计算机支持的协同工作

合集下载

计算机支持协同设计系统的集成模型和实现方法

计算机支持协同设计系统的集成模型和实现方法
产 品设 计 需要 不 同工 种专 业人 员 的相 互 配合 。 在非 协 同式 产 品设计 中 ,各工 种专业 人员通 常采用 各 自的设计 系统 分别进 行设计 。为完 成一项设 计任 务 ,需 要重 复输入 大量数 据 ,而且很难保 证数据 的 致性 和冗余 量 。虽然 目前 也有 部分集 成化软件 能
成模型 和 实现 方 法。
关键词 :计算机 支持协同工作 ;计算机支持协同设计 ;群件 中图分类 号 :T 3 1 P9 文献标 志码 :A 文章编号 :17 4 3 (00 1 o5 O 63— 99 2 1 )0 一 o 6一 3 多学科专家协同工作需要一项能够真正克服距 离、时间、异种计算机设备等阻碍的强大使能技术 的支持 ,使 专家 们 能够 “ 虚拟 同地” 地 一起 工 作¨ 。计算机支持协 同工作正是一项这样 的使能 J 技术 。计算机 支持 协 同工作经过 多年 的发展 ,现 已 形 成 了一个新 的多 学科 领域 ,其 目的在 于从理论 和 具体应用的角度出发 ,解释和研究人们的协作与交 流行为、以及使用了计算机后这种协作与交流受到 哪些影响 。计算机支持协同设计是计算机支持 j 协同式产品设计可以实现产品设计中各工种间 的协调 ,但需要解决如下两个方面问题:其一是不 同工种间的配合与协同问题 ; 其二是同一工种不同 专业人员 间 的配 合与协 同 问题 。 传统的解决方法是将相关专业人员召集在一 起 ,当面交 流 、协调解决 问题 。因为 问题 或矛 盾总 是 不断 出现 ,因此 在整个 产 品设计 期 问就需要 不断 地进行 交流 和协 调 。但 由于 种 种客 观 条件 的 限制 , 很多问题或矛盾仍得不到及时解决 ,给产 品生产造 成一定的损失和延误。 采用计算机支持协同设计技术、实施计算机支 持协 同设 计系统 可及 时传递设计 信 息 、能 够很好 地 解 决 以上 问题 。计 算机 支持协 同设计 是一种 将人们 的合作设计行为模式与计算机技术融合为一体的新 兴技术,即在计算机技术支持的环境下 ,一个群体 协 同完 成一项 共 同的设计任 务 。计算机 支持 协同设 计为了支持群体协同设计 ,其系统必须为用户提供 共享 资源和共 享空 间 ,并具 有群体 工作 、动态 、并 行 、异 地及 同步和异 步等功 能 。 计 算机支 持协 同设 计 系统 要求 的协 同功能 主要 包 括 同步 、异 步和发布 公告 。发布公 告功 能可通 过 设置公告板来实现。因为信息公布的对象是有选择 性的,所以系统应提供选择相关设计人员的设置。 同步实 时问题 可 采 用 “ 白板 ” 技 术 解 决 J 对 不 。 同工 种 间的 配合 和 同一 工 种 不 同成 员 间 的协 作 问

关于工作流的信息管理系统研究

关于工作流的信息管理系统研究
给 服 务方 的 Tasc o Srie rnat n ev 。完成 递交后 i c
Ve otlr i Cn oe监视服务器的响应 ( w rl 框架设计 中 处 理为一个 X L数据 ,一般包含了视 图数据 、 M 格 式和操 作信息)Ve otlr ,i Cn oe分析该响应数 w rl 据, 执行相应功能 , 并刷新用户视图。

能采用 了不同的技术实现 , 据层 (a ces 数 D t A cs) a 完成 了数据存储 定义和操作规则定义 ,客户端 与 服务器端 的交互模 式采用 了经典的 M C模 V 式。 32用户接 口层 . 用户接 口层 U e It f e s ea ) r n r c 的核心任务是提 供用户一个可操作的用户视 图。
Cn oe组件监控用户在视图上的所有有 otlr rl 效操作 ,并为每个操作产生一个描述该操作对 应 执行功能 的定义( t n, a i )框架设计中处理为一 co 个X L M 节点数据 。当 Ve otlr i Cn oe 捕获到一 w rl 类特殊事件( eu sS b i R qet um t 事件) 时整理所有有 效 的 at n 形 成一个 Ta s tn 义 , co , i r ai 定 n co 框架设 计 中处理为一个 X L数据 , M 同时把该定义提交
3 . 3数据处理层
该层的主要功能是完成数据的有效存储 和 读写。在设计时通过定义 、 分配角色信息 , 允许 全部用户 的 atn co 或部分 用户的 a i i co tn直接 进 行数据存储 。默认为凡是涉及数据读写 的用户 at n均需通过 V ry gn 的校验 , co , i ef A et i 以提供 较 高的数据安全性。 在框 架中 ,数据以一个 “ 整体”有机体出 一 现。在设计数据存储 时, 应该根据使用的数据库 服务器进行灵活设计 。如使用传统的关系型数 据库 系统 进行数 据存 储 , 应该对“ ” 则 文 的数据 进行分割存储 。应另行设计进行拆和整的两类

计算机体系结构硬件与软件的协同设计

计算机体系结构硬件与软件的协同设计

计算机体系结构硬件与软件的协同设计计算机体系结构硬件与软件的协同设计是指在计算机系统设计过程中,硬件和软件相互配合、相互影响,共同实现系统功能的设计方法。

它将硬件和软件的设计过程紧密结合,充分发挥二者的优势,以达到系统性能、可靠性和可维护性的最佳平衡。

本文将从协同设计的意义、策略和实践中阐述计算机体系结构硬件与软件的协同设计。

一、协同设计的意义计算机体系结构的设计是复杂而庞大的工程,在过去的发展中,一直以硬件为主导。

然而,随着计算机应用需求的不断变化和复杂化,硬件单独设计已经无法满足需求。

协同设计的意义在于:1. 提高整体性能:硬件和软件可以相互借鉴和优化,从而提高系统的整体性能。

在协同设计中,硬件可以通过支持新的指令集、处理器架构等方式提升系统性能。

而软件层面则可以通过算法优化、系统调度等方式进一步提升性能。

2. 实现功能创新:协同设计可以为系统带来新的功能创新。

通过硬件和软件的紧密协作,可以实现更复杂的处理功能和应用场景。

例如,在人工智能领域,可以通过定制硬件和优化软件算法相结合,实现更高效的深度学习系统。

3. 提高系统可维护性:协同设计可以减少系统的维护成本。

硬件和软件之间的协同设计可以使得系统的软硬件接口更加稳定和独立。

这样,在硬件或软件需要进行更新或更换时,可以更加方便地进行维护和升级。

二、协同设计的策略在计算机体系结构硬件与软件的协同设计中,需要采取一定的策略来实现最佳的协同效果。

1. 平台架构设计:在协同设计初期,需要从整个系统的角度出发,设计合适的平台架构。

平台架构包括硬件平台和软件平台,二者需要相互匹配和协同工作。

平台架构设计应该综合考虑系统的性能、功耗、可扩展性等因素。

2. 接口标准化:为了保证协同设计的顺利进行,需要制定统一的硬件和软件接口标准。

统一的接口标准可以减少接口兼容性问题,提高系统的稳定性和可维护性。

3. 软硬件协同开发:协同设计不仅要求硬件和软件在设计过程中相互配合,还需要采用软硬件协同开发的方法。

计算机技术的软硬件协同配合方法

计算机技术的软硬件协同配合方法

计算机技术的软硬件协同配合方法随着科技的不断进步,计算机技术已经成为了现代社会不可或缺的一部分。

在计算机技术的发展过程中,软硬件的协同配合方法起到了重要的作用。

本文将探讨计算机技术的软硬件协同配合方法,并分析其在不同领域的应用。

一、软硬件协同配合的基本原理软硬件协同配合是指计算机系统中软件和硬件之间的相互配合和协作。

软件是通过编程语言编写的,可以控制硬件执行特定的任务。

而硬件则是计算机的物理组成部分,包括处理器、内存、硬盘等。

软硬件协同配合的基本原理是软件通过编写指令,控制硬件执行相应的操作。

软件可以利用硬件的计算能力和存储能力,实现各种功能。

例如,操作系统是一种软件,它可以管理计算机的资源,为用户提供友好的界面。

而硬件则提供了计算和存储的能力,使得操作系统能够顺利运行。

二、软硬件协同配合的应用领域软硬件协同配合方法在各个领域都有广泛的应用。

以下将分别介绍在科学研究、医疗保健和智能交通领域的应用。

1. 科学研究在科学研究领域,软硬件协同配合方法可以帮助科学家处理大量的数据和进行复杂的计算。

例如,在天文学领域,科学家使用计算机软件分析天体数据,通过对数据的处理和计算,可以得出有关宇宙演化和星系形成的结论。

而硬件则提供了足够的计算能力和存储能力,使得科学家能够高效地进行数据处理和计算。

2. 医疗保健在医疗保健领域,软硬件协同配合方法可以帮助医生进行诊断和治疗。

例如,计算机辅助诊断系统可以通过分析患者的医学影像数据,提供辅助诊断的结果。

软件可以根据医学知识和算法,对影像数据进行分析和处理,从而帮助医生判断病情。

而硬件则提供了高性能的计算和图像处理能力,使得系统能够快速地进行分析和处理。

3. 智能交通在智能交通领域,软硬件协同配合方法可以帮助交通管理部门提高交通效率和安全性。

例如,交通信号灯控制系统可以根据交通流量和道路状况,智能地控制信号灯的时间和顺序。

软件可以根据实时的交通数据和算法,计算最优的信号灯控制策略。

计算机软件的文件共享和协作操作指南

计算机软件的文件共享和协作操作指南

计算机软件的文件共享和协作操作指南第一章:文件共享基础文件共享是计算机软件在协同工作中必不可少的一项技术。

它可以方便地将文件从一个计算机传输到另一个计算机,并实现多人同时对同一文件进行编辑和修改。

本章将介绍文件共享的基本概念和常见的文件共享方式。

1. 文件共享的概念文件共享是指多个用户通过计算机网络共享同一个文件或文件夹的过程。

通过文件共享,用户可以方便地在不同的计算机上访问和编辑文件,并实现信息的快速传递和共享。

2. 常见的文件共享方式(1)本地共享:在同一个局域网内的计算机之间,可以使用共享文件夹的方式实现文件的共享。

用户只需在计算机上设置共享文件夹,其他用户即可通过网络访问该文件夹,实现文件的共享和协同编辑。

(2)云存储共享:通过云存储服务,用户可以将文件上传至云平台,并通过共享链接将文件分享给其他用户。

这种方式可以实现跨地域、跨平台的文件共享,并支持多人同时在线编辑和查看文件。

第二章:文件共享工具为了实现文件共享和协作操作,需要使用专业的文件共享工具。

本章将介绍几种常见的文件共享工具,并对它们的功能和使用方法进行详细说明。

1. Google DriveGoogle Drive是一款免费的云存储服务,提供文件的在线存储和共享功能。

用户可以通过Google账号登录,创建和管理自己的云端硬盘,并邀请他人加入共享。

在Google Drive上,用户可以创建、上传和编辑各种类型的文件,并实现多人协同编辑。

2. 微软OneDriveOneDrive是微软公司推出的一款云存储服务,与Windows操作系统深度整合。

用户可以通过Microsoft账号登录,上传和共享文件。

OneDrive支持多人同时对文档进行编辑,用户可以在浏览器上查看和编辑文件,也可以在本地计算机上同步和使用文件。

3. DropboxDropbox是一款知名的云存储服务,提供文件的上传、同步和共享功能。

用户可以通过创建Dropbox账号,将文件上传至云端,并通过生成共享链接邀请他人查看和编辑文件。

计算机支持的协作学习

计算机支持的协作学习

计算机支持的协作学习随着信息技术的飞速发展,计算机支持的协作学习日益受到大家的重视。

其原因是网络教学能够为不同学习者提供共享的信息资源环境,其丰富的学习资源及其网络化学习正在迅速改变着人们的学习内容和学习方式。

网络环境以其独特的优势为教育的跨越式发展提供了基础。

在这种优势下, 对计算机支持的协作学习模式加以研究,具有重要的理论意义和现实意义。

那么什么是协作学习呢?协作学习就是学生以小组形式参与、为达到共同的学习目标、在一定的激励机制下最大化个人和他人习得成果, 而合作互助的一切相关行为。

目前, 协作学习作为一种学习模式已经得到了广泛的应用, 尤其在网络教学中更加淋漓尽致地突显了其优越性。

协作学习模式通常由四个基本要素组成, 即协作小组、成员、辅导教师和协作学习环境。

协作学习强调学生个性的“自我实现”。

鼓励各抒己见, 使每个学生都有参与感, 并能够最大限度地发挥其潜能,将学习过程看作是交往过程。

在学习过程中师生、学生之间利用各种媒介进行认知、情感、价值观等多方面多层次的信息交流, 通过这种人际交往和相互作用的过程达到学习目的。

而计算机支持的协作学习指计算机支持的协作工作方面的研究在教育领域的应用。

是利用计算机网络建立协作学习的环境,使教师与学生、学生与学生在讨论、协作与交流的基础上进行协作学习。

计算机支持的协作学习具有很多优点:可以充分发挥计算机网络媒体的优势;可以增强学习者的学习动机;可以凭借协作使学习者更好地建构对知识的理解;可以培养学习者的信息能力、学习策略、社会交往技能;可以适用于学习者的校外学习、班级教学与远距离教学。

当然也有一些缺点:比如与传统的协作学习相比, 成员之间的交流是间接的, 而且传达的信息量较少等。

在实际应用中,对于我们教育技术专业的学生来讲,计算机支持的协作学习发挥了极其重要的作用。

就我们班建立的QQ群而言,老师和同学都是群里的一员,大家可以在群里各抒己见进行讨论,对我们学习有巨大的帮助。

信息系统的协同办公与沟通

信息系统的协同办公与沟通随着信息技术的迅速发展,信息系统的协同办公与沟通在现代企业中起到了至关重要的作用。

通过信息系统的协同办公与沟通,企业能够提高工作效率、降低成本,并提升团队间的协作能力与创新能力。

本文将从协同办公与沟通的定义、优势以及实践案例等方面进行探讨。

一、协同办公与沟通的定义信息系统的协同办公是指通过计算机等信息技术手段,将多个团队成员的工作任务进行协同,并通过跨部门、跨地理位置的沟通与协作,实现任务的高效完成。

信息系统不仅仅提供了各种应用软件来支持协同办公,还通过网络技术使得各种资源能够被共享和共用,提高了工作的灵活性和效率。

二、协同办公与沟通的优势1. 提高工作效率:信息系统的协同办公可以实现多人同时对同一任务进行操作,避免了各自为政的情况。

团队成员可以通过实时共享的方式进行讨论和修改,从而加快工作进程,提高效率。

2. 降低沟通成本:传统的会议方式往往需要团队成员亲自到达指定地点,而信息系统的协同办公则可以通过远程视频会议、在线聊天等方式进行沟通,节省了时间和费用,同时提升了沟通效果。

3. 加强团队协作:信息系统的协同办公可以使得团队成员之间的交流更加迅捷方便,增强了团队协作能力。

团队成员可以更好地共享想法、资源和经验,互相提供支持和帮助,促进团队的共同成长。

4. 提升创新能力:通过信息系统的协同办公与沟通,不同背景和专业领域的人员可以进行跨界交流,激发出更多创新想法。

协同办公能够打破传统的组织边界,促进知识的流动和跨领域的融合,从而推动创新的发生与发展。

三、实践案例:信息系统的协同办公与沟通在企业中的应用1. 项目管理:信息系统的协同办公可以实现项目团队的统一协作与沟通,包括任务分配、进度跟踪、问题解决等。

团队成员可以通过统一平台进行实时交流,并共享相关文档和资源,从而提高项目管理的效率和质量。

2. 跨地域合作:随着企业的国际化发展,团队成员常常分散在不同的地理位置。

信息系统的协同办公通过网络技术的支持,可以实现跨地域的协作与沟通,减少时差和空间距离的限制,促进团队之间的协同工作。

外文翻译---探索计算机基础支持的协同学习

原文:Exploring foundations for computer-supportedcollaborative learningSESSION: Long papers (theory track):The role of artifacts in collaborative learning .2002Lasse LipponenABSTRACTIn 1996 Koschmann (1996) suggested computer-supported collaborative learning (CSCL) as an emerging paradigm of educational technology. After six years, how has the field developed? What does research say about CSCL to date? What is the state of the art? The aim of the present paper is to explore the foundations for CSCL, and in doing so, to contribute to the theoretical as well as empirical understanding and development of CSCL research.Keywords: Collaboration, collaborative technology, learning theoriesINTRODUCTION: WHAT IS COMPUTER-SUPPORTED COLLABORATIVE LEARNING (CSCL)?In 1996 Koschmann (1996) recognized computer-supported collaborative learning (CSCL) as an emerging paradigm of educational technology. According to Koschmann (1996), CSCL research is grounded on a very different concept of learning, pedagogy, research methodology, and research questions than its antecedents, CAI (Computer Assisted Instruction), ITS (Intelligent Tutoring Systems), and, Logo-as-Latin did. But now after six years, how has the field developed? What does research say about CSCL to date? What is the state of the art?Throughout history, our conceptions about human cognition and learning have been related and shaped by the development of technology (Bolter, 1984). This parallelism between our psychological understanding and the technologies available is clear in the field of computer-supported collaborative learning, where technology meets psychology, philosophy and pedagogy. Instructional designers and software developers, educational psychologists, learning theorists, computer scientists, and even sociologists are interested in this rather new area of research.It is hard to say when CSCL emerged as a separate field of study, or as an emerging paradigm of educational technology. The first CSCL workshop took place in 1991 (Koschmann, 1994), and the first international CSCL conference was held 1995 in Bloomington, Indiana. Partly, the inspiration for CSCL arose from the research on Computer-Supported Cooperative Work (CSCW). This research has revealed issues about the collaborative nature of work supported by groupware (Galegher, Kraut, & Egido, 1990; Greenberg, 1991) Thus, in a sense, CSCL is the younger sibling of CSCW.How should one define computer-supported collaborative learning? Put briefly, CSCL is focused on how collaborative learning supported by technology can enhance peer interaction and work in groups, and how collaboration and technology facilitate sharing and distributing ofknowledge and expertise among community members.Whilst talking about computer-supported collaborative learning one typically refers to the acronym CSCL, and does not speculate about the latter "C" word (the first stands for 'computer') and what it might stand for. The short history of CSCL shows, however, that there have been different interpretations and suggestions for the "C" word such as, collective (Pea, 1996), coordinated, cooperative and collaborative (see Koschmann, 1994). There have been even different interpretations of the meaning of the whole acronym. The latest, computer support for collaboration and learning, pointed out by Koschmann (1999), suggests that we should link research on learning and working more closely to each other, as well as the research on the CSCL and CSCW. Despite the different interpretations of the "C" word and the acronym, most researchers appear to use them nowadays as already suggested by Koschmann in 1994. He proposed the best policy might be to simply use the acronym, allowing individual interpretation of what the letters might be (1994, p.220).At first glance, the speculation about the meaning of the "C" word and the acronym might look somewhat meaningless. This conversation is, however, related to the central questions concerning CSCL such as, What is collaboration, What are we studying when we are studying collaboration supported by technology, and, What should we be studying?CONCEPTS AND THEORIES UNDERLYING CSCL RESEARCHConcepts of collaborationWhen referring to collaboration, about what is one actually speaking? To put it simply, in the public conversation the term 'collaboration' appears to refer to any activities that a pair of individuals, or a group of people perform together. Among researchers, however, including those in academic fields, the term 'collaboration' is understood rather differently. Within learning sciences, common to the different definitions of collaboration is that they stress the idea of co construction of knowledge and mutual engagement of participants. In this sense, collaboration can be considered as a special form of interaction. Rochelle and Teasley (1995) for instance, stressed the role of shared understanding, and wrote that collaboration is "a coordinated, synchronous activity that is the result of a continued attempt to construct and maintain a shared conception of a problem" (p. 70). Or consider Crook (1994) who offers an intriguing perspective on collaboration. He holds that there is a developmental line from children's secondary intersubjectivity and symbolic play to sophisticated reciprocal understanding and shared knowledge. In children's symbolic play, the material world plays a crucial role in coordination of play activities and in creating a shared framework for collaboration. Most theories or approaches to collaboration neglect the impact and possibilities of the material world for facilitating mutual understanding and shared goals. However, the management of the material world offers rich referential anchors for monitoring grounding and mutual understanding. Computers, especially, can offer a rich repertoire of referential anchors, and points of shared reference (eg. simulation on a screen). According to Crook (1998), there are three features of interaction that are central to successful collaboration: intimacy among participants, rich supply of external resources, such as computers, and histories of joint activity of those interacting. Further, Engeström (1992) has elaborated a three-level notion of developmental forms of interaction; coordination, cooperation, and reflective communication. On the level of coordination each actor concentrates and performs his or her own role and actions, which are scripted or predetermined. In 'cooperative' interactions, says Engström, actors focus on a shared problem, trying to find mutually acceptable ways to conceptualize it. This level corresponds to the definition of collaboration (although Engestöm uses the concept, 'cooperation'), just given, above, from Roschelle and Teasley(1995). The third form of interaction elaborated by Engeström is reflective communication, in which the actors focus on reconceptualizing their own interaction system in relation to their shared objects of activity; both, the objects and the scripts are reconceptualized. Only through this expansive cycle, is the interaction system transformed, and new motives and objects for collaborative activity created. The advance of this model is that it tries to explain how new forms of collaborative activities are created. According to Engeström (1992), these three phases are a natural cycle of any genuine learning activity.There exist also broader definitions of collaboration than those referring to a special type of interaction, such as stressing the mutual engagement of the parties (in fact, Engeström's third definition, reflective communication, could also be considered as "participating in activity system", and thus, representing broader definiton of collaboration than just stressing the mutual engagement). Collaboration can be defined as a process of participating in knowledge communities. As pointed out by Brufee (1993, p.3) collaboration is "a reculturative process that helps students become members of knowledge communities whose common property is different from the common property of the knowledge communities they already belong to". Scardamalia and Bereiter (1994) speak about knowledge-building communities. Knowledge building is a special form of collaborative activity oriented towards the development of conceptual artifacts, and towards the development of collective understanding. In a community of learners, as proposed by Brown and Campione (1994), the core activity is participation in collaborative process of sharing and distributing expertise. As stated by Brown (1994, p. 10), "Learning and teaching depend on creating, sustaining, and expanding a community of research practice. Members of the community are critically dependent on each other. No one is an island; no one knows it all; collaborative learning is not just nice, it is necessary for survival". The idea that collaboration is a basic form of human activity, essential for cultural development, is stressed intensively by many writers throughout the history of psychology (Bruner; 1996; Engeström, 1987; Hutchins, 1995; Mead, 1934; Tomasello, 1999; Vygotsky, 1962; 1978; Wundt, 1921).In sum, even this very short look to the definitions of collaboration has shown how difficult it is to find a total consensus in this issue, although both approaches, collaboration as a special form of interaction, and collaboration as a process of participation in collective activities ("working together"), include the idea of we just accept the diversity, and let the future determine which definitions will survive. It appears that we can-- that perhaps we must--analyze collaborative activities on both micro and macro levels, and, as proposed by Dillenbourg (1999), concern ourselves with aspects such as situation, interactions, processes, and effects.Theories of collaborationWhether one considers collaboration as a special form of interaction or as a process of participation, traces back to the conversation of two metaphors of learning, acquisition and participation, or on the debate between the cognitive perspective and the situative perspective of learning (Anderson, Greeno, Reder, & Simon, 2000; Sfard, 1998).Within acquisition metaphor learning is a matter of construction, acquisition, and outcomes, which are realized in the process of transfer. Within the participation metaphor cognition and knowledge are distributed over both individuals and their environments, and learning is "located" in these relations and networks of distributed activities of participation. Learning and collaboration are not only a matter of epistemology but also a matter of ontology. Knowledge is not all that is constructed but also humans and their identities are constructions; learning is also a matter of personal and social transformation(Packer & Goicoechea, 2000). This ontological line of research should be considered also more in the CSCL research .Whether relying on the acquisition or participation metaphor of learning, there exist two main theoretical perspectives for a mechanism promoting learning in a CSCL setting.These perspectives, which seem to be agreed among researchers, trace back to the thinking of Piaget and Vygotsky. The first mechanism that is seen to promote learning in the context of CSCL is Piagetian socio-cognitive conflict. Children on different levels of cognitive development, or children on the same level of cognitive development with differing perspectives, can engage in social interaction that leads to a cognitive conflict. This "shock of our thought coming into contact with others" (Piaget, 1928, p. 204) may create a state of disequilibrium within participants, resulting to construction of new conceptual structures and understanding. According to this view, new knowledge is not so much a product of co-construction or shared understanding but is rather understood as taking place in the individual minds. This new understanding can then be brought back to the level of social interaction, and collaborative activities. Another interpretation of Piaget's theory stresses more the idea of co-construction of knowledge and mutual understanding. The co-construction of knowledge takes place through one's increasing ability to take account of other peoples' perspectives. This ability develops through five, distinct, developmental stages; from an undifferentiated and egocentric social perspective to in-depth and societal-symbolic perspective taking (Selman, 1980; Järvelä & Häkkinen, in press).The second well-known mechanism for promoting learning in context of social interaction is formulated on the basis of Vygotsky's ideas. There are two basic interpretations of Vygotsky's thought. The first, and the more traditional view, assumes that because of engagement in collaborative activities, individuals can master something they could not do before the collaboration. People gain knowledge and practice some new competencies as a result of internalization in collaborative learning. In other words, collaboration is interpreted as a facilitator of individual cognitive development. The other interpretation of Vygotsky's ideas emphasizes the role of mutual engagement and co-construction of knowledge. According to this perspective, learning is more as a matter of participation in a social process of knowledge construction than an individual endeavor. Knowledge emerges through the network of interactions and is distributed and mediated among those (humans and tools) interacting (Cole and Wertsch, 1996).Influenced by Piaget and Vygotsky, a great variety of research goes under the label of CSCL covering many, even very different instructional and theoretical approaches, that aim to support individual and group learning with technology. In many cases the theories of Piaget and Vygotsky are seen to represent opposite explanations of human development and learning. In the future, a fruitful approach might be to attempt to reconcile these two perspectives (Hickey & McCaslin, in press; Packer & Goicoechea, 2000).EMPIRICAL RESEARCH ON CSCLWhilst the antecedents educational technology paradigms relied strongly on experimental research design, CSCL adopts a variety of methods from the fields of anthropology, communication science, and linguistic research, just to mention a few. Typical methods for analysis are ethnographical methods and discourse analysis with descriptive, observational, and non-experimental data. Stress is put on the ecological validity of the research. In contrast to its predecessors that studied human cognition with experimental design and in laboratories, CSCL research is conducted also in "real world contexts", for instance, at schools.What then should researchers study in the context of CSCL? Some researchers propose that we should study very specific interactions of mutual engagement and intimacy. Dillenbourg (1999) suggested that one should not talk about the effects of collaborative learning in general but more specifically about the effects of particular categories of interactions. One should, for example, analyze a posteriori which interactions did actually take place during collaboration (Dillenbourg, 1999, pp. 16-17), for instance, to study the sequences of improvement and refinement of ideas, and focus not so much on individual statements in discourse (Stahl, in press). In other words, one should in collaborative interactions zoom in more intensively on the micro level.If one studies only interactions of mutual engagement one can then ask, what is the relevance of CSCL research at schools, or in workplaces in general. The dilemma is this: if collaboration is understood as "a coordinated, synchronous activity that is the result of a continued attempt to construct and maintain a shared conception of a problem" (Roschelle & Teasley, 1995, p. 70), it refers to a form of interaction that can be, strictly speaking, maintained only among a small number of people, and perhaps, only in face-to-face situations. An approach to collaboration solely in terms of face to face encounters among small groups appears, however, to be very limited approach to CSCL, for it is very common to speak about collaboration and learning communities in the same context, and related to networked learning environments. As pointed out earlier, collaboration can also considered as a process of participating in practices of a community.How then, should one speak about and analyze collaboration at the collective (macro) level? One idea would be to think about communities as interaction networks, and interactions representing strong and weak links among participants. Links among community members that frequently meet each other are usually strong, and conversely (see Granovetter, 1973). We may assume that strong links and intensive interaction among community members also represent intensive and productive collaboration. Thus, as pointed out by Wellman and others (Wellman, Salaff, Dimitrova, Garton, Gulia, & Haythornthwaite, 2000), we could speak about computer- supported social networks. Or the unit of analysis could be an activity system, as proposed by Engeström (1987). To date, there is no consensus about the unit of analysis, whether it should be individuals, dyads, groups, communities, or as argued by Bereiter (in press), collaboratively produced knowledge objects or conceptual artifacts. All these units of analysis have been, individually, used in the studies that go under the label CSCL, the unit of analysis depending on the theoretical background and definitions of 'collaboration' used.It is a challenging task to compare empirical studies conducted under the label CSCL, because they differ from each other in several significant aspects. First of all, there is no agreement whether one should study effects of or effects with CSCL. In 1991, Salomon, Perkins, and Globerson made educators aware of two ways of thinking about learning and technology. According to them, one should look at effects of technology, this is, what one has learned and can transfer from those situation working with computer. Yet one should also look at the effects with technology; what one could achieve in synergy with a computer. In the same sense one can speak about effects of CSCL; that is, as a result of interacting with others and computers, persons individually practice new competencies and gain knowledge that can be transfer to new situations. Or, by contrast, one may speak of effects with CSCL, referring to processes people and computers achieve in synergy.Secondly, there is a variation in research procedures; in length of the study, in number of students participating, in students' age, and whether students worked individually, in pairs, or in small groups. Whilst analyzing learning in CSCL settings, researchers have used different learningtasks, and have studied how special concepts are learned (Roschelle, 1992). They have analyzed sociocognitive effects of CSCL (Järvelä, Hakkarainen, Lehtinen, & Lipponen, 2000), complex reasoning and levels of argumentation (Hoadley & Linn, 2000), explored science learning and inquiry processes (Edelson, Gordin, & Pea, 1999; Lipponen & Hakkarainen, 1997; Hakkarainen, Lipponen, & Järvelä, in press), collaborative knowledge building (Lipponen, 2000; Scardamalia, Bereiter, & Lamon, 1994), studied cognitive and metacognitive understanding (Brown, Ellery & Campione, 1998), design processes (Seitamaa-Hakkarainen, Raami, Muukkonen, & Hakkarainen, in press), and motivational aspects in CSCL (Hakkarainen, Lipponen, Järvelä, & Niemivirta, 1999). Lately, stress is also put on issues of participation (Guzdial & Turns, 2000; Lipponen, Rahikainen, Hakkarainen, & Palonen, 2001). These are just few of the research topics that have emerged in the context of CSCL.Thirdly, what makes the comparison even more difficult among different studies is that there exists a great variety in the technologies used; also in the purposes sought, and how some particular applications were used: Is students' collaboration supported around the computer (for instance, with simulation programs), or is it supported with networked learning environments, and is technology used for structuring the collaboration or to mediate collaboration (see, Hall, Miyake, & Enyedy, 1997; Hoadley, 1999; Dillenbourg, Eurelings, & Hakkarainen, 2001). There has already been mention of the differences in methodologies and units of analysis applied The boundless enthusiasm towards technology has made us researchers mainly focus on the potentials of CSCL. In some respects, this has blinded us, and made us to consider the potentials of technology and collaboration as empirical evidence for the actual benefits of CSCL. It is true, that some very intensive studies have had success in promoting high-quality learning supported with computer networks (Hakkarainen, 1998; Scardamalia, et al., 1994). But, on a large scale, there is no solid evidence that collaboration through networks leads to excellent learning results. Stahl (in press) has even proposed that CSCL environments are mainly used for exchange of personal opinions, and for delivering surface knowledge, not for collaborative knowledge building. In addition, we can also speculate whether some of these results achieved in the CSCL studies would have been achieved without any networked computer support. Among other constraints on the dominant research in CSCL is that there exists little research on how students participate in networked mediated collaboration, and on the consequences of different types of participation patterns, and how are these related to other aspects of CSCL, such as quality of students' discourse (but see Lipponen et al., 2001). As a consequence of the ambiguity (or richness if you will) of the empirical studies in the CSCL research, it is difficult to integrate the empirical studies and findings or to make any solid conclusions that some particular approach, instructional method, or application would give better results than some others. One does not know exactly the circumstances in which one set of results can be extended to another context.CHALLENGES AND ADV ANTAGES OF CSCLCollaboration can be supported with very different instructional ideas and computer applications. Crook (1994), for instance, has proposed four kinds of interaction in which computers play a part: 1) interactions at the computers, 2) interactions around computers, 3) interactions related to computer applications, and 4) interactions through computers. In the following paragraphs, I concentrate on the fourth issue, interaction and collaboration through computers.The first three aspects proposed by Crook are face-to-face interaction situations where meanings are mediated through spoken language, faces, and gestures. In these situations, computerscan act as a referential anchor, and mediate the coordination of attention and collaborative actions (Järvelä, Bonk, Lehtinen, & Lehti, 1999; Roschelle, 1992). By contrast, collaboration through networked learning environments is still mainly based on written language. Thus, interaction taking place through computer networks lacks certain basic features of face-to-face collaboration: social cues such as faces, gestures and intonations of speech.It also lacks the rich referential field of the material world that is present in face-to-face interactions. The lack of referential anchors is quite pronounced in written communication. This means that explicating referential relations in a written message is important because, in written language, such explications of a message create context and grounding; in contrast these referents are usually known by participants or are easily checked in face-to-face discourse. Building a common ground is considered an essential part of coordinating collaborative activities and knowledge sharing (Clark & Brennan, 1991).The idea of collaboration as mutual engagement appears to imply synchronous activity or even a situation of face-to-face interaction. Hence, one may ask, how is this prerequisite for collaboration, mutual and reciprocal engagement, created through networked learning environments, or is it possible at all? There are some initial attempts to analyze this phenomenon in asynchronous CSCL environments (see Järvelä & Häkkinen, in press) but there is still a lack of evidence whether asynchronous computer-mediated collaboration is possible at all, and if it were, what expressions or communicative acts would be indicators of reciprocal interaction and understanding. From this perspective one can presume that collaboration is a form of activity that seldom manifests in students' interactions in networked learning environments.There are other challenges of CSCL: knowledge management problems with large databases, fact-oriented knowledge construction, short discussion threads with divergence topics, and unequal participation patterns (Guzdial & Turns, 2000; Lipponen et. al., 2001; Lipponen, Rahikainen, Lallimo, & Hakkarainen, 2001). According to Stahl (1999), the clearest failures related to computer-supported collaborative learning environments are that for different personal and cultural reasons, students and teachers are hesitant to use them. Further, if the technology itself is put intensively into use, there still might be considerable difficulties in bringing about genuine collaboration and knowledge construction.Why has CSCL been so slowly adopted? As proposed by Kling (1991) in the context of CSCW, it might be that the meanings attached to collaboration are too positively loaded, or the collaborative settings are interpreted too narrowly referring only to positive phenomenon. This may restrict one from seeing that collaborative situations are also full of contradictions, competition, and conflicts. A realistic picture of collaboration should also take these issues in to consideration. Only recently has the interest in overcoming the existing barriers of computer-supported collaborative learning grown (Lipponen, 1999; Stahl, 1999).On the other hand, technology offers the kind of potentials for learning which are very different from those available in other contexts. A wave of empirical research has revealed a long list of the promises and reported benefits of computer networks for collaboration (see Lehtinen, Hakkarainen, Lipponen, Rahikainen, & Muukkonen, 1999, for a review). One self-evident benefit is, that computer networks break down the physical and temporal barriers of schooling by removing time and space constraints. The delay of asynchronous communication allows time for reflection in interaction. Making thinking visible by writing should help students to reflect on their own and others' ideas and share their expertise. Shared discourse spaces and distributed interaction can offer multiple perspectives and zones of proximal development (ZPD) for students with varyingknowledge and competencies. CSCL environments can also offer greater opportunities to share and solicit knowledge. Further, the database can function as a collective memory for a learning community, storing the history of knowledge construction processes for revisions and future use.TECHNOLOGY FOR COLLABORATIONAt present, the current understanding appears to be that collaboration is a synonym for good learning and good educational technology; almost any web-based application is labeled as 'collaborative.' This loose usage is also because there is no established way to classify the variety of tools that might be considered as collaborative, and moreover, because almost any technological application, could, in some way, be used in support of collaboration, i.e., by people working together on something.Hence, it might be meaningful to make a distinction between collaborative use of technology and collaborative technology. Imagine a pair of students working at the computer running a simulation program in physics. The simulations on the screen can help the students to collaborate, by creating a referential anchor, a point of shared reference (Crook, 1994). This referential anchor can function as a "concrete" shared representation, can support the negotiation of meanings, and mediate students' communication activities in their development of reciprocal understanding (Hakkarainen, et al., 1998; Järvelä, et. al., 1999). In this case, the technology, the software developed for the individual user, is utilized in creating and establishing collaborative activities.On the other hand, collaboration can be supported through computer networks, but not (without special efforts) those most well-known on the Internet. As stated by Roschelle and Pea (1999), most of the Internet tools and discussion forums available are not robust and simple enough for use in average classrooms, or do not translate to the classroom setting. Typical Internet chat or bulletin board systems or e-mail do not organize conversations well for learning. These applications are not, in the first place, designed for pedagogical purposes of building collaborative knowledge. However, with advanced pedagogical practices, these applications can also be utilized for collaborative learning.The most pure and original applications of CSCL and collaborative technology are, perhaps, networked learning environments (or 'groupware'), such as CSILE (Computer Supported Intentional Learning Environment, see Scardamalia & Bereiter, 1994), which are designed especially for educational use and for collaborative knowledge building. A common feature of advanced network applications designed for educational purposes is that they support users' cognitive activities by providing advanced socio-cognitive scaffolding, by offering many ways to structure discussion to create collaborative representations and by including community-building tools. "These tools all scaffold learning by prestructuring the kinds of contributions learners can make, supporting meaningful relationships among those contributions, and guiding students' browsing on the basis of socio-cognitive principle" (Pea, Tinker, Linn, Means, Brandsford, Roschelle, Hsi, Brophy, & Songer 1999, p. 33). Even if there exists a body of research with respect to CSCL applications, there is one crucial thing to remember. With respect to learning results, it is very hard to find solid evidence that some particular CSCL application is better than some other or better than some traditional classroom uses of computers.Technology itself does not solve the challenges of learning and collaboration. For collaborative technology can, of course, be used for other purposes than for supporting collaboration; it can easily be applied in transmitting and delivering knowledge. An important part of the use of collaborative technology is how the technology is implemented, for instance, in school。

协同计算解决方案

协同计算解决方案
协同计算解决方案是一种通过多个计算机或设备共同协作完成特定任务的方式。

这种方式可以提高计算效率,缩短计算时间。

协同计算解决方案可以应用于多种领域,如科学计算、大数据分析、虚拟现实等。

在协同计算解决方案中,多个计算机或设备通过网络连接并组成一个计算集群,通过分配任务和数据交换来协同完成计算任务。

这种方式可以将大规模的计算任务分解成多个子任务,同时运行在多个计算机上,从而提高计算效率。

协同计算解决方案有多种实现方式,如分布式计算、云计算、容器化部署等。

其中,云计算是一种基于虚拟化技术的计算模式,可以提供资源弹性扩缩,从而满足计算需求的变化。

而容器化部署则是一种轻量级的虚拟化技术,可以将应用程序和依赖库打包成容器,实现快速部署和移植。

协同计算解决方案可以应用于多种领域。

在科学计算领域,协同计算可以提高计算效率和准确度,帮助科学家更好地理解和解决科学问题。

在大数据分析领域,协同计算可以处理海量数据,提高数据分析的效率和准确度。

在虚拟现实领域,协同计算可以提高虚拟现实的渲染效率和流畅度。

总之,协同计算解决方案是一种高效的计算方式,可以应用于多种领域,提高计算效率和准确度。

- 1 -。

基于Agent计算机支持的协同教学与学习环境


2 CSCW
() P S W : 平 台 有 两 方 面 的 功 能 , 方 面 完 成 一 2S C C 该 一 些 特 定 的 C C 的 功 能 , 供 协 作 意 识 机 制 , 于 角 色 SW 提 基 的 信 息 共 享 等 面 向 C C 服 务 ; 一 方 面 还 具 有 管 理 功 Sw 另 能 , 不 仅 能 够 管 理 系 统 的 状 态 , 且 还 维 护 群 体 间 的 它 而 动 态 协 作 关 系 , 及 基 于 其 上 的 各 种 C C 应 用 程 序 之 以 SW
中 图 分 类 号 :G 3 44 文 献 标 识 码 :A 文章 编 号 :1 7 — 7 0 2 l )0 0 0 — 5 6 4 7 2 (0 0 1 — 0 8 0
S p otacrigt teA e tcl l o fb ncnu c o u p r codn h gn a ua ro ei ojn t n o c t i
teA etclu tro e i cnu co i ecig ev ometad s d ni n et h i si ojnt n wt t c i h gn a l o fb n ojnt n wt tahn ni n n n t y evr m n,t am i ncnu c o i e hn ca i h r u o e i h a g

分 布 环 境 与 服 务
( 网的 计 算机 系统) 联 图 3 C C 系 统 的 层 次 结 构 SW
图 2 A e t的 基 本 结 构 gn
( ) 布 环 境 与 服 务 : 体 系 结 构 的 最 底 层 , 整 个 1分 是 是
结构 的基础 , 要是 现有 的一些 分 布功能 和服务 。 主
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

计算机支持的协同工作1
摘要:计算机支持协同工作(CSCW)是指地域分散的一个群体,借助计算机及网
络技术,共同协调与协作来完成一项任务.作为协同学与计算机技术的结合,其已
经应用在了多个领域并取得了明显效益.本文主要叙述了其相关知识和应用发展,包括基本概念、系统结构、系统分类、关键技术、应用领域和应用实例等,旨在引
导读者学习并应用CSCW系统,并对其发展趋势进行展望.
关键字:科学技术方法论;协同工作;协作学习
中图分类号:TP3
1 引言
协同学是由初联邦德国理论物理学家哈肯创立的一门学科,其旨在研究协同系统从无序到有序的演化规律.
协同学,顾名思义,可以理解为系统的各个部分共同工作.作为一门新兴综合性学科,其应用涉及物理学、生态学、社会学、经济学、心理学等多个领域.而计算机支持的协同工作CSCW(Computer-Supported Cooperative Work)的出现,是协同学以及计算机技术的一次重大突破.这代表着我们不仅可以支持个体工作,还可以支持群体工作,让不同专业、不同学历、不同国籍的人们实现理解层面上的统一,共同通过计算机交流信息和讨论问题,最终共同完成某项任务.本文将针对计算机支持的协同工作与协作学习做系统的描述与归纳,旨在让读者初步了解计算机协同工作的概念、关键技术、应用发展等相关知识,并对计算机技术的发展走向有所认识.
2 计算机支持协同工作的概述
本节将讲述计算机支持的协同工作的基本概念、系统结构、系统分类和关键技术.
2.1 基本概念
1984年美国麻省理工学院(MIT)的依瑞·格里夫和DEC公司的保尔·喀什曼等人在讲述他们所组织的有关如何用计算机支持来自不同领域与学科的人们共同工作时提出的了计算机支持协同工作的概念.在后来的发展中,随着通信技术、计算机技术以及网络技术的融合,计算机支持的协同工作(CSCW)这个全新的研究领域逐渐产生.
1计算机支持的协同工作.
根据相关定义,其主要是指地域分散的一个群体,借助计算机及网络技术,共同协调与协作来完成一项任务.它包括群体工作方式研究和支持群体工作的相关技术研究、应用系统的开发等部分,旨在通过建立协同工作的环境,改善人们进行信息交流的方式,消除或减少人们在时间和空间上的相互分隔的障碍,从而节省工作人员的时间和精力,提高群体工作质量和效率.其中群体可以是一个或多个单位、项目或小组.但这里特别强调的是,群体中的人们必须执行共同的任务,CSCW系统为他们提供一个共享的工作环境和一个友好而灵活的人与人交互的界面.
CSCW共有三个要素:通信、合作与协调.其中,通信是CSCW的基础,分为同步通信和异步通信;合作是CSCW的形式,主要体现在群组工作时成员之间的协作;协调则是CSCW的关键,群组协作结果的好坏取决于群组成员活动的协调.
2.2 系统结构
一个CSCW系统通常由公用工具和专用工具组成.公用工具是可支持许多领域协同工作的工具,比如用于发表、统计、评价意见的工具,帮助管理会议、工作任务的共享日历,帮助编写和发送信息的共享编辑器,共享排版和绘图软件等等.专用工具是用于某个专门领域的工具,比如在设计领域,有传统的CAD工具、群体决策支持系统等.
2.3 系统分类
对于CSCW系统,现有多种分类方法.本文只介绍其中较常用的一种分类方式:时空分类法.
图1. CSCW系统分类示意图
按时空分类,CSCW系统工作模式可分为下列四种:集中式同步、分布式同步、集中式异步、分布式异步.集中式同步是指人们通过CSCW系统同时间、同地点进行工作,例如会议室;集中式异步代表不同时间同一地点,例如电子布告板;分布式同步代表同时间、不同地点例如网上交谈、实时白板、实时同步编辑、多媒体桌面会议等;分布式异步代表不同时间、不同地点,例如电子邮件.具体划分方法见图1.
2.4 关键技术
2.4.1 冲突与协调
首先,由于群体中人员来自不同领域,拥有不同的学历与经历,所以群体工作中难免出现各种冲突,需要进行协同.其次,想要使群体的最终工作结果达到高效率、高质量的要求,也需要协同.因此在设计CSCW系统时,必须充分考虑可能出现的冲突,提供解决冲突的办法和进行协调的工具.
例如,在进行工程项目或工业产品的设计时,必须要使用协同设计系统,对不同的方案进行选比,最终用决策的手段选择或制订出一个最优方案.方案确定后,要将总设计分成若干设计阶段,由不同的设计组完成,最终完成全部详细设计.那么,如何保证这些阶段的设计结果一致、不出现冲突、保证质量、让领导和用户满意都是十分重要的.如果有计算机支持的协同设计环境,在确定方案阶段和每一设计步骤中,有关人员都可随时通过协同系统进行磋商,及时发现问题、解决问题,避免了不必要的返工现象,且不用所有成员集中到一起进行商讨,从而提高了效率和质量.
2.4.2 公共语言
首先,在一个群体工程中,通常包括不同专业的工作人员,例如设计人员、施工人员、维修人员、服务人员、领导和用户等等.当这些人一起交流和讨论问题时,就可能会碰到语言上的问题,对同一事物、同一概念,不同专业的人也往往使用不同的术语.其次,团体中还经常包含了多个国家的人员,他们之间的交流问题也会对工程高效率完成产生障碍.因此,协同工作中必须要制订统一的术语标准.所以,为了避免由于误解而造成的工程工作上的失误,必须要指定一套标准术语,这就是公用语言的范畴,它是计算机支持的协同工作能高效运行的前提条件.
2.4.3 人与人交互界面
在协同管理工作中,不同的群体之间通常需要进行交互,使用户可以很方便地进行沟通与协商.而在此过程中,交互界面是很重要的.交互的界面一般有两种:一是隐式的,另一是显式的.前者主要是文本形式例如会议记录、便签等,而后者则通过多媒体技术提供一些形象化的手段,如手势、声音和图像等等,用来直接支持人与人之间的交流和讨论问题.通过交互的合理使用,可以使不同的群体很方便、灵活地加入到讨论之中,进行交互,同时也
可很容易地从讨论中退出,中断交互操作,为协同工作提供设备上的支持.
3 计算机支持协同工作的应用
本节将讲述计算机支持的协同工作的应用领域和应用实例.
3.1 应用领域
计算机支持的协同工作可以应用在多个领域.例如,在科学领域,其可以应用于合作科学研究,通过信息交换、会议系统、合作协作系统等实现科学家之间的共同科研合作;在医疗领域,远程专家会诊、远程指导手术等协同工作的发展,可以使我们享受更加高效、便利的服务;在商业领域,电子商务在商业、贸易、金融中发挥了巨大作用,使世界的经济市场快速协调发展.
除了这些应用,计算机支持协同工作的另一个典型应用就是远程教育,其在允许学生、教师和专家等从网上获取丰富资源的同时,还可以提供给学习者一个基于Web写作学习的工作空间.而远程教育的实质就是协作学习,关于协作学习的相关内容本文不再进行详细说明.
3.2 应用实例
3.2.1 群英协同工作系统
该系统是群英企业云计算服务平台的企业在线软件之一,可以通过整合管理企业日常工作单来实现企业各种规范性的工作记录,并以工作单的统计结果为绩效参考标准,达到提高企业内部的运作效率的目的.
作为计算机支持协同工作的典型应用,其不仅可以实现消息提醒、评价监督、实时了解等基本需求,更可以通过群体性的工作单评价系统,准确保证工作连续性,并最终达到提高整个企业运行效率的目的.
3.2.2 用友A8协同管理平台
作为大型协同办公系统,用友A8协同管理平台已经被多所高校应用到学校管理当中,中国石油大学便是其中的典型代表.
通过对网络等计算机资源的有效利用,该平台创造个人、部门、学校三个层次的办公空间,在虚拟的办公空间中,不仅可以完成人员之间的沟通、交流、资料信息的互传、共享、分享,也可以完成上级对下级的工作安排、有效授权、任务下达,下级对上级的报告、请示、汇报、资源申请、请求协助等诸多办公行为的执行和管理.
4 结束语
近十年来,CSCW有了很大的发展,已研制出许多有学术价值、有实用价值的系统和产品,如电子会议系统、协同创作系统等,并已经取得了明显的社会和经济效益.我们很容易预见,由于当今市场的全球化和分散性,CSCW具有广阔的应用前景.它将最终成为应用高速网络、计算机、多媒体、人工智能、面向对象和数据库等技术的多种学科交叉的产物,在工作流管理、远程系统、医疗系统等领域发挥重要作用,并对计算机技术的发展产生深远的影响.
另外,本文仅是作者结合所查找的相关资料而编写的课程论文.由于查阅的资料有限,作者本身又缺乏相关知识与能力,一些说明如果不当,敬请老师指正.
参考文献
[1] 李建华铁玲. 计算机支持的协同工作[M].出版社:机械工业出版社,出版时间:2010
年01月. ISBN: 9787111285861
[2] 黄荣怀. 关于协作学习的结构化模型研究(The research into structural models of
cooperative learning) [C]. 馆藏号:BSLW 2000 G43 3
[3] 林宗楷. CSCW现状及发展前景[J].《计算机世界报》,1995,第36期
[4] 王潜平. 支持CSCW的主要技术[J].《计算机世界报》,1995,第36期
[5] 中国石油大学网络中心[Z]. 网址:/nic/app/oa/
[6] 百度百科. 协同学[Z]. 网址:/view/25414.htm
[7] 百度百科. 群英协同工作系统[Z]. 网址:/view/3927522.htm
[8] 百度百科. CSCW [Z]. 网址:/view/204199.htm
[9] 百度百科. CSCL [Z]. 网址:/view/68036.htm#2。

相关文档
最新文档