03.2017-2020上海市高三数学二模分类汇编:函数
2020年上海各区高三二模分类汇编-5解析几何(教师版)

2020年二模汇编——解析几何一、填空题【奉贤2】已知圆的参数方程为62cos 2sin x y θθ=+⎧⎨=⎩,则此圆的半径是【答案】2【解析】考察圆的参数方程, ()2264,2x y r -+==【松江3】已知动点P 到定点(1,0)的距离等于它到定直线:1l x =-的距离,则点P 的轨迹方程为 . 【答案】24y x =【解析】动点到定点的距离等于它到定直线的距离,因为定点不在定直线上,所以的轨迹是抛物线,为焦点,为准线。
因为22y px =的焦点是(,0)2p,即,所以2p =,进而抛物线方程为24y x =.【闵行3】若直线01=++by ax 的方向向量为()1,1,则此直线的倾斜角为_______【答案】4π 【解析】()4,1tan ,1,1πθθ====k【奉贤4】已知P 为曲线22:1412x y Γ+=上位于第一象限内的点,1F 、2F 分别为Γ的两焦点,若12F PF ∠是直角,则点P 坐标为【答案】【解析】考察焦点三角形的面积21tan222P P b c y y θ=⋅⋅⇒=代入若原椭圆方程解得P x =,所以P点坐标为【宝山4】已知双曲线()2222:10,0x y C a b a b-=>>的实轴与虚轴长度相等,则C 的渐近线方程是 。
【答案】y x =±P (1,0):1l x =-P (1,0):1l x =-(1,0)【解析】由题意知by x a=±,a b =,所以y x =±。
【黄浦4】若直线1:350l ax y +-=与2:210l x y +-=互相垂直,则实数a 的值为 【答案】6-【解析】60,6a a +==-【青浦5】双曲线22144x y -=的一个焦点到一条渐近线的距离是__________.【答案】2【解析】双曲线22144x y -=的焦点为()±,渐近线方程为y x =±,由点到直线距离公式得距离2d =.【金山6】已知双曲线2221(0)x y a a-=>的一条渐近线方程为20x y -=,则实数a = .【答案】12【解析】2221(0)x y a a -=>的渐近线方程为:x y a =±,12,2x y x a a ===【浦东6】在平面直角坐标系xOy 中,直线l 的参数方程为1x t y t =-⎧⎨=⎩(t 为参数),圆O 的参数方程为cos sin x y θθ=⎧⎨=⎩(θ为参数),则直线l 与圆O 的位置关系是 .【答案】相交【解析】直线l 的一般方程是10x y -+=,圆O 的一般方程是221x y +=,圆心到直线距1<,直线l 与圆O 的位置关系是相交【长宁6】直线2:12x tl y t=+⎧⎨=-+⎩(t 是参数)的斜率为 .【答案】2【解析】由直线的参数方程定义可知直线方程为()122y x =-+-,所以2k =【黄浦7】已知双曲线22221x y a b-=(0a >,0b >)的一条渐近线平行于直线:210l y x =+, 双曲线的一个焦点在直线l 上,则双曲线的方程为【答案】221520x y -= 【解析】22222222,5,5255,1520b x yc c a b a a a ===+==⇒=-= 【浦东8】已知双曲线的渐近线方程为x y ±=,且右焦点与抛物线x y 42=的焦点重合,则这个双曲线的方程是____________. 【答案】12222=-y x【解析】抛物线x y 42=的焦点为()10,,设双曲线的方程为22x y λ-=,即221x y λλ-=,则1+12λλλ=⇒=,所以双曲线的方程是12222=-y x 【徐汇8】已知直线()()2130a x a y ++--=的方向向量是直线()(1)2320a x a y -+++=的法向量,则实数a 的值为 .【答案】1±【解析】由题意得两直线垂直()()()()2112+3=0a a a a ∴+-+-,()()1223=0a a a ∴-+--,所以()()110a a ---=,所以1a =±【杨浦8】已知曲线1C 的参数方程为212x t y t =-⎧⎨=+⎩(t 是参数),曲线2C 的参数方程为15cos 5sin x y θθ⎧=-+⎪⎨=⎪⎩(θ是参数),则1C 和2C 的两个交点之间的距离为 【答案】556 【解析】 ()51:,052:2221=++=+-y x C y x C 5501---=∴d 54=55653251652222==-=-=∴d r l 【虹口10】已知1F 、2F 是椭圆222:13x y C a +=(3a >)的左、右焦点,过原点O 且倾斜角为60o的直线与椭圆C 的一个交点为M ,若1212||||MF MF MF MF +=-u u u u r u u u u r u u u u r u u u u r ,则椭圆C 的长轴长为【答案】232+【解析】依据题意画出大致图像:因为1212MF MF MF MF +=-u u u u r u u u u r u u u u r u u u u r,即等价为1290F MF ︒∠=211tan 3,22M F MF S b y ∴===⨯y =则M ⎫,代入椭圆方程得:()()22233133a a a +=--,化简可得:42630a a --=解得)2231a =+=22a ∴=【嘉定11】设p 是双曲线2218y x -=上的动点,直线3cos sin x t y t θθ=+⎧⎨=⎩t (为参数)与圆()2231x y -+=相交与A ,B 两点,则PA PB u u u r u u u rg 的最小值是【答案】3【解析】如图所示,运用极化恒等式有:PA PB u u u r u u u rg 222222=PC PC 1213CA -=-≥-=【青浦11】已知正三角形ABC 的三个顶点均在抛物线2x y =上,其中一条边所在直线的ABC ∆的三个顶点的横坐标之和为__________.【答案】10-【解析】令()()()222112233,,,,,A x x B x x C x x.令22212121ABx x k x x x x -==+=-ABC中22313131ACx x k x x x x -==+==-223232325BCx x k x x x x --==+==-由此可得出13210x x x ++=-.【黄浦12】点A是曲线y =(2y ≤)上的任意一点,(0,2)P -,(0,2)Q ,射线QA 交曲线218y x =于B 点,BC 垂直于直线3y =,垂足为点C ,则下列结论:(1)||||AP AQ -为定值22; (2)||||QB BC +为定值5;(3)||||||PA AB BC ++为定值52+; 其中正确结论的序号是 【答案】①②【解析】(1)由题意可知,曲线22y x =+(2y ≤)是双曲线22122y x -=的上半支,根据双曲线定义可知,正确(2)曲线28x y =的准线2y =-,故正确(3)||||||||||5||5||||522PA AB BC PA AB QB PA AQ ++=++-=+-=+,故错误【奉贤12】在平面直角坐标系内有两点(,1)A m -,(2,1)B -,2m <,点A 在抛物线22y px =上,F 为抛物线的焦点,若2||||6AB AF +=,则m = 【答案】51-+,12-,16-【解析】12||2122m AB m pm p m<∴=-∴=∴=Q 抛物线的准线方程为14x m =-由抛物线的定义知1||||4AF m m =+于是条件可转化为12(2)||64m m m-++= 当0m >时, 25481012m m m +-=∴=-+(舍负) 当0m <时, 21128106m m m ++=∴=-或12m =- 【杨浦12】已知抛物线1Γ与2Γ的焦点均为点(2,1)F ,准线方程分别为0x =与5120x y +=,设两抛物线交于A 、B 两点,则直线AB 的方程为【答案】230x y -=【解析】由题意可知A 和B 两点既在1Γ又在2Γ上,所以到两准线的距离相等,由点到直线距离公式可知51213x yx +=,由抛物线定义以及焦点位置和准线方程并结合图像知AB 斜率为正,所以AB 方程为230x y -=二、选择题【宝山13】抛物线24y x =的准线方程是( )【A 】2x =- 【B 】1x =- 【C 】18y =-【D 】116y =- 【答案】D【解析】 由24y x =得到214x y =,则其准线方程为116y =-. 【虹口13】已知抛物线24y x =上的点M 到它的焦点的距离为5,则点M 到y 轴的距离为( ) 【A 】2 【B 】4 【C 】5 【D 】6 【答案】B【解析】抛物线24y x =的焦点坐标()1,0,抛物线上24y x =的一点M 到该抛物线的焦点F 的距离,则M 到准线的距离为5,则点M 到y 轴的距离为:4,故答案为:4【松江13】若O 为坐标原点,P 是直线20x y -+=上的动点,则OP 的最小值为( )【A 】2【B【C 【D 】2 【答案】B【解析】OP 的最小值为原点O 到直线20x y -+=的距离,即:min d ==【崇明14】若抛物线28y x =的焦点F 与双曲线2213x y n-=的一个焦点重合,则n 的值为( )【A 】1- 【B 】1 【C 】2 【D 】13 【答案】B【解析】由()20,2=⇒c F ,所以1432=⇒=+=n n c ,故选B【闵行15】已知抛物线的方程为24y x =,过其焦点F 的直线交此抛物线于,M N 两点,交y 轴于点E ,若1EM MF λ=,2EN NF λ=,则12λλ+=( ) 【A 】2- 【B 】12-【C 】1【D 】1- 【答案】D【解析】设()()⎪⎭⎫ ⎝⎛-+=m E y x N y x M my x l 1,0,,,,,1:2211 112114,4044412121221*********-=+⋅--=+-+-=+-==+∴=--⇒⎩⎨⎧=+=y y y y m y m y y m y y y m y y my y xy my x λλ【青浦15】记椭圆221441x ny n +=+围成的区域(含边界)为(1,2,)n n Ω=L ,当点(,)x y 分别在1Ω,2Ω,L 上时,x y +的最大值分别是1M ,2M ,L ,则lim n n M →∞=( ).【A 】2 【B 】4 【C 】3【D 】【答案】D【解析】令2222cos ,sin 441x ny n θθ==+,2cos ,x y θθ∴==2cos ),x y θθθϕ∴+=+=+lim n n n μ→∞→∞∴==【杨浦15】设1F 、2F 是椭圆22194x y +=的两焦点,A 与B 分别是该椭圆的右顶点与上顶点,P 是该椭圆上的一个动点,O 是坐标原点,记2122s OP F P F P =-⋅uu u r uuu r uuu r,在动点P 在第一象限内从A 沿椭圆向左上方运动到B 的过程中,s 的大小的变化情况为( )【A 】 逐渐变大 【B 】 逐渐变小 【C 】 先变大后变小 【D 】 先变小后变大 【答案】B【解析】令()()()()()202020202100520,5,0,5,,y x y x s F F y x P +--+=∴-595591452020202020+=+⎪⎪⎭⎫ ⎝⎛-+=++=x x x y x s ,可知选B 三、解答题【宝山20】已知直线:l y kx m =+ 和椭圆22:142x y Γ+=相交于点()()1122,,,A x y B x y .(1)当直线l 过椭圆Γ的左焦点和上顶点时,求直线l 的方程; (2)点)C在Γ上,若0m =,求ABC ∆面积的最大值;(3)如果原点O 到直线l的距离是3,证明:AOB ∆为直角三角形。
2023年上海16区(浦东徐汇杨浦闵行等)数学高考二模专题汇编3 导数及其应用含详解

2
(1)若� =− 2,求曲线 y f ( x) 在点(2, � 2 )处的切线方程;
(2)当� < 0 时,求函数 y = f ( x) 的最小值;
(3)当 0 ≤ � < 1 时,试讨论函数 y = f ( x) 的零点个数,并说明理由
直线族是指具有某种共同性质的直线的全体. 如:方程 y kx 1 中,当 k 取给定的实数时,表示一条直线;
当 k 在实数范围内变化时,表示过点 0,1 的直线族(不含 y 轴).
2
2
记直线族 2( a 2) x 4 y 4a a 0 (其中 a R )为 ,直线族 y 3t x 2t
【答案】
3
3x 2
【分析】根据复合函数求导法则进行求导即可.
【详解】因为 y ln 2 3x ,
所以 y
1
1
3
2 3x
3
.
2 3x
设曲线 y f ( x) 在点 M x0 , f x0 处的切线为 l1 .
(1)当 f (1) 0 时,求实数 a 的值;
(2)当 a 8 , x0 8 时,是否存在直线 l2 满足 l1 l2 ,且 l2 与曲线 y f ( x) 相切?请说明理由;
(3)当 a 5 时,如果函数 y f ( x) 是“正交函数”,求满足要求的实数 a 的集合 D ;若对任意 a D ,曲线
点,把人工湖围成一片景区 OCD .
(1)若 P 点坐标为 1,3 ,计算直路 CD 的长度;
(精确到 0.1 千米)
(2)若 P 为曲线 AB (不含端点)上的任意一点,求景区 OCD 面积的最小值.(精确到 0.1 平方千米)
2020届上海市崇明区高三二模数学试题(解析版)

一、填空题
12
1.行列式
的值等于____________
34
【答案】 2 【解析】
【分析】
根据行列式定义直接计算得到答案.
1
【详解】
2 1 4 2 3 2 .
34
故答案为: 2 .
【点睛】本题考查了行列式的计算,属于简单题.
2.设集合 A x | 1 x 2, B x | 0 x 4 ,则 A B
故答案为: 32 .
【点睛】本题考查了二项式定理,意在考查学生的计算能力和应用能力.
7.若
sin
2
1 3
,则
cos
2
____________
【答案】 7 9
【解析】
【分析】
化简得到 cos 1 ,再利用二倍角公式计算得到答案. 3
【详解】
sin
2
cos
1 3
, cos 2
2 cos2
计算 S△ABC
1 2
sin
2x
6
1 2
3 4
,得到答案.
【详解】 S△ABC
1 2
AB
AC
sin
AB, AC
1 2
2 2 AB AC
1 cos2
AB, AC
1
取 f x 2x 1 3 ,解得 x 1 ,得到答案. 【详解】 f x 2x 1 ,取 f x 2x 1 3 ,解得 x 1 ,故 f 1 3 1.
故答案为:1.
【点睛】本题考查了反函数的性质,意在考查学生对于反函数性质的灵活运用. 5.已知某圆锥的正视图是边长为 2 的等边三角形,则该圆锥的体积等于____________
2023-2024学年上海市高考数学质量检测模拟试题(二模)含答案

2023-2024学年上海市高考数学模拟试题(二模)一、填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分)考生应在答题纸的相应位置直接填写结果.1.若():1,2x α∈,[]:0,2x β∈,则α是β的______条件.【正确答案】充分非必要【分析】判断集合()1,2和[]0,2之间的关系,即可判断出答案.【详解】由于()1,2是[]0,2的真子集,故α是β的充分非必要条件,故充分非必要2.若34(sin (cos )55z i θθ=-+-是纯虚数,则tan θ的值为__________.【正确答案】34-【详解】分析:由纯虚数的概念得305405sin cos θθ⎧-=⎪⎪⎨⎪-≠⎪⎩,结合221sin cos θθ+=可得解.详解:若34sin cos 55z i θθ⎛⎫⎛⎫=-+- ⎪ ⎪⎝⎭⎝⎭是纯虚数,则305405sin cos θθ⎧-=⎪⎪⎨⎪-≠⎪⎩,又由221sin cos θθ+=,可得34sin cos 55θθ==-.所以sin 3tan cos 4θθθ==-.故答案为34-.点睛:本题主要考查了纯虚数的概念及同角三角函数的基本关系,属于基础题.3.已知幂函数f(x)的图象经过点(2,4),则f(x)为______函数.(填奇偶性)【正确答案】偶【分析】根据幂函数的概念设出()f x 的解析式()f x x α=,然后代点求出α,再用函数奇偶性定义判断奇偶性.【详解】因为函数()f x 是幂函数,所以可设()f x x α=,又f(2)=4,即2a=4,解得a=2,∴()2f x x =,∴()()22()f x x x f x -=-==,∴f(x)为偶函数.故答案为偶.本题主要考查了幂函数的基本概念,以及利用定义法判定函数的奇偶性,其中解答中熟记幂函数的基本概念,熟练应用函数奇偶性的定义判定是解答的关键,着重考查了推理与运算能力,属于基础题.4.若双曲线经过点,且渐近线方程是y =±13x ,则双曲线的方程是________.【正确答案】2219x y -=【分析】利用渐近线方程为13y x =±,设双曲线的方程是229x y λ-=,代入点即可求解【详解】根据渐近线方程为13y x =±,设双曲线的方程是229x y λ-=,因为双曲线过点,所以9219λ=-=,所以双曲线的方程为2219x y -=故2219x y -=5.已知命题:“非空集合M 的元素都是集合P 的元素”是假命题,给出下列四个命题:①M 的元素不都是P 的元素;②M 的元素都不是P 的元素;③M 中有P 的元素;④存在x M ∈,使得x P ∉;其中真命题的序号是________(将正确的序号都填上).【正确答案】①④【分析】从命题的否定入手.【详解】命题:“非空集合M 的元素都是集合P 的元素”是假命题,则命题:“非空集合M 的元素不都是集合P 的元素”是真命题,说明集合M 中至少有一个元素不属于集合P ,或者M 中就没有集合P 中的元素,因此②③错误,①④正确.故答案为①④.本题考查真假命题的理解,对一个假命题,可从反面入手,即它的否定为真命题入手,理解起来较方便.6.一个袋中装有5个球,编号为1,2,3,4,5,从中任取3个,用X 表示取出的3个球中最大编号,则()E X =______.【正确答案】4.5【分析】求出X 可能取值和概率,再根据()E X 公式进行计算即可.【详解】从中任取3个球,共有()123,,,()124,,,()125,,,()134,,,()135,,,()145,,,()234,,,()235,,,()245,,,()345,,10中情况,所以X 可能取值为345,,,()1310P X ==,()3410==P X ,()635105===P X ,所以()1339345101052E X =⨯+⨯+⨯=.故答案为.4.57.函数tan()42y x ππ=-的部分图象如图所示,则()OA OB AB +⋅= ____.【正确答案】6【详解】试题分析:由图可知(2,0)A ,(3,1)B ,∴()(5,1)(1,1)6OA OB AB +⋅=⋅=.考点:正切型函数的图象与平面向量的数量积运算.【方法点睛】本题主要考查了正切型函数的图象与平面向量的数量积运算,属于中档题.本题解答的关键观察图象发现,A B 分别是函数tan(42y x ππ=-y 轴右侧的第一个零点和函数值为1的点,即可求得,A B 的坐标,进而求得向量(),OA OB AB +的坐标,根据平面向量数量积的坐标运算即可求得答案.8.如果一个球的外切圆锥的高是这个球半径的3倍,那么圆锥侧面积和球的表面积的比值为______.【正确答案】32【分析】设球的半径为r ,则圆锥的高为3r ,取圆锥的轴截面ABC ,其中A 为圆锥的顶点,设球心为O ,作出图形,分析可知ABC 为等边三角形,求出AB ,利用圆锥的侧面积公式以及球体的表面积公式可求得结果.【详解】设球的半径为r ,则圆锥的高为3r ,取圆锥的轴截面ABC ,其中A 为圆锥的顶点,设球心为O,如下图所示:设圆O 分别切AB 、AC 于点E 、D ,则D 为BC 的中点,由题意可得OD OE r ==,3AD r =,则322AO AD OD r r r OE =-=-==,又因为OE AB ⊥,所以,π6BAD ∠=,同理可得π6CAD ∠=,所以,π3BAC ∠=,又因为AB AC =,故ABC为等边三角形,故πsin 32AD AB ===,所以,圆锥的侧面积为2ππ6πAB BD r ⨯⨯=⨯=,因此,圆锥侧面积和球的表面积的比值为226π34π2r r =.故答案为.329.已知某产品的一类部件由供应商A 和B 提供,占比分别为110和910,供应商A 提供的该部件的良品率为910,供应商B 提供的该部件的良品率为710.若发现某件部件不是良品,那么这个部件来自供应商B 的概率为______(用分数作答)【正确答案】2728【分析】利用全概率公式,条件概率公式求解即可.【详解】设“某件部件不是良品”为事件A ,“这个部件来自供应商B ”为事件B ,()11932810101010100P A =⨯+⨯= ,()93271010100P AB =⨯=,()()()2728P AB P B A P A ∴==.故272810.已知()()πsin 04f x x ωω⎛⎫=+> ⎪⎝⎭,函数()y f x =,x ∈R 的最小正周期为π,将()y f x =的图像向左平移π02ϕϕ⎛⎫<< ⎪⎝⎭个单位长度,所得图像关于y 轴对称,则ϕ的值是______.【正确答案】π8##1π8【分析】由周期求出ω,即可求出()f x 的解析式,再根据三角函数的变换规则得到平移后的解析式,最后根据对称性得到ϕ的值.【详解】 ()()πsin 04f x x ωω⎛⎫=+> ⎪⎝⎭,函数()y f x =的最小正周期为2ππT ω==,2ω∴=,π()sin 24f x x ⎛⎫=+ ⎪⎝⎭.将()y f x =的图像向左平移ϕ个单位长度,可得πsin 224y x ϕ⎛⎫=++ ⎪⎝⎭的图像,根据所得图像关于y 轴对称,可得ππ2π42k ϕ+=+,Z k ∈,解得ππ28k ϕ=+,Z k ∈,又π02ϕ<<,则令0k =,可得ϕ的值为π8.故π8.11.如图,椭圆的中心在原点,长轴1AA 在x 轴上.以A 、1A 为焦点的双曲线交椭圆于C 、D 、1D 、1C 四点,且112CD AA =.椭圆的一条弦AC 交双曲线于E ,设AE EC λ=,当2334λ≤≤时,双曲线的离心率的取值范围为______.710e ≤≤【分析】由题意设()()1,0,,0A c A c -,则可设,,,22c c D h C h ⎛⎫⎛⎫-⎪ ⎪⎝⎭⎝⎭,根据向量的共线求得E 点坐标,代入双曲线的方程22221x y a b-=,结合离心率化简可得2221e e λλ+=-,求出λ的表达式,结合条件可列不等式,即可求得答案.【详解】设()()1,0,,0A c A c -,则设,,,22c c D h C h ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,(其中c 为双曲线的半焦距,h 为C .D 到x 轴的距离),AE EC λ=,则AE EC λ∴= ,即(,)()2,E E E E x c y h x cy λ--+=,()()˙22,1211E E c c c y h x λλλλλλ-+-∴===+++,即E 点坐标为()()2,211c h λλλλ⎛⎫- ⎪ ⎪++⎝⎭,设双曲线的方程为22221x y a b -=,将c a e =代入方程,得222221e x y c b-=①,将(,)2c C h ,E ()()2,211c h λλλλ⎛⎫- ⎪ ⎪++⎝⎭代入①式,整理得2˙2222222()121,(1441e h e h b b λλλλ--=-+=+,消去22h b ,得2221e e λλ+=-,所以22213122e e e λ-==-++,由于2334λ≤≤.所以22331324e ≤-≤+,故2710,710e e ≤≤≤≤710e ≤≤12.将关于x 的方程()2sin 2π1x t +=(t 为实常数,01t <<)在区间[)0,∞+上的解从小到大依次记为12,,,,n x x x ,设数列{}n x 的前n 项和为n T ,若20100πT ≤,则t 的取值范围是______.【正确答案】1150,,626⎛⎤⎡⎤⋃ ⎥⎢⎥⎝⎦⎣⎦【分析】先根据三角函数的周期性得出12,x x 满足的关系,然后再根据12,x x 的对称性可得结果.【详解】由()2sin 2π1x t +=得()1sin 2π2x t +=,则方程()2sin 2π1x t +=的解即为函数()sin 2πy x t =+图象与直线12y =交点的横坐标,因为函数()sin 2πy x t =+的周期为πT =,所以135,,x x x 是以x 1为首项,π为公差的等差数列,246,,,x x x 是以x 2为首项,π为公差的等差数列,所以201234201210()90π100πT x x x x x x x =+++++=++≤ ,所以12πx x +≤,令π2π=π()2x t k k ++∈Z 得πππ=242k t x +-,因为[)0,x ∈+∞,所以[)2ππ,x t t +∈+∞,由函数()sin 2πy x t =+图象的对称性知,x 1与2x 对应的点关于函数()sin 2πy x t =+图象的某条对称轴对称,因为01t <<,所以当π0π6t <≤,即106t <≤时,可知x 1与2x 对应的点关于直线ππ=42t x -对称,此时满足12πx x +≤成立;当π5ππ66t <≤,即1566t <≤时,可知x 1与2x 对应的点关于直线3ππ=42t x -对称,此时由123πππ2x x t +=-≤得12t ≥,所以1526t ≤≤;当5πππ6t <<,即516t <<时,可知x 1与2x 对应的点关于直线5ππ=42t x -对称,此时不满足12πx x +≤;综上,106t <≤或1526t ≤≤.故答案为.1150,,626⎛⎤⎡⎤⋃ ⎥⎢⎥⎝⎦⎣⎦思路点睛:涉及同一函数的不同自变量值对应函数值相等问题,可以转化为直线与函数图象交点横坐标问题,结合函数图象性质求解.二、选择题(本大题共有4题,满分18分,第13,14题每题4分,第15,16题每题5分)13.设a ∈R ,则“a =1”是“直线l 1:ax +2y -1=0与直线l 2:x +(a +1)y +4=0平行”的A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件【正确答案】A【详解】试题分析:运用两直线平行的充要条件得出l 1与l 2平行时a 的值,而后运用充分必要条件的知识来解决即可.解:∵当a=1时,直线l 1:x+2y ﹣1=0与直线l 2:x+2y+4=0,两条直线的斜率都是﹣,截距不相等,得到两条直线平行,故前者是后者的充分条件,∵当两条直线平行时,得到,解得a=﹣2,a=1,∴后者不能推出前者,∴前者是后者的充分不必要条件.故选A .考点:必要条件、充分条件与充要条件的判断;直线的一般式方程与直线的平行关系.14.已知平面α,β,直线l ,若αβ,l αβ⋂=,则A.垂直于平面β的平面一定平行于平面αB.垂直于直线l 的直线一定垂直于平面αC.垂直于平面β的平面一定平行于直线lD.垂直于直线l 的平面一定与平面α,β都垂直【正确答案】D【详解】选D.由α⊥β,α∩β=l ,知:垂直于平面β的平面与平面α平行或相交,故A 不正确;垂直于直线l 的直线若在平面β内,则一定垂直于平面α,否则不一定,故B 不正确;垂直于平面β的平面与l 的关系有l ⊂β,l ∥β,l 与β相交,故C 不正确;由平面垂直的判定定理知:垂直于直线l 的平面一定与平面α,β都垂直,故D 正确.15.已知抛物线()220y px p =>上一点()()1,0M m m >到其焦点的距离为5,双曲线2221xy a-=的左顶点为A ,若双曲线的一条渐近线与直线AM 平行,则实数a 的值为()A.13B.14C.19D.12【正确答案】A 【分析】由152p+=得抛物线方程,M 在抛物线上求得M 坐标,再根据双曲线一条渐近线与直线AM 平行可得答案.【详解】根据题意,抛物线22(0)y px p =>上一点(1,)(0)M m m >到其焦点的距离为5,则点M 到抛物线的准线2px =-的距离也为5,即152p +=,解得8p =,所以抛物线的方程为216y x =,则216m =,所以4m =,即M 的坐标为14(,),又双曲线2221x y a-=的左顶点(),0A a -,一条渐近线为1y x a =,而41AM k a =+,由双曲线的一条渐近线与直线AM 平行,则有411a a =+,解得13a =.故选:A16.已知函数()y f x =是定义域在R 上的奇函数,且当0x >时,()()()230.02f x x x =--+,则关于()y f x =在R 上零点的说法正确的是()A.有4个零点,其中只有一个零点在()3,2--内B.有4个零点,其中只有一个零点在()3,2--内,两个在()2,3内C.有5个零点,都不在()0,2内D.有5个零点,其中只有一个零点在()0,2内,一个在()3,+∞【正确答案】C【分析】解法一:先研究0x >时,零点的情况,根据()()23y x x =--零点的情况,以及函数图象的平移,即可得出0x >时零点的个数.然后根据奇函数的对称性以及特性,即可得出答案;解法二:求解方程()0f x =,也可以得出0x >时零点的个数.然后根据奇函数的对称性以及特性,即可得出答案.【详解】解法一:根据对称性可以分三种情况研究(1)0x >的情况,()f x 是把抛物线()()23y x x =--与x 轴交点为()()2,0,3,0向上平移了0.02,则与x 轴交点变至()2,3之间了,所以在()2,3之间有两个零点;(2)当0x <时,()()()230.02f x x x =-++-,根据对称性()3,2--之间也有两个零点(3)()f x 是定义在R 上的奇函数,故()00f =,所以有五个零点.解法二:(1)直接解方程()()230.020x x --+=的两根也可以得两根为52x =,都在()2,3之间;(2)当0x <时,()()()230.02f x x x =-++-,根据对称性()3,2--之间也有两个零点(3)()f x 是定义在R 上的奇函数,故()00f =,所以有五个零点.故选:C.方法点睛:先求出0x >时,零点的情况.然后根据奇函数的性质,即可得出答案.三、解答题(本大题共有5题,满分78分)解答下列各题必须在答题纸的相应位置写出必要的步骤17.2020年全面建成小康社会取得伟大历史成就,决战脱贫攻坚取得决定性胜利.某市积极探索区域特色经济,引导商家利用多媒体的优势,对本地特产进行广告宣传,取得了社会效益和经济效益的双丰收,某商家统计了7个月的月广告投入x (单位:万元)与月销量y (单位:万件)的数据如表所示:月广告投入x /万元1234567月销量y /万件28323545495260(1)已知可用线性回归模型拟合y 与x 的关系,请用相关系数加以说明,并求y 关于x 的线性回归方程;(2)根据(1)的结论,预计月广告投入大于多少万元时,月销量能突破70万件.(本题结果均按四舍五入精确到小数点后两位)【正确答案】(1)0.99r =,线性相关程度相当高;75151ˆ147yx =+.(2)当月公告投入大于9.04万元时,月销售量能突破70万件.【分析】(1)利用相关系数的公式求得r 的值,得出相关性相当高,再求得ˆb和ˆa 的值,即可求得回归直线的方程;(2)结合(1)中的回归方程,根据题意列出不等式,即可求解.【小问1详解】解:由表格中的数据,可得1(1234567)47x =⨯++++++=,1(28323545495270)437y =⨯++++++=,77722111()28,()820,()()150i i i i i i x x y y x x y y ===-=-=--=∑∑∑,可相关系数为7()0.99i x x y y r --==∑,所以y 与x 的线性相关程度相当高,从而用线性回归模型能够很好地拟合y 与x 的关系,又由71721()()7514(i i i i x x y y r x x ==--==-∑∑,可得75151ˆˆ434147a y bx =-=-⨯=,所以y 关于x 的线性回归方程为75151ˆ147y x =+.【小问2详解】解:要使得月销售量突破70万件,则7515170147x +>,解得2269.0425x >≈,所以当月公告投入大于9.04万元时,月销售量能突破70万件.18.如图,在四棱锥P ABCD -中,底面ABCD 是平行四边形,90,ACB PA ∠=⊥平面,1,ABCD PA BC AB F ===是BC 的中点.(1)求证:DA ⊥平面PAC ;(2)试在线段PD 上确定一点G ,使//CG 平面PAF ,并求三棱锥A CDG -的体积.【正确答案】(1)证明见解析;(2)112.【分析】(1)因为四边形ABCD 是平行四边形,所以90ACB DAC ∠=∠= ,所以DA AC ⊥,因为PA ⊥平面ABCD ,则,PA DA ⊥又AC PA A ⋂=,故DA ⊥平面PAC .(2)取PD 的中点为G ,构造平行四边形,可证得//CG 平面PAF .此时,高为PA 的一半,所以体积为1111111332212A CDG G ACD ACD V V S h --∆∴==⋅⋅=⨯⨯⨯⨯=.【小问1详解】因为四边形ABCD 是平行四边形,90,,ACB DAC DA AC PA ∴∠=∠=∴⊥⊥ 平面ABCD ,DA ⊂平面ABCD ,,PA DA ∴⊥又,AC PA A DA =∴⊥ 平面PAC ,【小问2详解】设PD 的中点为G ,连接,AG CG ,在平面PAD 内作GH PA ⊥于点H ,则//GH AD ,且12GH AD =,由已知可得////FC AD GH ,且12FC AD GH ==,连接FH ,则四边形FCGH 为平行四边形,//,GC FH FH ∴⊂ 平面,PAF CG ⊄平面PAF ,//CG ∴平面PAF ,G ∴为PD 的中点时,//CG 平面PAF ,设S 为AD 的中点,连接GS ,则//GS PA ,且11,22GS PA PA ==⊥ 平面ABCD ,GS ∴⊥平面ABCD ,11111··11332212A CDG G ACD ACD V V S GS --∴===⨯⨯⨯⨯= .19.甲、乙两地相距1004千米,汽车从甲地匀速驶向乙地,速度不得超过120千米/小时,已知汽车每小时的运输成本(以1元为单位)由可变部分和固定部分组成:可变部分与速度v (千米/小时)的立方成正比,比例系数为2,固定部分为a 元()0a >.(1)把全部运输成本y 元表示为速度v (千米/小时)的函数,并指出这个函数的定义域;(2)为了使全部运输成本最小,汽车应以多大速度行驶?【正确答案】(1)(]()2100420,120a y v v v ⎛⎫=+∈⎪⎝⎭(2)答案见解析【分析】(1)求出汽车从甲地匀速行驶到乙地所用时间,根据货车每小时的运输成本可变部分和固定部分组成,可求得全程运输成本以及函数的定义域;(2)对210042a y v v ⎛⎫=+ ⎪⎝⎭求导,分两种情况讨论单调性,从而可求得最小成本时对应的速度.【小问1详解】由题意得,每小时运输成本为()32a v +,全程行驶时间为1004v 小时,所以全部运输成本(]()3210042001004(2),12a y v v v a v v ⎛⎫+⎪=∈+ ⎝=⎭;【小问2详解】由(1)知210042a y v v ⎛⎫=+ ⎪⎝⎭,求导得3224100441004a v a y v v v -⎛⎫'=-+=⨯ ⎪⎝⎭,令30,40y v a '=-=,解得v =,120<,即304120a <<⨯时,0v <<,200,1042a y v y v ⎛⎫=+ ⎪⎝<⎭'递减;120v <≤,200,1042a y v y v ⎛⎫=+ ⎪⎝>⎭'递增,此时,当v =,y 有最小值;120≥,即34120a ≥⨯时,0120v <≤,200,1042a y v y v ⎛⎫=+ ⎪⎝<⎭'递减;此时,当120v =,y 有最小值.综上,为了使全部运输成本最小,当304120a <<⨯时,汽车应以v =千米/小时行驶;当34120a ≥⨯时,汽车应以120v =千米/小时行驶.20.已知A B 、是平面内的两个定点,且8AB =,动点M 到A 点的距离是10,线段MB 的垂直平分线l 交MA 于点P ,若以AB 所在直线为x 轴,AB 的中垂线为y 轴建立直角坐标系.(1)试求P 点的轨迹C 的方程;(2)直线()40R mx y m m --=∈与点P 所在曲线C 交于弦EF ,当m 变化时,试求AEF △的面积的最大值.【正确答案】(1)221259x y +=(2)15【分析】(1)根据几何关系将距离转化为10PA PB +=,结合椭圆定义即可求解;(2)先判断直线过定点且斜率不能为0,则三角形的底为定值,即求三角形的高12y y -的最大值,联立直线与椭圆方程,将斜率转化为三角形式,结合三角公式化简,用基本不等式求解即可.【小问1详解】以AB 为x 轴,AB 中垂线为y 轴,则()()4,0,4,0A B -,由题意得,108PA PB PA PM AB +=+==>,所以P 点的轨迹是以,A B 为左右焦点,长轴长为10的椭圆,设椭圆的方程为()222210x y a b a b+=>>,焦距为2c ,所以22221028a c a b c =⎧⎪=⎨⎪=+⎩,解得534a b c =⎧⎪=⎨⎪=⎩,所以P 点的轨迹C 的方程为221259x y +=【小问2详解】由40mx y m --=得()4y m x =-过定点()4,0B ,显然0m ≠,联立()224,1259y m x x y ⎧=-⎪⎨+=⎪⎩得2297225810,Δ0y y m m ⎛⎫++-=> ⎪⎝⎭恒成立.所以12227272925925m m y y m m +=-=-++,212228181925259m y y m m =-=-++,所以12y y -===因为m 为直线斜率,所以令tan ,tan 0,m θθ=≠所以22122290tan 90tan 125tan 925tan 9sin y y θθθθθ-==⋅++2222290sin 190sin 19015.99cos 25sin sin 916sin sin 416sin sin θθθθθθθθθ=⋅=⋅=≤=+++当且仅当916sin ,sin θθ=即3sin ,4θ=时1215,4max y y -=()115815.24AEF max S =⨯⨯=△思路点睛:圆锥曲线的面积最值问题多采用直线与圆锥曲线联立方程组,运用韦达定理结合基本不等式计算的方法,本题为简化计算,还可以采用三角换元,将直线斜率与三角函数巧妙联系从而更快求解。
上海2020届高三数学 二模考试(金山区)

上海2020届高三数学二模考试(金山区)上海市2020届高三数学二模数学试卷(金山区)一、填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分)1.集合A={x|2<x<3},B={x||x|<2},则A∪B={x|2<x≤3∪-2≤x<2}。
2.函数y=x-1/2的定义域是R,i的值为-1.3.已知线性方程组的增广矩阵为1 1 32 3 a],若该线性方程组的解为x=1,y=1,则实数a=5.4.已知函数f(x)=x^4-3x^2+3,则f(-1/3)=0.5.已知函数f(x)=11x/(x^2+2),则f^-1(0)=-√22或√22.6.已知双曲线2-y^2=1(a>0)的一条渐近线方程为2x-y=0,则实数a=2.7.已知函数f(x)=lg(1+x)+sinx+1,若f(m)=4,则f(-m)=3.8.数列{an}的通项公式an=1/(n(n+1)),n∈N*,前n项和为Sn,则limSn=2.9.甲、乙、丙三个不同单位的医疗队里各有3人,职业分别为医生、护士与化验师,现在要从中抽取3人组建一支志愿者队伍,则他们的单位与职业都不相同的概率是5/18.10.若点集A={(x,y)|x^2+y^2≤1},B={(-2≤x≤2,-1≤y≤1)},则点集Q={(x,y)|x=x1+x2,y=y1+y2,(x1,y1)∈A,(x2,y2)∈B}所表示的区域的面积是16.11.我们把一系列向量ai(i=1,2,⋯,n)按次序排成一列,称为向量列,记作{ai},已知向量列{ai}满足a1=(1,1),an=(xn,yn)=(xn-1-yn-1,xn-1+yn-1)(n≥2),设θn表示向量an-1与an夹角,若bn=θn,则对任意正整数n,不等式b1+b2+⋯+bn>loga(1-2a)恒成立,则实数a的取值范围是(0,1/2)。
12.设n∈N*,an为(x+2)-(x+1)的展开式的各项系数之和,m=-t+6,t∈R,bn=[1]+[2^2]+⋯+[n^2]([x]表示不超过实数x的最大整数),则(n-t)^2+(b-m)^2的最小值为3.以f(n)表示第n个时刻进入园区的人数,其中:当1≤n≤15时,f(n) = 300*311+2400当19≤n≤22时,f(n) = -650n以g(n)表示第n个时刻离开园区的人数,其中:当1≤n≤28时,g(n) = 400n-5000当29≤n≤36时,g(n) = 8200-29n设定每15分钟为一个计算单位,上午8点15分作为第1个计算人数单位,即n=1,8点30分作为第2个计算单位,即n=2,依次类推,把一天内从上午8点到下午5点分成36个计算单位(最后结果四舍五入,精确到整数)。
上海市徐汇区2020届高三二模数学卷(含答案)

1 俯视图
A. 2 5 5
B. 2 5 5
C. 5 5
D. 5 5
16.若数列
an
, bn
的通项公式分别为 an
1 n2020 a , bn 2
1 n2019 n
,且 an
bn 对任意 n N 恒成立,
则实数 a 的取值范围为( )
A. 2,1
B.
2,
3 2
C.
记为 mn . 设 bn ni M n mn ,当正整数 n 满足 3 n 2020 时,比较 bn 与 bn1 的大小,并求出 bn 的最大值.
参考答案及评分标准
一. 填空题:(本大题共有 12 题,满分 54 分,第 1-6 题每题 4 分,第 7-12 题每题 5 分
2020.本大题共有 5 题,满分 76 分)解答下列各题必须在答题纸的相应位置写出必要的步骤.
17.(本题满分 14 分,第(1)小题 6 分,第(2)小题 8 分)
如图,在四棱锥 P ABCD 中,底面 ABCD 是矩形, PA 底面 ABCD , E 是 PC 的中点,已知 AB 2 ,
(2)[解法一]如图所示,以 A 点为原点, AB、AD、AP分别为x轴、y轴、z轴
建立空间直角坐标系,
则 B(2, 0, 0),C(2, 2 2 ,0),E(1, 2 , 1),-------8
z
分
AE (1, 2, 1) , BC (0, 2 2, 0) .-----------10
P
分
设 AE 与 BC 的夹角为,则
11.如图为某街区道路示意图,图中的实线为道路,每段道路旁的数字表示单向通
过此段道路时会遇见的行人人数,在防控新冠肺炎疫情期间,某人需要从 A 点由图
上海2020届高三数学 二模汇编 解析几何

2.已知O 是坐标原点,点(1,1)A -,若点),(y x M 为平面区域12x y ⎧⎪≤⎨⎪≤⎩上的一个动点,则OA OM ⋅u u u r u u u u r 的取值范围是3.已知平面向量a r 、b r ,e r 满足||1e =r ,1a e ⋅=r r ,1b e ⋅=-r r ,||4a b -=r r,则a b ⋅r r 的最小值是1:350l ax y +-=与2:210l x y +-=互相垂直,则实数a 的值为9.点A 是曲线y =(2y ≤)上的任意一点,(0,2)P -,(0,2)Q ,射线QA 交曲线28y x =于B 点, BC 垂直于直线3y =,垂足为点C ,则下列结论:(1)||||AP AQ -为定值 (2)||||QB BC +为定值5;(3)||||||PA AB BC ++为定值5; 其中正确结论的序号是10.已知双曲线的渐近线方程为x y ±=,且右焦点与抛物线x y 42=的焦点重合,则这个双曲线的方程是11.已知O 是坐标原点,点(1,1)A -,若点(,)M x y 为平面区域212x y x y +≥⎧⎪≤⎨⎪≤⎩上的一个动点,则OM OA ⋅uuu r uu r 的取值范围22{(,)|1}A x y x y =+≤,{(,)|22,11}B x y x y =-≤≤-≤≤,则点集12121122{(,)|,,(,),(,)}Q x y x x x y y y x y A x y B ==+=+∈∈所表示的区域的面积是17.已知A 、B 、C 是边长为1的正方形边上的任意三点,则AB AC ⋅uu u r uuu r的取值范围为19.已知点(3,2)A -,点P 满足线性约束条件1024y x y⎧⎪-≤⎨⎪-≤⎩,设O 为坐标原点,则OA OP ⋅uu r uu u r 的最大值为21.已知1F 、2F 是椭圆222:13x y C a +=(a >O 且倾斜角为60°的直线与椭圆C 的一个交点为M ,若1212||||MF MF MF MF +=-uuu r uuu u r uuu r uuu u r,则椭圆C 的长轴长为24.若实数,x y 满足0022x y x y ≥⎧⎪≥⎨⎪+≤⎩,则z x y =-的最小值为25.直线2:12x tl y t=+⎧⎨=-+⎩(t 是参数)的斜率为26.已知点M 、N 在以AB 为直径的圆上,若AB =5,AM =3,BN =2,则AB MN ⋅=u u u r u u u u r二、选择题:1.若O 为坐标原点,P 是直线20x y -+=上的动点,则OP 的最小值为() A .2B .C .D . 22.抛物线24y x =的准线方程是( )A. 2x =-B. 1x =-C. 18y =-D. 116y =-3.已知抛物线的方程为24y x =,过其焦点F 的直线交此抛物线于M 、N 两点,交y 轴于点E ,若1EM MF λ=uuu r uuu r,2EN NF λ=uuu r uuu r,则12λλ+=( )A. 2-B. 12-C. 1D. 1- 4.若x 、y 满足 ⎪⎩⎪⎨⎧≥≤+≥-010y y x y x , 则目标函数y x f +=2的最大值为( )A . 1B . 2C . 3D . 45.已知向量()()1,,1,,1,1,a x b x x =-=∈r rR ,则“1x =-”是“a r //b r ”的( )A . 充分非必要条件B . 必要非充分条件C . 充要条件D . 既非充分又非必要条件三、解答题:1.已知椭圆()2222:10x y a b a bΓ+=>>的右焦点的坐标为(2,0倍,椭圆Γ的上、下顶点分别为A 、B ,经过点P (0,4)的直线l 与椭圆Γ相交于M 、N 两点(不同于A 、B 两点). (1)求椭圆Γ的方程;(2)若直线BM l ⊥,求点M 的坐标;(3)设直线AN 、BM 相交于点Q (m ,n ),求证:n 是定值.2.如图,已知椭圆()2222:10x y M a b a b+=>>经过圆()22:14N x y ++=与x 轴的两个交点和与y 轴正半轴的交点.(1)求椭圆M 的方程;(2)若点P 为椭圆M 上的动点,点Q 为圆N 上的动点,求线段PQ 长的最大值;(3)若不平行于坐标轴的直线l 交椭圆M 于A 、B 两点,交圆N 于C 、D 两点,且满足AC DB =u u u r u u u r,求证:线段AB 的中点E 在定直线上.3.设双曲线222:1x C y a-=的左顶点为D ,且以点D 为圆心的圆222:(2)D x y r ++=(0r >)与双曲线C 分别相交于点A 、B ,如图所示. (1)求双曲线C 的方程;(2)求DA DB ⋅uu u r uu u r的最小值,并求出此时圆D 的方程;(3)设点P 为双曲线C 上异于点A 、B 的任意一点,且直线PA 、PB 分别与x 轴相交于点M 、N ,求证:||||OM ON ⋅为定值(其中O 为坐标原点).4.在平面直角坐标系xOy 中,1F ,2F 分别是椭圆()222 10x y a aΓ+=>:的左、右焦点,直线l 与椭圆交于不同的两点A 、B ,且2221=+AF AF .(1)求椭圆Γ的方程;(2)已知直线l 经过椭圆的右焦点2F ,,P Q 是椭圆上两点,四边形ABPQ 是菱形,求直线l 的方程; (3)已知直线l 不经过椭圆的右焦点2F ,直线2AF ,l ,2BF 的斜率依次成等差数列,求直线l 在y 轴上截距的取值范围.5.已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别是1F 、2F ,其长轴长是短轴长的2倍,过1F 且垂直于x 轴的直线被椭圆C 截得的线段长为1. (1)求椭圆C 的方程;(2)点P 是椭圆C 上除长轴端点外的任一点,过点P 作斜率为k 的直线l ,使得l 与椭圆C 有且只有一个公共点,设直线1PF 、2PF 的斜率分别为1k 、2k ,若0k ≠,证明:1211kk kk +为定值,并求出这个定值; (3)点P 是椭圆C 上除长轴端点外的任一点,设12F PF ∠的角平分线PM 交椭圆C 的长轴于点(,0)M m ,求m 的取值范围.且点A 是圆222:(x y r Γ+=(0r >)的圆心,动直线:l y kx =与椭圆交于P 、Q 两点. (1)求椭圆C 的方程;(2)若点S 在线段AB 上,OS OP λ=uu r uu u r(λ+∈R ),且当λ取最小值时直线l 与圆Γ相切,求r 的值;(3)若直线l 与圆Γ分别交于G 、H 两点,点G 在线段PQ 上,且||||QG PH =,求r 的取值范围.7.已知直线:l y kx m =+和椭圆22:142x y Γ+=相交于点),(11y x A ,),(22y x B .(1)当直线l 过椭圆Γ的左焦点和上顶点时,求直线l 的方程;(2)点C 在Γ上,若0m =,求△ABC 面积的最大值;(3)如果原点O 到直线l 的距离是3,证明:△AOB 为直角三角形.8.已知椭圆22:12x y Γ+=的右焦点为F ,直线(()x t t =∈与该椭圆交于点A 、B (点A 位于x 轴上方),x 轴上一点C (2,0),直线AF 与直线BC 交于点P .(1)当1t =-时,求线段AF 的长; (2)求证:点P 在椭圆Γ上;(3)求证:2PAC S ≤V .9.直线10L y +-=上的动点P 到点1(9,0)T 的距离是它到点(1,0)T 的距离的3倍. (1)求点P 的坐标;(2)设双曲线22221x y a b-=的右焦点是F ,双曲线经过动点P ,且10PF TT ⋅=uu u r uur ,求双曲线的方程;(3)点(1,0)T 关于直线0x y +=的对称点为Q ,试问能否找到一条斜率为k (0k ≠)的直线L 与(2)中的双曲线22221x y a b-=交于不同的两点M 、N ,且满足||||QM QN =,若存在,求出斜率k 的取值范围,若不存在,请说明理由.10.在平面直角坐标系中,A 、B 分别为椭圆22:12x y Γ+=的上、下顶点,若动直线l 过点(0,)P b (1b >),且与椭圆Γ相交于C 、D 两个不同点(直线l 与y 轴不重合,且C 、D 两点在y 轴右侧,C 在D 的上方),直线AD 与BC 相交于点Q .(1)设Γ的两焦点为1F 、2F ,求12F AF ∠的值;(2)若3b =,且32PD PC =uu u r uu u r,求点Q 的横坐标;(3)是否存在这样的点P ,使得点Q 的纵坐标恒为13?若存在,求出点P 的坐标,若不存在,请说明理由.11.已知动直线l 与椭圆22:12y C x +=交于11(,)P x y 、22(,)Q x y 两不同点,且△OPQ 的面积OPQ S =V ,其中O 为坐标原点.(1)若动直线l 垂直于x 轴,求直线l 的方程;(2)证明2212x x +和2212y y +均为定值;(3)椭圆C 上是否存在点D 、E 、G ,使得三角形面积ODE ODG OEG S S S ===V V V 若存在,判断△DEG 的形状,若不存在,请说明理由.。
2020年上海市高三数学二模分类汇编:集合与命题(16区全)

1(2020松江二模). 若集合{2,4,6,8}A =,2{|40}B x x x =-≤,则A B =I 1(2020杨浦二模). 设集合{1,2,3,4}A =,集合{1,3,5,7}B =,则A B =I 1(2020嘉定二模). 已知集合{2,4,6,8}A =,{1,2,3}B =,则A B =I 1(2020青浦二模). 已知全集U =R ,集合(,2)A =-∞,则集合U A =ð1(2020黄浦二模). 若集合{1,2,3,4,5}A =,2{|60}B x x x =--<,则A B =I 1(2020徐汇二模). 已知{1,2,3,4,5}U =,{1,3,5}A =,则U A =ð1(2020长宁二模). 已知集合(2,1]A =-,(0,)B =+∞,则A B =I1(2020闵行二模). 设集合{1,3,5,7}A =,{|47}B x x =≤≤,则A B =I 1(2020金山二模). 集合{|03}A x x =<<,{|||2}B x x =<,则A B =I 1(2020浦东二模). 设全集{0,1,2}U =,集合{0,1}A =,则U A =ð2(2020崇明二模). 设集合{|12}A x x =-≤≤,{|04}B x x =≤≤,则A B =I 3(2020虹口二模). 设全集R U =,若{||2|3}A x x =-≥,则U A =ð10(2020奉贤二模). 集合22{|0}24x x A x -=≤-,{|||2}B x x a =-≤,若A B =∅I ,则实数a 的取值范围是12(2020静安二模). 设x ∈R ,则“250x x -<”是“|1|1x -<”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件14(2020普陀二模). 已知集合{3}M =,{2,4}N =,{1,2,5}Q =,从这三个集合中各取一个元素构成空间直角坐标系O xyz -中向量a r 的坐标,则可确定不同向量a r 的个数为( )A. 33B. 34C. 35D. 3616(2020浦东二模). 设集合{1,2,3,,2020}S =⋅⋅⋅,设集合A 是集合S 的非空子集,A 中的最大元素和最小元素之差称为集合A 的直径,那么集合S 所有直径为71的子集的元素个数之和为( )A. 711949⋅B. 7021949⋅C. 702371949⋅⋅D. 702721949⋅⋅。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1(2017松江二模). 已知()21x f x =-,则1(3)f -=1(2017浦东二模). 已知集合2{|0}1x A x x -=≥+,集合{|04}B y y =≤<,则A B =1(2017黄浦二模). 函数y =的定义域是1(2017闵行二模). 方程3log (21)2x +=的解是1(2019金山二模). 函数4)(-=x x f 的定义域是2(2017普陀二模). 函数21log (1)y x =-的定义域为2(2019徐汇二模). 已知点(2,5)在函数()1x f x a =+(0a >且1a ≠)的图像上,则()f x 的反函数1()f x -=2(2020静安二模). 若幂函数()y f x =的图像经过点1(,2)8,则1()8f -的值为2(2020虹口二模). 函数()f x =的定义域为 2(2020金山二模). 函数12y x-=的定义域是 3(2017嘉定二模). 设1()f x -为2()1x f x x =+的反函数,则1(1)f -= 3(2019崇明二模). 设函数2()f x x =(0x >)的反函数为1()y f x -=,则1(4)f -= 3(2019松江二模). 已知函数2()log f x x =的反函数为1()f x -,则1(2)f -=3(2020青浦二模). 已知函数1()1f x x =+,则方程1()2f x -=的解x = 3(2020浦东二模). 若函数12()f x x =,则1(1)f -=4(2019黄浦二模). 若函数()f x 的反函数为112()f x x -=,则(3)f = 4(2020静安二模). 若函数()y f x =(x ∈R )是偶函数,在区间(,0]-∞上是增函数,2x =是其零点,则()0f x >的解集为4(2020崇明二模). 已知函数()21x f x =+,其反函数为1()y f x -=,则1(3)f -=5(2017静安二模). 设()f x 为R 上奇函数,当0x ≥,2()2f x x x b =++(b 为常数),则(1)f -=5(2017黄浦二模). 若函数3,0()1,0x x a x f x a x -+<⎧⎪=⎨+≥⎪⎩(0,1)a a >≠是R 上的减函数,则a 的取值范围是5(2017奉贤二模). 设点(9,3)在函数()log (1)a f x x =-(0a >,1a ≠)的图像上,则()f x 的反函数1()f x -=5(2020虹口二模). 已知函数()g x 的图像与函数2()log (31)x f x =-的图像关于直线y x =对称,则(3)g =5(2020金山二模). 已知函数21()11x f x =,则1(0)f -= 6(2020徐汇二模). 若11()21x f x a=+-是奇函数,则实数a 的值为 7(2017松江二模). 若函数()2()1x f x x a =+-在区间[0,1]上有零点,则实数a 的取值范围是7(2017闵行二模). 若函数()2()1x f x x a =+-在区间[0,1]上有零点,则实数a 的取值范围是7(2017杨浦二模). 设()f x 是定义在R 上的奇函数,当0x >时,()23x f x =-,则不等式()5f x <-的解为7(2019长嘉二模).设函数()f x =a 为常数)的反函数为1()f x -,若函数1()f x -的图像经过点(0,1),则方程1()2f x -=解为________7(2020宝山二模). 某种微生物的日增长率r ,经过n 天后其数量由0p 变化为p ,并且满足方程0rn p p e =.实验检测,这种微生物经过一周数量由2.58个单位增长到14.86个单位,则增长率=r (精确到1%)7(2020金山二模). 已知函数1()lgsin 11x f x x x-=+++,若()4f m =,则()f m -= 8(2017长宁/宝山二模). 已知函数22,0()log ,01x x f x x x ⎧≤⎪=⎨<≤⎪⎩的反函数是1()f x -,则11()2f -= 8(2020嘉定二模). 已知函数()2log a f x x =+(0a >且1a ≠)的反函数为1()y f x -=,若1(3)2f -=,则a =8(2020黄浦二模). 已知函数()x f x a b =+(0a >,1a ≠)的定义域和值域都是[2,0]-,则(1)f -=8(2020松江二模). 若函数2()log (21)x f x kx =++是偶函数,则k =9(2017嘉定二模). 若1132()f x x x =-,则满足()0f x >的x 的取值范围是9(2017崇明二模). 若1()42x x f x +=+的图像与()y g x =的图像关于直线y x =对称,则(3)g =9(2017徐汇二模). 已知函数2log ,02()25(),239x x x f x x <<⎧⎪=⎨+≥⎪⎩,若函数()()g x f x k =-有两个不同的零点,则实数k 的取值范围是9(2017普陀二模). 若函数1log log )(222+-=x x x f (2≥x )的反函数为)(1x f-,则)3(1-f =9(2017虹口二模). 函数2||1()(2)1x x f x x x ≤⎧=⎨->⎩,如果方程()f x b =有四个不同的实数解1x 、2x 、3x 、4x ,则1234x x x x +++=9(2019青浦二模). 已知a 、b 、c 都是实数,若函数2()1x x a f x b a x c x⎧≤⎪=⎨+<<⎪⎩的反函数的定义域是(,)-∞+∞,则c 的所有取值构成的集合是9(2019黄浦二模). 若函数221()lg ||1x x f x x m x ⎧-≤=⎨->⎩在区间[0,)+∞上单调递增,则实数m 的取值范围为9(2020长宁二模). 已知111{2,1,,,,1,2,3}232α∈---,若函数()f x x α=在(0,)+∞上递减且为偶函数,则α=9(2020青浦二模). 设{1,3,5}a ∈,{2,4,6}b ∈,则函数1()log ba f x x=是减函数的概率为 10(2017浦东二模). 已知定义在R 上的函数()f x 满足:①()(2)0f x f x +-=;②()(2)0f x f x ---=;③ 在[1,1]-上表达式为[1,0]()1,(0,1]x f x x x ∈-=-∈⎪⎩,则函数()f x 与122,0()log ,0x x g x x x ⎧≤⎪=⎨>⎪⎩的图像在区间[3,3]-上的交点的个数为 10(2019金山二模). 已知函数x x f sin )(=和()g x =[,]ππ-,则它们的图像围成的区域面积是10(2019徐汇二模). 已知函数4()1f x x x =+-,若存在121,,,[,4]4n x x x ⋅⋅⋅∈使得 121()()()()n n f x f x f x f x -++⋅⋅⋅+=,则正整数n 的最大值是10(2020青浦二模).已知函数()f x =,若存在实数0x 满足00[()]f f x x =,则实数a 的取值范围是10(2020静安二模). 设(,)n n A n y (*n ∈N )是函数12y x x=+的图像上的点,直线1x n =+与直线n y y =的交点为n B ,△1n n n A B A +的面积为n S ,则lim n n S →∞的值为 10(2020闵行二模). 已知(2)f x +是定义在R 上的偶函数,当12,[2,)x x ∈+∞,且12x x ≠,总有12120()()x x f x f x -<-,则不等式1(31)(12)x f f +-+<的解集为 10(2020浦东二模). 已知函数222()log (2)2f x x a x a =+++-的零点有且只有一个,则实数a 的取值集合为10(2020松江二模). 已知函数()cos(2)6f x x π=-,若对于任意的1[,]44x ππ∈-,总存在2[,]x m n ∈,使得12()()0f x f x +=,则||m n -的最小值为 11(2017普陀二模). 设0<a ,若不等式22sin (1)cos 10x a x a +-+-≥对于任意的R∈x 恒成立,则a 的取值范围是11(2017长宁二模). 已知函数()||f x x x a =-,若对任意1[2,3]x ∈,2[2,3]x ∈,12x x ≠,恒有1212()()()22x x f x f x f ++>,则实数a 的取值范围为 11(2019青浦二模). 已知函数2()f x x ax b =++(,a b ∈R ),在区间(1,1)-内有两个零点,则22a b -的取值范围是11(2019崇明二模). 已知函数9()||f x x a a x=+-+在区间[1,9]上的最大值是10,则实数a 的取值范围是11(2019松江二模). 若函数||||2()4(2||9)29||18x x f x x x x =+-+-+有零点,则其所有零点的集合为 (用列举法表示)11(2019金山二模). 若集合2{|(2)20,A x x a x a =-++-<∈x Z }中有且只有一个元素,则正实数a 的取值范围是11(2020黄浦二模). 已知a ∈R ,函数22(0)()1(0)a x f x xx x ⎧+>⎪=⎨⎪+≤⎩,若存在不相等的实数1x 、2x 、3x ,使得312123()()()2f x f x f x x x x ===-,则a 的取值范围是 11(2020奉贤二模). 三个同学对问题“已知,R m n +∈,且1m n +=,求11m n+的最小值”提出各自的解题思路: 甲:112m n m n n m m n m n m n+++=+=++,可用基本不等式求解; 乙:1111(1)m n m n mm mn m m ++===-,可用二次函数配方法求解; 丙:1111()()2n m m n m n m n m n+=++=++,可用基本不等式求解;参考上述解题思路,可求得当x = 时,2221100a y x x =+-(010x <<,0a >)有最小值 12(2017徐汇二模). 设单调函数()y p x =的定义域为D ,值域为A ,如果单调函数()y q x =使得函数(())y p q x =的值域也是A ,则称函数()y q x =是函数()y p x =的一个“保值域函数”,已知定义域为[,]a b 的函数2()|3|h x x =-,函数()f x 与()g x 互为反函数,且()h x 是()f x 的一个“保值域函数”, ()g x 是()h x 的一个“保值域函数”,则b a -= 12(2017嘉定二模). 设x R ∈,用[]x 表示不超过x 的最大整数(如[2.32]2=,5]76.4[-=-),对于给定的*n N ∈,定义(1)([]1)(1)([]1)x n n n n x C x x x x -⋅⋅⋅-+=-⋅⋅⋅-+,其中[1,)x ∈+∞,则当3[,3)2x ∈时,函数10()x f x C =的值域是 12(2017杨浦二模). 设函数()||||a f x x x a =+-,当a 在实数范围内变化时,在圆盘221x y +≤内,且不在任一()a f x 的图像上的点的全体组成的图形的面积为12(2019长嘉二模). 已知定义在R 上的奇函数()f x 满足:(2)()f x f x +=-,且当01x ≤≤时,2()log ()f x x a =+,若对于任意[0,1]x ∈,都有221()1log 32f x tx -++≥-,则实数t 的取值范围为________12(2019浦东二模). 已知2()22f x x x b =++是定义在[1,0]-上的函数,若[()]0f f x ≤在定义域上恒成立,而且存在实数0x 满足:00[()]f f x x =且00()f x x ≠,则实数b 的取值范围是12(2019静安二模).已知函数⎪⎭⎫ ⎝⎛-+=21sin )(x a x f ,若⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+201920172019220191)0(f f f f 1010)1(20192018=+⎪⎭⎫ ⎝⎛+f f ,则实数=a ____________.12(2019杨浦二模). 定义域为集合{1,2,3,,12}⋅⋅⋅上的函数()f x 满足:①(1)1f =;②|(1)()|1f x f x +-=(1,2,,11x =⋅⋅⋅);③(1)f 、(6)f 、(12)f 成等比数列;这样的不同函数()f x 的个数为12(2020虹口二模). 已知函数|51|1()811x x f x x x ⎧-<⎪=⎨≥⎪+⎩,若方程(())f f x a =恰有5个不同的实数根,则实数a 的取值范围为12(2020闵行一模). 已知函数()|sin ||cos |4sin cos f x x x x x k =+--,若函数()y f x =在区间(0,)π内恰好有奇数个零点,则实数k 的所有取值之和为12(2020崇明二模). 对于函数()f x ,其定义域为D ,若对任意的12,x x D ∈,当12x x <时都有12()()f x f x ≤,则称函数()f x 为“不严格单调增函数”,若函数()f x 定义域为{1,2,3,4,5,6}D =,值域为{7,8,9}A =,则函数()f x 是“不严格单调增函数”的概率是12(2020松江二模). 已知函数20()|log ()|0a x x f x x x x ⎧+>⎪=⎨⎪-<⎩(R a ∈且a 为常数)和()g x k =(R k ∈且k 为常数),有以下命题:① 当0k <时,函数()()()F x f x g x =-没有零点;② 当0x <时,2()()()h x f x b f x c =+⋅+恰有3个不同零点1x 、2x 、3x ,则1231x x x ⋅⋅=-; ③ 对任意的0k >,总存在实数a ,使得()()()F x f x g x =-有4个不同的零点123x x x << 4x <,且1||x 、2||x 、3||x 、4||x 成等比数列;其中的真命题是 (写出所有真命题的序号)12(2020徐汇二模). 设二次函数2()(21)2f x m x nx m =++--(,m n ∈R 且12m ≠-)在[2,3]上至少有一个零点,则22m n +的最小值为12(2020青浦二模). 定义函数(){{}}f x x x =,其中{}x 表示不小于x 的最小整数,如{1.4}2=,{2.3}2-=-,当(0,]x n ∈(*n ∈N )时,函数()f x 的值域为n A ,记集合n A 中元素的个数为n a ,则n a =12(2020长宁二模). 已知函数1()||1f x x =-,若关于x 的方程()f x x b -=有三个不同的实数解,则实数b 的取值范围是13(2019崇明二模). 下列函数中既是奇函数,又在区间(0,)+∞上单调递减的函数为( )A. y =B. 12log y x =C. 3y x =-D. 1y x x=+13(2020黄浦二模).“函数()f x (x ∈R )存在反函数”是“函数()f x 在R 上为增函数”的( )A. 充分而不必要条件B. 必而不充分条件C. 充分必要条件D. 既不充分也不必要条件13(2020徐汇二模). 某地区的绿化面积每年平均比上一年增长20%,经过x 年,绿化面积与原绿化面积之比为y ,则()y f x =的图像大致为( )A. B. C. D.14(2017静安二模). 当1(0,)2k ∈||(1)x k x =+的根的个数是( )A. 1B. 2C. 3D. 414(2017奉贤二模). 若()f x 为奇函数,且0x 是()x y f x e =-的一个零点,则0x -一定是下列哪个函数的零点( )A. ()1x y f x e =+B. ()1xy f x e -=-- C. ()1x y f x e =- D. ()1x y f x e =-+14(2020嘉定二模). 下列函数中,既是(0,)+∞上的增函数,又是偶函数的是( ) A. 1y x= B. 2x y = C. 1||y x =- D. lg ||y x = 14(2020奉贤二模). 如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示为x 的函数()f x ,则()y f x =在[0,]π上的图像大致为( )A. B. C. D.15(2017虹口二模). 已知函数()2x xe ef x --=,1x 、2x 、3x R ∈,且120x x +>,230x x +>,310x x +>,则123()()()f x f x f x ++的值( )A. 一定等于零B. 一定大于零C. 一定小于零D. 正负都有可能15(2017徐汇二模). 将函数1y x=-的图像按向量(1,0)a =平移,得到的函数图像与函数2sin y x π=(24)x -≤≤的图像的所有交点的横坐标之和等于( )A. 2B. 4C. 6D. 815(2017闵行/松江二模). 某条公共汽车线路收支差额y 与乘客量x 的函数关系如下图所示(收支差额=车票收入-支出费用),由于目前本条线路亏损,公司有关人员提出了两条建议:建议(1)不改变车票价格,减少支出费用;建议(2)不改变支出费用,提高车票价格. 下面给出的四个图形中,实线和虚线分别表示目前和建议后的函数关系,则( )① ② ③ ④A. ①反映建议(2),③反映建议(1)B. ①反映建议(1),③反映建议(2)C. ②反映建议(1),④反映建议(2)D. ④反映建议(1),②反映建议(2)15(2020奉贤二模). 设函数()log (1)x a f x a =-,其中0a >,且1a ≠,若*N n ∈,则()lim f n n n a a a→∞=+( ) A. 1 B. a C.1a D. 1a 或a 16(2017崇明二模).设函数()x x x f x a b c =+-,其中0c a >>,0c b >>,若a 、b 、c 是ABC ∆的三条边长,则下列结论中正确的个数是( )① 对于一切(,1)x ∈-∞都有()0f x >;② 存在0x >使x xa 、x b 、x c 不能构成一个三角形的三边长;③ 若ABC ∆为钝角三角形,则存在(1,2)x ∈,使()0f x =;A. 3个B. 2个C. 1个D. 0个16(2017杨浦二模). 对于定义在R 上的函数()f x ,若存在正常数a 、b ,使得()()f x a f x b +≤+对一切x R ∈均成立,则称()f x 是“控制增长函数”,在以下四个函数中:① 2()1f x x x =++;② ()f x =③ 2()sin()f x x =;④ ()sin f x x x =⋅.是“控制增长函数”的有( )A. ②③B. ③④C. ②③④D. ①②④16(2017嘉定二模). 已知)(x f 是偶函数,且)(x f 在),0[∞+上是增函数,若)2()1(-≤+x f ax f 在1[,1]2x ∈上恒成立,则实数a 的取值范围是( ) A. ]1,2[- B. ]0,2[- C. ]1,1[- D. ]0,1[-16(2017宝山二模). 若存在t R ∈与正数m ,使()()F t m F t m -=+成立,则称“函数()F x在x t =处存在距离为2m 的对称点”,设2()x f x xλ+=(0)x >,若对于任意t ∈,总存在正数m ,使得“函数()f x 在x t =处存在距离为2m 的对称点”,则实数λ取值范围是( )A. (0,2]B. (1,2]C. [1,2]D. [1,4]16(2017闵行/松江二模). 设函数()y f x =的定义域是R ,对于以下四个命题:① 若()y f x =是奇函数,则(())y f f x =也是奇函数;② 若()y f x =是周期函数,则(())y f f x =也是周期函数;③ 若()y f x =是单调递减函数,则(())y f f x =也是单调递减函数;④ 若函数()y f x =存在反函数1()y f x -=,且函数1()()y f x f x -=-有零点,则函数()y f x x =-也有零点.其中正确的命题共有( )A. 1个B. 2个C. 3个D. 4个16(2019徐汇二模). 设()f x 是定义在R 上的函数,若存在两个不等实数12,x x ∈R ,使得1212()()()22x x f x f x f ++=,则称函数()f x 具有性质P ,那么下列函数: ① 10()00x f x x x ⎧≠⎪=⎨⎪=⎩;② 3()f x x =;③ 2()|1|f x x =-;④ 2()f x x =; 不具有性质P 的函数为( )A. ①B. ②C. ③D. ④16(2019浦东二模). 已知()||f x a x b c =-+,则对任意非零实数a 、b 、c 、m ,方程2()()0mf x nf x t ++=的解集不可能为( )A. {2019}B. {2018,2019}C. {1,2,2018,2019}D. {1,9,81,729}16(2019静安二模).设)(x f 是定义在R 上恒不为零的函数,对任意实数x 、y ,都有)()()(y f x f y x f =+,若211=a ,)(n f a n =(*N ∈n ),数列}{n a 的前n 项和n S 组成数列{S n },则有( ) (A )数列{S n }递增,最大值为1. (B )数列{S n }递减,最小值为12.(C )数列{S n }递增,最小值为12. (D )数列{S n }递减,最大值为1. 16(2020宝山二模). 已知)(x f 是定义在R 上的奇函数,对任意两个不相等的正数1x 、2x 都有211212()()0x f x x f x x x -<-,则函数(),0()0,0f x xg x x x ⎧≠⎪=⎨⎪=⎩( ) A. 是偶函数,且在(0,)+∞上单调递减 B. 是偶函数,且在(0,)+∞上单调递增C. 是奇函数,且单调递减D. 是奇函数,且单调递增16(2020松江二模). 已知实数12100,,,[1,1]x x x ⋅⋅⋅∈-,且12100x x x π++⋅⋅⋅+=,则当22212100x x x ++⋅⋅⋅+取得最大值时,12100,,,x x x ⋅⋅⋅这100个数中,值为1的个数为( )A. 50个B. 51个C. 52个D. 53个16(2020金山二模). 函数()f x 是定义在R 上的奇函数,且(1)f x -为偶函数,当[0,1]x ∈时,()f x =()()g x f x x m =--有三个零点,则实数m 的取值范围是( ) A. 11(,)44-B. (11)C. 11(4,4)44k k -+(Z k ∈) D. (411)k k +(Z k ∈) 16(2020普陀二模). 定义域均为D 的三个函数()f x 、()g x 、()h x 满足条件:对任意x D ∈,点(,())x g x 与点(,())x h x 都关于点(,())x f x 对称,则称()h x 是()g x 关于()f x 的“对称函数”.已知函数()g x =()h x =()h x 是()g x 关于()f x 的“对称函数”,记()f x 的定义域为D ,若对任意s D ∈,都存在t D ∈,使得222()21f s t t a a =+++-成立,则实数a 的取值范围是( )A. [1,0][1,2]-B. {1}[0,2]-C. [2,1][0,1]--D. {1}[2,0]- 16(2020崇明二模). 已知函数2()2x f x m x nx =⋅++,记集合{|()0,R}A x f x x ==∈,集合{|B x =(())0,R}f f x x =∈,若A B =,且A 、B 都不是空集,则m n +的取值范围是( )A. [0,4)B. [1,4)-C. [3,5]-D. [0,7)16(2020青浦二模). 已知函数()sin 2|sin |f x x x =+,关于x 的方程2()()10f x x --=有以下结论:① 当0a ≥时,方程2()()10f x x --=在[0,2]π内最多有3个不等实根;② 当6409a ≤<时,方程2()()10f x x -=在[0,2]π内有两个不等实根;③ 若方程2()()10f x x --=在[0,6]π内根的个数为偶数,则所有根之和为15π;④ 若方程2()()10f x x --=在[0,6]π内根的个数为偶数,则所有根之和为36π; 其中所有正确结论的序号是( )A. ②④B. ①④C. ①③D. ①②③17(2020普陀二模). 设函数3120()()0x x f x g x x m -⎧--≤≤=⎨<≤⎩是偶函数. (1)求实数m 的值及()g x ;(2)设函数()g x 在区间[0,]m 上的反函数为1()g x -,当12(2)log 5a g ->(0a >且1a ≠)时,求实数a 的取值范围.18(2017杨浦二模). 已知函数121()22x x f x +-+=+. (1)判断函数()f x 的奇偶性,并证明;(2)若不等式9()log (21)f x c >-有解,求c 的取值范围.18(2017闵行/松江二模). 设函数()2x f x =,函数()g x 的图像与函数()f x 的图像关于y 轴对称.:(1)若()4()3f x g x =+,求x 的值;(2)若存在[0,4]x ∈,使不等式()(2)3f a x g x +--≥成立,求实数a 的取值范围.18(2017徐汇二模). 已知函数41()2x xm f x ⋅+=是偶函数. (1)求实数m 的值;(2)若关于x 的不等式22()31k f x k ⋅>+在(,0)-∞上恒成立,求实数k 的取值范围.18(2017奉贤二模). 已知美国苹果公司生产某款iphone 手机的年固定成本为40万美元,每生产1只还需另投入16美元,设苹果公司一年内共生产该款iphone 手机x 万只并全部销售完,每万只的销售收入为()R x 万美元,且24006040()74004000040xx R x x xx -<≤⎧⎪=⎨->⎪⎩;(1)写出年利润W (万美元)关于年产量x (万只)的函数解析式;(2)当年产量为多少万只时,苹果公司在该款手机的生产中所获得的利润最大?并求出最 大利润;18(2017静安二模). 某化工厂从今年一月起,若不改善生产环境,按生产现状,每月收入为70万元,同时将受到环保部门的处罚,第一个月罚3万元,以后每月增加2万元,如果从今年一月起投资500万元添加回收净化设备(改造设备时间不计),一方面可以改善环境,另一方面可以大大降低原料成本,据测算,添加回收净化设备并投产后的前5个月中的累计生产净收入()g n 是生产时间n 个月的二次函数2()g n n kn =+(k 是常数),且前3个月的累计生产净收入可达309万. 从第6个月开始,每个月的生产净收入都与第5个月相同,同时,该厂不但不受处罚,而且还将得到环保部门的一次性奖励100万元. (1)求前8个月的累计生产净收入(8)g 的值;(2)问经过多少个月,投资开始见效,即投资改造后的纯收入多于不改造时的纯收入.18(2019黄浦二模). 经济订货批量模型,是目前大多数工厂、企业等最常采用的订货方式,即某种物资在单位时间的需求量为某常数,经过某段时间后,存储量消耗下降到零,此时开始订货并随即到货,然后开始下一个存储周期,该模型适用于整批间隔进货、不允许缺货的存储问题,具体如下:年存储成本费T (元)关于每次订货x (单位)的函数关系为()2Bx ACT x x=+,其中A 为年需求量,B 为每单位物资的年存储费,C 为每次订货费. 某化工厂需用甲醇作为原料,年需求量为6000吨,每吨存储费为120元/年,每次订货费为2500元.(1)若该化工厂每次订购300吨甲醇,求年存储成本费;(2)每次需订购多少吨甲醇,可使该化工厂年存储成本费最少?最少费用为多少?18(2019崇明二模). 已知函数12lg 6()564a x a xf x x x x ⎧+≤⎪⎪-=⎨-⎪>⎪-⎩.(1)已知(6)3f =,求实数a 的值;(2)判断并证明函数在区间[7,8]上的单调性.18(2019静安二模).已知函数2lg()1y a x =+-(a 为实常数). (1)若2lg()1y a x =+-的定义域是113x x x ⎧⎫<>⎨⎬⎩⎭或,求a 的值; (2)若2lg()1y a x =+-是奇函数,解关于x 的不等式2lg()01a x +>-.18(2020奉贤二模). 已知向量33(cos ,sin )22a x x =,(sin ,cos )22x xb =-(x k π≠,Z k ∈),令()f x =2()a b a bλ+⋅(R λ∈).(1)化简2()()a b f x a bλ+=⋅,并求当1λ=时方程()2f x =-的解集;(2)已知集合{()|()()2P h x h x h x =+-=,D 是函数()h x 与()h x -定义域的交集且D 不是空集},判断元素()f x 与集合P 的关系,说明理由.18(2020虹口二模). 已知函数4()31x f x a =-+(a 为实常数). (1)讨论函数()f x 的奇偶性,并说明理由;(2)当()f x 为奇函数时,对任意的[1,5]x ∈,不等式()3xuf x ≥恒成立, 求实数u 的最大值.18(2020黄浦二模). 设11(,)A x y ,22(,)B x y 是函数21log 21xy x=+-的图像上任意两点,点00(,)M x y 满足1()2OM OA OB =+. (1)若012x =,求证:0y 为定值; (2)若212x x =,且01y >,求1x 的取值范围,并比较1y 与2y 的大小.18(2020崇明二模). 已知函数()22x x af x =-(0a >). (1)判断()f x 在其定义域上的单调性,并用函数单调性的定义加以证明; (2)讨论函数()f x 的奇偶性,并说明理由.18(2020徐汇二模). 已知函数()|31|f x x =-,()1||g x x =-. (1)解不等式()2f x ≤;(2)求()()()F x f x g x =-的最小值.19(2017黄浦二模). 如果一条信息有n (1,)n n N >∈种可能的情形(各种情形之间互不相容),且这些情形发生的概率分别为1p 、2p 、⋅⋅⋅、n p ,则称12()()()n H f p f p f p =++⋅⋅⋅+(其中()f x =log a x x -,(0,1)x ∈)为该条信息的信息熵,已知11()22f =. (1)若某班共有32名学生,通过随机抽签的方式选一名学生参加某项活动,试求“谁被选 中”的信息熵的大小;(2)某次比赛共有n 位选手(分别记为1A 、2A 、⋅⋅⋅、n A )参加,若当1k =、2、⋅⋅⋅、1n - 时,选手k A 获得冠军的概率为2k -,求“谁获得冠军”的信息熵H 关于n 的表达式.19(2017宝山二模). 对于定义域为D 的函数()y f x =,如果存在区间[,]m n D ⊆,其中m n <,同时满足:① ()f x 在[,]m n 内是单调函数;② 当定义域是[,]m n 时,()f x 的值域也是[,]m n .则称函数()f x 是区间[,]m n 上的“保值函数”,区间[,]m n 称为“保值区间”. (1)求证:函数2()2g x x x =-不是定义域[0,1]上的“保值函数”; (2)若211()2f x a a x=+-(,0)a R a ∈≠是区间[,]m n 上的“保值函数”,求a 的取值范围. 20(2017长宁二模). 对于定义域为D 的函数()y f x =,如果存在区间[,]m n D ⊆,其中m n <,同时满足:① ()f x 在[,]m n 内是单调函数;② 当定义域是[,]m n 时,()f x 的值域也是[,]m n .则称函数()f x 是区间[,]m n 上的“保值函数”,区间[,]m n 称为“保值区间”. (1)求证:函数2()2g x x x =-不是定义域[0,1]上的“保值函数”; (2)若211()2f x a a x=+-(,0)a R a ∈≠是区间[,]m n 上的“保值函数”,求a 的取值范围; (3)对(2)中函数()f x ,若不等式2|()|2a f x x ≤对1x ≥恒成立,求实数a 的取值范围.19(2019长嘉二模). 为了在夏季降温和冬季取暖时减少能源消耗,业主决定对房屋的屋顶和外墙喷涂某种新型隔热材料,该材料有效使用年限为20年,已知该房屋外表喷涂一层这种隔热材料的费用为6万元/毫米厚,且每年的能源消耗费用H (万元)与隔热层厚度x (毫米)满足关系:40()35H x x =+(010x ≤≤),设()f x 为隔热层建造费用与20年的能源消耗费用之和.(1)解释(0)H 的实际意义,并求()f x 的表达式;(2)求隔热层喷涂多厚时,业主的所付总费用()f x 最小?并计算与不建隔热层比较,业主节省多少钱?19(2019青浦二模). 已知a ∈R ,函数2()2x x af x a-=+.(1)求a 的值,使得()f x 为奇函数; (2)若0a ≥且2()3a f x -<对任意x ∈R 都成立,求a 的取值范围.19(2019金山二模). 从金山区走出去的陈驰博士,在《自然—可持续性》杂志上发表的论文中指出:地球正在变绿,中国通过植树造林和提高农业效率,在其中起到了主导地位.已知某种树木的高度()f t (单位:米)与生长年限t (单位:年,t ∈N *)满足如下的逻辑斯蒂函数:0.526()1et f t -+=+,其中e 为自然对数的底数. 设该树栽下的时刻为0. (1)需要经过多少年,该树的高度才能超过5米?(精确到个位) (2)在第几年内,该树长高最快?19(2019松江二模). 国内某知名企业为适应发展的需要,计划加大对研发的投入,据了解,该企业原有100名技术人员,年人均投入m 万元,现把原有技术人员分成两部分:技术人员和研发人员,其中技术人员x 名(*x ∈N 且[45,60]x ∈),调整后研发人员的年人均投入增加2x %,技术人员的年人均投入调整为3()50xm a -万元. (1)要使这100x -名研发人员的年总投入恰好与调整前100名技术人员的年总投入相同, 求调整后的技术人员的人数;(2)是否存在这样的实数a ,使得调整后,在技术人员的年人均投入不减少的情况下,研 发人员的年总投入始终不低于技术人员的年总投入?若存在,求出a 的范围,若不存在,说 明理由.19(2019静安二模).某文化创意公司开发出一种玩具(单位:套)进行生产和销售.根据以往经验,每月生产x 套玩具的成本p 由两部分费用(单位:元)构成:a.固定成本(与生产玩具套数x 无关),总计一百万元;b. 生产所需的直接总成本50x +1100x 2.(1)问:该公司每月生产玩具多少套时,可使得平均每套所需成本费用最少?此时每套玩具的成本费用是多少?(2)假设每月生产出的玩具能全部售出,但随着x 的增大,生产所需的直接总成本在急剧增加,因此售价也需随着x 的增大而适当增加.设每套玩具的售价为q 元,q =a +xb (a,b ∈R ).若当产量为15000套时利润最大,此时每套售价为300元,试求a 、b 的值.(利润=销售收入-成本费用)20(2017崇明二模). 对于函数()f x ,若在定义域内存在实数0x ,满足00()()f x f x -=-,则称()f x 为“M 类函数”; (1)已知函数()sin()3f x x π=+,试判断()f x 是否为“M 类函数”?并说明理由;(2)设()2xf x m =+是定义在[1,1]-上的“M 类函数”,求实数m 的最小值;(3)若22log (2)2()32x mx x f x x ⎧-≥=⎨-<⎩为其定义域上的“M 类函数”,求实数m 的取值范围;21(2017黄浦二模). 若函数()f x 满足:对于任意正数s 、t ,都有()0f s >,()0f t >,()()()f s f t f s t +<+,则称函数()f x 为“L 函数”.(1)试判断函数21()f x x =与122()f x x =是否是“L 函数”;(2)若函数()31(31)x xg x a -=-+-为“L 函数”,求实数a 的取值范围;(3)若函数()f x 为“L 函数”,且(1)1f =,求证:对任意1(2,2)k k x -∈*()k N ∈,都有12()()2x f x f x x->-.21(2017浦东二模). 对于定义域为R 的函数()g x ,若函数sin[()]g x 是奇函数,则称()g x 为正弦奇函数. 已知()f x 是单调递增的正弦奇函数,其值域为R ,(0)0f =.(1)已知()g x 是正弦奇函数,证明:“0u 为方程sin[()]1g x =的解”的充要条件是“0u -为 方程sin[()]1g x =-的解”; (2)若()2f a π=,()2f b π=-,求a b +的值;(3)证明:()f x 是奇函数.21(2017虹口二模). 对于定义域为R 的函数()y f x =,部分x 与y 的对应关系如下表:(1)求{[(0)]}f f f ;(2)数列{}n x 满足12x =,且对任意*n N ∈,点1(,)n n x x +都在函数()y f x =的图像上, 求124n x x x +++;(3)若()sin()y f x A x b ωϕ==++,其中0A >,0ωπ<<,0ϕπ<<,03b <<, 求此函数的解析式,并求(1)(2)(3)f f f n ++⋅⋅⋅+(n N *∈);21(2019浦东二模). 已知函数()y f x =的定义域D ,值域为A . (1)下列哪个函数满足值域为R ,且单调递增?(不必说明理由)① 1()tan[()]2f x x π=-,(0,1)x ∈;② 1()lg(1)g x x =-,(0,1)x ∈;(2)已知12()log (21)f x x =+,()sin 2g x x =,函数[lg()]f x 的值域[1,0]A =-,试求出满足条件的函数[lg()]f x 一个定义域D ;(3)若D A ==R ,且对任意的,x y ∈R ,有|()||()()|f x y f x f y -=-,证明:()()()f x y f x f y +=+.21(2019徐汇二模).已知函数1()y f x =,2()y f x =,定义函数112212()()()()()()()f x f x f x f x f x f x f x ≤⎧=⎨>⎩.(1)设函数1()f x =121()()2x f x -=(0x ≥),求函数()y f x =的值域;(2)设函数1()lg(||1)f x p x =-+(102x <≤,p 为实常数),21()lg f x x =(102x <≤),当102x <≤时,恒有1()()f x f x =,求实常数p 的取值范围;(3)设函数||1()2x f x =,||2()32x p f x -=⋅,p 为正常数,若关于x 的方程()f x m =(m 为 实常数)恰有三个不同的解,求p 的取值范围及这三个解的和(用p 表示).21(2019宝山二模). 已知函数()f x 、()g x 在数集D 上都有定义,对于任意的12,x x D ∈,当12x x <时,121212()()()()f x f x g x g x x x -≤≤-或122112()()()()f x f x g x g x x x -≤≤-成立,则称()g x 是数集D 上()f x 的限制函数.(1)求1()f x x=-在(0,)D =+∞上的限制函数()g x 的解析式; (2)证明:如果()g x 在区间1D D ⊆上恒为正值,则()f x 在1D 上是增函数;【注:如果()g x 在区间1D D ⊆上恒为负值,则()f x 在区间1D 上是减函数,此结论无需证明,可以直接应用.】(3)利用(2)的结论,求函数2()f x x =-[0,)D =+∞上的单调区间.21(2020松江二模). 已知函数()f x 的定义域为D ,若存在实常数λ及a (0a ≠),对任意x D ∈,当x a D +∈且x a D -∈时,都有()()()f x a f x a f x λ++-=成立,则称函数()f x 具有性质(,)M a λ.(1)判断函数2()f x x =是否具有性质(,)M a λ,并说明理由;(2)若函数()sin 2sin g x x x =+具有性质(,)M a λ,求λ及a 应满足的条件;(3)已知函数()y h x =不存在零点,当R x ∈时具有性质1(,1)M t t+(其中0t >,1t ≠), 记()n a h n =(*N n ∈),求证:数列{}n a 为等比数列的充要条件是21a t a =或211a a t =.21(2020杨浦二模). ()21x m f x mx +=++,其中m 是实常数. (1)若1()18f m>,求m 的取值范围; (2)若0m >,求证:函数()f x 的零点有且仅有一个;(3)若0m >,设函数()y f x =的反函数为1()y f x -=,若1a 、2a 、3a 、4a 是公差0d >的等差数列且均在函数()f x 的值域中,求证:11111423()()()()f a f a f a f a ----+<+.。