热力学与统计物理第二章知识总结
大学物理热学第二章_(热平衡态的统计分布律)

思考: f()
3kBT
m O p
f()
m m'
2
O 1 2 O
31
第二章 热平衡态的统计分布律
说明 一般三种速率用途各不相同
• 讨论速率分布一般用 v p
• 讨论分子的碰撞次数用v
• 讨论分子的平均平动动能用 v 2
dN 仅是 的函数.
Nd
f(v)
•曲线下面的总面积,等于分
布在整个速率范围内所有各个
速率间隔中的分子数与总分子 O
数的比率的总和
f (v )dv 1
(归一化条件)
0
26
第二章 热平衡态的统计分布律
(2) 不同气体, 不同温度下的速率分布曲线的关系
由于曲线下的面积不变,由此可见 ① m 一定,T 越大, v p 越大, 这时曲线向右移动 ② T 一定, m 越大, v p 越小, 这时曲线向左移动
f(v) T1
f(v) m2(> m1)
T2(> T1)
m1
O v p1 v p2
v O v p2 v p1
v
27
第二章 热平衡态的统计分布律
三. Maxwell速率分布律的实验验证
➢与实验曲线相符密勒-库士实验:
1. 实验装置 2. 测量原理 (1) 能通过细槽到达检测器 D
的分子所满足的条件
v L
又
dN (vx ,vy ) N
f (vx )dvx f (v y )dvy f (vx ,v y )dvxdvy
dN (vx ,v y ) N
所以 f (vx ,vy ) f (vx ) f (vy )
同理可得,在三维空间 f (vx ,vy ,vz ) f (vx ) f (vy ) f (vz2)2
热力学与统计物理第二章知识总结

§2.1内能、焓、自由能和吉布斯函数的全微分热力学函数中的物态方程、内能和熵是基本热力学函数,不仅因为它们对应热力学状态描述第零定律、第一定律和第二定律,而且其它热力学函数也可以由这三个基本热力学函数导出。
焓:自由能:吉布斯函数:下面我们由热力学的基本方程(1)即内能的全微分表达式推导焓、自由能和吉布斯函数的全微分•焓、自由能和吉布斯函数的全微分o焓的全微分由焓的定义式,求微分,得,将(1)式代入上式得(2)o自由能的全微分由得(3)o吉布斯函数的全微分(4)从方程(1)(2)(3)(4)我们容易写出内能、焓、自由能和吉布斯函数的全微分dU,dH,dF,和dG独立变量分别是S,V;S,P;T,V和T,P所以函数U(S,V),H(S,P),F(T,V),G(T,P)就是我们在§2.5将要讲到的特性函数。
下面从这几个函数和它们的全微分方程来推出麦氏关系。
二、热力学(Maxwell)关系(麦克斯韦或麦氏)(1)U(S,V)利用全微分性质(5)用(1)式相比得(6)再利用求偏导数的次序可以交换的性质,即(6)式得(7)(2) H(S,P)同(2)式相比有由得(8)(3) F(T,V)同(3)式相比(9)(4) G(T,P)同(4)式相比有(10)(7),(8),(9),(10)式给出了热力学量的偏导数之间的关系,称为麦克斯韦(J.C.Maxwell)关系,简称麦氏关系。
它是热力学参量偏导数之间的关系,利用麦氏关系,可以从以知的热力学量推导出系统的全部热力学量,可以将不能直接测量的物理量表示出来。
例如,只要知道物态方程,就可以利用(9),(10)式求出熵的变化,即可求出熵函数。
§2.2麦氏关系的简单应用证明1. 求选T,V为独立变量,则内能U(T,V)的全微分为(1)熵函数S(T,V)的全微分为( 2)又有热力学基本方程(3)由(2)代入(3)式得(4)•(4)相比可得(5)(6)由定容热容量的定义得(7)2. 求选T 、P为独立参量,焓的全微分为(8)焓的全微分方程为(9)以T、P为自变量时熵S(T、P)的全微分表达式为(10)将(10)代入(9)得(11)(8)式和(11)式相比较得(12)(13)(14)3求由(7) (14)式得(15) 把熵S看作T,V的函数,再把V看成T,P的函数,即对上式求全微分得∴代入(15)式得由麦氏关系得(16)即得证4、P,V,T三个变量之间存在偏导数关系而可证(17)§2.3气体的节流过程和绝热膨胀过程气体的节流过程(节流膨胀)和绝热膨胀是获得低温的两种常用方法,我们利用热力学函数来分析这两种过程的性质一,气体的节流(焦耳---汤姆逊效应)1、定义:如图所示有一由绝热材料制成的管子,中间用一多孔塞(节流阀)隔开,塞子一边维持较高的压强P,另一边维持较低的压强P,在压力的作用下,气体由高压的一边经过多孔塞流向低压的一边。
热力学与统计物理—第二章

§2.2 麦氏关系的简单应用
一、以T, V为状态参量
U p T p V T T V U S CV T T V T V
能态方程
CV p dS dT dV T T V
dS dU pdV T
4 d(VT 3 ) 3 4 S VT 3 S 0 3
3.物态方程 :
1 1 p u (T ) T 4 3 3
1 c J u cu T 4 T 4 4 4
Ju T 4
斯特藩—玻耳兹曼定律
三 . 红外技术及应用
红外探测
dG
V m ( )T , p 0 ( )T ,H H p
磁致伸缩 压磁效应
G G G dT dp dH T p H
G G V , 0 m p T ,H H T , p
§2.4 热辐射的热力学理论
第二章 均匀物质的热力学性质
1. 麦克斯韦关系及应用
2. 热辐射的热力学理论
3. 磁介质热力学
§2.1 麦克斯韦关系
热力学基本微分方程:
dU T dS Yi dyi
i
四个全微分(简单系统):
dU TdS pdV
H U pV
dH TdS Vdp dF SdT pdV
p dU CV dT T p dV T V
二
、以T, p为状态 dp T T p Tpp T
V dH C p dT V T dp T p
3. 辐射能量密度u:
U= u (T)V
4. 辐射通量密度:
热力学统计物理知识点复习大全

概 念 部 分 汇 总 复 习热力学部分第一章 热力学的基本规律1、热力学与统计物理学所研究的对象:由大量微观粒子组成的宏观物质系统 其中所要研究的系统可分为三类孤立系:与其他物体既没有物质交换也没有能量交换的系统; 闭系:与外界有能量交换但没有物质交换的系统; 开系:与外界既有能量交换又有物质交换的系统。
2、热力学系统平衡状态的四种参量:几何参量、力学参量、化学参量和电磁参量。
3、一个物理性质均匀的热力学系统称为一个相;根据相的数量,可以分为单相系和复相系。
4、热平衡定律(热力学第零定律):如果两个物体各自与第三个物体达到热平衡,它们彼此也处在热平衡.5、符合玻意耳定律、阿氏定律和理想气体温标的气体称为理想气体。
6、范德瓦尔斯方程是考虑了气体分子之间的相互作用力(排斥力和吸引力),对理想气体状态方程作了修正之后的实际气体的物态方程。
7、准静态过程:过程由无限靠近的平衡态组成,过程进行的每一步,系统都处于平衡态。
8、准静态过程外界对气体所作的功:,外界对气体所作的功是个过程量。
9、绝热过程:系统状态的变化完全是机械作用或电磁作用的结果而没有受到其他影响。
绝热过程中内能U 是一个态函数:A B U U W −=10、热力学第一定律(即能量守恒定律)表述:任何形式的能量,既不能消灭也不能创造,只能从一种形式转换成另一种形式,在转换过程中能量的总量保持恒定;热力学表达式:Q W U U A B +=−;微分形式:W Q U d d d += 11、态函数焓H :pV U H +=,等压过程:V p U H ∆+∆=∆,与热力学第一定律的公式一比较即得:等压过程系统从外界吸收的热量等于态函数焓的增加量。
12、焦耳定律:气体的内能只是温度的函数,与体积无关,即)(T U U =。
13.定压热容比:p p T H C ⎪⎭⎫⎝⎛∂∂=;定容热容比:VV T U C ⎪⎭⎫⎝⎛∂∂= 迈耶公式:nR C C V p =−14、绝热过程的状态方程:const =γpV ;const =γTV ;const 1=−γγTp 。
热力学与统计物理——第02章均匀物质的热力学性质习题解ok

第二章 均匀物质的热力学性质习题2.1温度维持为25℃, 压强在0至1000p n 之间,测得水的实验数据如下:(TV∂∂)p =(4.5×10-3+1.4×10-6P)cm 3·mol -1·k -1 若在25度的恒温下将温水从1p n 加压到1000p n , 求水的熵增和从外界吸收的热量。
解:利用麦氏关系:p T V )(∂∂ =-T pS )(∂∂ 求熵增∆S ; 从而∆Q = T ∆S ,∆S =-0.572Jmol -1·k -1Q =-157J ·mol -1习题 2.2已知在体积保持不变的情况下,一气体的压强正比于其绝对温度.试证明在温度保持不变时,该气体的熵随体积而增加。
解:由题意得: )()(V f T V k p +=。
因V 不变,T 、p 升高,故k (V )>0据麦氏关系(2.2.3)式得: T V S )(∂∂ =V Tp)(∂∂ =k (V ) (k (V )>0) ⎰+=⇒);()(T g dV V k S由于k (V )>0, 当V 升高时(或V 0→V ,V >V 0),于是⎰>0)(dV V k⇒T 不变时,S 随V 的升高而升高。
习题 2.3[2.2*作业]设一物质的物态方程具有以下形式T V f P )(=,试证明其内能与体积无关。
解: dV P V S T dT T S T PdV V T TdS dU T V ⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫⎝⎛∂∂=-=),(P T P T P V S T V U VT T -⎪⎭⎫⎝⎛∂∂-⎪⎭⎫ ⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂∴麦氏关系将T V f P )(= 代入上式子得P T P T V U V T -⎪⎭⎫ ⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂∴0)()(=-=V Tf V Tf 得证。
习题2.4求证:(ⅰ) H P S )(∂∂ <0 (ⅱ) U VS)(∂∂ >0 证: 由式(2.1.2)得: V d P T d S dH +=等H 过程:H H VdP TdS )()(-=⇒(P S ∂∂)H =-TV<0 (V >0; T >0) 由基本方程:PdV TdS dU -=dV TpdU T dS +=⇒1;⇒(VS∂∂)U =T p >0.习题2.5已知 T V U )(∂∂ =0 , 求证 T pU)(∂∂=0。
热力学与统计物理学第二章 热力学函数及关系

•两个重要的概念:热力学势,特性函数。
• 问题关键:可逆过程态的热一律和热二律(Q=TdS) 相结合的微分形式,找出二变量态函数全微分中的 偏导数之间的对应关系。
2
• 焓的性质:
• 焓的应用:用它定义定压热容量
在可逆等压过程中,统系吸热等于它的焓增,加即
dHp Qp CpdT
dH
H T
p
dT
H p
T
dp
比较以上两时,:有Cp
H T
p
5
二、自由能
定义为:F=U-TS,在常温环境中,利用它计算功 是非常方便的。
可逆过程dU:TdSA,那么 dUd(TS) dFTdSAd(TS) SdTA
(3)S p ; VT TV
(4) S pT
V . Tp
记住麦氏关系的小窍门:
(1) 等式两边对角线上的量的乘积、分子与脚标的乘积应具 有能量量纲;
(2) 若分子分母性质(广延量或强度量)相同,则等号两边 取正号,性质不同,取负号;
(3) 若分式的分母乘以脚标具有能量量纲,需倒置到分母, 则可用麦氏关系。
第二章 热力学函数及关系
动机和目的 一、焓、自由能和吉布斯函数 二、特性函数与麦克斯韦关系 三、热均匀物质热力学 四、热辐射的热力学
小结和习题课
1
• 动机:前一章用到了内能U和熵S,但还不够用来 分析一些等值过程,本章引入另外三个态函数:焓 H、自由能F、吉布斯函数G。它们分别于等压、等 温、等压等温过程。
S V
V S
比较以上两个等式,有
T U , p U
《热力学与统计物理》第二章 均匀物质的热力学性质

§2.2 内能、焓、自由能、吉布斯函数的全微分
本节要求: ①掌握状态函数的全微分; ②记住热力学偏导数和麦克斯韦关系。
一.状态函数的全微分
dU TdS pdV 看成是U以S,V为变量的全微分 U (S,V )
1
,得:
T V
U
T U
V
U V
T
U V
T
U
T
V
利用方法1可求出 U
V T
,连同
CV
的定义便得到
T V
U
1 CV
T
p T
V
p
CV
U T
V
U V
T
T
p T
V
p
由此可见,已知 CV 和状态方程便可求得气体的焦耳系数。
方法4.链式关系法
条件:若所求偏导数包含S,且已在分子或分母上,但 不能用热容量的定义或麦氏关系消除时,可用此法。
说明:本章在定义新的态函数和导出普遍热力学关 系时,都以P、V、T 系统为例进行。
§2.1 自由能和吉布斯函数
本节要求:①理解自由能和吉布斯函数的概念; ②理解自由能判据和吉布斯判据
一.自由能
1.定义:
对于等温条件:
引入新的热力学函数: 自由能 F U TS
有: 2.最大功原理:系统自由能的减少是在等温过程中
热力学基本方程
dU TdS pdV dH TdS Vdp dF SdT pdV dG SdT Vdp
热力学偏导数
T
U S
V
p
U V
S
热力学统计物理2章第5-7节

实验指出: 只是T的函数 ,与表面积A无关 。 所以,物态方程简化为: (T ) 当表面积有dA的改变时,外界作功为: 表面系统的自由能的全微分为:dF SdT dA 由此得: 由
F S T F A
dW dA
与A无关,第二积分式得:
d S A dT
V M 由完整微分条件可得: ( )T , P 0 ( )T , H H P
这也是磁介质的麦氏关系。左端是温度、压强不 变时体积随磁场的变化率,它描述磁致伸缩效应; 右端则是温度、磁场不变时,介质的磁矩随压强的变 化率,它描述压磁效应。两者有上述关系。 三、磁化功另一表达 假设空间中存在不均匀磁场,如:永久磁铁磁场, 将样品从无穷远处移入磁场内,从 x 处x 轴移到 x a 处,介质将被磁化。
0
dH ( x ) 样品在x处时,所受磁场力: 0 M ( x ) dx
移动样品时,外界必须克服此力而作功:
H ( x) dH ( x ) W 0 M ( x ) dx 0 MdH 0 dx M (a ) 分部积分: W 0 M (a) H (a) 0 HdM a
因此,空腔辐射的能量密度和能量密度按频率的 分布只可能是温度的函数。
电磁理论中,辐射压强P 与辐射能量密度u之间的关系:
1 p u 3
将平衡辐射看作热力学系统,选T和V为状态参量 由于能量密度只是温度的函数,平衡辐射的总能量 可表为: U (T ,V ) u(T )V 利用热力学公式: ( U )T T ( p )V P
F A
当 A趋于零时,表面系统不存在,F=0,所以不含 积分常数。 是单位面积的自由能. 由第一积分式得:
由U=F+TS,得表面系统的内能为: d U A( T ) dT 如果测得 (T )关系,就可得表面系统的热力 学函数. 例题:课本第100页,2.14题 一弹簧f= -Ax,忽略热胀 求:弹簧的F、S、U 解:外力对弹簧作功:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§2.1内能、焓、自由能和吉布斯函数的全微分热力学函数中的物态方程、内能和熵是基本热力学函数,不仅因为它们对应热力学状态描述第零定律、第一定律和第二定律,而且其它热力学函数也可以由这三个基本热力学函数导出。
焓:自由能:吉布斯函数:下面我们由热力学的基本方程(1)即内能的全微分表达式推导焓、自由能和吉布斯函数的全微分焓、自由能和吉布斯函数的全微分o焓的全微分由焓的定义式,求微分,得,将(1)式代入上式得(2)o自由能的全微分由得(3)o吉布斯函数的全微分(4)从方程(1)(2)(3)(4)我们容易写出内能、焓、自由能和吉布斯函数的全微分dU,dH,dF,和dG独立变量分别是S,V;S,P;T,V和T,P所以函数U(S,V),H(S,P),F(T,V),G(T,P)就是我们在§2.5将要讲到的特性函数。
下面从这几个函数和它们的全微分方程来推出麦氏关系。
二、热力学(Maxwell)关系(麦克斯韦或麦氏)(1)U(S,V)利用全微分性质(5)用(1)式相比得(6)再利用求偏导数的次序可以交换的性质,即(6)式得(7)(2) H(S,P)同(2)式相比有由得(8)(3) F(T,V)同(3)式相比(9)(4) G(T,P)同(4)式相比有(10)(7),(8),(9),(10)式给出了热力学量的偏导数之间的关系,称为麦克斯韦(J.C.Maxwell)关系,简称麦氏关系。
它是热力学参量偏导数之间的关系,利用麦氏关系,可以从以知的热力学量推导出系统的全部热力学量,可以将不能直接测量的物理量表示出来。
例如,只要知道物态方程,就可以利用(9),(10)式求出熵的变化,即可求出熵函数。
§2.2麦氏关系的简单应用证明1. 求选T,V为独立变量,则内能U(T,V)的全微分为(1)熵函数S(T,V)的全微分为( 2)又有热力学基本方程(3)由(2)代入(3)式得(4)(4)相比可得(5)(6)由定容热容量的定义得(7)2. 求选T 、P为独立参量,焓的全微分为(8)焓的全微分方程为(9)以T、P为自变量时熵S(T、P)的全微分表达式为(10)将(10)代入(9)得(11) (8)式和(11)式相比较得(12)(13)(14)3求由(7) (14)式得(15)把熵S看作T,V的函数,再把V看成T,P的函数,即对上式求全微分得∴代入(15)式得由麦氏关系得(16)即得证4、P,V,T三个变量之间存在偏导数关系而可证(17)§2.3气体的节流过程和绝热膨胀过程气体的节流过程(节流膨胀)和绝热膨胀是获得低温的两种常用方法,我们利用热力学函数来分析这两种过程的性质一,气体的节流(焦耳---汤姆逊效应)1、定义:如图所示有一由绝热材料制成的管子,中间用一多孔塞(节流阀)隔开,塞子一边维持较高的压强P,另一边维持较低的压强P,在压力的作用下,气体由高压的一边经过多孔塞流向低压的一边。
由于多孔塞对气流的巨大的阻力,气体的宏观流速极小,因而对应的动能可以略去。
我们把气体在绝热条件下,气体由稳定的高压经过多孔塞流到稳定的低压一侧的过程称为气体的节流过程。
2、特点:∙它是不可逆的,这是显然的,因为气体通过多孔塞时,要克服阻力作功,这种功转变成热。
∙初态与末态等焓,证明如下开始在多孔塞左边取一定量的气体,压强为,体积为,内能为.气体通过多孔塞后,其压强、体积、内能分别为,,,气体在节流过程前后,内能增加为,外界对这部分气体所作的功是,因为过程是绝热的,,根据热力学第一定律有移项后得根据焓的定义式得(1)焓是一个状态量,可见节流前后气体的焓不发生变化,但对于气体在过程中所经历的非平衡态焓是没有定义的。
这儿指的是初态和终态气体的焓相等。
∙J-Th效应实验表明:气体经节流后,其温度可能升高,也可能降低,也可能不变,我们称在节流过程中温度随压强改变的现象为焦耳—汤姆逊效应。
这个效应用焦汤系数来表示,它的定义为(2)上式的右方表示在等焓过程中温度随压强的改变,应当注意的是在节流过程中气体的压强总是降低的(dp<0),因而1)当时,表明节流后气体的温度降低了,气体节流后变化了,称为正效应;2)时,即在节流后气体变热了,叫做负效应;3)时,气体经节流后温度不变,叫做零效应;一种气体节流后温度如何变化与状态方程及气体节流前后的状态有关。
3,与态式的关系取T,P为状态参量,状态函数焓可表为H=H(T,P)。
应用数学公式,其偏导数间应存在下述关系:及定量热容量得(3)又由体胀系数定义代入上式得(3)(4)给出了焦—汤系数与物态方程及热容量的关系将1mol理想气体物态方程代入(3)得∴说明理想气体在节流过程前后温度不变,理想气体没有焦—汤效应。
J—Th图(3)式右边的参量是可以由实验测量的,我们可以画出T—P曲线,如图是的J—Th图,图中实验代表等焓线,可由实验直接测定,等函数的斜线,虚线处等函数的斜线,使的温度称为焦汤效应的转换温度,的曲线称为转换曲线,如图所示虚线即表示转换曲线。
虚线左边,节流过程降温(正效应),虚线右边,节流过程升温(负效应)。
所以可以利用节流的降温效应使气体降温而液化。
二、气体的绝热膨胀另一种使气体降温的有效方法是使气体作准静态的(可逆)绝热膨胀(等熵膨胀),因为绝热过程所以,所以准静态绝热过程系统的熵不变。
分析绝热膨胀过程中气体的温度随压强的变化关系,取T,P为状态参量,状态函数熵可表为S=S(T,P)。
其全微分方程由,和麦氏关系代入上式得(5)上式右方总是正的,所以,这表示气体在绝热膨胀中随着压强的减小,它的温度总是降低的,也就是气体绝热膨胀变冷了。
§2,4基本热力学函数的确定我们通过热力学第一和第二定律,态函数的全微分特性及Maxwell关系,导出热力学函数的微积分方程表达式,并通过此函数给出内能和熵的直接测量参数的表达式,即可认为这个热力学函数可被测定了。
1、以T,V为状态参量,基本热力学函数的测定物态方程为(1)内能的全微分为(2)沿一条任意的积分路线求积分,可得(3)(3)式既内能的积分表达式。
以T,V为变量熵的全微分为(4)求线积分得(5)此即熵的积分表达式由(3),(5)式可知,如果测得物质的和物质方程即可求得内能函数和熵函数.2、以T,P为状态参量,基本热力学函数的确定物态方程为(6)以T,P为独立参量时,先求H是很方便的焓的全微分为(7)求线积分得(8)此即焓的积分表达式由即可求得内能熵的全微分为(9)上式求线积分,得(10)此即熵的积分表达式。
由式(8)(10)可知,只要测得物质的和物态方程,就可以求得物质的焓,内能和熵。
同样方法,利用态函数的全微分特性,热力学定律的微分表达式及Maxwell关系,可求得所有热力学函数的表达式。
通过这些表达式,利用直接测得的物理量和物态方程,可完全地确定热力学函数。
3、举例,求Van(范)氏气体系统的内能U和熵S解:范氏气体的物态方程为得由麦氏关系得§2.5特性函数一、特性函数1、定义特性函数:适当选择独立变量(称为自然变量)之后,只要知道一个热力学函数,就可以通过求偏导数求得均匀系统的全部热力学函数,从而把均匀系统的平衡性质完全确定。
这个热力学函数称为特性(征)函数。
内能U作为S,V的函数,焓H作为S,P的函数,自由能F做为T,V的函数,吉布斯函数G 作为T,P的函数都是特性函数。
在应用上最重要的特性函数是自由能F和吉布斯函数G,相应的独立变量分别是T,V和T,P,下面分别说明之。
2、已知自由能F(T,V)以T,V为独立参量,(1)全微分方程:(2)可以求得系统的熵及压强为(3)求出的压强P是以T,V为参量的函数,实际上就是物态方程。
由自由能的定义式,得内能(4)称为吉布斯—亥姆霍兹(H.Helmholtz)第一方程。
3、已知吉布斯函数G(T,P)以T,P为独立参量(5)G的全微分方程为(6)可以求系统的熵和体积,(7)由吉布斯函数定义式得内能(8)又(9)(10)自由能和焓也可以由吉布斯函数G(T,P)求得其中(10)称为吉布斯—亥姆霍兹第二方程。
二、求表面系统的热力学函数表面张力是在液体表面发生的现象,液体表面是液体与其它相的分界面实际上是很薄的一层,其中性质在与表面垂直的方向上有急剧的变化。
在理论处理上把这一薄层理想化,作为一个几何面而假设在分界面两方的两相都是均匀的,假设使液相的质量包括全部质量,因此表面作为一个单独相时不包括有液相的质量。
把表面当作一个相时,它有面积A,内能U,熵S,表面张力系数,已知在等温的条件下,使液体表面积增大dA,表面张力的功与自由能的减少有如下关系:实验表明:表面张力系数仅与温度有关,与表面积大小无关,积分上式并取积分常数为0,则(1)即表面张力系数等于单位面积的自由能。
写出表面系统的基本方程(自由能的全微分)(2)由此得(3)其中S为表面系统的熵,由于只是温度的函数,所以上式中的就可写为。
所以(4)由自由能的定义式得(5)由(1)(4)(5)可以看出,只要知道了表面张力系数,就能得到表面系统所有的热力学量,在这个意义上,我们说代表了表面系统的特性。
§2.6 平衡辐射的热力学一、平衡辐射1、定义:在光学中已经讲过,温度高于0K的任何物体都以电磁波的形式向外辐射能量。
对于给定的物体而言,在单位时间内电磁辐射能量的多少以及辐射能量按波长的分布等,都取决于物体的温度,因此,这种辐射就称为热辐射。
物体作热辐射的同时还吸收外界物体的辐射能,如果物体对电磁波的辐射和吸收达到平衡则称为平衡辐射。
2、空腔辐射假设有一个封闭的空腔,腔壁保持恒定的温度T,由于腔壁不断发射和吸收辐射能,经过一定的时间后,空腔内的电磁辐射场将与腔壁达到平衡,形成平衡,形成平衡辐射场或空腔辐射,具有共同的温度T。
应用热力学第二定律能够证明:腔内电磁辐射的能量(内能)密度和能量密度按频率的分布只取决于温度,与空腔的其它性质(材料、形状等)无关。
用反证法证明:证明:我们考察用不同材料制成的形状不同的两个空腔A和B,它们有共同的温度,如图所示:如果能量密度的分布与空腔的材料和形状有关,我们可以假设A的能量密度大于B,这时用细管把A,B连通起来,并在A,B与细管连接处插入一个滤光片,只允许圆频率为到范围内的电磁波(辐射)通过,能量将从A辐射到B而使A降温,B升温,这样就使温度相同的两个空腔A,B自发地出现了温度差。
于是就可以设计一个热机工作于A,B之间,对外作功,两相连的空腔相当于单一热源的热机,这就违背了热力学第二定律的开氏表述(不可能从单一热源吸热使之完全变成有用的功而不引起其它变化)。
所以假设不正确,即证得空腔辐射的能量按频率的分布只可能是温度的函数,而与腔壁的材料和形状无关,3、平衡辐射的热力学函数由经典电磁理论得知辐射压强P与辐射能量密度u的关系为:(1)将空腔辐射看作热力学系统,我们选温度T和体积V为状态参量。