接地故障分析

合集下载

配电网接地故障原因分析及处理方法

配电网接地故障原因分析及处理方法

配电网接地故障原因分析及处理方法配电网接地故障是指电源电缆、线路或配电设备的绝缘出现故障,使得电流从大地流回电源的现象。

在配电系统中,接地故障是一种常见的故障类型,它会对设备和工作人员的安全造成威胁,同时也会导致供电中断,给生产和生活带来不便。

因此,掌握接地故障的原因分析和处理方法,对于提高配电网的可靠性和安全性具有重要意义。

一、接地故障的原因分析1.设备故障配电设备的腐蚀、老化、损坏等原因都可能引起接地故障。

例如,配电箱在运输、安装或使用中发生碰撞、振动等问题,可能导致电缆的外皮破裂或者绝缘材料受损,进而形成接地故障。

2.设计和施工质量问题设计和施工质量也可能会引起接地故障。

例如,设计中未考虑到电源与土壤的接触电阻,采用了不合适的电缆材料或搭接方式,从而导致了接地电阻过大。

另外,在施工过程中工人操作不规范,例如电缆接头未做好绝缘处理、电缆铺设不规范等问题,也可能导致接地故障的发生。

3.外界因素影响外界因素如自然灾害、人为破坏等也可能引起接地故障。

例如,地震和暴风雨等自然灾害可能导致地面松散,使得接地电阻升高。

而人为破坏如挖掘地下管道、恶意损坏等行为,可能导致电缆外皮破裂或断裂,从而引发接地故障的发生。

二、接地故障的处理方法在发现配电网出现接地故障时,首先需要进行故障判别。

一般可以采取局部放电检测、电缆绝缘电阻测量、接地电位检测等方法,确定故障发生的位置和类型。

2. 现场处理一旦定位到故障位置,需要对故障点进行现场处理。

对于电力供应设备,可以先停电,然后检查故障点是否为电源设备,并对其进行修复、更换或更换短路器件。

对于电缆线路,可以使用检测仪器进行线路绝缘或局部放电测试,确定故障点,然后进行修复、更换或更换线路接头。

故障处理完成后需要进行再次检测,确保问题已得到解决。

3. 预防措施为了预防接地故障的发生,可以采取以下措施:(1) 彻底清理配电设备、线路周围的杂物和水分,消除潮湿现象。

(2) 定期对电源设备、配电箱和电缆线路进行检测和维护。

10KV线路接地故障分析及处理措施

10KV线路接地故障分析及处理措施

10KV线路接地故障分析及处理措施
10KV线路接地故障是电力系统中常见的一种故障,一旦发生,会给电网运行和设备安全带来巨大威胁。

本文将分析10KV线路接地故障的原因,并提出相应的处理措施。

10KV线路接地故障的原因主要有以下几点:
1. 设备老化:线路设备使用时间过长,绝缘材料老化失效,导致绝缘性能下降,易发生接地故障。

2. 动物触电:一些小动物如鸟、松鼠等趴在线路上或进入变电站,容易造成线路接地。

3. 飞线挂土:由于风、雨等原因导致线路上挂土导线接地。

4. 架空线路无法维修:由于维修条件限制,导致一些线路在故障出现后无法及时维修,进一步导致接地故障。

面对这些原因,我们应采取相应的处理措施来预防和处理接地故障。

1. 定期检查和维护线路设备:定期对线路设备进行绝缘性能测试,发现问题及时更换老化失效的部件,确保设备的正常运行。

2. 加强对变电站的管理:对变电站进行周密的巡视,防止小动物进入变电站,防止线路发生接地故障。

4. 加强维修队伍建设:建立完善的维修队伍,提高维修人员的技术水平,确保在接地故障发生后能够及时维修。

10KV线路接地故障是电力系统中常见的一种故障,需要我们重视和预防。

通过加强设备检查和维护、加强对变电站的管理、定期巡查线路以及加强维修队伍建设等措施,可以有效地预防和处理10KV线路接地故障,保障电力系统的安全运行。

电力线路接地故障分析处理方法

电力线路接地故障分析处理方法

电力线路接地故障分析处理方法电力线路接地故障是电力系统运行中的常见故障之一,如果不及时处理,可能会导致电力设备受损,对电网安全稳定运行带来严重影响。

及时准确地分析和处理电力线路接地故障至关重要。

本文将从接地故障的原因分析、故障检测与诊断、故障处理与预防等几个方面展开讨论,以期为电力行业人士提供一些参考和借鉴。

一、接地故障的原因分析1. 设备老化或损坏:电力线路中的设备如变压器、绝缘子、导线等随着使用时间的增长,可能会出现老化、损坏等情况,从而导致接地故障的发生。

2. 环境因素:雷击、风雨等自然灾害或外力破坏也是导致接地故障的原因之一。

3. 施工质量不达标:电力线路建设或维护过程中,如果施工质量不达标,比如绝缘材料连接不紧密、接地电阻过大等,也可能引起接地故障的发生。

二、故障检测与诊断1. 使用接地故障检测仪进行检测:接地故障检测仪是用来检测和定位接地故障的专用设备,通过测量电压、电流、电阻等参数,可以对接地故障进行快速、准确地定位和诊断。

2. 进行现场勘查:一旦接地故障发生,需要及时派人员前往现场进行勘查,查找故障点和原因,了解接地故障的具体情况,为后续故障处理提供重要依据。

3. 分析历史故障数据:通过分析历史故障数据,可以了解接地故障的发生规律,找出故障的共性和特点,为今后的故障预防和处理提供参考和借鉴。

三、故障处理与预防1. 故障处理:一旦接地故障发生,需要及时隔离故障区域,停止供电,并尽快进行维修和处理,恢复电力系统的正常运行。

在处理过程中,需要注意保护现场人员的安全,并按照相关规定进行操作,以避免进一步损坏设备。

2. 故障预防:为了避免接地故障的发生,需要加强设备的维护保养工作,定期检查电力线路和设备的运行情况,及时发现并处理潜在的故障隐患。

加强对施工质量的监督和管理,确保施工质量符合标准要求,提高电力线路的可靠性和安全性。

电力线路接地故障分析处理方法

电力线路接地故障分析处理方法

电力线路接地故障分析处理方法电力线路接地故障是电力系统中常见的故障之一,其会对电网安全运行和终端设备造成严重危害。

对电力线路接地故障的分析和处理方法具有重要的意义。

下面将从故障的原因分析、故障的诊断方法以及故障的处理方法等方面展开介绍。

一、电力线路接地故障的原因分析1. 天然环境电力线路经常遭受各种天然环境的影响,如雷击、风力等。

当雷击或者强风过后,电力线路上的绝缘子可能会受损,导致接地故障的发生。

2. 设备老化随着设备的使用年限增加,各种元器件的老化也是造成接地故障的一个重要原因。

设备老化可能导致绝缘子、线路连接件等的损坏,从而造成电力线路接地故障的产生。

3. 不当操作在电力系统的运行中,人为的操作失误也会导致电力线路接地故障的发生。

比如接地开关操作不当、设备连接不正确等都可能成为接地故障的源头。

二、电力线路接地故障的诊断方法1. 巡检法定期巡检电力线路设备,特别是在发生雷击或者强风等天然环境后,应及时巡检设备,查找可能存在的故障隐患。

2. 遥测法利用远方的遥测系统监测电力线路的运行状态,一旦发现电流、电压等参数异常,及时定位故障点。

3. 红外线检测法利用红外线摄像仪对电力线路设备进行红外线检测,通过观察设备的热态变化,找出可能存在的故障点。

4. 振动检测法通过设备的振动状态变化来发现可能存在的故障点,如绝缘子破损等。

三、电力线路接地故障的处理方法1. 隔离故障点一旦发现电力线路出现接地故障,应立即进行隔离操作,断开故障线路与电网的连接,保证周围设备和人员的安全。

2. 排除故障原因对故障点进行深入的分析,找出故障的主要原因,彻底排除故障。

3. 换新设备如果故障是由于设备老化或者受损导致的,应及时更换新设备,以恢复电力线路的正常运行。

4. 加强绝缘工作对电力线路设备的绝缘工作应加强,定期更换老化的绝缘子,提高设备的使用寿命,减小接地故障的发生几率。

5. 优化操作程序加强对操作人员的培训和管理,规范操作程序,减少人为操作失误导致的接地故障。

配电网接地故障原因分析及处理方法

配电网接地故障原因分析及处理方法

配电网接地故障原因分析及处理方法配电网接地故障是指给配电网中的设备、设施等正常工作所必需的电源投入线、供电线及其它金属导电体的地面引线连接不良或者接地装置故障而引起的电流回路不完整的故障。

接地故障的发生对使用电设施的安全、稳定和经济能量有严重影响,特别是当故障电流超过保护设备的额定容量时将引起严重后果。

对配电网的接地故障进行原因分析,并采取相应的处理方法是非常必要的。

接地故障的原因主要有以下几个方面:1. 地面电阻过大:地面电阻过大是导致接地故障的主要原因之一。

当地面电阻过大时,接地回路的电流无法得到良好的导通,从而导致故障点处电压升高,进而影响到整个配电网的正常工作。

2. 接地体损坏:接地体损坏也是一种常见的接地故障原因。

接地体损坏可能是由于材料老化、腐蚀等原因导致的,当接地体损坏后,接地回路的电流无法通过,引起接地故障。

针对以上原因,可以采取以下处理方法:1. 降低地面电阻:可以通过增加接地体的数量或者改善接地体的材料、结构等方式来降低地面电阻。

还可以通过提高土壤的湿度来减小地面电阻。

2. 定期检查接地体:定期检查接地体的状况,及时发现并修复损坏的接地体,确保接地回路的畅通。

3. 做好接地线路的连接工作:加强对接地线路的连接工作,确保接地线路的连接牢固可靠,减少接地线路连接不良引发的接地故障。

4. 定期检测接地电阻:定期检测配电网的接地电阻,及时发现并处理地面电阻过大的问题,防止接地故障的发生。

配电网接地故障的原因有地面电阻过大、接地体损坏和接地线路连接不良等方面,为了防止和处理接地故障,可以采取降低地面电阻、定期检查接地体、做好接地线路的连接工作以及定期检测接地电阻等方法,确保配电网的正常工作。

10KV线路接地故障分析及处理措施

10KV线路接地故障分析及处理措施

10KV线路接地故障分析及处理措施10KV线路接地故障是指电力系统中10KV线路出现接地故障,导致短路或停电的现象。

这种故障会给电力系统的正常运行带来很大影响,因此需要及时进行分析和处理。

一、接地故障的原因1.绝缘老化或损坏。

长时间使用后,电线绝缘材料容易老化、退化或损坏,导致线路绝缘性能下降,增大了导致接地故障的概率。

2.导线易于错落。

由于线路的起伏和风吹等原因,导线与支架之间的距离可能会变大,导致导线错落,造成接地故障。

3.树木、气象等影响。

在某些情况下,如大风、雷电等天气影响下,枝叶破坏了线路绝缘,并在线路间形成设有大面积接地的隐患,从而导致接地故障。

二、接地故障的处理措施1.隔离故障。

当发生接地故障时,应首先切断故障点的电源,以便保障人身安全和设备的安全,同时也防止故障扩大。

2.车间缺陷审核。

对接地故障点进行缺陷审核,找出问题所在,以后在维护和检修时,要特别注意检查故障部位,尽量避免故障的再次发生。

3.现场巡查。

加强对线路的巡查,发现线路上的树木枯萎、电杆变形或其它问题时,及时进行处理,以预防故障的发生。

4.提高维护技能。

加强操作技术、安全防护知识、维护技能的培训,增强员工掌握维护技巧和意识,有针对性地进行设备维护,避免人为因素导致接地故障的发生。

5.修改模型图。

对发生接地故障的线路进行模型重构,排除线路中的纠错运算,避免故障点的隐患。

三、点评及建议接地故障是电力系统中常见的故障,它会导致设备损坏、线路短路或停电等现象。

针对接地故障现象,应及时采取措施处理,同时也要提高员工的安全防护意识,以保障人身和设备的安全。

同时,也要注重维护工作的质量,增强员工的维护技能,避免故障的再次发生。

配电网接地故障原因分析及处理方法

配电网接地故障原因分析及处理方法

配电网接地故障原因分析及处理方法一、引言随着现代电力系统的不断发展,配电网在城市和乡村的建设中起着重要的作用。

配电网在运行过程中时常面临着各种故障问题,其中接地故障是一种常见的故障类型。

接地故障一旦发生,不仅会影响电力系统的正常运行,还会对周围的设备和人员造成安全隐患。

对配电网接地故障的原因进行分析,并且探讨相应的处理方法显得尤为重要。

二、配电网接地故障原因分析1. 设备老化在长时间运行过程中,配电设备和设施会出现老化现象,例如绝缘材料老化、绝缘子污秽等情况,这些都会导致接地故障的发生。

2. 设备安装不良配电设备的安装是否符合规范对于减少接地故障的发生起着重要的作用。

如果设备安装不当、接头松动或者接地导线连接不良,都会导致接地电阻增大,从而引发接地故障。

3. 环境因素恶劣的环境条件比如高温、潮湿、化学气体的影响也是造成配电网接地故障的重要原因之一。

这些环境因素会加速设备的老化和损坏,从而提高接地故障的发生概率。

4. 人为因素在维护和运行配电设备过程中,人为疏忽或者错误操作也会对接地故障的发生起到推波助澜的作用。

5. 设备与地线的接触不良接触不良是接地故障的一个主要原因之一。

设备与地线接触不良会导致接地阻抗增大,甚至发生接地故障。

6. 设备维护不及时设备维护保养不及时,例如遇到污秽未及时清理、绝缘检查不到位等都会导致设备的老化而引发接地故障。

1. 定期检测为了及时发现接地故障的隐患,对配电设备进行定期检测是非常必要的。

定期检测能够帮助设备管理人员及时发现设备老化、接线不良等问题,从而及时采取相应的措施进行维护和修复。

定期对设备进行维护保养是减少接地故障的有效途径。

维护包括清理污秽、检查绝缘材料是否完好等。

只有保持设备的良好状态,才能减少接地故障的发生。

3. 人员培训对维护人员和操作人员进行相关的培训,提高其技能水平和维护意识,可以有效的减少人为因素对接地故障的影响。

4. 环境监测在潮湿、高温、化学气体等恶劣环境条件下,应当加强对配电设备的监测,及时发现环境因素对设备的影响。

电力线路接地故障分析处理方法

电力线路接地故障分析处理方法

电力线路接地故障分析处理方法电力线路接地故障是指电力线路的导体或设备与地之间存在异常的导通通路,导致电流由电网进入地,引起接地电流或接地电压异常升高的现象。

接地故障会对电力系统的安全运行造成威胁,因此需要对接地故障进行及时分析和处理。

一、故障分析方法1. 定位故障点:通过检查线路或设备的报警信号,了解故障目的地,通过检查线路或设备的报警信号,了解故障目的地。

2. 线路巡视:对有疑点的地方进行仔细检查,包括杆塔、导线和绝缘子等部位的检查。

3. 室内查看:对接地装置、开关设备和电缆线路等设备进行细致检查,查看是否存在异物、破损、漏电等问题。

4. 利用测试仪器:使用电流表、震动表、接地电阻仪等进行系统性的检测和测试,了解接地故障的具体情况。

5. 数据分析:对检测和测试所得的数据进行整理和分析,确定接地故障的具体位置和原因。

二、故障处理方法1. 针对导线的接地故障,应立即停电,切断故障导线与电源的连接。

对于高压线路,可以利用挂地棒等方法接地将导线接通到地,防止电压引起的危险。

2. 针对设备接地故障,应先停机,然后切断设备与电源的连接。

对于一般设备,可以通过更换设备来解决问题;对于重要设备,可以考虑对设备进行修复或更换故障部件。

3. 找到接地故障的具体位置后,应进行修复或更换故障部件,并进行严格的试验和检测,确保故障彻底解决。

4. 进行接地电阻测试,确保接地系统的质量合格。

如果接地电阻过高,应采取措施降低接地电阻,提高接地系统的可靠性。

5. 故障处理完成后,应进行相关记录和汇总,对故障处理过程进行总结和分析,以便今后遇到类似问题时参考和借鉴。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(1)复归音响。

(2)检查6KV系统接地微机选线装置,查明故障线路号,接地起始时间、接地累计时间。

(3)按下重判按键进行重判。

如两次判断结果一致,则可确定故障线路。

(4)根据故障线路号确定故障设备。

(5)汇报值长,调节运行方式,将故障设备停下。

(6)若为母线接地时,应先倒换高厂变看是否为高厂变低压侧接地。

(7)到6KV配电时检查接地情况,看是否有明显接地点,是否消除。

(8)若接地点在PT小车、避雷器或小车开关上部,严禁直接拉出小车消除接地,应采用人工接地点法消除接地。

(9)若确定母线接地,无法消除,应立即申请停电处理。

(10)接地运行时间不得超过2个小时。

(11)寻找接地时应严格遵守“电业安全工作规程”有关规定,穿绝缘靴,戴绝缘手套。

(12)若设备发生瞬间接地,装置可将故障线路号记录下来,按“追忆”键可查出哪条线路曾发生接地,对此设备应重点检查。

6KV母线发生接地故障如何检查处理共享文档2018-07-01 1页 5.0分用App免费查看6KV母线发生接地故障如何检查处理?如接地信号同时有设备跳闸,应禁止跳闸设备再次强送。

停止不重要的设备。

有备用设备的可切换至备用设备运行。

按负荷由次要到主要的顺序瞬停选择。

经上述选择未找到故障点,应对厂用母线、开关等部位进行检查,但应遵守全归程有关规定。

切换至备用变运行,判定是否工作电源接地。

如系PT接地,可利用备用小车开关人工接地将PT停电,小车拉出,通知检修处理。

经选择未查出接地点,则证明母线接地,汇报值长班长,停电处理。

厂用单相接地运行时间不得超过两小时。

故障点消除后,恢复故障前运行。

现象:接地信号,接地报警;某相电压为零,另外两相电压升高;三项电压不平衡处理:若三相电压不平衡,查看PT一二次保险是否熔断;若某相电压为零,另外两项电压升高,即发生单相接地,查看机炉是否启动设备,停止接地时候启动的设备或者切换为备用;对发配电系统进行外部检查,查看是否有设备冒烟,有异味,有无接地现象或者异常现象;注意事项:进行外部检查要穿绝缘鞋,带绝缘手套,不得触及接地金属物;进行倒闸操作,要熟悉运行方式,严格遵守刀闸操作的原则,防止厂用电失电和非同其并列;接地运行时间不得超过俩个小时;格力故障设备,禁止用隔离卡开关6kV配电线路单相接地故障的处理共享文档2018-07-01 7页 4.9分用App免费查看6kV系统单相接地故障分析及查找电力系统可分为大电流接地系统(包括直接接地、经电抗接地和低阻接地)、小电流接地系统(包括高阻接地,消弧线圈接地和不接地)。

我国3~66kV电力系统大多数采用中性点不接地或经消弧线圈接地的运行方式,即为小电流接地系统。

在小电流接地系统中,单相接地是一种常见故障。

6kV配电线路在实际运行中,经常发生单相接地故障,特别是在雨季、大风和雪等恶劣天气条件下,单相接地故障更是频繁发生。

发生单相接地后,故障相对地电压降低,非故障两相的相电压升高,但线电压却依然对称,因而不影响对用户的连续供电,系统可运行1~2 h,这也是小电流接地系统的最大优点;但是,若发生单相接地故障后电网长时间运行,会严重影响变电设备和配电网的安全经济运行。

1 单相接地故障的特征及检测装置1.1 单相接地故障的特征中央信号后台报警,绝缘监察电压表指示:故障相电压降低(不完全接地)或为零(完全接地),另两相电压升高,大于相电压(不完全接地)或等于线电压(完全接地),稳定性接地时电压表指针无摆动,若电压表不停地摆动,则为间歇性接地;中性点经消弧线圈接地系统,装有中性点位移电压表时,可看到有一定指示(不完全接地)或指示为相电压值(完全接地时)消弧线圈的接地报警灯亮;发生弧光接地时,产生过电压,非故障相电压很高,电压互感器高压保险可能熔断,甚至可能烧坏电压互感器。

1.2 真假接地的判断电压互感器一相高压熔断器熔断,发出接地信号。

发生接地故障时,故障相对地电压降低,另两相升高,线电压不变。

而高压熔断器一相熔断时,对地电压一相降低(不为零),另两相不会升高,线电压则会降低。

用变压器对空载母线充电时,断路器三相合闸不同期,三相对地电容不平衡,使中性点位移,三相电压不对称,发出接地信号。

这种情况只在操作时发生,只要检查母线及连接设备无异常,即可以判定,投入一条线路或投入一台所用变压器,即可消失。

系统中三相参数不对称,消弧线圈的补偿度调整不当,倒运行方式时,会发出接地信号。

此情况多发生在系统中倒运行方式操作时,经汇报调度,在相互联系时,了解到可先恢复原运行方式,消弧线圈停电,调整分接开关,然后重新投入,倒运行方式;在合空载母线时,可能激发铁磁谐振过电压,发出接地信号。

此情况也发生在倒闸操作时,可立即送上一条线路,破坏谐振条件,消除谐振。

1.3 检测装置对于绝缘监察装置,通常采用三相五柱式电压互感器加上电压继电器、信号继电器及监视仪表构成。

它由五个铁芯柱组成,有一组原绕组和二组副绕组,均绕在三个中间柱上,其接线方式为Ynynd。

这种接线的优点是:第一副绕组不仅能测量线电压,而且还能测相电压;第二副绕组接成开口三角形,能反映零序电压。

当网络在正常情况下,第一副绕组的三相电压是对称的,开口三角形开口端理论上无电压,当网络中发生单相金属性接地时(假设A相),网络中就出现了零序电压。

网络中发生非金属性单相接地时,开口两端点间同样感应出电压,因此,当开口端达到电压继电器的动作电压时,电压继电器和信号继电器均动作,发出音响及灯光信号。

值班人员根据信号和电压表指示,便可以知道发生了接地故障,并判定接地相别,然后向调度值班员汇报。

但必须指出,绝缘监察装置是与母线共用的。

2 发生单相接地故障的原因导线断线落地或搭在横担上;导线在绝缘子中绑扎或固定不牢,脱落到横担或地上;导线因风力过大,与建筑物距离过近;配电变压器高压引下线断线;配电变压器台上的6kV避雷器或6 kV熔断器绝缘击穿;配电变压器高压绕组单相绝缘击穿或接地;绝缘子击穿;线路上的分支熔断器绝缘击穿;同杆架设导线上层横担的拉线一端脱落,搭在下排导线上;线路落雷;树木短接;鸟害;飘浮物(如塑料布、树枝等);电缆及其接头受损;其它偶然或不明原因。

3 对单相接地故障的危害和影响分析3.1 对变电设备的危害6 kV配电线路发生单相接地故障后,变电站6 kV母线上的电压互感器检测到零序电流,在开口三角形上产生零序电压,电压互感器铁芯饱和,励磁电流增加,如果长时间运行,将烧毁电压互感器。

在实际运行中,近几年来,已发生变电站电压互感器烧毁情况,造成设备损坏、大面积停电事故。

单相接地故障发生后,也可能产生谐振过电压。

几倍于正常电压的谐振过电压,危及变电设备的绝缘,严重时使变电设备绝缘击穿,造成更大事故。

3.2 对配电设备的危害单相接地故障发生后,可能发生间歇性弧光接地,造成谐振过电压,产生几倍于正常电压的过电压,将进一步使线路上的绝缘子击穿,造成严重的短路事故,同时可能烧毁部分配电变压器,使线路上的避雷器、熔断器绝缘击穿、烧毁,也可能发生电气火灾事故。

3.3 对区域电网的危害严重的单相接地故障,可能破坏区域电网的稳定,造成更大事故。

3.4 对人畜危害对于导线落地这一类单相接地故障,如果配电线路未停运,对于行人和线路巡视人员(特别是夜间),可能发生跨步电压引起的人身电击事故,也可能发生牲畜电击伤亡事故。

3.5 对供电可靠性的影响发生单相接地故障后,一方面要进行人工选线,对未发生单相接地故障的配电线路要进行停电,中断正常供电,影响供电可靠性;另一方面发生单相接地的配电线路将停运,在查找故障点和消除故障中,不能保障用户正常用电,特别是在庄稼生长期、大风、雨、雪等恶劣气候条件,和在山区、林区等复杂地区,以及夜间、不利于查找和消除故障,将造成长时间、大面积停电,对供电可靠性产生较大影响。

3.6 对供电量的影响发生单相接地故障后,由于要查找和消除故障,必然要停运故障线路,从而将造成长时间、大面积停电,减少供电量。

影响供电量指标和经济效益。

4 对单相接地故障的预防和处理办法4.1 预防办法对于配电线路单相接地故障,可以采取以下几种方法进行预防,以减少单相接地故障发生。

对配电线路定期进行巡视,主要检查导线与树木、建筑物的距离,电杆顶端是否有鸟窝,导线在绝缘子中的绑扎或固定是否牢固,绝缘子固定螺栓是否松脱,横担、拉线螺栓是否松脱,拉线是否断裂或破股,导线弧垂是否过大或过小等。

对配电线路上的绝缘子、分支熔断器、避雷器等设备应定期进行绝缘测试,不合格的应及时更换。

对配电变压器定期进行试验,对不合格的配电变压器进行维修或更换。

在农村配电线路上加装分支熔断器,缩小故障范围,减少停电面积和停电时间,有利于快速查找故障点。

在配电线路上使用高一电压等级的绝缘子,提高配电网绝缘强度。

4.2 发生单相接地故障后的处理办法当配电线路发生单相接地后,变电所值班人员应马上作好记录,迅速报告当值调度和有关负责人员,并按当值调度员的命令寻找接地故障,当拉开某条线路的断路器,接地现象消失,便可判断它为故障线路。

5 新技术新设备的应用5.1 小电流接地自动选线装置在变电所加装小电流接地自动选线装置,此装置能够自动选择出发生单相接地故障线路,时间短,准确率高,改变传统人工选线方法,对非故障线路减少不必要的停电,提高供电可靠性,防止故障扩大。

目前,已有部分变电站加装了这套装置,取得了良好效果。

在实际应用中,应注意此装置与各配出线间隔上的零序电流互感器配合使用,否则不能发挥任何作用。

5.2 单相接地故障检测系统在变电所的配出线出口处加装信号源,在配电线路始端、中部和各分支处,三相导线上加装单相接地故障指示器,指示故障区段。

配电线路发生单相接地故障后,根据指示器的颜色变化,可快速确定故障范围,快速查到故障点。

小电流接地微机选线装置的工作原理小电流接地选线装置首先通过测量母线的零序电压判断哪段母线接地,然后通过各条线路的零序电流与零序电压比较,零序电流落后零序电压90°,确定接地线路. 还有一种方式是判断母线接地后,通过探索跳闸,经重合闸延时后重合闸动作,自动合上开关,当零序电压仍然存在,并表明“本线路未接地”;当零序电压不存在,并表明“本线路接地”。

只有在中性点不接或经消弧线圈接地欠补偿时故障线路与非故障线路的零序电流才不一致。

当经消弧圈过补偿时无法判别。

其次接地时利用停电后再重合是不允许的,因为造成短时停电。

对中心点不接地电网中的单相接地故障又以下结论:1、单相接地时,全系统都将出现零压;2、在非故障的元件上有零序流,其数值等于本身的对地电容电流,电容性无功功率的实际方向为:母线->线路;3、故障线路上,零序电流为全系统非故障元件对地电容电流之和,数值一般较大,电容性无功功率的实际方向为:线路->母线;随着小电流接地自动选线不断研究和改进,微机技术和数字技术的应用,其性能在逐步提高,在不接地及消弧线圈接地系统已广泛应用。

相关文档
最新文档