高考数学函数图象及数字特征
高中函数图像大全

高中必考函数大全指数函数概念:一般地,函数y=a^x(a>0,且a≠1)叫做指数函数,其中x是自变量,函数的定义域是R。
注意:⒈指数函数对外形要求严格,前系数要为1,否则不能为指数函数。
⒉指数函数的定义仅是形式定义。
指数函数的图像与性质:规律:1. 当两个指数函数中的a互为倒数时,两个函数关于y轴对称,但这两个函数都不具有奇偶性。
2.当a>1时,底数越大,图像上升的越快,在y轴的右侧,图像越靠近y轴;当0<a<1时,底数越小,图像下降的越快,在y轴的左侧,图像越靠近y轴。
在y轴右边“底大图高”;在y轴左边“底大图低”。
3.四字口诀:“大增小减”。
即:当a>1时,图像在R上是增函数;当0<a<1时,图像在R上是减函数。
4. 指数函数既不是奇函数也不是偶函数。
比较幂式大小的方法:1.当底数相同时,则利用指数函数的单调性进行比较;2.当底数中含有字母时要注意分类讨论;3.当底数不同,指数也不同时,则需要引入中间量进行比较;4.对多个数进行比较,可用0或1作为中间量进行比较底数的平移:在指数上加上一个数,图像会向左平移;减去一个数,图像会向右平移。
在f(X)后加上一个数,图像会向上平移;减去一个数,图像会向下平移。
对数函数1.对数函数的概念由于指数函数y=a x在定义域(-∞,+∞)上是单调函数,所以它存在反函数,我们把指数函数y=a x(a>0,a≠1)的反函数称为对数函数,并记为y=log a x(a>0,a≠1).因为指数函数y=a x的定义域为(-∞,+∞),值域为(0,+∞),所以对数函数y=log a x的定义域为(0,+∞),值域为(-∞,+∞).2.对数函数的图像与性质对数函数与指数函数互为反函数,因此它们的图像对称于直线y=x. 据此即可以画出对数函数的图像,并推知它的性质.为了研究对数函数y=log a x(a>0,a≠1)的性质,我们在同一直角坐标系中作出函数y=log 2x ,y=log 10x ,y=log 10x,y=log 21x,y=log 101x 的草图由草图,再结合指数函数的图像和性质,可以归纳、分析出对数函数y=log a x(a >0,a ≠1)的图像的特征和性质.见下表. 图 象 a >1a <1性 (1)x >0(2)当x=1时,y=0质(3)当x>1时,y>00<x<1时,y<0 (3)当x>1时,y<0 0<x<1时,y>0(4)在(0,+∞)上是增函数(4)在(0,+∞)上是减函数补充性质设y1=log a x y2=log b x其中a>1,b>1(或0<a<1 0<b<1)当x>1时“底大图低”即若a>b则y1>y2当0<x<1时“底大图高”即若a>b,则y1>y2比较对数大小的常用方法有:(1)若底数为同一常数,则可由对数函数的单调性直接进行判断.(2)若底数为同一字母,则按对数函数的单调性对底数进行分类讨论.(3)若底数不同、真数相同,则可用换底公式化为同底再进行比较.(4)若底数、真数都不相同,则常借助1、0、-1等中间量进行比较.3.指数函数与对数函数对比名称指数函数对数函数一般形式y=a x(a>0,a≠1) y=log a x(a>0,a≠1)定义域(-∞,+∞) (0,+∞)值域(0,+∞) (-∞,+∞)函数值变化情况当a>1时,⎪⎩⎪⎨⎧<<==>>)0(1)0(1)0(1xxxa x当0<a<1时,⎪⎩⎪⎨⎧<>==><)0(1)0(1)0(1xxxa x当a>1时⎪⎩⎪⎨⎧<<==>>)1(0)1(0)1(0logxxxxa当0<a<1时,⎪⎩⎪⎨⎧<>==><)1(0)1(0)1(0logxxxxa单调性当a>1时,a x是增函数;当0<a<1时,a x是减函数. 当a>1时,log a x是增函数;当0<a<1时,log a x是减函数.图像y=a x的图像与y=log a x的图像关于直线y=x对称.幂函数幂函数的图像与性质幂函数ny x=随着n的不同,定义域、值域都会发生变化,可以采取按性质和图像分类记忆的方法.熟练掌握ny x=,当112,1,,,323n=±±±的图像和性质,列表如下.从中可以归纳出以下结论:①它们都过点()1,1,除原点外,任何幂函数图像与坐标轴都不相交,任何幂函数图像都不过第四象限.② 11,,1,2,332a =时,幂函数图像过原点且在[)0,+∞上是增函数.③ 1,1,22a =---时,幂函数图像不过原点且在()0,+∞上是减函数.④ 任何两个幂函数最多有三个公共点.n y x =奇函数偶函数非奇非偶函数1n >01n <<0n <定义域 R R R奇偶性奇奇奇非奇非奇OxyOxyOxyOxyOxyOx yOxyOxyOxy偶在第Ⅰ象限的增减性在第Ⅰ象限单调递增在第Ⅰ象限单调递增 在第Ⅰ象限单调递增 在第Ⅰ象限单调递增 在第Ⅰ象限单调递减幂函数y x α=(x ∈R ,α是常数)的图像在第一象限的分布规律是:①所有幂函数y x α=(x ∈R ,α是常数)的图像都过点)1,1(; ②当21,3,2,1=α时函数y x α=的图像都过原点)0,0(;③当1=α时,y x α=的的图像在第一象限是第一象限的平分线(如2c );④当3,2=α时,y x α=的的图像在第一象限是“凹型”曲线(如1c )⑤当21=α时,y x α=的的图像在第一象限是“凸型”曲线(如3c )⑥当1-=α时,y x α=的的图像不过原点)0,0(,且在第一象限是“下滑”曲线(如4c )当0>α时,幂函数y x α=有下列性质: (1)图象都通过点)1,1(),0,0(;(2)在第一象限内都是增函数;(3)在第一象限内,1>α时,图象是向下凸的;10<<α时,图象是向上凸的;(4)在第一象限内,过点)1,1(后,图象向右上方无限伸展。
高考数学讲义函数的图象与性质.板块四.函数的图象与数字特征2.教师版

题型三:抽象函数1、线性函数型抽象函数线性函数型抽象函数,是由线性函数抽象而得的函数。
【例1】 已知函数()f x 对于任意实数x 、y 都有()()()f x y f x f y +=+,且当0x >时,()0f x >,()12f -=,求函数()f x 在区间[]21-,上的值域。
【考点】抽象函数 【难度】3星 【题型】解答【关键词】无【解析】想:k (x +y )=kx ky +原型:y kx =(k 为常数)为奇函数。
0k <时为减函数,0k >时为增函数。
猜测:()f x 为奇函数且()f x 为R 上的单调增函数,且()f x 在[]21-,上有()[]42f x ∈-,设1x <2x 且1x ,2R x ∈, 则210x x -> ∴()210f x x ->∴212111()()()()f x f x f x x x f x -=-+-=2111()()()f x x f x f x -+-21()0f x x =-> ∴21()()f x f x >,∴()f x 为R 上的单调增函数。
令0x y ==,则()00f =,令y x =-,则()()f x f x -=- ∴()f x 为R 上的奇函数。
∴()()112f f -=-=-∴()12f =,()()2214f f -=-=-∴()42f x -≤≤([]21x ∈-,) 故()f x 在[]21-,上的值域为[]42-, 【答案】[]42-,【例2】 已知函数()f x 对任意R x y ∈,,满足条件()()()2f x f y f x y +=++,且当0x >时,()2f x >,()35f =,求不等式()2223f a a --<的解。
板块四.函数的图象与数字特征【考点】抽象函数 【难度】3星 【题型】解答【关键词】无【解析】设12x x <,则210x x ->,∵当0x >时,()2f x >, ∴()212f x x ->,则()()()()()()221112111222f x f x x x f x x f x f x f x =-+=-+->+-=⎡⎤⎣⎦, 即()()21f x f x >, ∴()f x 为单调增函数。
高中数学的所有重要函数图像及其性质图像特点单调性定义域值域

数函数对数函数的一般形式为,它实际上就是指数函数的反函数。
因此指数函数里对于a的规定,同样适用于对数函数。
右图给出对于不同大小a所表示的函数图形:可以看到对数函数的图形只不过的指数函数的图形的关于直线y=x 的对称图形,因为它们互为反函数。
(1)对数函数的定义域为大于0的实数集合。
(2)对数函数的值域为全部实数集合。
(3)函数总是通过(1,0)这点。
(4)a大于1时,为单调递增函数,并且上凸;a小于1大于0时,函数为单调递减函数,并且下凹。
(5)显然对数函数无界。
指数函数指数函数的一般形式为,从上面我们对于幂函数的讨论就可以知道,要想使得x能够取整个实数集合为定义域,则只有使得如图所示为a的不同大小影响函数图形的情况。
可以看到:(1)指数函数的定义域为所有实数的集合,这里的前提是a大于0,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑。
(2)指数函数的值域为大于0的实数集合。
(3)函数图形都是下凹的。
(4)a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。
(5)可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置。
其中水平直线y=1是从递减到递增的一个过渡位置。
(6)函数总是在某一个方向上无限趋向于X轴,永不相交。
(7)函数总是通过(0,1)这点。
(8)显然指数函数无界。
奇偶性注图:(1)为奇函数(2)为偶函数1.定义一般地,对于函数f(x)(1)如果对于函数定义域内的任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。
(2)如果对于函数定义域内的任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数。
(3)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)同时成立,那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数。
高中数学函数图像总结

高中数学函数图像总结1. 一次函数函数表达式:y = kx + b (其中k和b为常数)一次函数图像为一条直线,其特征包括:•斜率k决定了直线的倾斜程度,正值表示向上倾斜,负值表示向下倾斜•截距b决定了直线与y轴的交点位置,直线与y轴的交点为(0, b) 一次函数图像常见的情况有:1.当 k > 0 时,直线向上倾斜,并且随着x的增大,y值增大2.当 k < 0 时,直线向下倾斜,并且随着x的增大,y值减小3.当 k = 0 时,直线水平,与x轴平行,y值恒为b4.当 b = 0 时,直线经过原点,与x轴和y轴交于原点一次函数图像的性质可以通过斜率和截距的取值来确定。
2. 二次函数函数表达式:y = ax^2 + bx + c (其中a、b、c为常数,且a ≠ 0)二次函数图像为一条拱形曲线(抛物线),其特征包括:•抛物线的开口方向由a的正负确定:当a > 0时,抛物线开口向上;当a < 0时,抛物线开口向下•抛物线顶点的横坐标为:x = -b/2a•抛物线顶点的纵坐标为:y = f(-b/2a) = a(-b/2a)^2 + b(-b/2a) + c二次函数图像常见的情况有:1.当a > 0时,抛物线开口向上,顶点是最小值点2.当a < 0时,抛物线开口向下,顶点是最大值点3.当a = 1时,抛物线的形状最标准,称为标准形式二次函数图像的性质可以通过a的取值来确定。
3. 幂函数函数表达式:y = x^a (其中a为常数)•当a > 0时,幂函数在整个定义域上严格递增,图像从左下方向右上方弯曲•当a < 0时,幂函数在整个定义域上严格递减,图像从左上方向右下方弯曲•当a为分数时,幂函数的图像根据a的正负和分子分母的关系,可能出现折现或断点幂函数图像常见的情况有:1.当a = 1时,幂函数为线性函数,图像为一条直线2.当a为整数且为偶数时,幂函数图像在整个定义域上为正,形状类似于抛物线3.当a为整数且为奇数时,幂函数图像在整个定义域上为负,形状类似于抛物线4.当a为负数时,幂函数图像关于x轴对称幂函数图像的性质可以通过a的取值来确定。
高中函数的总结归纳图像

高中函数的总结归纳图像函数是数学中一种重要的概念,它描述了数值之间的关系。
在高中数学学习过程中,函数是一个重要的内容,而函数的图像可以直观地展示函数的性质和特点。
本文将对高中函数的图像进行总结和归纳,以帮助读者更好地理解和掌握函数的概念。
一、一次函数的图像一次函数又称为线性函数,其图像是一条直线。
直线的基本特点是斜率和截距,因此一次函数的图像可以通过斜率和截距来确定。
1. 斜率为正数的一次函数:当一次函数的斜率为正数时,图像呈现上升的趋势。
斜率越大,图像越陡峭;斜率越小,图像越平缓。
此外,截距决定了图像与纵轴的交点位置。
2. 斜率为负数的一次函数:当一次函数的斜率为负数时,图像呈现下降的趋势。
与斜率为正数的情况类似,斜率的绝对值越大,图像越陡峭;斜率的绝对值越小,图像越平缓。
截距同样决定了图像与纵轴的交点位置。
3. 斜率为零的一次函数:当一次函数的斜率为零时,图像呈现平行于横轴的特点。
此时,函数的图像是一条水平线,截距决定了图像与纵轴的交点位置。
二、二次函数的图像二次函数的图像是一条抛物线,其形状取决于二次项的系数。
二次函数的图像可以分为三种不同情况进行讨论。
1. 二次函数的导数为正数的情况:当二次函数的导数为正数时,图像在极值点处取得最小值,图像开口朝上。
极值点的横坐标可以通过二次项系数的倒数来确定。
2. 二次函数的导数为负数的情况:当二次函数的导数为负数时,图像在极值点处取得最大值,图像开口朝下。
同样地,极值点的横坐标可以通过二次项系数的倒数来确定。
3. 二次函数没有极值点的情况:当二次函数没有极值点时,图像是一个开口朝上或者开口朝下的抛物线。
开口的方向取决于二次项的系数的正负。
三、指数函数和对数函数的图像指数函数和对数函数是高中数学中常见的函数类型,其图像具有以下特点。
1. 指数函数的图像:指数函数的图像呈现逐渐增长或逐渐减小的特点。
当指数为正数时,图像逐渐上升;当指数为负数时,图像逐渐下降。
第17讲 函数图象及数字特征(学生)

第17讲 函数图象及数字特征一、要点精讲1.函数图象(1)作图方法:以解析式表示的函数作图象的方法有两种,即列表描点法和图象变换法,掌握这两种方法是本讲座的重点。
作函数图象的步骤:①确定函数的定义域;②化简函数的解析式;③讨论函数的性质即单调性、奇偶性、周期性、最值(甚至变化趋势);④描点连线,画出函数的图象。
运用描点法作图象应避免描点前的盲目性,也应避免盲目地连点成线要把表列在关键处,要把线连在恰当处这就要求对所要画图象的存在范围、大致特征、变化趋势等作一个大概的研究。
而这个研究要借助于函数性质、方程、不等式等理论和手段,是一个难点用图象变换法作函数图象要确定以哪一种函数的图象为基础进行变换,以及确定怎样的变换,这也是个难点。
(2)三种图象变换:平移变换、对称变换和伸缩变换等等;①平移变换:Ⅰ、水平平移:函数()y f x a =+的图像可以把函数()y f x =的图像沿x 轴方向向左(0)a >或向右(0)a <平移||a 个单位即可得到;1)y =f (x )h 左移→y =f (x +h);2)y =f (x ) h右移→y =f (x -h);Ⅱ、竖直平移:函数()y f x a =+的图像可以把函数()y f x =的图像沿x 轴方向向上(0)a >或向下(0)a <平移||a 个单位即可得到;1)y =f (x ) h上移→y =f (x )+h ;2)y =f (x ) h下移→y =f (x )-h 。
②对称变换:Ⅰ、函数()y f x =-的图像可以将函数()y f x =的图像关于y 轴对称即可得到;y =f (x ) 轴y →y =f (-x )Ⅱ、函数()y f x =-的图像可以将函数()y f x =的图像关于x 轴对称即可得到;y =f (x ) 轴x →y = -f (x )Ⅲ、函数()y f x =--的图像可以将函数()y f x =的图像关于原点对称即可得到;y =f (x ) 原点→y = -f (-x )Ⅳ、函数)(y f x =的图像可以将函数()y f x =的图像关于直线y x =对称得到。
(完整版)高中数学常见函数图像
高中数学常见函数图像1.2.对数函数:3.幂函数:定义形如αxy=(x∈R)的函数称为幂函数,其中x是自变量,α是常数.图像性质过定点:所有的幂函数在(0,)+∞都有定义,并且图象都通过点(1,1).单调性:如果0α>,则幂函数的图象过原点,并且在[0,)+∞上为增函数.如果0α<,则幂函数的图象在(0,)+∞上为减函数,在第一象限内,图象无限接近x轴与y轴.4.函数sin y x =cos y x = tan y x =图象定义域R R,2x x k k ππ⎧⎫≠+∈Z ⎨⎬⎩⎭值域[]1,1-[]1,1-R最值当22x k ππ=+()k ∈Z 时,max 1y =; 当22xk ππ=-()k ∈Z 时,min 1y =-.当()2x k k π=∈Z 时,max 1y =;当2x k ππ=+()k ∈Z 时,min 1y =-.既无最大值也无最小值周期性 2π2ππ奇偶性奇函数 偶函数 奇函数单调性在2,222k k ππππ⎡⎤-+⎢⎥⎣⎦()k ∈Z 上是增函数;在32,222k k ππππ⎡⎤++⎢⎥⎣⎦ ()k ∈Z 上是减函数.在[]()2,2k k k πππ-∈Z 上是增函数;在[]2,2k k πππ+()k ∈Z 上是减函数.在,22k k ππππ⎛⎫-+⎪⎝⎭()k ∈Z 上是增函数.对称性对称中心()(),0k k π∈Z对称轴()2x k k ππ=+∈Z对称中心(),02k k ππ⎛⎫+∈Z⎪⎝⎭ 对称轴()x k k π=∈Z对称中心(),02k k π⎛⎫∈Z ⎪⎝⎭无对称轴。
高考数学培优资料--第17讲 函数图象及数字特征
第17讲 函数图象及数字特征一、要点精讲1.函数图象(1)作图方法:以解析式表示的函数作图象的方法有两种,即列表描点法和图象变换法,掌握这两种方法是本讲座的重点。
作函数图象的步骤:①确定函数的定义域;②化简函数的解析式;③讨论函数的性质即单调性、奇偶性、周期性、最值(甚至变化趋势);④描点连线,画出函数的图象。
运用描点法作图象应避免描点前的盲目性,也应避免盲目地连点成线要把表列在关键处,要把线连在恰当处这就要求对所要画图象的存在范围、大致特征、变化趋势等作一个大概的研究。
而这个研究要借助于函数性质、方程、不等式等理论和手段,是一个难点用图象变换法作函数图象要确定以哪一种函数的图象为基础进行变换,以及确定怎样的变换,这也是个难点。
(2)三种图象变换:平移变换、对称变换和伸缩变换等等;①平移变换:Ⅰ、水平平移:函数()y f x a =+的图像可以把函数()y f x =的图像沿x 轴方向向左(0)a >或向右(0)a <平移||a 个单位即可得到;1)y =f (x )h 左移→y =f (x +h);2)y =f (x ) h右移→y =f (x -h);Ⅱ、竖直平移:函数()y f x a =+的图像可以把函数()y f x =的图像沿x 轴方向向上(0)a >或向下(0)a <平移||a 个单位即可得到;1)y =f (x ) h 上移→y =f (x )+h ;2)y =f (x ) h下移→y =f (x )-h 。
②对称变换:Ⅰ、函数()y f x =-的图像可以将函数()y f x =的图像关于y 轴对称即可得到;y =f (x ) 轴y →y =f (-x ) Ⅱ、函数()y f x =-的图像可以将函数()y f x =的图像关于x 轴对称即可得到;y =f (x ) 轴x →y = -f (x ) Ⅲ、函数()y f x =--的图像可以将函数()y f x =的图像关于原点对称即可得到;y =f (x ) 原点→y = -f (-x ) Ⅳ、函数)(y f x =的图像可以将函数()y f x =的图像关于直线y x =对称得到。
数学高考数学中的常见函数与像特征总结
数学高考数学中的常见函数与像特征总结在高考数学考试中,函数是一个非常重要的概念,它在各个领域都有广泛的应用。
常见函数中,有一些特征是我们需要特别关注和熟悉的。
本文将对这些常见函数及其特征进行总结和归纳,以帮助考生更好地掌握这些内容。
一、线性函数线性函数是高考数学中最基础也是最简单的函数之一。
线性函数的特征是其图像是一条直线,表示为 y = kx + b。
其中,k 表示斜率,b 表示函数的截距。
线性函数的图像是一条直线,斜率决定了线的倾斜程度和方向,斜率为正表示线向上倾斜,斜率为负表示线向下倾斜。
截距则决定了线与 y 轴的交点位置。
二、二次函数二次函数是高考数学中的另一个常见函数类型。
它的一般形式为 y = ax² + bx + c。
其中 a、b 和 c 是常数,且a ≠ 0。
二次函数的图像是一个抛物线,其开口的方向由 a 的正负决定。
当a > 0 时,抛物线开口朝上;当 a < 0 时,抛物线开口朝下。
二次函数的顶点是其图像的最低点或最高点,可以通过解方程 y' =0 来求得。
顶点的横坐标为 -b/2a,纵坐标为 f(-b/2a)。
三、指数函数指数函数是高考数学中非常重要且常见的函数类型。
它的一般形式为 y = aᵢˣ。
其中,a 为常数,且 a > 0,且a ≠ 1。
指数函数的图像是以一点为底的指数曲线。
当 a > 1 时,指数曲线上升;当 0 < a < 1 时,指数曲线下降。
指数函数的性质是其一些特殊点和解的问题。
比如,对于指数函数y = aˣ,当 x = 0 时,y = 1;当 x = 1 时,y = a。
指数函数还有一些特殊的性质,如指数函数的定义域为全体实数,值域为正数。
四、对数函数对数函数是指数函数的逆运算,也是高考数学中非常重要的函数类型。
对数函数的一般形式为y = logₐ(x)。
其中,a 为底数,x 为真数。
对数函数的图像是指数函数y = aˣ 的反转。
高考数学讲义函数的图象与数字特征.参考教案.学生版
(1)作图方法:以解析式表示的函数作图象的方法有两种,即列表描点法和图象变换法,掌握这两种方法是本讲座的重点。
作函数图象的步骤:①确定函数的定义域;②化简函数的解析式;③讨论函数的性质即单调性、奇偶性、周期性、最值(甚至变化趋势);④描点连线,画出函数的图象。
运用描点法作图象应避免描点前的盲目性,也应避免盲目地连点成线要把表列在关键处,要把线连在恰当处这就要求对所要画图象的存在范围、大致特征、变化趋势等作一个大概的研究。
而这个研究要借助于函数性质、方程、不等式等理论和手段,是一个难点用图象变换法作函数图象要确定以哪一种函数的图象为基础进行变换,以及确定怎样的变换,这也是个难点。
(2)三种图象变换:平移变换、对称变换和伸缩变换等等;①平移变换:Ⅰ、水平平移:函数()y f x a =+的图像可以把函数()y f x =的图像沿x 轴方向向左(0)a >或向右(0)a <平移||a 个单位即可得到;1)y =f (x )h左移→y =f (x +h);2)y =f (x ) h右移→y =f (x -h);Ⅱ、竖直平移:函数()y f x a =+的图像可以把函数()y f x =的图像沿x 轴方向向上(0)a >或向下(0)a <平移||a 个单位即可得到;1)y =f (x ) h 上移→y =f (x )+h ;2)y =f (x ) h下移→y =f (x )-h 。
②对称变换:Ⅰ、函数()y f x =-的图像可以将函数()y f x =的图像关于y 轴对称即可得到;y =f (x ) 轴y →y =f (-x )Ⅱ、函数()y f x =-的图像可以将函数()y f x =的图像关于x 轴对称即可得到;y =f (x ) 轴x →y = -f (x )知识内容函数的图像与性质Ⅲ、函数()y f x =--的图像可以将函数()y f x =的图像关于原点对称即可得到;y =f (x ) 原点→y = -f (-x )Ⅳ、函数)(y f x =的图像可以将函数()y f x =的图像关于直线y x =对称得到。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
普通高中课程标准实验教科书—数学 [人教版]高三新数学第一轮复习教案(讲座5)—函数图象及数字特征一.课标要求:1.掌握基本初等函数的图象的画法及性质。
如正比例函数、反比例函数、一元一次函数、一元二次函数、指数函数、对数函数、幂函数等;2.掌握各种图象变换规则,如:平移变换、对称变换、翻折变换、伸缩变换等;3.识图与作图:对于给定的函数图象,能从图象的左右、上下分布范围,变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性、周期性。
甚至是处理涉及函数图象与性质一些综合性问题;4.通过实例,了解幂函数的概念;结合函数21132,,,,x y x y x y x y x y =====-的图像,了解它们的变化情况。
二.命题走向函数不仅是高中数学的核心内容,还是学习高等数学的基础,所以在高考中,函数知识占有极其重要的地位。
其试题不但形式多样,而且突出考查学生联系与转化、分类与讨论、数与形结合等重要的数学思想、能力。
知识覆盖面广、综合性强、思维力度大、能力要求高,是高考考数学思想、数学方法、考能力、考素质的主阵地。
从历年高考形势来看:(1)与函数图象有关的试题,要从图中(或列表中)读取各种信息,注意利用平移变换、伸缩变换、对称变换,注意函数的对称性、函数值的变化趋势,培养运用数形结合思想来解题的能力,会利用函数图象,进一步研究函数的性质,解决方程、不等式中的问题;(2)函数综合问题多以知识交汇题为主,甚至以抽象函数为原型来考察;(3)与幂函数有关的问题主要以21132,,,,x y x y x y x y x y =====-为主,利用它们的图象及性质解决实际问题;预测高考函数图象:(1)题型为1到2个填空选择题;(2)题目多从由解析式得函数图象、数形结合解决问题等方面出题;函数综合问题:(1)题型为1个大题;(2)题目多以知识交汇题目为主,重在考察函数的工具作用;幂函数:单独出题的可能性很小,但一些具体问题甚至是一些大题的小过程要应用其性质来解决; 三.要点精讲1.函数图象(1)作图方法:以解析式表示的函数作图象的方法有两种,即列表描点法和图象变换法,掌握这两种方法是本讲座的重点。
作函数图象的步骤:①确定函数的定义域;②化简函数的解析式;③讨论函数的性质即单调性、奇偶性、周期性、最值(甚至变化趋势);④描点连线,画出函数的图象。
运用描点法作图象应避免描点前的盲目性,也应避免盲目地连点成线要把表列在关键处,要把线连在恰当处这就要求对所要画图象的存在范围、大致特征、变化趋势等作一个大概的研究。
而这个研究要借助于函数性质、方程、不等式等理论和手段,是一个难点用图象变换法作函数图象要确定以哪一种函数的图象为基础进行变换,以及确定怎样的变换,这也是个难点。
(2)三种图象变换:平移变换、对称变换和伸缩变换等等;①平移变换:Ⅰ、水平平移:函数()y f x a =+的图像可以把函数()y f x =的图像沿x 轴方向向左(0)a >或向右(0)a <平移||a 个单位即可得到;1)y =f (x )h 左移→y =f (x +h);2)y =f (x ) h 右移→y =f (x -h);Ⅱ、竖直平移:函数()y f x a =+的图像可以把函数()y f x =的图像沿x 轴方向向上(0)a >或向下(0)a <平移||a 个单位即可得到;1)y =f (x ) h 上移→y =f (x )+h ;2)y =f (x ) h下移→y =f (x )-h 。
②对称变换:Ⅰ、函数()y f x =-的图像可以将函数()y f x =的图像关于y 轴对称即可得到;y =f (x ) 轴y →y =f (-x )Ⅱ、函数()y f x =-的图像可以将函数()y f x =的图像关于x 轴对称即可得到;y =f (x ) 轴x →y = -f (x )Ⅲ、函数()y f x =--的图像可以将函数()y f x =的图像关于原点对称即可得到;y =f (x ) 原点→y = -f (-x )Ⅳ、函数)(y f x =的图像可以将函数()y f x =的图像关于直线y x =对称得到。
y =f (x ) x y =→直线x =f (y )Ⅴ、函数)2(x a f y -=的图像可以将函数()y f x =的图像关于直线a x =对称即可得到;y =f (x ) ax =→直线y =f (2a -x )。
③翻折变换:Ⅰ、函数|()|y f x =的图像可以将函数()y f x =的图像的x 轴下方部分沿x 轴翻折到x 轴上方,去掉原x 轴下方部分,并保留()y f x =的x 轴上方部分即可得到;Ⅱ、函数(||)y f x =的图像可以将函数()y f x =的图像右边沿y 轴翻折到y 轴左边替代原y 轴左边部分并保留()y f x =在y 轴右边部分即可得到④伸缩变换:Ⅰ、函数()y af x =(0)a >的图像可以将函数()y f x =的图像中的每一点横坐标不变纵坐标伸长(1)a >或压缩(01a <<)为原来的a 倍得到;y =f (x )a y ⨯→y =af (x )Ⅱ、函数()y f ax =(0)a >的图像可以将函数()y f x =的图像中的每一点纵坐标不变横坐标伸长(1)a >或压缩(01a <<)为原来的1a 倍得到。
f (x )y =f (x )a x ⨯→y =f (ax )(3)识图:分布范围、变化趋势、对称性、周期性等等方面。
2.幂函数y x =≠αα(,)01在第一象限的图象,可分为如图中的三类:图 在考查学生对幂函数性的掌握和运用函数的性质解决问题时,所涉及的幂函数y x =α中α限于在集合---⎧⎨⎩⎫⎬⎭21121312123,,,,,,,中取值。
幂函数有如下性质:⑴它的图象都过(1,1)点,都不过第四象限,且除原点外与坐标轴都不相交; ⑵定义域为R 或(,)(,)-∞+∞00 的幂函数都具有奇偶性,定义域为[]R ++∞或,0的幂函数都不具有奇偶性;⑶幂函数y x =≠αα()0都是无界函数;在第一象限中,当α<0时为减函数,当α>0时为增函数;⑷任意两个幂函数的图象至少有一个公共点(1,1),至多有三个公共点;四.典例解析题型1:作图例1.(06重庆 理)如图所示,单位圆中弧AB 的长为x ,f (x )表示弧AB 与弦AB 所围成的弓形面积的2倍,则函数y =f (x )的图象是( )A B C D解析:显然当2π=x 时,阴影部分的面积等于41圆的面积减去以圆的半径为腰的等腰直角三角形的面积,222)214(2)2(ππππ<-=-=f ,即点)22,2(-ππ在直线x y =的下方,故应在C 、D 中选择。
而当当2π=x 时,阴影部分的面积等于41圆的面积加上以圆的半径为腰的等腰直角三角形的面积,23223)22(2)23(πππππ>+=--=f ,即点)223,23(+ππ在直线x y =的上方,故应选择D 。
点评:该题属于实际应用的题目,结合函数值变化的趋势和一些特殊点函数值解决问题即可。
要明确函数图像与函数自变量、变量值的对应关系,特别是函数单调性与函数图象个关系;例2.(1996上海,文、理8)在下列图象中,二次函数y =ax 2+bx 与指数函数y =(a b )x 的图象只可能是( )解析一:由指数函数图象可以看出0<a b <1。
抛物线方程是y =a (x +a b 2)2-224a b ,其顶点坐标为(-a b 2,-ab 42),又由0<a b <1,可得-21<-a b 2<0.观察选择支,可选A 。
解析二:求y =ax 2+bx 与x 轴的交点,令ax 2+bx =0,解得x =0或x =-a b ,而-1<-a b <0。
故选A 。
点评:本题主要考查二次函数、指数函数的图象及性质,源于课本,考查基本知识,难度不大。
本题虽小,但一定要细致观察图象,注意细微之处,获得解题灵感。
题型2:识图例3.(06江西 12)某地一年内的气温()Q t (单位:℃)与时间t (月份)之间的关系如图所示,已知该年的平均气温为10℃,令()C t 表示时间段[]0,t 的平均气温,()C t 与t 之间的函数关系用下图表示,则正确的应该是( )解析:平均气温10℃与函数图像有两个交点,观察图像可知两交点的两侧都低于平均气温, 而中间高于平均气温。
时间段内的平均气温,应该从开始持续到平均气温左交点向右一段距离才开始达到平均气温,持续上升一段时间,最后回落到平均气温。
答案A 。
点评:联系生活,体会变量间的相互关系,重视观察图像的变化趋势,结合导数的知识处理实际问题。
例4.(2002上海文,理16)一般地,家庭用电量(千瓦时)与气温(℃)有一定的关系,如图2—1所示,图(1)表示某年12个月中每月的平均气温.图(2)表示某家庭在这年12个月中每个月的用电量.根据这些信息,以下关于该家庭用电量与其气温间关系的叙述中,正确的是( )图A .气温最高时,用电量最多B .气温最低时,用电量最少C .当气温大于某一值时,用电量随气温增高而增加D .当气温小于某一值时,用电量随气温渐低而增加解析:经比较可发现,2月份用电量最多,而2月份气温明显不是最高。
因此A 项错误。
同理可判断出B 项错误。
由5、6、7三个月的气温和用电量可得出C 项正确。
点评:该题考查对图表表达的函数的识别和理解能力,要从题目解说入手,结合图像和实际解决问题。
题型3:函数的图象变换例5.(2002全国理,10)函数y =1-11-x 的图象是( )解析一:该题考查对f (x )=x 1图象以及对坐标平移公式的理解,将函数y =x1的图形变形到y =11-x ,即向右平移一个单位,再变形到y =-11-x 即将前面图形沿x 轴翻转,再变形到y =-11-x +1,从而得到答案B 。
解析二:可利用特殊值法,取x =0,此时y =1,取x =2,此时y =0。
因此选B 。
点评:借助函数图像的变换规则解决实际问题。
例6.(05广东理 9)在同一平面直角坐标系中,函数)(x f y =和)(x g y =的图象关于直线x y =对称。
现将)(x g y =的图象沿x 轴向左平移2个单位,再沿y 轴向上平移1个单位,所得的图象是由两条线段组成的折线(如图2所示),则函数)(x f 的表达式为( )A .⎪⎩⎪⎨⎧≤<+≤≤-+=20,2201,22)(x x x x x f B .⎪⎩⎪⎨⎧≤<-≤≤--=20,2201,22)(x x x x x fC .⎪⎩⎪⎨⎧≤<+≤≤-=42,1221,22)(x x x x x f D .⎪⎩⎪⎨⎧≤<-≤≤-=42,3221,62)(x x x x x f 解析:原函数的图像仍然是由两条折线段组成,折线段的端点(-2,0)、(0,1)、(1,3)向下平移1个单位是端点(-2,-1)、(0,0)、(1,2),再向右平移2个单位端点为(0,-1)、(2,0)、(3,2),关于直线x y =对称后折线段端点为(-1,0)、(0,2)、(2,3)。