠OBC=∠ABP=×45°=22.5°,进而得出OP是∠MON的平分线即可得出结论.【解答】解:(1)证明:如图,∵PA⊥OM,CO=CP,∴CO=CP=CA,∴∠CAO=∠COA,过A作AE⊥OB于E,∵∠MON=45°,∴∠AOE=∠OAE=45°,∴∠POB=∠DAE,∵PB⊥OB,∴∠ADB=∠OPB;(2)如图1,延长BP交OM于F,∵BP⊥ON,PA⊥OM,∴∠OBP=∠OAP=90°,∵∠MON=45°,∴∠AFB=45°,在Rt△APF中,AP=x,∠OFB=45°,∴PF=x,∴BF=PF+PB=x+2=(x+2),在Rt△OBF中,OB=BF=(x+2)延长AP交ON于G,同理:PG=PB=4,∴OA=AG=AP+PG=x+4,过点A作AE⊥ON,∴OE=AE=OA=(x+4),∴DE=OE﹣OD=(x+4)﹣y由(1)知,∠ADE=∠OPB,∵∠AED=∠OBP=90°,∴△ADE∽△OPB,∴,∴,∴y=(3)如图2,在Rt△OAP中,点C是OP中点,∴AC=OC=OP,在Rt△OBP中,点C是OP中点,∴BC=OC=OP,∴AC=BC,∵AC=OC,∴∠ACP=2∠AOP,∵OC=BC,∴∠BCP=2∠BOP,∴∠ACB=∠ACP+∠BCP=2(∠AOP+∠BOP)=2∠AOB=90°,∴∠BAC=∠CAB=45°,∵∠OBP=90°,∴∠OBC+∠ABP=45°∵当△ABD与△CPB相似时,∵∠ADB=∠CPB,∴∠ABD=∠PBC,∴∠OBC=∠ABP=×45°=22.5°,∵OC=BC,∴∠BOC=∠OBC=22.5°,∴∠AOP=∠BOP,∴OP是∠MON的角平分线,∵PA⊥OM,PB⊥ON,∴PA=PB=2.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年上海市浦东新区中考数学二模试卷一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1.(4分)下列各数不是4的因数是()A.1 B.2 C.3 D.42.(4分)如果分式有意义,则x与y必须满足()A.x=﹣y B.x≠﹣y C.x=y D.x≠y3.(4分)直线y=2x﹣7不经过()A.第一象限B.第二象限C.第三象限D.第四象限4.(4分)某运动队在一次队内选拔比赛中,甲、乙、丙、丁四位运动员的平均成绩相等,方差分别为、、、,那么这四位运动员中,发挥较稳定的是()A.甲B.乙C.丙D.丁5.(4分)在线段、等边三角形、等腰梯形、平行四边形中,一定是轴对称图形的个数有()A.1个B.2个C.3个D.4个6.(4分)已知在四边形ABCD中,AD∥BC,对角线AC与BD相交于点O,AO=CO,如果添加下列一个条件后,就能判定这个四边形是菱形的是()A.BO=DO B.AB=BC C.AB=CD D.AB∥CD二、填空题:(本大题共12题,每题4分,满分48分)7.(4分)的相反数是.8.(4分)分解因式:a2﹣2ab+b2﹣4=.9.(4分)已知函数f(x)=,那么f(﹣2)=.10.(4分)如果关于x的方程x2+2x+m=0有两个实数根,那么m的取值范围是.11.(4分)已知一个正多边形的中心角为30度,边长为x厘米(x>0),周长为y厘米,那么y关于x的函数解析式为.12.(4分)从1、2、3这三个数中任选两个组成两位数,在组成的所有两位数中任意抽取一个数,这个数恰好是偶数的概率是.13.(4分)在四边形ABCD中,向量、满足,那么线段AB与CD的位置关系是.14.(4分)某校有560名学生,为了解这些学生每天做作业所用的时间,调查人员在这所学校的全体学生中随机抽取了部分学生进行问卷调查,并把结果制成如图的统计图,根据这个统计图可以估计这个学校全体学生每天做作业时间不少于2小时的人数约为名.15.(4分)已知一个角的度数为50度,那么这个角的补角等于.16.(4分)已知梯形的上底长为5厘米,下底长为9厘米,那么这个梯形的中位线长等于厘米.17.(4分)如图,已知在△ABC中,AB=3,AC=2,∠A=45o,将这个三角形绕点B旋转,使点A落在射线AC上的点A1处,点C落在点C1处,那么AC1=.18.(4分)定义:如果P是圆O所在平面内的一点,Q是射线OP上一点,且线段OP、OQ 的比例中项等于圆O的半径,那么我们称点P与点Q为这个圆的一对反演点.已知点M、N为圆O的一对反演点,且点M、N到圆心O的距离分别为4和9,那么圆O上任意一点到点M、N的距离之比=.三、解答题:(本大题共7题,满分78分)19.(10分)计算:(﹣3)0﹣9++|2﹣|.20.(10分)解不等式组:,并写出这个不等式组的自然数解.21.(10分)已知:如图,在平面直角坐标系xOy中,双曲线y=经过第一象限内的点A,延长OA到点B,使得BA=2AO,过点B作BH⊥x轴,垂足为点H,交双曲线于点C,点B 的横坐标为6.求:(1)点A的坐标;(2)将直线AB平移,使其经过点C,求平移后直线的表达式.22.(10分)如图1,一辆吊车工作时的吊臂AB最长为20米,吊臂与水平线的夹角∠ABC最大为70°,旋转中心点B离地面的距离BD为2米.(1)如图2,求这辆吊车工作时点A离地面的最大距离AH(参考数据:sin70°≈,cos70°≈,tan70°≈);(2)一天,王师傅接到紧急通知,要求将这辆吊车立即开到40千米远的某工地,因此王师傅以每小时比平时快20千米的速度匀速行驶,结果提前20分钟到达,求这次王师傅所开的吊车速度.23.(12分)已知:如图,在直角梯形ABCD中,AD∥BC,DC⊥BC,AB=AD,AM⊥BD,垂足为点M,连接CM并延长,交线段AB于点N.求证:(1)∠ABD=∠BCM;(2)BC•BN=CN•DM.24.(12分)已知抛物线y=+bx+c经过点M(3,﹣4),与x轴相交于点A(﹣3,0)和点B,与y轴相交于点C.(1)求这条抛物线的表达式;(2)如果P是这条抛物线对称轴上一点,PC=BC,求点P的坐标;(3)在第(2)小题的条件下,当点P在x轴上方时,求∠PCB的正弦值.25.(14分)已知AB是圆O的一条弦,P是圆O上一点,过点O作MN⊥AP,垂足为点M,并交射线AB于点N,圆O的半径为5,AB=8.(1)当P是优弧的中点时(如图),求弦AP的长;(2)当点N与点B重合时,试判断:以圆O为圆心,为半径的圆与直线AP的位置关系,并说明理由;(3)当∠BNO=∠BON,且圆N与圆O相切时,求圆N半径的长.2019年上海市浦东新区中考数学二模试卷参考答案与试题解析一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1.(4分)下列各数不是4的因数是()A.1 B.2 C.3 D.4【分析】根据求一个数的因数的方法,判断出所给的各数不是4的因数是哪些即可.【解答】解:∵4的因数有:1、2、4,∴各数不是4的因数是3.故选:C.【点评】此题主要考查了求一个数因数的方法,要熟练掌握,应有顺序的写,做到不重不漏.2.(4分)如果分式有意义,则x与y必须满足()A.x=﹣y B.x≠﹣y C.x=y D.x≠y【分析】根据分式有意义的条件是x﹣y≠0,可得x﹣y≠0,进而可得答案.【解答】解:由题意得:x﹣y≠0,即:x≠y,故选:D.【点评】此题主要考查了分式有意义的条件,关键是掌握分式分母不为零.3.(4分)直线y=2x﹣7不经过()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据题目中的函数解析式和一次函数的性质可以解答本题.【解答】解:∵直线y=2x﹣1,k=2>0,b=﹣1,∴该直线经过第一、三、四象限,不经过第二象限,故选:B.【点评】本题考查一次函数的性质,解答本题的关键是明确题意,利用一次函数的性质解答.4.(4分)某运动队在一次队内选拔比赛中,甲、乙、丙、丁四位运动员的平均成绩相等,方差分别为、、、,那么这四位运动员中,发挥较稳定的是()A.甲B.乙C.丙D.丁【分析】根据方差的意义求解可得.【解答】解:由题意知甲的方差最小,成绩最稳定,故选:A.【点评】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.5.(4分)在线段、等边三角形、等腰梯形、平行四边形中,一定是轴对称图形的个数有()A.1个B.2个C.3个D.4个【分析】根据轴对称图形的概念对各图形分析判断即可得解.【解答】解:①线段是轴对称图形,②等边三角形是轴对称图形,③等腰梯形是轴对称图形,④平行四边形不是轴对称图形,综上所述,一定是轴对称图形的是①②③共3个.故选:C.【点评】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.6.(4分)已知在四边形ABCD中,AD∥BC,对角线AC与BD相交于点O,AO=CO,如果添加下列一个条件后,就能判定这个四边形是菱形的是()A.BO=DO B.AB=BC C.AB=CD D.AB∥CD【分析】根据平行线的性质得到∠ADB=∠CBD,根据全等三角形的性质得到AD=BC,于是得到四边形ABCD是平行四边形,根据菱形的判定定理即可得到即可.【解答】解:∵AD∥BC,∴∠ADB=∠CBD,在△ADO与△CBO中,,∴△ADO≌△CBO(AAS),∴AD=CB,∴四边形ABCD是平行四边形,∵AB=BC∴四边形ABCD是菱形;故B正确;故选:B.【点评】本题考查了菱形的判定,全等三角形的判定与性质,熟练掌握菱形的判定定理是解题的关键,二、填空题:(本大题共12题,每题4分,满分48分)7.(4分)的相反数是﹣.【分析】根据只有符号不同的两个数叫做互为相反数可得答案.【解答】解:的相反数是﹣,故答案为:﹣.【点评】此题主要考查了相反数,关键是掌握相反数定义.8.(4分)分解因式:a2﹣2ab+b2﹣4=(a﹣b+2)(a﹣b﹣2).【分析】首先将前三项分组进而利用完全平方公式和平方差公式分解因式得出即可.【解答】解:a2﹣2ab+b2﹣4=(a﹣b)2﹣4=(a﹣b+2)(a﹣b﹣2).故答案为:(a﹣b+2)(a﹣b﹣2).【点评】此题主要考查了分组分解法因式分解,正确分组得出是解题关键.9.(4分)已知函数f(x)=,那么f(﹣2)= 2 .【分析】根据已知直接将x=﹣2代入求出答案.【解答】解:∵f(x)=,∴f(﹣2)==2.故答案为:2.【点评】此题主要考查了函数值,正确将已知数据代入是解题关键,本题属于基础题.10.(4分)如果关于x的方程x2+2x+m=0有两个实数根,那么m的取值范围是m≤1 .【分析】若一元二次方程有两个实数根,则根的判别式△=b2﹣4ac≥0,建立关于m的不等式,求出m的取值范围.【解答】解:∵方程有两个实数根,∴△=b2﹣4ac=22﹣4×m=4﹣4m≥0,解得:m≤1.故答案为:m≤1.【点评】考查了根的判别式,总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.11.(4分)已知一个正多边形的中心角为30度,边长为x厘米(x>0),周长为y厘米,那么y关于x的函数解析式为y=12x.【分析】由正多边形的中心角的度数,根据圆心角定理求出正多边形的边数,即可得出结果.【解答】解:∵正多边形的中心角为30度,∴=12,∴正多边形为正十二边形,设边长为x厘米(x>0),周长为y厘米,则y关于x的函数解析式为:y=12x;故答案为:y=12x.【点评】本题考查了正多边形和圆、圆心角定理、函数关系式等知识,熟练掌握由正多边形的中心角求正多边形的边数是关键.12.(4分)从1、2、3这三个数中任选两个组成两位数,在组成的所有两位数中任意抽取一个数,这个数恰好是偶数的概率是.【分析】列举出所有情况,看末位是2的情况占所有情况的多少即可.【解答】解:共有6种情况,是偶数的有2种情况,所以组成的两位数是偶数的概率为,故答案为:.【点评】此题主要考查了树状图法求概率,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=,注意本题是不放回实验.13.(4分)在四边形ABCD中,向量、满足,那么线段AB与CD的位置关系是平行.【分析】根据共线向量的定义即可求出答案.【解答】解:∵,∴与是共线向量,由于与没有公共点,∴AB∥CD,故答案为:平行.【点评】本题考查共线向量,解题的关键是熟练运用共线向量的定义,本题属于基础题型.14.(4分)某校有560名学生,为了解这些学生每天做作业所用的时间,调查人员在这所学校的全体学生中随机抽取了部分学生进行问卷调查,并把结果制成如图的统计图,根据这个统计图可以估计这个学校全体学生每天做作业时间不少于2小时的人数约为160 名.【分析】利用总人数560乘以每天做作业时间不少于2小时的同学所占的比例即可求解.【解答】解:根据题意结合统计图知:估计这个学校全体学生每天做作业时间不少于2小时的人数约为560×=160人,故答案为:160.【点评】本题考查的是用样本估计总体的知识.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.15.(4分)已知一个角的度数为50度,那么这个角的补角等于 130° .【分析】根据如果两个角的和等于180°,那么这两个角叫互为补角计算即可.【解答】解:180°﹣50°=130°.故这个角的补角等于130°.故答案为:130°.【点评】本题考查的是余角和补角的定义,如果两个角的和是一个直角,那么称这两个角互为余角.如果两个角的和是一个平角,那么这两个角叫互为补角.其中一个角叫做另一个角的补角.16.(4分)已知梯形的上底长为5厘米,下底长为9厘米,那么这个梯形的中位线长等于 7 厘米.【分析】根据梯形中位线定理计算,得到答案.【解答】解:梯形的中位线长=×(5+9)=7(厘米)故答案为:7.【点评】本题考查的是梯形中位线的计算,梯形中位线定理:梯形的中位线平行于两底,并且等于两底和的一半.17.(4分)如图,已知在△ABC 中,AB =3,AC =2,∠A =45o ,将这个三角形绕点B 旋转,使点A 落在射线AC 上的点A 1处,点C 落在点C 1处,那么AC 1= .【分析】连接AC 1,由旋转的性质先证△ABA 1为等腰直角三角形,再证△AA 1C 1为直角三角形,利用勾股定理可求AC 1的长度.【解答】解:如图,连接AC 1,由旋转知,△ABC ≌△A 1BC 1,∴AB =A 1B =3,AC =A 1C 1=2,∠CAB =∠C 1A 1B =45°,∴∠CAB =∠CA 1B =45°,∴△ABA 1为等腰直角三角形,∠AA 1C 1=∠CA 1B +∠C 1A 1B =90°,在等腰直角三角形ABA1中,AA1=AB=3,在Rt△AA1C1中,AC1===,故答案为:.【点评】本题考查了旋转的性质,等腰直角三角形的性质,勾股定理等,解题的关键是能够根据题意画出图形.18.(4分)定义:如果P是圆O所在平面内的一点,Q是射线OP上一点,且线段OP、OQ 的比例中项等于圆O的半径,那么我们称点P与点Q为这个圆的一对反演点.已知点M、N为圆O的一对反演点,且点M、N到圆心O的距离分别为4和9,那么圆O上任意一点到点M、N的距离之比=.【分析】分三种情形分别求解即可解决问题.【解答】解:由题意⊙O的半径r2=4×9=36,∵r>0,∴r=6,当点A在NO的延长线上时,AM=6+4=10,AN=6+9=15,∴==,当点A″是ON与⊙O的交点时,A″M=2,A″N=3,∴=,当点A′是⊙O上异与A,A″两点时,易证△OA′M∽△ONA′,∴===,综上所述,=.故答案为:.【点评】本题考查相似三角形的判定和性质,解题的关键是理解题意,学会用分类讨论的思想思考问题,属于中考常考题型.三、解答题:(本大题共7题,满分78分)19.(10分)计算:(﹣3)0﹣9++|2﹣|.【分析】本题涉及零指数幂、分母有理化、绝对值、二次根式化简4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=1﹣3+﹣1+2﹣=﹣1.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握零指数幂、分母有理化、绝对值、二次根式化简等考点的运算.20.(10分)解不等式组:,并写出这个不等式组的自然数解.【分析】先分别解答不等式组中的两个不等式的解集,然后求其交集即为不等式组的解集,再根据不等式组的解集来取自然数解.【解答】解:,由①得:x≥﹣1,由②得:x<4.故不等式组的解集是:﹣1≤x<4.故这个不等式组的自然数解是:0,1,2,3.【点评】本题考查了解一元一次不等式组、一元一次不等式组的整数解.求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.21.(10分)已知:如图,在平面直角坐标系xOy中,双曲线y=经过第一象限内的点A,延长OA到点B,使得BA=2AO,过点B作BH⊥x轴,垂足为点H,交双曲线于点C,点B 的横坐标为6.求:(1)点A的坐标;(2)将直线AB平移,使其经过点C,求平移后直线的表达式.【分析】(1)作AD⊥x轴,垂足为D,易得AD∥BH,根据平行线分线段成比例可得点A 的横坐标,再根据双曲线y=经过第一象限内的点A,可得点A的纵坐标;(2)根据点C的坐标求出直线AB的表达式,再运用待定系数法即可求出平移后直线的表达式.【解答】解:(1)作AD⊥x轴,垂足为D,∵BH⊥x轴,AD⊥x轴,∴∠BHO=∠ADO=90°,∴AD∥BH,∵BA=2AO,∴,∵点B的横坐标为6,∴OH=6,∴OD=2,∵双曲线y=经过第一象限内的点A,可得点A的纵坐标为3,∴点A的坐标为(2,3);(2)∵双曲线y=上点C的横坐标为6,∴点C的坐标为(6,1),由题意得,直线AB的表达式为y=,∴设平移后直线的表达式为y=,∵平移后直线y=经过点C(6,1),∴1=,解得b=﹣8,∴平移后直线的表达式y=.【点评】此题是反比例函数综合题,主要考查了待定系数法,反比例函数图象上点的坐标特征,解本题的关键是灵活运用所学知识解决问题,属于中考常考题型.22.(10分)如图1,一辆吊车工作时的吊臂AB最长为20米,吊臂与水平线的夹角∠ABC 最大为70°,旋转中心点B离地面的距离BD为2米.(1)如图2,求这辆吊车工作时点A离地面的最大距离AH(参考数据:sin70°≈,cos70°≈,tan70°≈);(2)一天,王师傅接到紧急通知,要求将这辆吊车立即开到40千米远的某工地,因此王师傅以每小时比平时快20千米的速度匀速行驶,结果提前20分钟到达,求这次王师傅所开的吊车速度.【分析】(1)解Rt△ABC求出AC的长度,便可求得AH;(2)设这次王师傅所开的吊车的速度为每小时x千米,根据快速行驶时间比平时行驶时间少20秒,列出分式方程便可.【解答】解:(1)根据题意,得AB =20,∠ABC =70°,CH =BD =2,在Rt △ACB 中,∵∠ACB =90°,∴AC =AB •sin70°=20×=,∴AH =.答:这辆吊车工作时点A 离地面的最大距离AH 为米;(2)设这次王师傅所开的吊车的速度为每小时x 千米,由题意,得,解得,x 1=60,x 2=﹣40,经检验:x 1=60,x 2=﹣40都是原方程的解,但x 2=﹣40符合题意,舍去,答:这次王师傅所开的吊车的速度为每小时60千米.【点评】本题是解直角三角形与分式方程应用的综合题,主要考查了解直角三角形,列分式方程解应用题,(1)题的关键是解直角三角形求出AC ,(2)小题的关键是找出等量关系列出分式方程.23.(12分)已知:如图,在直角梯形ABCD 中,AD ∥BC ,DC ⊥BC ,AB =AD ,AM ⊥BD ,垂足为点M ,连接CM 并延长,交线段AB 于点N .求证:(1)∠ABD =∠BCM ;(2)BC •BN =CN •DM .【分析】(1)利用等腰三角形的性质得到∠ABD =∠ADB ,BM =DM ,再利用平行线的性质得到∠ABD =∠MBC ,利用直角三角形斜边上的中线性质得到CM =BM =DM ,则∠MBC =∠BCM ,从而得到∠ABD =∠BCM ;(2)先证明△NBM ∽△NCB ,则BN :CN =BM :BC ,然后利用BM =DM 和比例性质可得到结论.【解答】证明:(1)∵AB =AD ,∴∠ABD =∠ADB ,∵AD∥BC,∴∠ADB=∠MBC,∴∠ABD=∠MBC,∵AB=AD,AM⊥BD,∴BM=DM,∵DC⊥BC,∴∠BCD=90°,∴CM=BM=DM,∴∠MBC=∠BCM,∴∠ABD=∠BCM;(2)∵∠BNM=∠CNB,∠NBM=∠NCB,∴△NBM∽△NCB,∴BN:CN=BM:BC,而BM=DM,∴BN:CN=DM:BC,∴BC•BN=CN•DM.【点评】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.灵活运用相似三角形的性质进行几何计算.24.(12分)已知抛物线y=+bx+c经过点M(3,﹣4),与x轴相交于点A(﹣3,0)和点B,与y轴相交于点C.(1)求这条抛物线的表达式;(2)如果P是这条抛物线对称轴上一点,PC=BC,求点P的坐标;(3)在第(2)小题的条件下,当点P在x轴上方时,求∠PCB的正弦值.【分析】(1)根据待定系数法即可求得;(2)根据A、B的坐标求得对称轴为x=1,设点P的坐标为(l,y).由PC=BC根据勾股定理列出12+(y+5)2=52+52.解得即可;(3)作PH⊥BC,垂足为点H,根据勾股定理求得BC,然后求得直线BC的解析式,进而求得D的坐标,然后根据S△PBC =S△PCD+S△PBD,列出.求得PH,解正弦函数即可.【解答】解:(1)∵抛物线y═x2+bx+c经过点M(3,﹣4),A(﹣),,解得:,∴这条抛物线的表达式为y=x2﹣x﹣5;(2)∵A(﹣3,0),B(5,0),∴这条抛物线的对称轴为直线x=l.设点P的坐标为(l,y).∵PC=BC,点B的坐标为(5,0),点C的坐标为(0,5).∴PC2=BC2.12+(y+5)2=52+52.解得y=2或y=﹣12.∴点P的坐标为(1,2)或(l,﹣12);(3)作PH⊥BC,垂足为点H.∵点B(),点C(0,5),点P(1,2),∴PC=BC=5.设直线BC的解析式为y=kx﹣5,代入B(5,0)解得k=1,∴直线BC的解析式为y=x﹣5,把x=1代入得,y=﹣4,∴直线BC与对称轴相交于点D(1,﹣4),∴PD=6,∵S△PBC =S△PCD+S△PBD,∴.解得PH=3.∴sin∠PCB==.【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求一次函数、二次函数的解析式、锐角三角函数的定义,三角形面积等,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,灵活运用三角形面积公式,属于中考常考题型.25.(14分)已知AB是圆O的一条弦,P是圆O上一点,过点O作MN⊥AP,垂足为点M,并交射线AB于点N,圆O的半径为5,AB=8.(1)当P是优弧的中点时(如图),求弦AP的长;(2)当点N与点B重合时,试判断:以圆O为圆心,为半径的圆与直线AP的位置关系,并说明理由;(3)当∠BNO=∠BON,且圆N与圆O相切时,求圆N半径的长.【分析】(1)连接PO并延长交弦AB于点H,由垂径定理得出PH⊥AB,AH=BH,由勾股定理得出OH==3,在△APH中,∠AHP=90°,PH=OP+OH=8,由勾股定理求出AP即可;(2)作OG⊥AB于G,先证明△OBG∽△ABM,得出=,求出BM=,得出OM=,由<,即可的距离;(3)作OD⊥AB于D,由勾股定理求出OD==3,证出BN=OB=5,得出DN的长,再由勾股定理求出ON,然后由相切两圆的性质即可得出圆N的半径.【解答】解:(1)连接PO并延长交弦AB于点H,如图1所示:∵P是优弧的中点,PH经过圆心O,∴PH⊥AB,AH=BH,在△AOH中,∠AHO=90°,AH=AB=4,AO=5,∴OH===3,在△APH中,∠AHP=90°,PH=OP+OH=5+3=8,∴AP===4;(2)当点N与点B重合时,以点O为圆心,为半径的圆与直线AP相交;理由如下:作OG⊥AB于G,如图2所示:∵∠OBG=∠ABM,∠OGB=∠AMB,∴△OBG∽△ABM,∴=,即=,解得:BM=,∴OM=﹣5=,∵<,∴当点N与点B重合时,以点O为圆心,为半径的圆与直线AP相交;(3)作OD⊥AB于D,如图3所示:∵OA=OB=5,∴AD=DB=AB=4,∴OD===3,∵∠BNO=∠BON,∴BN=OB=5,∴DN=DB+BN=9,在Rt△ODN中,由勾股定理得:ON===3,∵圆N与圆O相切,∴圆N半径=3﹣5.【点评】本题是圆的综合题目,考查了垂径定理、直线与圆的位置关系、相切两圆的性质、相似三角形的判定与性质、等腰三角形的判定、勾股定理等知识;本题综合性强,熟练掌握直线与圆的位置关系、相切两圆的性质是解题的关键.。

相关文档
最新文档