第五章 故障树分析
第五章 故障树分析

阀门
反应堆
建立故障树:
可 靠 性 设 计
T
没有水流到反应堆
底事件集合:
+
X X1, X 2 , X 3
E
●
X1
阀门故障或关闭
泵抽不到水
X 1 割集: X 2 , X 3 X 1, X 2 , X 3
......
X2
泵1故障不运行
X3
泵2故障不运行
最小割集:
X 1 X 2 , X 3
可以定量地研究“底事件”对“顶事件”的影响的 一种分析方法。俗称“打破砂锅问到底”的方法。
二、基本特点
可 靠 性 设 计
1、针对系统的不希望事件(顶事件),即某种特定的 故障形式进行分析,而非一般性分析。
2、FTA 是一种由上而下(由系统到元件)的系统完整的 失效因果关系的分析程序。旨在不漏过一个基本故障模 式。 3、FTA对系统可靠性可以定性分析、也可以定量分析, 它使用树形图来进行分析,便于采用计算机辅助建树和 编程计算。
可 靠 性 设 计
(5)吸收,将所有割集相互比较去掉被包含的割 集,剩下的便是故障树的最小割集。
◈定性分析:
例:反应堆抽水系统
(1)所含底事件越少的最小割集越重要; (2)在最小割集底事件数目相同的条件下,在不 同最小割集中重复出现次数越多的底事件越重要;
(3) 在底事件数目少的最小割集中出现的底 事件比在底事件数目多的最小割集中出现的底事 件重要。
因为割集的组合还是割集,所以一棵故障树的割集总数是不定的(对分析故障树意义不大)。
最小割集的意义:
可 靠 性 设 计
最小割集对降低复杂系统潜在事故风险具有重大意义 如果能使每个最小割集中至少有一个底事件恒不 发生(发生概率极低),则顶事件就恒不发生(发生 概率极低) ,系统潜在事故的发生概率降至最低 消除可靠性关键系统中的一阶最小割集,可消除单点 故障 可靠性关键系统不允许有单点故障,方法之一就是 设计时进行故障树分析,找出一阶最小割集,在其 所在的层次或更高的层次增加“与门”,并使“与 门”尽可能接近顶事件。
《故障树分析》课件

编制方法
02
03
编制注意事项
采用演绎法,从上至下逐层展开 ,将上一级故障与下一级故障之 间用逻辑门连接。
确保故障树完整、准确,避免遗 漏重要故障路径,同时简化不必 要的细节。
故障树的规范化
规范化目的
为了便于分析和比较不同系统的故障树,需要 将故障树规范化。
规范化方法
采用统一的符号和格式表示各级故障事件和逻 辑门,制定规范化的故障树绘制标准。
详细描述
航天器故障分析涉及多个子系统,如推进系统、控制系统、通信系统等,每个子系统又包含多个部件。通过故障 树分析,可以识别出导致航天器故障的关键因素,进而采取相应的预防措施,提高航天器的可靠性。
案例二:核电站故障分析
总结词
严重后果、安全重要性
详细描述
核电站的故障可能导致放射性物质泄漏、环境污染等严重后果。通过故障树分析,可以识别出导致核 电站故障的潜在因素,如设备故障、人为操作失误等,并制定相应的预防措施,确保核电站的安全运 行。
故障树软件的优势与局限性
01
需要一定的学习成本,需要用户具备一定的故障树分
析基础;
02
对于大型和复杂的故障树,可能需要较长时间进行建
模和分析;
03
对于某些特定领域或复杂系统,可能需要定制化的故
障树软件或结合其他工具进行综合分析。
05
故障树分析案例
案例一:航天器故障分析
总结词
复杂系统、高可靠性要求
规范化要求
确保规范化后的故障树结构清晰、易于理解,同时保持原有的逻辑关系。
故障树的简化
简化目的
为了提高故障树分析的效率和实用性,需要对过于复杂的故障树进 行简化。
简化方法
合并重复或相似的基本事件,去除对顶事件影响微弱的基本事件, 简化复杂的逻辑关系。
第五章 故障树分析01

(X )
i 1
n
xi
(5-1)
其故障树如图5-9所示,相当于可 靠性框图并联系统。
31
图5-9
2. 故障树或门的结构函数
( X ) x1 x 2 x n
i
i 1, 2 , , n
x 当
只取 0 ,1二值时,则有
( X ) 1 1 x i
(3)绘制故障树见图5—4。
24
图5-4 例5-2的故பைடு நூலகம்树
例5-3:某输电网络的变电站和线路 情况见图5-5,电网失效判据同例5-2,请画出 其故障树图。
25
解: 按例5-2的 方法进行分析, 绘制该例子的故 障树见图5—6。
图5-5电网系统
26
图5-6 图5-5的故障树
例5 – 4 已知某飞机有3个发动机(A、B、 C),当其同时发生故障时,飞机不能正常飞行。 A、B、C的故障树见图5—7(a)、(b)、( c)。 使用相同和相似符号绘制飞机不能正常 飞行的故障树。
由德· 摩根定律,即式(2-4)和式(2-5)得
(5-6)
T T x1 x 2 x n x1 x 2 x n
该结构函数正是故障树或门的结构函数。
因而可靠性串联系统与故障树或门系统是等价 的,如图5-13所示。
i 1
n
32 (5-2)
其故障树如图5-10所示,相当于可靠性框图 串联系统。
图5-9
图5-10
3. n中取k的结构函数
1 (X ) 0 当 i k i 1, 2 , , n 其他
33
(5-3)
故障树分析(上)课件

顶事件选择原则
选择具有重大影响的故障或事故 作为顶事件,能够为分析提供明 确的目标和方向。
故障树的编制
编制步骤
从顶事件开始,逐级向下分析导致顶 事件发生的直接原因和间接原因,直 到基本事件。
编制方法
采用演绎法,从结果追溯原因,逐层 深入分析。
03
事件
在系统中发生或可能发生 的状态变化,如设备故障 、人员失误等。
门
表示事件之间的逻辑关系 ,如与门、或门等。
树
表示事件之间的层次关系 ,从顶事件到底事件的层 次结构。
故障树分析的步骤
确定顶事件
顶事件是导致系统故障的最终 结果事件,通常是系统中最不
希望发生的事件。
软件将分析结果以图形、表格等形式输出 ,方便用户查看和解读。
故障树软件的应用实例
航空航天领域
在航空航天领域,故障树软件广 泛应用于航天器的故障诊断和可 靠性分析,为航天器的安全运行
提供保障。
核能工业领域
在核能工业领域,故障树软件用于 分析核反应堆的故障模式和影响, 为核设施的安全运行提供决策支持 。
故障树分析(上)课件
• 故障树分析简介 • 故障树的建立 • 故障树的分析技术 • 故障树的软件应用 • 故障树的局限性及未来发展
目录
01
故障树分析简介
定义与目的
定义
故障树分析是一种系统工程技术,用于分析系统故障的原因和机理,识别系统 中的薄弱环节,并采取相应的改进措施。
目的
通过故障树分析,可以确定导致系统故障的各种可能因素,评估它们对系统可 靠性的影响,并制定相应的预防和改进措施,提高系统的可靠性和安全性。
第五章故障树分析

8
最小割集(MCS)的判定:从割集中任意移走若干个基
本事件后,就不是割集了,则称这个割集为最小割集。
把每个割集中的基本故障事件代表数字由小到大排列:
1,2,3,1,2,4,5,3,4,53,1,2,2,3,1,3,1,2
1,2,3,1,2,4,5,3,4,5,1,2,3,2,3,1,3,1,2
1,2,z 1,2,4,5
Q 3,K 3, X 3,4,5
3,Y 3,1,2 U 2,3 2,3
1,2 2,3 1,3 3,4,5
如表5 2所示。
R V 1,3 1,3 W 1,2 1,2
2. 上行法求故障树的最小割集(MCS)
9
上行法又称Semandeses法。上行法顾名思义就是从故障树
的底事件开始逐级向上进行,利用集合运算规则进行简化,最
障代号
1阶
2阶 3阶 序
8
1
1
2
2
1
2
4
2
3
6
2
1
1
1
4
3
1
1
5
1
5
7
1
表5-6 电路2中各元器件的重要性顺序
元器件 故
障代号 2
在MCS中出现的次数 1阶 2阶 3阶
1
重要性 顺序
1
7
1
3
1
1
2
8
1
1
4
2
5
2
3
6
2
1
1
4
例5-9 对图5-3所示电网系统进行故障树定性分析。找出 14 其系统中的薄弱环节,并指出改进后电网的薄弱环节。
图5-4
其结果与下行法求得的 最小割集相同。
系统可靠性设计中的故障树分析案例解读(五)

系统可靠性设计中的故障树分析案例解读在现代科技发展的浪潮中,系统可靠性设计日益受到重视。
无论是航空航天、汽车工业还是电子设备制造,都需要在设计阶段对系统的可靠性进行充分评估和分析。
而在这个过程中,故障树分析作为一种重要的工具,被广泛应用于系统可靠性设计中。
本文将通过一个故障树分析案例,来探讨系统可靠性设计中故障树分析的应用和解读。
案例背景某国内航空公司引进了一款新型飞机,经过一段时间的运营后,发现了一些飞机系统的故障。
这些故障包括发动机停转、液压系统失效、飞行控制系统故障等,给飞机的运营安全带来了一定的隐患。
为了解决这些问题,航空公司决定进行系统可靠性设计分析,通过故障树分析找出导致这些故障的根本原因,从而制定相应的改进措施。
故障树分析首先,对于飞机系统的故障进行了分类,然后对每类故障进行了详细的分析。
以发动机停转为例,故障树分析的过程如下:1. 故障识别:首先确定发动机停转是一个具体的故障事件。
2. 确定基本事件:对于发动机停转这一故障事件,可以确定一些基本事件,比如燃油供应不足、点火系统故障、机械损坏等。
3. 构建故障树:将上述的基本事件作为根节点,然后根据这些基本事件之间的逻辑关系,构建出一个完整的故障树。
比如,燃油供应不足可能由于油泵故障、管路堵塞等原因导致,点火系统故障可能由于电路故障、点火塞老化等原因导致。
4. 定量分析:对于故障树的每一条逻辑路径,可以进行定量分析,得出相应的失效概率。
然后根据这些概率,可以计算出整个系统发生发动机停转的概率。
案例解读通过故障树分析,可以发现发动机停转这一故障事件可能由多种基本事件导致,而这些基本事件又可能相互关联。
这就为我们找出故障的根本原因提供了合理的途径。
首先,对于每一个基本事件,我们可以进一步分析其概率和影响。
比如,燃油供应不足的概率是多少?一旦发生燃油供应不足,对飞机系统的影响有多大?这些定量分析可以帮助我们更加准确地评估飞机系统的可靠性。
《故障树分析》课件

用于分析飞机系统的故障,并制定维修计划和改进措施。
核能工业⚛️
用于评估核电站的安全性,并提供预防和应对潜在故障的建议。
医疗设备
用于分析医疗设备的故障,并提高设备的可靠性和安全性。
故障树分析的基本思想和步骤
1
基本思想
将系统的故障转化为逻辑关系,在故障
步骤一
2
树中表示故障事件和其引起的原因之间
可以帮助决策者制定预防和应对故障的策略,提高系统的可靠性和安全性。
故障树分析的缺点
1
时间消耗
绘制和分析故障树需要耗费大量的时间和人力资源。
2
数据需求
需要大量的可靠性和故障数据来支持故障树分析的计算和评估。
3
专业知识
需要具备系统工程和故障分析的专业知识才能进行准确的故障树分析。
故障树分析与其他分析方法的区别
3
步骤二
的关系。
确定故障事件和其引起的基本原因。
绘制故障树,将基本原因和故障事件用
步骤三
进行逻辑运算,计算故障事件的概率和
系统的可靠性。
4
逻辑门连接起来。
故障树分析的优点
1
全面性
能够综合考虑系统中各种潜在故障的可能性。
2
可视化
通过绘制故障树,可以直观地展示故障事件和其引起的原因之间的关系。
3
决策支持
乘积。
生概率的和减去各基本事件同
的补数。
时发生的概率。
故障树的概率计算
通过对故障树进行逻辑运算,可以计算故障事件发生的概率。常用的方法包
括布尔代数法、割集法和事件树法。
《故障树分析》PPT课件
故障树分析是一种常用的风险分析方法,用于识别系统中的潜在故障并分析
故障树分析详细范文

故障树分析详细范文1.确定系统故障:首先,需要明确定义系统的故障。
故障可以是系统无法达到预期性能、无法执行特定功能或完全失效等。
2.确定故障起因:然后,需要确定导致系统故障的起因。
这可以是单个组件的故障、操作员错误、环境因素等。
3.创建故障树:接下来,需要创建故障树。
故障树是一个逻辑结构图,用来表示系统故障的可能起因和后果之间的关系。
树的根表示系统故障,分支表示可能的故障起因,叶节点表示故障的具体原因。
4.评估故障概率:在故障树中,需要为每个故障事件分配一个概率值,以表示该事件发生的概率。
这可以通过专家评估、数据分析或以往经验得出。
5.分析故障树:在故障树中,如果存在从顶部到底部的路径,即从根节点到叶节点的路径,表示系统发生故障的逻辑。
通过分析故障树,可以识别导致系统故障的关键故障事件。
6.提出改进措施:最后,根据故障树分析结果,可以提出改进措施,减少系统故障的概率。
例如,可以通过增加备用设备、改进操作程序或提供培训来提高系统的可靠性。
然而,故障树分析也存在一些限制。
首先,它需要大量的时间和专业知识来创建和分析故障树。
其次,故障树分析通常只考虑故障发生的可能性,并未考虑故障的后果严重性。
因此,在进行故障树分析时,需要考虑到这些限制,并结合其他方法来综合评估系统的可靠性和安全性。
总之,故障树分析是一种有效的故障分析方法,能够帮助工程师理解和评估系统的可靠性。
通过详细的故障树分析,可以准确地识别系统故障的起因,并提出相应的改进措施,以提高系统的可靠性和安全性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
X 2 X 4 X5
X1 X 3
X1 X 5
在这四个割集中任一个出现顶事件都会出现.每个割集出现的概率等于该割集内各个底事件都出现的概率.
设各个底事件是相互独立的,则各割集出现的概率为:
pk1 p3 p4
pk2 p2 p4 p5
pk3 p1 p3
pk4 p1 p5
●
◈或门:表示至少一个输入事件发生时,输出事件才 发生。
符号:
+
例:
四、实施步骤
可 靠 性 设 计
熟悉产品任务书、原理图、操作规程、维修规程等。
1、熟悉分析对象
确定故障判据。
了解产品与零件间的功能关系、使用环境、人员有关情况,使用维修情况。
2、选择顶事件(结果,不希望事件)
顶事件应是致命度高的。 妨碍完成任务、对安全构成威胁、严重影响经济效益 如:电视机无图像、无伴音;无人控制的人造卫星的通讯中断等。 一个系统可以选不同的顶事件,建几个故障树。
可 靠 性 设 计
2、最小割集的求法 ◈基本要点: 与门增加割集的大小,或门增加割集的数量。
(1)从顶事件开始,自上而下进行;
(2)用门的输入事件置换输出事件
(3)遇到与门则把与门下面的所有输入事件都排在 同一行上;遇到或门则把或门下面的所有输入事件 都排在一列上。
(4)去掉各行内多余的重复事件和多余的重复行, 则每一行都是故障树的一个割集,但不一定是最小 割集。
可 靠 性 设 计
☞能否在设计阶段查找可能使系统产生故障的 原因并及时改进?
☞在制造、试验、使用、维修过程中如何查找 故障原因?
数以万计的元 件,怎么找?
采用故障树分析法(FTA) 一、FTA的含义
60年代发展起来的用于大型复杂系统可靠性、 安全性分析和风险评价的一种方法。1962年 用于导弹发射控制系统的可靠性分析。
i 1
当所有底事件都出现时,顶事件才会出现。
T
●
n
X1
…
Xn
可 靠 性 设 计
2、或门故障树结构函数
( X ) 1 1 X i max( X 1 , X 2 ,..., X n )
i 1
只要有一个底事件出现,顶事件就出现。
n
T
+
X1
…
Xn
二、最小割集及最小路集
1、最小割集 故障树的底事件集合: X X1 , X 2 ,..., X n X的一个子集:
可以定量地研究“底事件”对“顶事件”的影响的 一种分析方法。俗称“打破砂锅问到底”的方法。
二、基本特点
可 靠 性 设 计
1、针对系统的不希望事件(顶事件),即某种特定的 故障形式进行分析,而非一般性分析。
2、FTA 是一种由上而下(由系统到元件)的系统完整的 失效因果关系的分析程序。旨在不漏过一个基本故障模 式。 3、FTA对系统可靠性可以定性分析、也可以定量分析, 它使用树形图来进行分析,便于采用计算机辅助建树和 编程计算。
3、建立故障树
从上而下逐级建树,顶事件写在最上方框内,引起顶事件的全部直接原因事件写在第二排,顶事件与这些原因事件用逻辑门相联接。 这样一级一排,逐级分析下去,直到最底层不再分解的原因事件(底事件)为止。
例5-1:
如图是一个供水系统,E为水箱,此系统的 规定功能是向B侧供水。
故障树:
L1 E B侧无水
顶事件出现的概 率是否等于这四 个概率的和?
F1 pk1 pk2 pk3 pk4
可 靠 性 设 计
否,因为这四个最小割集不是相互独立的.
P( A B) P( A) P( B) P( AB)
P( A B C ) P( A) P( B) P(C ) [ P( AB) P( BC ) P( AC )] P( ABC )
从而分析薄弱环节
可 靠 性 设 计
3、最小路集
故障树的底事件集合: X X1 , X 2 ,..., X n
X的一个子集:
P X i , X i 1,..., X m
若子集中所有底事件都不发生时,顶事件也 必然不发生,则P为故障树的一个路集。 若只要P中有一个底事件发生,顶事件就发生, 则P为故障树的最小路集。
可 靠 性 设 计
最小割集可以指导系统的故障诊断和维修
如果系统某一故障模式发生了,则一定是该系统中 与其对应的某一个最小割集中的全部底事件全部发 生了。进行维修时,如果只修复某个故障部件,虽 然能够使系统恢复功能,但其可靠性水平还远未恢 复。根据最小割集的概念,只有修复同一最小割集 中的所有部件故障,才能恢复系统可靠性、安全性 设计水平。
3 、建树只考虑“ 0 ”,“ 1 ”状态,而大部分系统存 在局部正常局部故障,元件、系统的故障状态多于两 个时,故障树分析比较困难; 4、目前缺乏数据,着重定性分析。
四、故障树的定量分析
可 靠 性 设 计
设: 底事件Xi出现的概率
pi
不出现的概率 qi 1 pi 顶事件T出现的概率 不出现的概率 则:
4、用于大型复杂产品,如核电站、航天、导弹、化工 厂设备等的设计、制造、使用维修和可靠性管理。
波音407在希腊发生故障,工程师扛去一棵树解决了问题。
可 靠 性 设 计
缺点: 1、对建树者要求知识面广,经验丰富,否则易建错、 遗漏; 2、对复杂系统建树,工作量大,人力、物力消耗大;
75年美一反应堆(原子能发电站用),25人用了一年时间建树。现已研究用计算机自动建树,有了成果;
K X i , X i 1,..., X e
若子集中所有底事件都发生时,顶事件也必 然发生,则K 为故障树的一个割集。
可 靠 性 设 计
若只要K中任何一个底事件不发生,顶事件就 不发生,则K为故障树的最小割集。
是从元件的故障状态来描述系统的故障状态。
例5-2:反应堆抽水系统
泵1
无穷水源
泵2
阀门
反应堆
建立故障树:
可 靠 性 设 计
T
没有水流到反应堆
底事件集合:
+
X X1, X 2 , X 3
E
●
X1
阀门故障或关闭
泵抽不到水
X 1 割集: X 2 , X 3 X 1, X 2 , X 3 ......X2Leabharlann 泵1故障不运行X3
泵2故障不运行
最小割集:
X 1 X 2 , X 3
设: F1表示每个最小割集出现的概率之和; F2表示最小割集两两同时出现的概率之和; F3表示最小割集三三同时出现的概率之和; F4表示最小割集四四同时出现的概率之和;
则:
p F1 F2 F3 F4 p F1
T
+
并联可靠性框图:
1
X1 T
●
…
Xn
2
…
n
X1
…
Xn
可 靠 性 设 计
按此系统框图画出等价故障树。
E A B C D F
使用故障树是为了对被研究复杂系统产生的故障进行定量分析。
但有时由于: (1)底事件失效概率不全; (2)不具备分析软件等原因不能进行定量分析。 因此,也应会用其故障树对系统失效的情况进行定性 分析。
X1 X 3
X1 X 5
三、故障树的评价
优点:
可 靠 性 设 计
1 、形象直观,能反映系统、基本事件间的逻辑关 系,找出薄弱环节,提出改进对策。 2、能考虑人、环境因素; 3、便于培养技术人员 ;
长沙某造纸厂,使用3150造纸机,生产新闻纸,48~50g/m,有400多种故障原因,老师傅心中有数,非他不行。建 树后,含检查人员失误、人员操作、飞蛾故障,…,都建了树。现三个月培养一个维修工人。
pi P( X i 1)
p P( 1)
p
q 1 p
qi P( X i 0)
q P( 0)
◈如已知底事件出现的概率 的概率 p 为多少?
那么顶事件出现 p, i
以上例为例分析:
在上例中,故障树的最小割集为:
可 靠 性 设 计
K 1:
K 3:
X3 X 4
K 2:
从底事件正常状态描述系统正常状态。
4、最小路集的求法(以反应堆抽水系统为例) 建立成功树:
研究顶事件不发生的条件,是故障树的对偶树。
可 靠 性 设 计
T
●
下行法:
X1 E
X1 X 2 X1 X 3
X1
E
+
X1, X 2 最小路集: X 1 , X 3
X3
X2
可 靠 性 设 计
例5-3: 用下行法求该故障树的最小割集和最小路集.
T +
E1
●
E2
●
X4
E3 + X3
X1
E4 + X3 X5
E5
●
X2
X5
E1 E2
X 4 E3 X 1 E4
X4 X3 X 4 E5
可 靠 性 设 计
X 4 X3 X 4 X 2 X5
X1 X 3 X1 X 5
X1 X 3 X1 X 5
最小割集为:
X3 X 4
X 2 X 4 X5
成功树为:
可 靠 性 设 计
(5)吸收,将所有割集相互比较去掉被包含的割 集,剩下的便是故障树的最小割集。
◈定性分析:
例:反应堆抽水系统
(1)所含底事件越少的最小割集越重要; (2)在最小割集底事件数目相同的条件下,在不 同最小割集中重复出现次数越多的底事件越重要;
(3) 在底事件数目少的最小割集中出现的底 事件比在底事件数目多的最小割集中出现的底事 件重要。