高中数学组卷 解三角形

高中数学组卷 解三角形
高中数学组卷 解三角形

高中数学组卷解三角形

一.解答题(共10小题)

1.△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为.(1)求sinBsinC;

(2)若6cosBcosC=1,a=3,求△ABC的周长.

2.在△ABC中,∠A=60°,c=a.

(1)求sinC的值;

(2)若a=7,求△ABC的面积.

3.△ABC的内角A,B,C的对边分别为a,b,c,已知sin(A+C)=8sin2.(1)求cosB;

(2)若a+c=6,△ABC的面积为2,求b.

4.在△ABC中,角A,B,C的对边分别为a,b,c,且满足=.(Ⅰ)求角A的大小;

(Ⅱ)若a=2,求△ABC面积的最大值.

5.在△ABC中,角A,B,C的对边分别为a,b,c,且.

(1)求角A的值;

(2)若∠B=,BC边上中线AM=,求△ABC的面积.

6.已知a,b,c分别为△ABC三个内角A,B,C的对边,acosC+asinC﹣b﹣c=0.

(1)求角A;

(2)若a=2,△ABC的面积为,求b,c.

7.在△ABC中,三个内角的对边分别为a,b,c,cosA=,asinA+bsinB﹣csinC=

asinB.

(1)求B的值;

(2)设b=10,求△ABC的面积S.

8.在△ABC中,角A,B,C所对的边分别为a,b,c,且2acosC﹣c=2b.(Ⅰ)求角A的大小;

(Ⅱ)若c=,角B的平分线BD=,求a.

9.已知△ABC的内角A,B,C的对边分别为a,b,c,a2﹣ab﹣2b2=0.

(1)若,求C;

(2)若,c=14,求S

△ABC

10.已知在△ABC中,角A,B,C所对的边分别是a,b,c,且a、b、c成等比

数列,c=bsinC﹣ccosB.

(Ⅰ)求B的大小;

(Ⅱ)若b=2,求△ABC的周长和面积.

高中数学组卷解三角形

参考答案与试题解析

一.解答题(共10小题)

1.(2017?新课标Ⅰ)△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC 的面积为.

(1)求sinBsinC;

(2)若6cosBcosC=1,a=3,求△ABC的周长.

【分析】(1)根据三角形面积公式和正弦定理可得答案,

(2)根据两角余弦公式可得cosA=,即可求出A=,再根据正弦定理可得bc=8,根据余弦定理即可求出b+c,问题得以解决.

=acsinB=,

【解答】解:(1)由三角形的面积公式可得S

△ABC

∴3csinBsinA=2a,

由正弦定理可得3sinCsinBsinA=2sinA,

∵sinA≠0,

∴sinBsinC=;

(2)∵6cosBcosC=1,

∴cosBcosC=,

∴cosBcosC﹣sinBsinC=﹣=﹣,

∴cos(B+C)=﹣,

∴cosA=,

∵0<A<π,

∴A=,

∵===2R==2,

∴sinBsinC=?===,

∴bc=8,

∵a2=b2+c2﹣2bccosA,

∴b2+c2﹣bc=9,

∴(b+c)2=9+3cb=9+24=33,

∴b+c=

∴周长a+b+c=3+.

【点评】本题考查了三角形的面积公式和两角和的余弦公式和诱导公式和正弦定理余弦定理,考查了学生的运算能力,属于中档题.

2.(2017?北京)在△ABC中,∠A=60°,c=a.

(1)求sinC的值;

(2)若a=7,求△ABC的面积.

【分析】(1)根据正弦定理即可求出答案,

(2)根据同角的三角函数的关系求出cosC,再根据两角和正弦公式求出sinB,根据面积公式计算即可.

【解答】解:(1)∠A=60°,c=a,

由正弦定理可得sinC=sinA=×=,

(2)a=7,则c=3,

∴C<A,

由(1)可得cosC=,

∴sinB=sin(A+C)=sinAcosC+cosAsinC=×+×=,

=acsinB=×7×3×=6.

∴S

△ABC

【点评】本题考查了正弦定理和两角和正弦公式和三角形的面积公式,属于基础题

3.(2017?新课标Ⅱ)△ABC的内角A,B,C的对边分别为a,b,c,已知sin(A+C)=8sin2.

(1)求cosB;

(2)若a+c=6,△ABC的面积为2,求b.

【分析】(1)利用三角形的内角和定理可知A+C=π﹣B,再利用诱导公式化简sin (A+C),利用降幂公式化简8sin2,结合sin2B+cos2B=1,求出cosB,

(2)由(1)可知sinB=,利用勾面积公式求出ac,再利用余弦定理即可求出b.

【解答】解:(1)sin(A+C)=8sin2,

∴sinB=4(1﹣cosB),

∵sin2B+cos2B=1,

∴16(1﹣cosB)2+cos2B=1,

∴(17cosB﹣15)(cosB﹣1)=0,

∴cosB=;

(2)由(1)可知sinB=,

∵S

=ac?sinB=2,

△ABC

∴ac=,

∴b2=a2+c2﹣2accosB=a2+c2﹣2××

=a2+c2﹣15=(a+c)2﹣2ac﹣15=36﹣17﹣15=4,

∴b=2.

【点评】本题考查了三角形的内角和定理,三角形的面积公式,二倍角公式和同角的三角函数的关系,属于中档题

4.(2017?晋中二模)在△ABC中,角A,B,C的对边分别为a,b,c,且满足

=.

(Ⅰ)求角A的大小;

(Ⅱ)若a=2,求△ABC面积的最大值.

【分析】(I)把条件中所给的既有角又有边的等式利用正弦定理变化成只有角的形式,整理逆用两角和的正弦公式,根据三角形内角的关系,得到结果.

(II)利用余弦定理写成关于角A的表示式,整理出两个边的积的范围,表示出三角形的面积,得到面积的最大值.

【解答】解:(Ⅰ)∵,

所以(2c﹣b)?cosA=a?cosB

由正弦定理,得(2sinC﹣sinB)?cosA=sinA?cosB.

整理得2sinC?cosA﹣sinB?cosA=sinA?cosB.

∴2sinC?cosA=sin(A+B)=sinC.

在△ABC中,sinC≠0.

∴,.

(Ⅱ)由余弦定理,.

∴b2+c2﹣20=bc≥2bc﹣20

∴bc≤20,当且仅当b=c时取“=”.

∴三角形的面积.

∴三角形面积的最大值为.

【点评】本题考查正弦定理和余弦定理,本题解题的关键是角和边的灵活互化,两个定理的灵活应用和两角和的公式的正用和逆用.

5.(2017?广西模拟)在△ABC中,角A,B,C的对边分别为a,b,c,且.(1)求角A的值;

(2)若∠B=,BC边上中线AM=,求△ABC的面积.

【分析】(1)利用正弦定理化边为角可求得cosA=,从而可得A;

(2)易求角C,可知△ABC为等腰三角形,在△AMC中利用余弦定理可求b,再由三角形面积公式可求结果;

【解答】解:(1)∵.

∴由正弦定理,得,化简得cosA=,

∴A=;

(2)∵∠B=,∴C=π﹣A﹣B=,

可知△ABC为等腰三角形,

在△AMC中,由余弦定理,得AM2=AC2+MC2﹣2AC?MCcos120°,即7=

解得b=2,

∴△ABC的面积S=b2sinC==.

【点评】该题考查正弦定理、余弦定理及三角形的面积公式,属基础题,熟记相关公式并灵活运用是解题关键.

6.(2017?郴州二模)已知a,b,c分别为△ABC三个内角A,B,C的对边,acosC+

asinC﹣b﹣c=0.

(1)求角A;

(2)若a=2,△ABC的面积为,求b,c.

(1)根据条件,由正弦定理可得sinAcosC+sinAsinC=sinB+sinC=sin(A+C)【分析】

+sinC,化简可得sin(A﹣30°)=,由此求得A的值.

(2)若a=2,由△ABC的面积,求得bc=4 ①;再利用余弦定理可得b+c=4 ②,结合①②求得b和c的值.

【解答】解:(1)△ABC中,∵acosC+asinC﹣b﹣c=0,

利用正弦定理可得sinAcosC+sinAsinC=sinB+sinC=sin(A+C)+sinC,

化简可得sinA﹣cosA=1,∴sin(A﹣30°)=,

∴A﹣30°=30°,∴A=60°.

(2)若a=2,△ABC的面积为bc?sinA=bc=,∴bc=4 ①.

再利用余弦定理可得a2=4=b2+c2﹣2bc?cosA=(b+c)2﹣2bc﹣bc=(b+c)2﹣3?4,∴b+c=4 ②.

结合①②求得b=c=2.

【点评】本题考查正弦定理、余弦定理的运用,考查三角形面积的计算,考查学生的计算能力,属于中档题.

7.(2017?潮南区模拟)在△ABC中,三个内角的对边分别为a,b,c,cosA=,asinA+bsinB﹣csinC=asinB.

(1)求B的值;

(2)设b=10,求△ABC的面积S.

【分析】(1)利用正弦定理把已知等式中的边转化成角的正弦,整理后可求得cosC的值,进而求得C,进而求得sinA和sinC,利用余弦的两角和公式求得答案.(2)根据正弦定理求得c,进而利用面积公式求得答案.

【解答】解:(1)∵,

∴.

∴.

又∵A、B、C是△ABC的内角,

∴.

∵,

又∵A、B、C是△ABC的内角,

∴0<A+C<π,

∴.

∴.

(2)∵,

∴.

∴△ABC的面积.

【点评】本题主要考查了正弦定理和余弦定理的运用.注意对这两个公式的灵活运用来解决三角形问题.

8.(2017?银川二模)在△ABC中,角A,B,C所对的边分别为a,b,c,且2acosC ﹣c=2b.

(Ⅰ)求角A的大小;

(Ⅱ)若c=,角B的平分线BD=,求a.

【分析】(Ⅰ)由正弦定理、两角和的正弦公式化简已知的条件,求出cosA的值,由A的范围和特殊角的三角函数值求出角A的值;

(Ⅱ)由条件和正弦定理求出sin∠ADB,由条件求出∠ADB,由内角和定理分别求出∠ABC、∠ACB,结合条件和余弦定理求出边a的值.

【解答】解:(Ⅰ)由2acosC﹣c=2b及正弦定理得,

2sinAcosC﹣sinC=2sinB,…(2分)

2sinAcosC﹣sinC=2sin(A+C)=2sinAcosC+2cosAsinC,

∴﹣sinC=2cosAsinC,

∵sinC≠0,∴cosA=,

又A∈(0,π),∴A=;…(6分)

(Ⅱ)在△ABD中,c=,角B的平分线BD=,

由正弦定理得,

∴sin∠ADB===,…(8分)

由A=得∠ADB=,∴∠ABC=2()=,

∴∠ACB==,AC=AB=

由余弦定理得,a2=BC2═AB2+AC2﹣2AB?AC?cosA

=2+2﹣2×=6,

∴a=…(12分)

【点评】本题考查正弦定理、余弦定理,内角和定理,以及两角和的正弦公式等应用,考查转化思想,化简、变形能力.

9.(2017?惠州模拟)已知△ABC的内角A,B,C的对边分别为a,b,c,a2﹣ab

﹣2b2=0.

(1)若,求C;

(2)若,c=14,求S

△ABC

【分析】(1)由已知结合正弦定理得:2sin2A﹣sinA﹣1=0,解得sinA的值,结合范围0<A<π,可求A的值,利用三角形内角和定理可求C的值.

(2)由题意及余弦定理可知a2+b2+ab=196,由(1)a2﹣ab﹣2b2=0,可求a=2b,进而解得a,b的值,利用三角形面积公式即可计算得解.

【解答】解:(1)由已知,a2﹣ab﹣2b2=0,

结合正弦定理得:2sin2A﹣sinA﹣1=0,

于是sinA=1或(舍).

因为0<A<π,

所以,,.

(2)由题意及余弦定理可知a2+b2+ab=196,

由(1)a2﹣ab﹣2b2=0,得(a+b)(a﹣2b)=0,即a=2b,

联立解得,.

所以,.

【点评】本题主要考查了正弦定理,三角形内角和定理,余弦定理,三角形面积公式在解三角形中的应用,考查了计算能力和转化思想,属于基础题.10.(2017?内蒙古模拟)已知在△ABC中,角A,B,C所对的边分别是a,b,c,且a、b、c成等比数列,c=bsinC﹣ccosB.

(Ⅰ)求B的大小;

(Ⅱ)若b=2,求△ABC的周长和面积.

【分析】(Ⅰ)根据题意,由正弦定理可得sinC=sinBsinC﹣sinCcosB,进而变形可得1=sinC﹣cosB,由正弦的和差公式可得1=2sin(B﹣),即可得B﹣的值,计算可得B的值,即可得答案;

(Ⅱ)由余弦定理可得(a+c)2﹣3ac=12,又由a、b、c成等比数列,进而可以

变形为12=(a+c)2﹣36,解可得a+c=4,进而计算可得△ABC的周长l=a+b+c,由面积公式S

=acsinB=b2sinB计算可得△ABC的面积.

△ABC

【解答】解:(Ⅰ)根据题意,若c=bsinC﹣ccosB,

由正弦定理可得sinC=sinBsinC﹣sinCcosB,

又由sinC≠0,则有1=sinC﹣cosB,

即1=2sin(B﹣),

则有B﹣=或B﹣=,即B=或π(舍)

故B=;

(Ⅱ)已知b=2,则b2=a2+c2﹣2accosB=a2+c2﹣ac=(a+c)2﹣3ac=12,

又由a、b、c成等比数列,即b2=ac,

则有12=(a+c)2﹣36,解可得a+c=4,

所以△ABC的周长l=a+b+c=2+4=6,

面积S

=acsinB=b2sinB=3.

△ABC

【点评】本题考查正弦、余弦定理的应用,关键利用三角函数的恒等变形正确求出B的值.

高中数学数列专题大题训练

高中数学数列专题大题组卷 一.选择题(共9小题) 1.等差数列{a n}的前m项和为30,前2m项和为100,则它的前3m项和为()A.130 B.170 C.210 D.260 2.已知各项均为正数的等比数列{a n},a1a2a3=5,a7a8a9=10,则a4a5a6=()A.B.7 C.6 D. 3.数列{a n}的前n项和为S n,若a1=1,a n+1=3S n(n≥1),则a6=() A.3×44B.3×44+1 C.44D.44+1 4.已知数列{a n}满足3a n+1+a n=0,a2=﹣,则{a n}的前10项和等于()A.﹣6(1﹣3﹣10)B.C.3(1﹣3﹣10)D.3(1+3﹣10)5.等比数列{a n}的前n项和为S n,已知S3=a2+10a1,a5=9,则a1=()A.B.C.D. 6.已知等差数列{a n}满足a2+a4=4,a3+a5=10,则它的前10项的和S10=()A.138 B.135 C.95 D.23 7.设等差数列{a n}的前n项和为S n,若S m﹣1=﹣2,S m=0,S m+1=3,则m=()A.3 B.4 C.5 D.6 8.等差数列{a n}的公差为2,若a2,a4,a8成等比数列,则{a n}的前n项和S n=() A.n(n+1)B.n(n﹣1)C.D. 9.设{a n}是等差数列,下列结论中正确的是() A.若a1+a2>0,则a2+a3>0 B.若a1+a3<0,则a1+a2<0 C.若0<a 1<a2,则a2D.若a1<0,则(a2﹣a1)(a2﹣a3)>0 二.解答题(共14小题) 10.设数列{a n}(n=1,2,3,…)的前n项和S n满足S n=2a n﹣a1,且a1,a2+1,a3成等差数列.

高中数学-解三角形知识点汇总情况及典型例题1

实用标准

—tanC。

例 1 ? (1 )在 ABC 中,已知 A 32.00 , B 81.80 因为 00 v B v 1800,所以 B 640,或 B 1160. c as nC 空啤 30(cm). sin A s in400 ②当B 1160时, 点评:应用正弦定理时(1)应注意已知两边和其中一边的对角解三角形时,可能有两解的情形; 对于解三角形中的复杂运算可使用计算器 题型2 :三角形面积 2 , AC 2 , AB 3,求tan A 的值和 ABC 的面积。 2 (2 )在 ABC 中,已知 a 20 cm , b 28 cm , 40°,解三角形(角度精确到 10,边长精确 到 1cm ) o 解:(1 )根据三角形内角和定理, C 1800 (A B) 1800 (32.00 81.80) 66.20 ; 根据正弦定理,b asinB 42.9sin81.80 si nA 眾厂 80.1(cm); 根据正弦定理,c 聲C 丝9也彰 74.1(cm). sin 32.0 (2 )根据正弦定理, s"B 舸 A 28sin4°0 a 20 0.8999. ,a 42.9 cm ,解三角形; ①当 B 640 时, C 1800 (A B) 1800 (40° 640) 760, C 1800 (A B) 1800 (400 116。)240 , c asinC si nA 呼 13(cm). sin 40 (2) 解法一:先解三角方程,求出角 A 的值。 例2 ?在ABC 中, sin A cos A

si nA cos A j2cos(A 45 )-—, 2 1 cos(A 45 )-. 又 0 A 180 , A 45o 60o , A 105.° o o 1 \/3 L tan A tan(45 60 ) 一字 2 J3, 1 73 42 si nA sin105 sing5 60) sin4 5 co$60 cos45 si n60 ——-—. 1 1 /2 洽 n S ABC AC AB si nA 2 3 近 46)。 2 2 4 4 解法二:由sin A cos A 计算它的对偶关系式 si nA cos A 的值。 v 2 — si nA cos A —— ① 2 2 1 (si nA cos A)2 2 1 2sin Acos A — 2 Q0o A 180o , si nA 0,cos A 0. 1 另解(si n2A —) 2 2 3 (s in A cos A) 1 2 sin Acos A —, *'6 _ si nA cos A — ② 2 $2 J6 ①+②得sin A --------------- 。 4 ①-②得 cosA <6 。 4 u 而丄 A si nA J 2 J 6 4 c 匚 从而 tan A l l 2 ~3。 cosA 4 v2 v 6

高中数学选修2-2同步练习题库:数学归纳法(填空题:一般)

数学归纳法(填空题:一般) 1、已知数列{a n}满足a1=2,a n+1= (n∈N*),则a3=________,a1·a2·a3·…·a2014=________. 2、设,则 _____.(不用化简) 3、用数学归纳法证明:,则当时,左端在时的左端加上了 ________ 4、用数学归纳法证明:,在第二步证明从到成立时,左边增加的项数是__________(用含有的式子作答). 5、用数学归纳法证明不等式成立,起始值应取为__________. 6、已知,用数学归纳法证明时,等于_____________。 7、用数学归纳法证明,从到,左边需要增乘的代数式为___________. 8、用数学归纳法证明(是非负实数,)时,假设命题成立之后,证明命题也成立的关键是________.

9、用数学归纳法证明“对于的自然数都成立”时,第一步证明中的起始值应取 _____________. 10、用数学归纳法证明:()时,从 “”时,左边应增添的代数式为_______________. 11、用数学归纳法证明()时,从“n=”到“n=”的证明,左边需增添的代数式是___________. 12、用数学归纳法证明1+++…+(,),在验证成立时,左式是____. 13、n为正奇数时,求证:x n+y n被x+y整除,当第二步假设n=2k-1命题为真时,进而需证n= ________,命题为真. 14、若f(n)=12+22+32+…+(2n)2,则f(k+1)与f(k)的递推关系式是________. 15、用数学归纳法证明: 的第二步中,当时等式左边与时的等式左边的差等于. 16、用数学归纳法证明“12+22+32+…+n2=n(n+1)(2n+1)(n∈N*)”,当n=k+1时,应在n=k时的等式左边添加的项是________. 17、用数学归纳法证明≥n(a,b是非负实数,n∈N+)时,假设n =k命题成立之后,证明n=k+1命题也成立的关键是________________.

2019年爱云校西藏高考模拟高中数学试卷(12月份组卷)(四)

2019年爱云校西藏高考模拟高中数学试卷(12月份组卷)(四) 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1. 设集合M ={m ∈Z|?3b >c B.b >c >a C.a >c >b D.c >b >a

高中数学解三角形和平面向量

高中数学解三角形和平面向量试题 一、选择题: 1.在△ABC 中,若a = 2 ,23b =,0 30A = , 则B 等于( B ) A .60o B .60o 或 120o C .30o D .30o 或150o 2.△ABC 的内角A,B,C 的对边分别为a,b,c ,若c =2,b =6,B =120o ,则a 等于( D ) A .6 B .2 C .3 D .2 3.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c, 且2=a ,A=45°,2=b 则sinB=( A ) A . 1 2 B .22 C . 3 2 D .1 4.ABC ?的三内角,,A B C 的对边边长分别为,,a b c ,若5 ,22 a b A B ==,则cos B =( B ) A . 53 B .54 C .55 D .5 6 5.在△ABC 中,若)())((c b b c a c a +=-+,则A ∠=( C ) A .0 90 B .0 60 C .0 120 D .0 150 6.在△ABC 中,角A,B,C 的对边分别为a,b,c ,若(a 2+c 2-b 2)tan B =3ac ,则角B 的值为(D ) A. 6 π B. 3π C.6π或56 π D. 3π或23 π 7. 在△ABC 中, b a B A =--cos 1cos 1,则△AB C 一定是( A ) A. 等腰三角形 B. 直角三角形 C. 锐角三角形 D. 钝角三角形 8.在ABC ?中,角A 、B 、C 所对应的边分别为a 、b 、c ,若角A 、B 、C 依次成等差数列,且a=1, ABC S b ?=则,3等于( C ) A. 2 B. 3 C. 2 3 D. 2 9.已知锐角△ABC 的面积为33,BC=4,CA=3则角C 大小为( B ) A 、75° B 、60° C 、45° D 、30° 10.在200米高的山顶上,测得山下一塔顶与塔底的俯角分别为30°、60°,则塔高为( A ) A. 3 400 米 B. 33400米 C. 2003米 D. 200米 11.已知A 、B 两地的距离为10km ,B 、C 两地的距离为20km ,现测得0 120ABC ∠=,则A,C 两地 的距离为( D )。 A. 10km B. 103km C. 105km D. 107km 12.已知M 是△ABC 的BC 边上的中点,若向量AB =a ,AC = b ,则向量AM 等于( C ) A . 21(a -b ) B .21(b -a ) C .21( a +b ) D .1 2 -(a +b ) 13.若 ,3) 1( )1, 1(B A -- ,5) (x C 共线,且 BC AB λ=则λ等于( B ) A 、1 B 、2 C 、3 D 、4 14.已知平面向量),2(),2,1(m -==,且∥,则32+=( C ) A .(-2,-4) B. (-3,-6) C. (-4,-8) D. (-5,-10) 15. 已知b a b a k b a 3),2,3(),2,1(-+-==与垂直时k 值为 ( C ) A 、17 B 、18 C 、19 D 、20 16.(2,1),(3,),(2),a b x a b b x ==-⊥r r r r r 若向量若则的值为 ( B ) A .31-或 B.13-或 C .3 D . -1 17. 若|2|= ,2||= 且(-)⊥ ,则与的夹角是 ( B ) (A ) 6π (B )4π (C )3π (D )π12 5 183 =b , a 在 b 方向上的投影是2 3 ,则 b a ?是( B ) A 、3 B 、 29 C 、2 D 、2 1 19.若||1,||2,a b c a b ===+r r r r r ,且c a ⊥r r ,则向量a r 与b r 的夹角为( C ) (A )30° (B )60° (C )120° (D )150°

数列高中数学组卷

SM数列高中数学组卷1 一.选择题(共1小题) 1.已知定义在R上的函数f(x)对任意的实数x1,x2满足f(x1+x2)=f(x1)+f (x2)+2,数列{a n}满足a1=0,且对任意n∈N*,a n=f(n),则f(2010)=()A.4012 B.4018 C.2009 D.2010 二.填空题(共4小题) 2.记集合P={ 0,2,4,6,8 },Q={ m|m=100a1+10a2+a3,且a1,a2,a3∈P },将集合Q中的所有元素排成一个递增的数列,则此数列的第68项是.3.在等差数列{a n}中,a1=3,其前n项和为S n,等比数列{b n}的各项均为正数,b1=1,公比为q,且b2+S2=12,. (Ⅰ)求a n与b n; (Ⅱ)求数列{c n}满足,求{c n}的前n项和T n. 4.已知数列{a n}满足a1=33,a n+1﹣a n=2n,则的最小值为. 5.已知数列{a n}满足a1=1,a n+1=,则a n= 三.解答题(共25小题) 6.已知f(x)=(x﹣1)2,g(x)=4(x﹣1).数列{a n}中,对任何正整数n,﹣a n)g(a n)+f(a n)=0都成立,且a1=2,当n≥2时,a n≠1;设b n=a n 等式(a n +1 ﹣1. (Ⅰ)求数列{b n}的通项公式; (Ⅱ)设S n为数列{nb n}的前n项和,,求的值.7.设正项等比数列{a n}的首项a1=,前n项和为S n,且210S30﹣(210+1)S20+S10=0.(Ⅰ)求{a n}的通项;

(Ⅱ)求{nS n}的前n项和T n. 8.已知{a n}是等差数列,{b n}是等比数列,其中n∈N*. (1)若a1=b1=2,a3﹣b3=9,a5=b5,试分别求数列{a n}和{b n}的通项公式;(2)设A={k|a k=b k,k∈N*},当数列{b n}的公比q<﹣1时,求集合A的元素个数的最大值. 9.已知数列{a n}是公差为d(d≠0)的等差数列,数列{b n}是公比为q的(q∈R)的等比数列,若函数f(x)=x2,且a1=f(d﹣1),a5=f(2d﹣1),b1=f(q﹣2),b3=f(q). (1)求数列{a n}和{b n}的通项公式; (2)设数列{c n}的前n项和为S n,对一切n∈N*,都有 成立,求S n. 10.已知函数f(x)=x2+2x. (Ⅰ)数列a n满足:a1=1,a n+1=f'(a n),求数列a n的通项公式; (Ⅱ)已知数列b n满足b1=t>0,b n+1=f(b n)(n∈N*),求数列b n的通项公式;(Ⅲ)设的前n项和为S n,若不等式λ<S n对所有的正整数n恒成立,求λ的取值范围. 11.设等比数列{a n}的前n项和为S n=2n+1﹣2;数列{b n}满足6n2﹣(t+3b n)n+2b n=0(t∈R,n∈N*). (1)求数列{a n}的通项公式; (2)①试确定t的值,使得数列{b n}为等差数列; ②在①结论下,若对每个正整数k,在a k与a k+1之间插入b k个2,符到一个数列{c n}.设T n是数列{c n}的前n项和,试求满足T m=2c m+1的所有正整数m.12.已知函数f (x)=log a x (a>0且a≠1),若数列:2,f (a1),f (a2),…,f (a n),2n+4 (n∈N﹡)为等差数列. (1)求数列{a n}的通项公式a n; (2)若a=2,b n=a n?f (a n),求数列{b n}前n项和S n; (3)在(2)的条件下对任意的n∈N﹡,都有b n>f ﹣1(t),求实数t的取值范

高三第一轮复习数学---解三角形及应用举例

高三第一轮复习数学---解三角形及应用举例 一、教学目标:1.理解并掌握正弦定理、余弦定理、面积公式; 2.能正确运用正弦定理、余弦定理及关系式A B C π++=,解决三角形中的 计算和证明问题. 二、教学重点:掌握正弦定理、余弦定理及其变形形式,利用三角公式解一些有关三角形 中的三角函数问题. 三、教学过程: (一)主要知识: 掌握三角形有关的定理: 正余弦定理:a 2 =b 2 +c 2 -2bccos θ, bc a c b 2cos 222-+=θ;R C c B b A a 2sin sin sin === 内角和定理:A+B+C=180°,sin(A+B)=sinC, cos(A+B)= -cosC, cos 2C =sin 2B A +, sin 2 C =cos 2B A + 面积公式:S=21absinC=21bcsinA=2 1 casinB S= pr =))()((c p b p a p p --- (其中p=2 c b a ++, r 为内切圆半径) 射影定理:a = b cos C + c cos B ;b = a cos C + c cos A ;c = a cos B + b cos A (二)例题分析: 例1.在ΔABC 中,已知a=3,b=2,B=45°,求A,C 及边c . 解:由正弦定理得:sinA=23 2 45sin 3sin = ?= b B a ,因为B=45°<90°且b

排列组合高中数学组卷

排列组合高中数学组卷 一.选择题(共9小题) 1.(2016?衡阳校级一模)3名医生和6名护士被分配到3所学校为学生体检,每校分配1名医生和2名护士.不同的分配方法共有() A.90种B.180种C.270种D.540种 2.(2016?黄冈校级自主招生)方程3x2+y2=3x﹣2y的非负整数解(x,y)的组数为()A.0 B.1 C.2 D.3 3.(2016?新余二模)7人站成两排队列,前排3人,后排4人,现将甲、乙、丙三人加入队列,前排加一人,后排加两人,其他人保持相对位置不变,则不同的加入方法种数为()A.120 B.240 C.360 D.480 4.(2016?内江四模)4名大学生到三家企业应聘,每名大学生至多被一家企业录用,则每家企业至少录用一名大学生的情况有() A.24种B.36种C.48种D.60种 5.(2016?邯郸一模)现有6个白球、4个黑球,任取4个,则至少有两个黑球的取法种数是() A.90 B.115 C.210 D.385 6.(2016?成都校级模拟)用数字0,1,2,3,4,5,6组成没有重复数字的四位数,其中个位、十位和百位上的数字之和为偶数的四位数共有()个. A.324 B.216 C.180 D.384 7.(2016?湖南校级模拟)某中学拟安排6名实习老师到高一年级的3个班实习,每班2人,则甲在一班、乙不在一班的不同分配方案共有() A.12种B.24种C.36种D.48种 8.(2016?陕西模拟)某校开设A类选修课2门,B类选修课3门,一位同学从中选3门.若要求两类课程中各至少选一门,则不同的选法共有() A.3种B.6种C.9种D.18种 9.(2016?福建模拟)四位男生和两位女生排成一排,男生有且只有两位相邻,则不同排法的种数是() A.72 B.96 C.144 D.240 二.填空题(共3小题) 10.(2016?黄冈校级自主招生)若p和q为质数,且5p+3q=91,则p=, q=. 11.(2016?黄冈校级自主招生)设整数a使得关于x的一元二次方程5x2﹣5ax+26a﹣143=0的两个根都是整数,则a的值是. 12.(2016?绵阳模拟)从数字0、1、2、3、4、5这6个数字中任选三个不同的数字组成的三位偶数有个.(用数字作答) 三.解答题(共4小题) 13.(2016?新余三模)如图,四棱锥P﹣ABCD的底面ABCD是正方形,PA⊥底面ABCD,E,F分别是AC,PB的中点. (1)证明:EF∥平面PCD;

高中数学解三角形方法大全

解三角形的方法 1.解三角形:一般地,把三角形的三个角和它们的对边叫做三角形的元素。已知三角形的几个元素求 其他元素的过程叫作解三角形。 以下若无特殊说明,均设ABC ?的三个内角C B A 、、的对边分别为c b a 、、,则有以下关系成立: (1)边的关系:c b a >+,b c a >+,a c b >+(或满足:两条较短的边长之和大于较长边) (2)角的关系:π=++C B A ,π<A , C B A sin )sin(=+,C B A cos )cos(-=+,2 cos 2sin C B A =+ (3)边角关系:正弦定理、余弦定理以及它们的变形 板块一:正弦定理及其应用 1.正弦定理: R C c B b A a 2sin sin sin ===,其中R 为AB C ?的外接圆半径 2.正弦定理适用于两类解三角形问题: (1)已知三角形的任意两角和一边,先求第三个角,再根据正弦定理求出另外两边; (2)已知三角形的两边与其中一边所对的角,先求另一边所对的角(注意此角有两解、一解、无解

总结:若已知三角形的两边和其中一边所对的角,解这类三角形时,要注意有两解、一解和无解的可能 如图,在ABC ?中,已知a 、b 、A (1)若A 为钝角或直角,则当b a >时,ABC ?有唯一解;否则无解。 (2)若A 为锐角,则当A b a sin <时,三角形无解; 当A b a sin =时,三角形有唯一解; 当b a A b <

高中数学经典高考难题集锦(解析版)

2015年10月18日杰的高中数学组卷 一.解答题(共10小题) 1.(2012?宣威市校级模拟)设点C为曲线(x>0)上任一点,以点C为圆心的圆与x轴交于点E、A,与y轴交于点E、B. (1)证明多边形EACB的面积是定值,并求这个定值; (2)设直线y=﹣2x+4与圆C交于点M,N,若|EM|=|EN|,求圆C的方程. 2.(2010?模拟)已知直线l:y=k(x+2)与圆O:x2+y2=4相交于A、B两点,O是坐标原点,三角形ABO的面积为S. (Ⅰ)试将S表示成的函数S(k),并求出它的定义域; (Ⅱ)求S的最大值,并求取得最大值时k的值. 3.(2013?越秀区校级模拟)已知圆满足:①截y轴所得弦长为2;②被x轴分成两段圆弧,其弧长的比为3:1;③圆心到直线l:x﹣2y=0的距离为.求该圆的方程. 4.(2013?柯城区校级三模)已知抛物线的顶点在坐标原点,焦点在y轴上,且过点(2,1).(Ⅰ)求抛物线的标准方程; (Ⅱ)是否存在直线l:y=kx+t,与圆x2+(y+1)2=1相切且与抛物线交于不同的两点M,N,当∠MON为钝角时,有S△MON=48成立?若存在,求出直线的方程,若不存在,说明理由. 5.(2009?)(1)已知矩阵M所对应的线性变换把点A(x,y)变成点A′(13,5),试求M的逆矩阵及点A的坐标. (2)已知直线l:3x+4y﹣12=0与圆C:(θ为参数)试判断他们的公共点个数; (3)解不等式|2x﹣1|<|x|+1. 6.(2009?东城区一模)如图,已知定圆C:x2+(y﹣3)2=4,定直线m:x+3y+6=0,过A (﹣1,0)的一条动直线l与直线相交于N,与圆C相交于P,Q两点,M是PQ中点.(Ⅰ)当l与m垂直时,求证:l过圆心C; (Ⅱ)当时,求直线l的方程; (Ⅲ)设t=,试问t是否为定值,若为定值,请求出t的值;若不为定值,请说明理由.

(完整版)高中数学解三角形方法大全

解三角形 1.解三角形:一般地,把三角形的三个角和它们的对边叫做三角形的元素。已知三角形的几个元素求 其他元素的过程叫作解三角形。 以下若无特殊说明,均设ABC ?的三个内角C B A 、、的对边分别为c b a 、、,则有以下关系成立: (1)边的关系:c b a >+,b c a >+,a c b >+(或满足:两条较短的边长之和大于较长边) (2)角的关系:π=++C B A ,π<A , C B A sin )sin(=+,C B A cos )cos(-=+,2 cos 2sin C B A =+ (3)边角关系:正弦定理、余弦定理以及它们的变形 板块一:正弦定理及其应用 1.正弦定理: R C c B b A a 2sin sin sin ===,其中R 为AB C ?的外接圆半径 2.正弦定理适用于两类解三角形问题: (1)已知三角形的任意两角和一边,先求第三个角,再根据正弦定理求出另外两边; (2)已知三角形的两边与其中一边所对的角,先求另一边所对的角(注意此角有两解、一解、无解 【例1】考查正弦定理的应用 (1)ABC ?中,若ο 60=B ,4 2 tan = A ,2=BC ,则=AC _____; (2)ABC ?中,若ο 30=A ,2= b ,1=a ,则=C ____; (3)ABC ?中,若ο 45=A ,24=b ,8=a ,则=C ____; (4)ABC ?中,若A c a sin =,则c b a +的最大值为_____。

总结:若已知三角形的两边和其中一边所对的角,解这类三角形时,要注意有两解、一解和无解的可能如图,在ABC ?中,已知a、b、A (1)若A为钝角或直角,则当b a>时,ABC ?有唯一解;否则无解。 (2)若A为锐角,则当A b a sin <时,三角形无解; 当A b a sin =时,三角形有唯一解; 当b a A b< < sin时,三角形有两解; 当b a≥时,三角形有唯一解 实际上在解这类三角形时,我们一般根据三角形中“大角对大边”理论判定三角形是否有两解的可能。板块二:余弦定理及面积公式 1.余弦定理:在ABC ?中,角C B A、 、的对边分别为c b a、 、,则有 余弦定理: ? ? ? ? ? - + = - + = - + = C ab b a c B ac c a b A bc c b a cos 2 cos 2 cos 2 2 2 2 2 2 2 2 2 2 ,其变式为: ? ? ? ? ? ? ? ? ? - + = - + = - + = ab c b a C ac b c a B bc a c b A 2 cos 2 cos 2 cos 2 2 2 2 2 2 2 2 2 2.余弦定理及其变式可用来解决以下两类三角形问题: (1)已知三角形的两边及其夹角,先由余弦定理求出第三边,再由正弦定理求较短边所对的角(或由余弦定理求第二个角),最后根据“内角和定理”求得第三个角; (2)已知三角形的三条边,先由余弦定理求出一个角,再由正弦定理求较短边所对的角(或由余弦定理求第二个角),最后根据“内角和定理”求得第三个角; 说明:为了减少运算量,能用正弦定理就尽量用正弦定理解决 3.三角形的面积公式 (1) c b a ABC ch bh ah S 2 1 2 1 2 1 = = = ? ( a h、 b h、 c h分别表示a、b、c上的高); (2)B ac A bc C ab S ABC sin 2 1 sin 2 1 sin 2 1 = = = ? (3)= ?ABC S C B A R sin sin sin 22(R为外接圆半径) (4) R abc S ABC4 = ? ; (5)) )( )( (c p b p a p p S ABC - - - = ? 其中) ( 2 1 c b a p+ + = (6)l r S ABC ? = ?2 1 (r是内切圆的半径,l是三角形的周长)

不等式的高中数学组卷 -学生版

2018年08月不等式的高中数学组卷 一.填空题(共30小题) 1.设x,y满足约束条件,则z=3x﹣2y的最小值为. 2.若x,y满足约束条件,则z=3x﹣4y的最小值为. 3.若直线=1(a>0,b>0)过点(1,2),则2a+b的最小值为. 4.已知实数x,y满足,则x2+y2的取值范围是. 5.某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料1.5kg,乙材料1kg,用5个工时;生产一件产品B需要甲材料0.5kg,乙材料0.3kg,用3个工时,生产一件产品A的利润为2100元,生产一件产品B的利润为900元.该企业现有甲材料150kg,乙材料90kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为元. 6.不等式2<4的解集为. 7.若变量x,y满足约束条件,且z=2x+y的最小值为﹣6,则k=. 8.当实数x,y满足时,1≤ax+y≤4恒成立,则实数a的取值范围是.9.设z=kx+y,其中实数x,y满足,若z的最大值为12,则实数k=. 10.设常数a>0,若9x+对一切正实数x成立,则a的取值范围为. 11.设a+b=2,b>0,则的最小值为. 12.在如图所示的锐角三角形空地中,欲建一个面积最大的内接矩形花园(阴 影部分),则其边长x为(m). 13.已知关于x的不等式x2﹣ax+2a>0在R上恒成立,则实数a的取值范围 是.

14.已知O是坐标原点,点A(﹣1,1).若点M(x,y)为平面区域上的一个动点,则的取值范围是. 15.已知点x,y满足不等式组,若ax+y≤3恒成立,则实数a的取值范围是.16.某校今年计划招聘女教师x人,男教师y人,若x、y满足,则该学校今年计划招 聘教师最多人. 17.已知方程x2+(1+a)x+4+a=0的两根为x1,x2,且0<x1<1<x2,则a的取值范围是.18.若关于x的不等式a≤x2﹣3x+4≤b的解集恰好为[a,b],那么b﹣a=. 19.已知x=1是不等式k2x2﹣6kx+8≥0(k≠0)的解,则k的取值范围是. 20.如果关于x的不等式mx2﹣mx﹣1≥0的解集为?,则实数m的取值范围是.21.已知x>﹣1,则x+的最小值为. 22.若a,b∈R,ab>0,则的最小值为. 23.已知a>0,b>0,且2a+b=4,则的最小值是. 24.已知x>0,y>0,x+2y+2xy=8,则x+2y的最小值是. 25.若2x+4y=4,则x+2y的最大值是. 26.设a>0,b>1,若a+b=2,则+的最小值为. 27.若log4(3a+4b)=log2,则a+b的最小值是. 28.设a>0,b>0.若是3a与32b的等比中项,则+的最小值为. 29.如图所示,在△ABC中,AD=DB,点F在线段CD上,设=,=,=x+y,则+的最小值为. 30.已知实数a,b均大于0,且总成立,则实数m 的取值范围是.

2【高中数学习题精选】 圆锥曲线综合练习题

高中数学组卷圆锥曲线练习 一.解答题(共50小题) 1.(2017秋?仙游县期末)设椭圆+=1(a>2)的离心率为,斜率为k的直线l过点E(0,1)且与椭圆交于C,D两点. (1)求椭圆的方程; (2)若直线l与x轴相交于点G,且=,求k的值; (3)设点A为椭圆的下顶点,k AC,k AD分别为直线AC,AD的斜率,证明:对任意的k,恒有k AC?k AD=﹣2. 2.(2018?河南模拟)如图,椭圆W:+=1(a>b>0)的焦距与椭圆Ω:+y2=1的短轴长相等,且W与Ω的长轴长相等,这两个椭圆的在第一象限的交点为A,直线l经过Ω在y轴正半轴上的顶点B且与直线OA(O为坐标原点)垂直,l与Ω的另一个交点为C,l 与W交于M,N两点. (1)求W的标准方程: (2)求. 3.(2018?株洲一模)已知椭圆与直线l:bx﹣ay=0都经过点.直线m与l平行,且与椭圆C交于A,B两点,直线MA,MB与x轴分别交于E,F两点. (1)求椭圆C的方程; (2)证明:△MEF为等腰三角形. 4.(2018?河南模拟)已知抛物线E:y2=2px(p>0),斜率为k且过点M(3,0)的直线l 与E交于A,B两点,且,其中O为坐标原点.

(1)求抛物线E的方程; (2)设点N(﹣3,0),记直线AN,BN的斜率分别为k1,k2,证明:为定值. 5.(2018?资阳模拟)已知椭圆C:的离心率,且过点. (1)求椭圆C的方程; (2)过P作两条直线l1,l2与圆相切且分别交椭圆于M,N 两点. ①求证:直线MN的斜率为定值; ②求△MON面积的最大值(其中O为坐标原点). 6.(2018?黄浦区一模)已知椭圆Γ:+=1(a>b>0),过原点的两条直线l1和l2分别 与Γ交于点A、B和C、D,得到平行四边形ACBD. (1)当ACBD为正方形时,求该正方形的面积S; (2)若直线l1和l2关于y轴对称,Γ上任意一点P到l1和l2的距离分别为d1和d2,当d12+d22为定值时,求此时直线l1和l2的斜率及该定值. (3)当ACBD为菱形,且圆x2+y2=1内切于菱形ACBD时,求a,b满足的关系式.7.(2018?玉溪模拟)已知椭圆(a>b>0)的离心率为、F2分别 为椭圆C的左、右焦点,过F2的直线l与C相交于A、B两点,△F1AB的周长为.(I)求椭圆C的方程; (II)若椭圆C上存在点P,使得四边形OAPB为平行四边形,求此时直线l的方程.8.(2018?淮南一模)椭圆C:=1(a>b>0)的左顶点为A,右焦点为F,上顶点为B,下顶点为C,若直线AB与直线CF的交点为(3a,16). (1)求椭圆C的标准方程;

高中数学经典高考难题集锦解析版

2015年10月18日姚杰的高中数学组卷 一.解答题(共10小题) 1.(2012?宣威市校级模拟)设点C为曲线(x>0)上任一点,以点C为圆心的圆与x 轴交于点E、A,与y轴交于点E、B. (1)证明多边形EACB的面积是定值,并求这个定值; (2)设直线y=﹣2x+4与圆C交于点M,N,若|EM|=|EN|,求圆C的方程.2.(2010?江苏模拟)已知直线l:y=k(x+2)与圆O:x2+y2=4相交于A、B两点,O是坐标原点,三角形ABO的面积为S. (Ⅰ)试将S表示成的函数S(k),并求出它的定义域; (Ⅱ)求S的最大值,并求取得最大值时k的值. 3.(2013?越秀区校级模拟)已知圆满足:①截y轴所得弦长为2;②被x轴分成两段圆弧,其弧长的比为3:1;③圆心到直线l:x﹣2y=0的距离为.求该圆的方程. 4.(2013?柯城区校级三模)已知抛物线的顶点在坐标原点,焦点在y轴上,且过点(2,1).(Ⅰ)求抛物线的标准方程; (Ⅱ)是否存在直线l:y=kx+t,与圆x2+(y+1)2=1相切且与抛物线交于不同的两点M,N,当∠MON为钝角时,有S△MON=48成立?若存在,求出直线的方程,若不存在,说明理由. 5.(2009?福建)(1)已知矩阵M所对应的线性变换把点A(x,y)变成点A′(13,5),试求M的逆矩阵及点A的坐标. (2)已知直线l:3x+4y﹣12=0与圆C:(θ为参数)试判断他们的公共 点个数; (3)解不等式|2x﹣1|<|x|+1. 6.(2009?东城区一模)如图,已知定圆C:x2+(y﹣3)2=4,定直线m:x+3y+6=0,过A (﹣1,0)的一条动直线l与直线相交于N,与圆C相交于P,Q两点,M是PQ中点.(Ⅰ)当l与m垂直时,求证:l过圆心C; (Ⅱ)当时,求直线l的方程; (Ⅲ)设t=,试问t是否为定值,若为定值,请求出t的值;若不为定值,请说明理 由. 7.(2009?天河区校级模拟)已知圆C:(x+4)2+y2=4,圆D的圆心D在y 轴上且与圆C 外切,圆D与y 轴交于A、B两点,定点P的坐标为(﹣3,0). (1)若点D(0,3),求∠APB的正切值; (2)当点D在y轴上运动时,求∠APB的最大值; (3)在x轴上是否存在定点Q,当圆D在y轴上运动时,∠AQB是定值?如果存在,求出Q点坐标;如果不存在,说明理由. 8.(2007?海南)在平面直角坐标系xOy中,已知圆x2+y2﹣12x+32=0的圆心为Q,过点P (0,2)且斜率为k的直线与圆Q相交于不同的两点A,B.

高三数学《解三角形》题型归纳

高三数学《解三角形》题型归纳(含解析) 题型一:求某边的值 (1)ABC △的内角A B C ,,的对边分别为,,a b c .已知2 5,2,cos 3 a c A === ,则b =_______. (2)如图,在四边形ABCD 中,已知AD ⊥CD , AD =10, AB =14, ∠BDA =60?, ∠BCD =135? ,则BC = . (3)在△ABC 中,内角A ,B ,C 的对边依次为a ,b ,c ,若a 2 -c 2 =3b ,且sin B =8cos A sin C ,则边b = . (4)钝角△ABC 的面积是1 2 ,AB =1,BC = 2 ,则AC = . (5)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知△ABC 的面积为315,b - c =2,cos A =-1 4,则a 的值为________. (6)在ABC △中,已知3,120AB A ==o ,且ABC △的面积为153 4 ,则BC 边长为______. (7)在ABC △中,已知5,3,2AB BC B A ===,则边AC 的长为________. 答案:(1)3 (2)8 2 (3)4 (4) 5 (5)8 (6)7 (7)26 题型二:三角形的角 (1)在△ABC 中,B =π4,BC 边上的高等于1 3 BC ,则cos A =________. (2)在△ABC 中,内角A ,B ,C 的对边依次为a ,b ,c ,已知85,2b c C B ==,则cos C = (3)在△ABC 中,角A ,B ,C 所对边分别为a ,b ,c ,且tan 21tan A c B b += .则A =________. (4)设△ABC 的三个内角A ,B ,C 所对的边依次为a ,b ,c ,且 cos sin a c A C =,则A =________. (5)在△ABC 中,若tan :tan :tan 1:2:3A B C =,则A =________. (6)设△ABC 的三个内角A ,B ,C 所对边分别为a ,b ,c ,若三边的长为连续的三个正整数,且A B C >>, 320cos b a A =,则sin :sin :sin A B C =________. 答案:(1)-10 10 (2) 725

组卷高中数学组卷—统计案例

高中数学组卷—统计案例 1.(2016?延边州模拟)下表是高三某位文科生连续5次月考的历史、政治的成绩,结果统计如下: 月份9 10 11 12 1 历史(x分)79 81 83 85 87 政治(y分)77 79 79 82 83 (1)求该生5次月考历史成绩的平均分和政治成绩的方差 (2)一般来说,学生的历史成绩与政治成绩有较强的线性相关,根据上表提供的数据,求两个变量x、y的线性回归方程=x+ (附:==,=y﹣x) 2.(2016春?南城县校级月考)某地随着经济的发展,居民收入逐年增长,下表是该地一建设银行连续五年的储蓄存款(年底余额),如下表: 年份x 2 2014 2015 储蓄存款y(千亿元) 5 6 7 8 10 为了研究计算的方便,工作人员将上表的数据进行了处理,t=x﹣2010,z=y﹣5得到如下表: 时间代号t 1 2 3 4 5 z 0 1 2 3 5 (Ⅰ)求z关于t的线性回归方程; (Ⅱ)通过(Ⅰ)中的方程,求出y关于x的回归方程; (Ⅲ)用所求回归方程预测到2020年年底,该地储蓄存款额可达多少? (附:对于线性回归方程,其中:,=﹣) 3.(2015?重庆)随着我国经济的发展,居民的储蓄存款逐年增长.设某地区城乡居民人民币储蓄存款(年底余额)如下表: 年份 2 2013 2014 时间代号t 1 2 3 4 5 储蓄存款y(千亿元) 5 6 7 8 10 (Ⅰ)求y关于t的回归方程=t+. (Ⅱ)用所求回归方程预测该地区2015年(t=6)的人民币储蓄存款. 附:回归方程=t+中 . 4.(2015?衡阳二模)某研究性学习小组对春季昼夜温差大小与某花卉种子发芽多少之间的关系进行研究,他们分别记录了3月1日至3月5日的每天昼夜温差与实验室每天每100颗种子浸泡后的发芽数,得到如下资料 日期3月1日3月2日3月3日3月4日3月5日 温差x(°C)10 11 13 12 8 发芽数y(颗)23 25 30 26 16 (Ⅰ)从3月1日至3月5日中任选2天,记发芽的种子数分别为m,n,求事件“m,n均小于25”的概率.

相关文档
最新文档