排列组合基础知识

合集下载

(完整版)基础排列组合部分知识总结

(完整版)基础排列组合部分知识总结

计数原理1.摆列组合知识导学 :1. 分类计数原理:达成一件事,有n类方法,在第1 类方法中,有 m 1 种不一样的方法,在第 2类方法中,有 m 2 种不一样的方法, 在第n类方法中,有 m n 种不一样的方法,那么达成这件事共有 =m 1 + m 2 + + m n 种不一样的方法 .N2. 分步计数原理:达成一件事,需要分红n个步骤,做第 1 步,有 m 1 种不一样的方法,做第2 步,有m 2 种不一样的方法, 做第n步,有 m n 种不一样的方法,那么达成这件事共有 =m 1 ×Nm 2 × × m n 种不一样的方法 .摆列数公式 :A n mn ( n 1)( n 2)( n 3)( n m 1)A n mn! (这里m、n∈ N * ,且m≤n)(n m)!组合数公式:mA n m n(n 1)(n 2)( n 3) ( nm 1)C nA m mnC n mn! (这里m、n∈ N *,且m≤n)m! (n m)!组合数的两个性质C n m C n n m 规定: C n 0 1C n m 1 C n mC n m 1例 l、分类加法计数原理的应用在全部的两位数中,个位数字大于十位数字的两位数共有多少个?剖析:该问题与计数相关,可考虑采纳两个基来源理来计算,达成这件事,只需两位数的个位、十位确立了,这件事就算达成了,所以可考虑安排十位上的数字状况进行分类.解法一:按十位数上的数字分别是1, 2, 3, 4,5, 6, 7,8 的状况分红8 类,在每一类中知足题目条件的两位数分别是8 个, 7 个, 6 个, 5 个, 4 个, 3 个, 2 个, l 个.由分类加法计数原理知,切合题意的两位数的个数共有8 + 7 + 6 + 5 + 4 + 3 + 2 + l=36 个.解法二:按个位数字是2, 3, 4, 5, 6,7, 8, 9 分红 8 类,在每一类中知足条件的两位数分别是 l 个、 2 个、 3 个、 4 个、 5 个、 6 个、 7 个、 8 个,所以按分类加法计数原理共有l + 2 + 3 + 4 + 5 + 6 + 7 + 8 = 36个.评论:分类加法计数原理是对波及达成某一件事的不一样方法种数的计数方法,每一类的各样方法都是互相独立的,每一类中的每一种方法都能够独立达成这件事。

排列组合基本知识

排列组合基本知识

排列组合基本知识(总8页) --本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--基本知识排列与元素的顺序有关,组合与顺序无关.如231与213是两个排列,2+3+1的和与2+1+3的和是一个组合.(一)两个基本原理是排列和组合的基础(1)加法原理:做一件事,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有mn种不同的方法,那么完成这件事共有N=m1+m2+m3+…+mn种不同方法.(2)乘法原理:做一件事,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,……,做第n步有mn种不同的方法,那么完成这件事共有N=m1×m2×m3×…×mn种不同的方法.这里要注意区分两个原理,要做一件事,完成它若是有n类办法,是分类问题,第一类中的方法都是独立的,因此用加法原理;做一件事,需要分n个步骤,步与步之间是连续的,只有将分成的若干个互相联系的步骤,依次相继完成,这件事才算完成,因此用乘法原理.这样完成一件事的分“类”和“步”是有本质区别的,因此也将两个原理区分开来.(二)排列和排列数(1)排列:从n个不同元素中,任取m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.从排列的意义可知,如果两个排列相同,不仅这两个排列的元素必须完全相同,而且排列的顺序必须完全相同,这就告诉了我们如何判断两个排列是否相同的方法.(2)排列数公式:从n个不同元素中取出m(m≤n)个元素的所有排列 ,当m =n时,为全排列Pnn=n(n-1)(n-1)…3·2·1=n!(三)组合和组合数(1)组合:从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从 n 个不同元素中取出m个元素的一个组合.从组合的定义知,如果两个组合中的元素完全相同,不管元素的顺序如何,都是相同的组合;只有当两个组合中的元素不完全相同时,才是不同的组合.(2)组合数:从n个不同元素中取出m(m≤n)个元素的所有组合的个这里要注意排列和组合的区别和联系,从n个不同元素中,任取m(m≤n)个元素,“按照一定的顺序排成一列”与“不管怎样的顺序并成一组”这是有本质区别的.一、排列组合部分是中学数学中的难点之一,原因在于(1)从千差万别的实际问题中抽象出几种特定的数学模型,需要较强的抽象思维能力(2)限制条件有时比较隐晦,需要我们对问题中的关键性词(特别是逻辑关联词和量词)准确理解;(3)计算手段简单,与旧知识联系少,但选择正确合理的计算方案时需要的思维量较大;(4)计算方案是否正确,往往不可用直观方法来检验,要求我们搞清概念、原理,并具有较强的分析能力。

排列组合基础知识

排列组合基础知识

排列组合基础知识排列组合基础知识一、两大原理1.加法原理(1)定义:做一件事,完成它有n 类方法,在第一类方法中有1m 中不同的方法,第二类方法中有2m 种不同的方法......第n 类方法中n m 种不同的方法,那么完成这件事共有n m m m N +++= (21)种不同的方法。

(2)本质:每一类方法均能独立完成该任务。

(3)特点:分成几类,就有几项相加。

2.乘法原理(1)定义做一件事,完成它需要n 个步骤,做第一个步骤有1m 中不同的方法,做第二个步骤有2m 种不同的方法......做第n 个步骤有n m 种不同的方法,那么完成这件事共有n m m m N ...21=种不同的方法。

(2)本质:缺少任何一步均无法完成任务,每一步是不可缺少的环节。

(3)特点:分成几步,就有几项相乘。

二、排列组合1.排列(1)定义:从n 个不同的元素中,任取m 个(n m ≤)元素,按照一定的顺序排成一列,叫做从n 个不同的元素中,选取m 个元素的一个排列,排列数记为m n P ,或记为m n A 。

(2)使用排列的三条件①n 个不同元素;②任取m 个;③讲究顺序。

(3)计算公式)!(!)1)....(2)(1(m n n m n n n n A m n -=+---= 尤其:!,,110n P n P P n n n n ===2.组合(1)定义:从n 个不同的元素中,任取m 个(n m ≤)元素并为一组,叫做从n 个不同的元素中,选取m 个元素的一个组合,组合数记为m n C 。

(2)使用三条件①n 个不同元素;②任取m 个;③并为一组,不讲顺序。

(3)计算公式12)...1()1)...(1()!(-+--=-==m m m n n n m n m n P P C m m m n mn尤其:m n n m n n n n n C C C n C C -====,1,,110例1.由0,1,2,3,4,5可以组成多少个没有重复数字的五位奇数?A.226B.246C.264D.288解析:由于首位和末位有特殊要求,应优先安排,以免不合要求的元素占了这两个位置,末位有13C 种选择,然后排首位,有14C 种选择,左后排剩下的三个位置,有34A 种选择,由分步计数原理得:13C 14C 34A =288例2.旅行社有豪华游5种和普通游4种,某单位欲从中选择4种,其中至少有豪华游和普通游各一种的选择有()种。

排列组合基础知识讲解

排列组合基础知识讲解

排列组合基础知识讲解
排列组合是数学中的一个重要概念,用于计算从给定元素中选择若干个元素的不同方式。

以下是排列组合的基础知识讲解:
排列(Permutation):从给定的元素中选择若干个元素进行排列,且这些元素的顺序是重要的。

例如,从3 个元素a,b,c 中选择2 个元素进行排列,可以得到6 种不同的排列方式:ab,ac,ba,bc,ca,cb。

组合(Combination):从给定的元素中选择若干个元素进行组合,且这些元素的顺序是不重要的。

例如,从 3 个元素a,b,c 中选择2 个元素进行组合,可以得到3 种不同的组合方式:ab,ac,bc。

排列组合的计算公式如下:
排列的计算公式:$A_{n}^{k}=\frac{n!}{(n-k)!}$
组合的计算公式:$C_{n}^{k}=\frac{n!}{k!\times(n-k)!}$
其中,$n$ 表示元素的总数,$k$ 表示选择的元素个数。

排列组合在实际生活中有广泛的应用,例如在概率统计、组合数学、
计算机科学等领域。

掌握排列组合的基础知识对于理解和解决这些领域中的问题非常重要。

排列组合ppt课件

排列组合ppt课件

排列的分类与计算方法
01
02
03
排列的定义
排列是指从给定个数的元 素中取出指定个数的元素 进行排序。
排列的分类
根据取出的元素是否重复 ,排列可分为重复排列和 不重复排列。
排列的计算方法
排列的计算公式为 nPr=n!/(n-r)!,其中n为 总元素个数,r为要取出的 元素个数。
组合的分类与计算方法
后再合并答案。
利用对称性
在某些问题中,可以利用对称性 来简化计算,例如在计算圆周率 时可以利用对称性来减少计算量

学会推理和猜测
在某些问题中,需要学会推理和 猜测,尝试不同的方法和思路,
以寻找正确的答案。
解题注意事项与易错点
注意细节
在解题过程中要注意细节,例如元素的重复、遗漏等问题,避免 出现错误。
组合的定义
组合是指从给定个数的元 素中取出指定个数的元素 进行组合,不考虑排序。
组合的分类
根据取出的元素是否重复 ,组合可分为重复组合和 不重复组合。
组合的计算方法
组合的计算公式为 nCr=n!/(r!(n-r)!),其中n 为总元素个数,r为要取出 的元素个数。
排列组合的复杂应用
排列与组合的应用
另一个应用是解决组合问题,例如,在从n个不同元素中 选出m个元素的所有组合的问题中,可以使用排列组合的 方法来解决。
排列组合在物理中的应用
排列组合在物理中也有着广泛的应用,其中最常见的是在量子力学和统计物理中 。例如,在量子力学中,波函数的对称性和反对称性可以通过排列组合来描述。
在统计物理中,分子和原子的分布和运动可以通过排列组合来描述。例如,在理 想气体中,分子的分布和运动可以通过组合数学的方法来描述。

高中数学《排列组合的常见模型》基础知识与练习题(含答案)

高中数学《排列组合的常见模型》基础知识与练习题(含答案)

高中数学《排列组合的常见模型》基础知识与练习题(含答案)一、基础知识:(一)处理排列组合问题的常用思路:1、特殊优先:对于题目中有特殊要求的元素,在考虑步骤时优先安排,然后再去处理无要求的元素。

例如:用0,1,2,3,4组成无重复数字的五位数,共有多少种排法?解:五位数意味着首位不能是0,所以先处理首位,共有4种选择,而其余数位没有要求,只需将剩下的元素全排列即可,所以排法总数为44496N A =⨯=种2、寻找对立事件:如果一件事从正面入手,考虑的情况较多,则可以考虑该事的对立面,再用全部可能的总数减去对立面的个数即可。

例如:在10件产品中,有7件合格品,3件次品。

从这10件产品中任意抽出3件,至少有一件次品的情况有多少种解:如果从正面考虑,则“至少1件次品”包含1件,2件,3件次品的情况,需要进行分类讨论,但如果从对立面想,则只需用所有抽取情况减去全是正品的情况即可,列式较为简单。

3310785N C C =−=(种) 3、先取再排(先分组再排列):排列数mn A 是指从n 个元素中取出m 个元素,再将这m 个元素进行排列。

但有时会出现所需排列的元素并非前一步选出的元素,所以此时就要将过程拆分成两个阶段,可先将所需元素取出,然后再进行排列。

例如:从4名男生和3名女生中选3人,分别从事3项不同的工作,若这3人中只有一名女生,则选派方案有多少种。

解:本题由于需要先确定人数的选取,再能进行分配(排列),所以将方案分为两步,第一步:确定选哪些学生,共有2143C C 种可能,然后将选出的三个人进行排列:33A 。

所以共有213433108C C A =种方案(二)排列组合的常见模型1、捆绑法(整体法):当题目中有“相邻元素”时,则可将相邻元素视为一个整体,与其他元素进行排列,然后再考虑相邻元素之间的顺序即可。

例如:5个人排队,其中甲乙相邻,共有多少种不同的排法解:考虑第一步将甲乙视为一个整体,与其余3个元素排列,则共有44A 种位置,第二步考虑甲乙自身顺序,有22A 种位置,所以排法的总数为424248N A A =⋅=种2、插空法:当题目中有“不相邻元素”时,则可考虑用剩余元素“搭台”,不相邻元素进行“插空”,然后再进行各自的排序注:(1)要注意在插空的过程中是否可以插在两边(2)要从题目中判断是否需要各自排序例如:有6名同学排队,其中甲乙不相邻,则共有多少种不同的排法解:考虑剩下四名同学“搭台”,甲乙不相邻,则需要从5个空中选择2个插入进去,即有25C 种选择,然后四名同学排序,甲乙排序。

排列组合基础知识点

排列组合基础知识点

排列组合基础知识点排列组合是组合数学的重要组成部分,它研究的是如何根据特定的规则从一个集合中选择或排列对象。

它不仅在数学中有广泛的应用,在计算机科学、统计学、金融学等领域也扮演着重要角色。

本篇文章将详细介绍排列组合的基础知识,包括其定义、性质,以及相关的公式和应用示例。

一、排列的概念排列是指从n个不同元素中,按照一定的顺序取出r个元素,所形成的不同序列。

排列强调顺序,因此a和b的排列与b和a是不同的。

排列的公式为:[ A(n, r) = ]其中,n!(n的阶乘)表示从1到n所有整数的乘积。

1. 阶乘的定义阶乘是一个自然数n的连续乘积,记作n!,其定义为:n! = n × (n-1) × (n-2) × … × 2 × 1,当n ≥ 1;0! = 1。

2. 排列示例设有5种不同颜色的球(红、蓝、绿、黄、白),要从中选取3种颜色并进行排列。

根据排列公式,计算方法如下:[ A(5, 3) = = = = 60 ]此时,我们可以得出60种不同的颜色排列方式,例如(红、蓝、绿)、(蓝、绿、黄)等。

二、组合的概念组合是从n个不同元素中,选择r个元素而不考虑顺序的方法。

组合只关注所选元素,不关心它们的排列顺序。

例如,从a、b、c三种元素中选出两种元素,组合为(ab, ac, bc)。

组合的公式为:[ C(n, r) = ]1. 组合示例继续使用上面的例子,即有5种颜色的球,从中选择3种颜色组合。

根据组合公式进行计算:[ C(5, 3) = = = = 10 ]此时,可以得出10种颜色组合方式,如(红、蓝、绿)、(红、蓝、黄)等。

三、排列与组合之间的联系与区别虽然排列和组合都是从一个集合中选择元素,但它们有本质上的区别。

顺序:排列关注顺序,选择a和b以及b和a,被视为两种不同情况。

组合不关注顺序,选择a和b以及b和a,被视为相同情况。

计算方法:排列使用的是A(n, r)公式。

排列组合知识点归纳总结高考题

排列组合知识点归纳总结高考题

排列组合知识点归纳总结高考题编号一:排列组合基础知识在高考数学中,排列组合是一个重要的考点。

掌握排列组合知识对于解决相关题目至关重要。

本文将对排列组合的基础知识进行归纳总结,并配以高考题进行实例分析。

1. 排列排列是从若干个元素中取出一部分元素,按照一定的顺序进行排列,形成不同的序列。

排列有两种情况:有重复元素的排列和无重复元素的排列。

1.1 有重复元素的排列当从 n 个元素中取出 r 个进行排列时(r ≤ n),若这些元素中有重复元素,则排列的总数为 P(n;r) = n! / (n1! × n2! × ... × nr!),其中 ni 表示第 i 个元素的个数。

【例题1】:某班上有 10 名学生,其中 5 名男生和 5 名女生,现要从这 10 人中选出 3 人组成一支足球队。

求不同的组队方案数。

解:由于男生和女生分别占一定数量,该问题属于有重复元素的排列。

根据公式可知,解法为 P(5;3) = 5! / (2! × 3!) = 10 种。

1.2 无重复元素的排列当从 n 个不同元素中取出 r 个进行排列时(r ≤ n),排列的总数为P(n;r) = n! / (n-r)!。

【例题2】:有 9 个不同的球队参加一场篮球比赛。

其中第一名和第二名分别获得冠军和亚军。

请问这 9 支球队的比赛有多少种可能的结果?解:由于每个球队的位置是不同的,问题属于无重复元素的排列。

根据公式可知,解法为 P(9;2) = 9! / 7! = 72 种。

2. 组合组合是从若干个元素中取出一部分元素,不考虑顺序,形成不同的组合。

同样地,组合也有两种情况:有重复元素的组合和无重复元素的组合。

2.1 有重复元素的组合当从 n 个元素中取出 r 个进行组合时(r ≤ n),若这些元素中有重复元素,则组合的总数为 C(n;r) = (n+r-1)! / (r! × (n-1)!)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

关于排列组合的一些基础知识
1. 排列:从n个元素中取出m个(m≦n),并按照一定的顺序排成一列,称为从n个元素中取出m个元素的排列。

2. 组合:从n个元素中取出m个(m≦n),并按照一定的方式进行组合,称为从n个元素中取出m个元素的组合。

3. 排列的公式:A(n,m)=n×(n-1)×(n-2)×...×(n-m+1)。

4. 组合的公式:C(n,m)=n×(n-1)×(n-2)×...×(n-m+1)÷m×(m-1)×(m-2)×...×2×1。

5. 重复排列:在排列时允许相同的元素重复出现,每个元素出现的次数与排列的顺序有关,这种排列称为重复排列。

6. 重复组合:在组合时允许相同的元素重复出现,每个元素出现的次数与组合的方式无关,这种组合称为重复组合。

7. 排列数的性质:若A(n,m)=0,则m<0或m>n;若0≦m≦n,则A(n,m)=A(n,n-m);若n=m则A(n,m)=1。

8. 组合数的性质:若C(n,m)=0,则m<0或m>n;若0≦m≦n,则C(n,m)=C(n,n-m);若n=m则C(n,m)=1。

9. 插空法:在解决有关问题时,将元素分成两部分,一部分暂时不取,然后对剩下的元素进行排列或组合,这种方法称为插空法。

10. 捆绑法:在排列或组合时,先将几个元素捆绑在一起,作为一个元素处理,然后再对其他元素进行排列或组合的方法称为捆绑法。

11. 插板法:在解决有关问题时,将元素分成两部分,一部分暂时不取,然后对剩下的元素进行排列或组合,这种方法称为插板法。

12. 隔板法:在解决有关问题时,将元素分成两部分,中间插
入隔板,使得每部分元素的个数等于规定的个数,这种方法称为隔板法。

相关文档
最新文档