湖北省武汉市2017_2018学年度部分学校新高三数学起点调研考试试题文(含解析)
湖北省部分重点中学2018届新高三起点考试理数试卷 Word版含答案

第5题图湖北省部分重点中学2017-2018学年度上学期新高三起点考试数 学 试 卷(理科)命题人: 武汉49中 徐方 审题人:武汉49中 周镜一、选择题(本大题共12小题,每小题5分,共60分.)1. 已知集合}034|{2≥++=x x x A ,}12|{<x x B =,则=B AA .)0,1[]3,(---∞B .]1,3[--C .]0,1(]3,(---∞D .)0,(-∞ 2. 已知复数z 满足i z ii4311+=⋅-+,则z = A.5 B.7 C. 25 D. 623. 已知随机变量ξ服从正态分布2(,)N μσ,若(2)(6)P P ξξ<=>0.15=,则(24)P ξ≤<等于A. 0.3B. 0.35C. 0.5D. 0.7 4.已知数列{}n a 为等差数列,其前n 项和为n S ,7825a a -=,则11S 为A. 110B. 55C. 50D. 不能确定5.某几何体的三视图如图所示(单位:cm ),则该几何体的体积等于( ) 3cm A .243π+ B .342π+ C .263π+D .362π+ 6. 在ABC ∆中,“A B C <<”“cos 2cos 2B cos 2C A >>”的 A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件7.美索不达米亚平原是人类文明的发祥地之一。
美索不达米亚人善于计算,他们创造了优良的计数系统,其中开平方算法是最具有代表性的。
程序框图如图所示,若输入ξ,,n a 的值分别为8,2,0.5,(每次运算都精确到小数点后两位)则输出结果为( )A. 2.81B. 2.82C. 2.83D. 2.848.偶函数f(x)在(0,+∞)上递增,),23(,31(log 2f b f a ==) )2(log 3f c =则下列关系式中正确的是A .a <b <cB .a <c <bC .c <a <bD .c <b <a9.若y x ,满足条件⎪⎩⎪⎨⎧≤≥+-≥-+206202x y x y x ,则目标函数22y x z +=的最小值是A .2B .2C .4D .96810.若点(,,)P x y 的坐标满足1ln1x y=-,则点P 的轨迹图像大致是11.抛物线22(0)y px p =>的焦点为F ,过焦点F 倾斜角为3π的直线与抛物线相交于两点,A B 两点,若8AB =,则抛物线的方程为A .23y x =B .24y x= C .26y x = D . 28y x =12.已知函数()()2sin 0,2f x x πωϕωϕ⎛⎫=+><⎪⎝⎭的图象过点)3,0(-B ,且在,183ππ⎛⎫⎪⎝⎭上单调,同时()f x 的图象向左平移π个单位之后与原来的图象重合,当)32,34(,21ππ--∈x x ,且12x x ≠时,()()12f x f x =,则()12f x x += A. 3- B.1- C. 1 D.3二、填空题(本大题共4小题,每小题5分,共20分)13.已知向量(3,4)a = ,(,1)b x = ,若()a b a -⊥,则实数x 等于 .14.设2521001210(32)x x a a x a x a x -+=++++ ,则1a 等于 .15.已知等腰梯形ABCD 中AB //CD ,24,60AB CD BAD ==∠=︒,双曲线以,A B 为焦点,且与线段CD (包括端点C 、D )有两个交点,则该双曲线的离心率的取值范围是 . 16.若函数22()(4)|2|2f x x x a x a =---+有四个零点,则实数a 的取值范围是 .三、解答题(本大题共6小题,70分)17.(本小题满分12分)等差数列{}n a 的前n 项和为n S ,数列{}n b 是等比数列,满足113,1a b ==,2252310,2.b S a b a +=-=(1)求数列{}n a 和{}n b 的通项公式;(2)令n n n c a b =,设数列{}n c 的前n 项和为n T ,求n T .18.(本小题满分12分)在如图所示的多面体ABCDEF 中,四边形ABCD 为正方形,底面ABFE 为直角梯形,ABF ∠为直角,1//,1,2BF AB A BF E ==平面ABCD ⊥平面ABFE . (1)求证:EC DB ⊥;(2)若,AB AE =求二面角B EF C --的余弦值.19.(本小题12分)随着络营销和电子商务的兴起,人们的购物方式更具多样化,某调查机构随机抽取10名购物者进行采访,5名男性购物者中有3名倾向于选择购,2名倾向于选择实体店,5名女性购物者中有2名倾向于选择购,3名倾向于选择实体店.(1)若从10名购物者中随机抽取2名,其中男、女各一名,求至少1名倾向于选择实体店的概率;(2)若从这10名购物者中随机抽取3名,设X 表示抽到倾向于选择购的男性购物者的人数,求X 的分布列和数学期望.20.(本小题满分12分)已知椭圆C :)0(12222>>=+b a b y a x 的离心率为22,左焦点为)0,1(-F ,过点)2,0(D 且斜率为k 的直线l 交椭圆于A ,B 两点.(1)求椭圆C 的标准方程;(2)在y 轴上,是否存在定点E ,使BE AE ⋅恒为定值?若存在,求出E 点的坐标和这个定值;若不存在,说明理由.21.(本小题满分12分)设函数()ln(1)f x a x =+,()e 1x g x =-,其中a ∈R ,e =2.718…为自然对数的底数.(Ⅰ)当0x ≥时,()()f x g x ≤恒成立,求a 的取值范围; (Ⅱ)求证:1010952000e 10001791<< (参考数据:ln1.10.095≈).22.(本小题满分10分)已知()|23||21|f x x x =+--. (Ⅰ)求不等式()2f x <的解集;(Ⅱ)若存在x R ∈,使得()|32|f x a >-成立,求实数a 的取值范围.xyz湖北省部分重点中学2017-2018学年度上学期新高三起点考试数学试卷(理科)参考答案及评分标准题号 1 2 3 4 5 6 7 8 9 10 11 12 答案AABBDCDDBB CA13.7 14.240- 15.[31,)++∞ 16.256(8,0)(0,){}27-+∞- 17.解析:(1)设数列{}n a 的公差为d ,数列{}n b 的公比为q ,则 由2252310,2,b S a b a +=⎧⎨-=⎩得610,34232,q d d q d ++=⎧⎨+-=+⎩解得2,2,d q =⎧⎨=⎩所以32(1)21n a n n =+-=+,12n n b -=. …………………6分 (2)由(1)可知1(21)2,n n c n -=+⋅01221325272(21)2(21)2n n n T n n --∴=⋅+⋅+⋅++-⋅++⋅ ………………①12312325272(21)2(21)2n n n T n n -=⋅+⋅+⋅++-⋅++⋅ ………………②①-②得:1213222222(21)2n n n T n --=+⋅+⋅++⋅-+⋅21222(21)2n n n =++++-+⋅ 121(21)2(12)21n n n n n +=--+⋅=-⋅-(21)2 1.n n T n ∴=-⋅+ ………………12分18. 解:(1) 90,//=∠EAB BF AE ABFE 为直角梯形,底面AB BF AB AE ⊥⊥∴,AB ABFE ABCD ABFE ABCD =⊥平面平面平面平面 ,ABCD BF ABCD AE 平面平面⊥⊥∴. BC BF ⊥∴设轴建立如图坐标系所在的直线分别为以z y x BC BF BA t AE ,,,,,=, ())0,,1(),1,0,1(),1,0,0(,0,0,0t E D C B 则)1,,1(),1,0,1(t EC DB --=--=EC DB EC DB ⊥∴=∙0 …………………6分(2)的一个法向量是平面)知由(BEF BC )1,0,0(1=的法向量是平面设CEF z y x n ),,(=)0,2,0(),0,1,1(,1F E AB AE ∴== )1,2,0(),1,1,1(-=-=∴CF CE00=-+⇒=∙z y x n CE 由,020=-⇒=∙z y n CF 由的一个法向量是平面故得令CEF n y x z )2,1,1(,1,1,2====36,cos =∙∙=∴BCn BC n BC n ,即二面角36的余弦值为B EF C --……………12分 19.解:(1)设“至少1名倾向于选择实体店”为事件A ,则表示事件“随机抽取2名,(其中男、女各一名)都选择购”,则P (A )=1﹣P=1﹣=.……………6分(2)X 的取值为0,1,2,3.P (X=k )=,P (X=0)=,P (X=1)=,P (X=2)=,P (X=3)=.E (X )=0×+1×+2×+3×=. ……………12分20.(1)由已知可得⎪⎩⎪⎨⎧==122c a c ,解得1,222==b a所求的椭圆方程为1222=+y x ……………4分(2)设过点D (0,2)且斜率为k 的直线l 的方程为y=kx+2,由⎪⎩⎪⎨⎧+==+21222kx y y x 消去y 整理得:068)21(22=+++kx x k 设A (x 1,y 1),B (x 2,y 2)则x 1+x 2=﹣又y 1y 2=(kx 1+2)(kx 2+2)=k 2x 1x 2+2k (x 1+x 2)+4=﹣,y 1+y 2=(kx 1+2)+(kx 2+2)=k (x 1+x 2)+4=设存在点E (0,m ),则,所以== ……………8分要使得 (t 为常数),只要=t ,从而(2m 2﹣2﹣2t )k 2+m 2﹣4m +10﹣t=0即由(1)得 t=m 2﹣1,代入(2)解得m=,从而t=,故存在定点 ,使 恒为定值 .……………12分21.(Ⅰ)令()()()()1ln(1)0x H x g x f x e a x x =-=--+≥,则()()01x aH x e x x '=-≥+ ①若1a ≤,则11x ae x ≤≤+,()0H x '≥,()H x 在[)0,+∞递增,()(0)0H x H ≥=, 即()()f xg x ≤在 [)0,+∞恒成立,满足,所以1a ≤;②若1a >,()1xaH x e x '=-+在[)0,+∞递增,()(0)1H x H a ''≥=-且10a -< 且x →+∞时,()H x '→+∞,则0(0)x ∃∈+∞,使0()0H x '=, 则()H x 在[)00x ,递减,在0()x +∞,递增, 所以当()00x x ∈,时()(0)0H x H <=,即当()00x x ∈,时,()()f x g x > , 不满足题意,舍去;综合①,②知a 的取值范围为(],1-∞. …………………5分 (Ⅱ)由(Ⅰ)知,当1a =时,1ln(1)x e x >++对0x >恒成立,令110x =,则11010951ln1.1 1.0951000e >+≈> 即1010951000e >; …………………7分由(Ⅰ)知,当1a >时,则()H x 在[)00x ,递减,在0()x +∞,递增,则0()(0)0H x H <=,即001ln(1)0x e a x --+<,又0()0H x '=,即001x aex =+, 令11011110a e =>,即0110x =,则110120001 1.1ln1.11791e <≈-,故有101095200010001791e <<. ………………12分 22.(Ⅰ)不等式()2f x <等价于32(23)(21)2x x x ⎧<-⎪⎨⎪-++-<⎩或3122(23)(21)2x x x ⎧-≤≤⎪⎨⎪++-<⎩ 或12(23)(21)2x x x ⎧>⎪⎨⎪+--<⎩,解得32x <-或302x -≤<, 所以不等式()2f x <的解集是(,0)-∞;………………5分 (Ⅱ)()|(23)(21)|4f x x x ≤+--= ,max ()4f x ∴=,|32|4a ∴-<,解得实数a 的取值范围是2(,2)3-.………………..10分。
湖北省武汉市2018届新高三数学起点调研考试试题理

2017-2018学年度武汉市部分学校新高三起点调研测试理科数学第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合2{20}A x x x=-≥,{12}B x x=<≤,则A B=I()A.{2} B.{12}x x<< C.{12}x x<≤ D.{01}x x<≤2.设(1)1i x yi-=+,其中,x y是实数,则x yi+在复平面内所对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.已知等比数列{}na中,23a,32a,4a成等比数列,设nS为数列{}na的前n项和,则33Sa 等于()A.139B.3或139C.3 D.794.将一枚质地均匀的骰子投两次,得到的点数依次记为a和b,则方程210ax bx++=有实数解的概率是()A.736B.12C.1936D.5185.函数2()log(45)af x x x=--(1a>)的单调递增区间是()A.(,2)-∞- B.(,1)-∞- C. (2,)+∞ D.(5,)+∞6.一个几何体的三视图如图,则它的表面积为()A .28B .2425+ C. 2045+ D .2025+ 7.已知,x y R ∈,且0x y >>,若1a b >>,则一定有( )A .a bx y> B .sin sin ax by > C. log log a b x y > D .x y a b > 8.某公司生产甲、乙两种桶装产品,已知生产甲产品1桶需耗A 原料2千克,B 原料3千克;生产乙产品1桶需耗A 原料2千克,B 原料1千克,每桶甲产品的利润是300元,每桶乙产品的利润是400元,公司在要求每天消耗,A B 原料都不超过12千克的条件下,生产产品A 、产品B 的利润之和的最大值为( )A .1800元B .2100元 C. 2400元 D .2700元9.已知不等式2230x y ->所表示的平面区域内一点(,)P x y 到直线3y x =和直线3y x =-的垂线段分别为,PA PB ,若三角形PAB 的面积为3316,则点P 轨迹的一个焦点坐标可以是( )A .(2,0)B .(3,0) C. (0,2) D .(0,3)10.执行下面的程序框图,如果输入的0x =,1y =,1n =,则输出,x y 的值满足( )A .2y x =B .3y x = C. 4y x = D .5y x =11.已知,A B 分别为椭圆22219x y b +=(03b <<)的左、右顶点,,P Q 是椭圆上的不同两点且关于x 轴对称,设直线,AP BQ 的斜率分别为,m n ,若点A 到直线1y mnx =-的距离为1,则该椭圆的离心率为( ) A .12 B .24 C. 13D .2212.设点M 是棱长为2的正方体1111ABCD A B C D -的棱AD 的中点,点P 在面11BCC B 所在的平面内,若平面1D PM 分别与平面ABCD 和平面11BCC B 所成的锐二面角相等,则点P 到点1C 的最短距离是( )A .255 B .22C. 1 D .63 第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.设向量(,1)a m =r ,(1,)b m =r,且3a b a b +=-r r r r ,则实数m = .14. 12331()2x x-展开式中2x 的系数为 .(用数学填写答案)15.设等差数列{}n a 满足3736a a +=,46275a a =,且1n n a a +有最小值,则这个最小值为 . 16.已知函数()2sin()f x a x πωϕ=+(0a ≠,0ω>,2πϕ≤),直线y a =与()f x 的图象的相邻两个交点的横坐标分别是2和4,现有如下命题: ①该函数在[2,4]上的值域是[,2]a a ; ②在[2,4]上,当且仅当3x =时函数取最大值; ③该函数的最小正周期可以是83; ④()f x 的图象可能过原点.其中的真命题有 (写出所有真命题的序号)三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知等差数列{}n a 的前n 项和为n S ,等比数列{}n b 的前n 项和为n T ,11a =-,11b =,223a b +=.(1)若337a b +=,求{}n b 的通项公式; (2)若313T =,求n S .18. 在锐角ABC ∆中,内角,,A B C 的对边分别是,,a b c ,满足cos 2cos 22cos()cos()066A B B B ππ-+-+=.(1)求角A 的值; (2)若3b =且b a ≤,求a 的取值范围.19. 甲、乙两名运动员参加“选拔测试赛”,在相同条件下,两人6次测试的成绩(单位:分)记录如下:甲 86 77 92 72 78 84 乙 78 82 88 82 95 90(1)用茎叶图表示这两组数据,现要从中选派一名运动员参加比赛,你认为选派谁参赛更好?说明理由(不用计算);(2)若将频率视为概率,对运动员甲在今后三次测试成绩进行预测,记这三次成绩高于85分的次数为X ,求X 的分布列和数学期望()E X 及方差()D X .20. 如图1,在矩形ABCD 中,4AB =,2AD =,E 是CD 的中点,将ADE ∆沿AE 折起,得到如图2所示的四棱锥1D ABCE -,其中平面1D AE ⊥平面ABCE .(1)设F 为1CD 的中点,试在AB 上找一点M ,使得//MF 平面1D AE ; (2)求直线1BD 与平面1CD E 所成的角的正弦值.21. 已知抛物线2:2C x py =(0p >)和定点(0,1)M ,设过点M 的动直线交抛物线C 于,A B 两点,抛物线C 在,A B 处的切线交点为N .(1)若N 在以AB 为直径的圆上,求p 的值;(2)若三角形ABN 的面积最小值为4,求抛物线C 的方程.22.已知函数()1xf x e ax =--(a R ∈)( 2.71828e =…是自然对数的底数). (1)求()f x 单调区间;(2)讨论1()()()2g x f x x =•-在区间[]0,1内零点的个数.试卷答案一、选择题1-5:CDBCD 6-10: BDCAD 11、12:BA 二、填空题13. 23± 14. 552- 15. -12 16.③ 三、解答题17.(1)设{}n a 的公差为d ,{}n b 的公比为q ,则1(1)n a n d =-+-,1n n b q -=.由223a b +=,得4d q += ① 由227a b +=,得228d q += ②联立①和②解得0q =(舍去),或2q =,因此{}n b 的通项公式12n n b -=.(2)∵231(1)T b q q =++,∴2113q q ++=,3q =或4q =-,∴41d q =-=或8.∴21113(1)222n S na n n d n n =+-=-或245n n -. 18.(1)由已知cos 2cos 22cos()cos()066A B B B ππ-+-+=得2222312sin 2sin 2(cos sin )044B A B B -+-= 化简得3sin 2A =,又三角形ABC 为锐角三角形,故3A π=. (2)∵3b a =≤,∴c a ≥,∴32C ππ≤<,63B ππ<≤由正弦定理得:sinsin a bA B=即:3sin 32a B=,即32sin a B = 由13sin (,]22B ∈知[3,3)a ∈. 19.(1)由图可知乙的平均水平比甲高,故选乙 (2)甲运动员每次测试高于85分的概率大约是13,成绩高于85分的次数为X 服从二项分布,分布列为X 0 1 2 3P827 49 29 1271()313E X =•=,122()3333D X =••=20.(1)14AM AB =取1D E 中点L ,连接AL ,∵//FL EC ,//EC AB ,∴//FL AB且14FL AB =,所以,,,M F L A 共面,若//MF 平面1AD E ,则//MF AL , ∴AMFL 为平行四边形,所以14AM FL AB ==(2)设点B 到1CD E 的距离为d ,由11B BCD D BCE V V --=可得122CED d S ∆•=. 设AE 中点为H ,作HG 垂直直线CE 于G ,连接DG ,∵1D E ⊥平面AECB ∴1D G EC ⊥,则13DG =,123D B =,∴11132CED S EC D G ∆=••= 263d =,所以直线1BD 与平面1CD E 所成的角的正弦值为23. 21.解:(1)可设:1AB y kx =+,11(,)A x y ,22(,)B x y , 将AB 方程代入抛物线C 方程得2220x pkx p --= 则122x x pk +=,122x x p =- ①又22x py =得'x y p=,则,A B 处的切线斜率乘积为12221x x p p =-=-则有2p = (2)由①可得122N x x x pk +== 2222211148AB k x x k p k p =+-=++点N 到直线AB 的距离2222111N Npk kx y d kk++-==++231(2)222ABN S AB d p pk p ∆=••=+≥∴224p =,∴2p =,故抛物线C 的方程为24x y = 22.解:(1)'()xf x e a =-当0a ≤时,'()0f x >,()f x 单调增间为(,)-∞+∞,无减区间; 当0a >时,()f x 单调减间为(,ln )a -∞,增区间为(ln ,)a +∞ (2)由()0g x =得()0f x =或12x =先考虑()f x 在区间[]0,1的零点个数当1a ≤时,()f x 在(0,)+∞单调增且(0)0f =,()f x 有一个零点; 当a e ≥时,()f x 在(,1)-∞单调递减,()f x 有一个零点; 当1a e <<时,()f x 在(0,ln )a 单调递减,(ln ,1)a 单调递增.而(1)1f e a =--,所以1a ≤或1a e >-时,()f x 有一个零点,当11a e <≤-时,()f x 有两个零点精品教育资料而12x =时,由1()02f =得2(1)a e =- 所以1a ≤或1a e >-或2(1)a e =-时,()g x 有两个零点; 当11a e <≤-且2(1)a e ≠-时,()g x 有三个零点。
(全优试卷)湖北省武汉市部分学校高三起点调研考试理科数学试题Word版含答案

2017-2018学年度武汉市部分学校新高三起点调研测试理科数学第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合2{20}A x x x =-≥,{12}B x x =<≤,则A B =I ( )A .{2}B .{12}x x <<C .{12}x x <≤D .{01}x x <≤ 2.设(1)1i x yi -=+,其中,x y 是实数,则x yi +在复平面内所对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 3.已知等比数列{}n a 中,23a ,32a ,4a 成等比数列,设n S 为数列{}n a 的前n 项和,则33S a 等于( ) A .139 B .3或139 C .3 D .794.将一枚质地均匀的骰子投两次,得到的点数依次记为a 和b ,则方程210ax bx ++=有实数解的概率是( ) A .736 B .12 C. 1936 D .5185.函数2()log (45)a f x x x =--(1a >)的单调递增区间是( )A .(,2)-∞-B .(,1)-∞- C. (2,)+∞ D .(5,)+∞ 6.一个几何体的三视图如图,则它的表面积为( )A .28B .2425+ C. 2045+ D .2025+ 7.已知,x y R ∈,且0x y >>,若1a b >>,则一定有( )A .a bx y> B .sin sin ax by > C. log log a b x y > D .x y a b > 8.某公司生产甲、乙两种桶装产品,已知生产甲产品1桶需耗A 原料2千克,B 原料3千克;生产乙产品1桶需耗A 原料2千克,B 原料1千克,每桶甲产品的利润是300元,每桶乙产品的利润是400元,公司在要求每天消耗,A B 原料都不超过12千克的条件下,生产产品A 、产品B 的利润之和的最大值为( )A .1800元B .2100元 C. 2400元 D .2700元9.已知不等式2230x y ->所表示的平面区域内一点(,)P x y 到直线3y x =和直线3y x =-的垂线段分别为,PA PB ,若三角形PAB 的面积为33,则点P 轨迹的一个焦点坐标可以是( )A .(2,0)B .(3,0) C. (0,2) D .(0,3)10.执行下面的程序框图,如果输入的0x =,1y =,1n =,则输出,x y 的值满足( )A .2y x =B .3y x = C. 4y x = D .5y x =11.已知,A B 分别为椭圆22219x y b +=(03b <<)的左、右顶点,,P Q 是椭圆上的不同两点且关于x 轴对称,设直线,AP BQ 的斜率分别为,m n ,若点A 到直线y =的距离为1,则该椭圆的离心率为( )A .12 B .4 C. 13D .212.设点M 是棱长为2的正方体1111ABCD A B C D -的棱AD 的中点,点P 在面11BCC B 所在的平面内,若平面1D PM 分别与平面ABCD 和平面11BCC B 所成的锐二面角相等,则点P 到点1C 的最短距离是( )A B .2C. 1 D 第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.设向量(,1)a m =r ,(1,)b m =r,且a b b +=-r r r ,则实数m = .14. 12展开式中2x 的系数为 .(用数学填写答案)15.设等差数列{}n a 满足3736a a +=,46275a a =,且1n n a a +有最小值,则这个最小值为 .16.已知函数()sin()f x x πωϕ=+(0a ≠,0ω>,2πϕ≤),直线y a =与()f x 的图象的相邻两个交点的横坐标分别是2和4,现有如下命题:①该函数在[2,4]上的值域是[]a ; ②在[2,4]上,当且仅当3x =时函数取最大值; ③该函数的最小正周期可以是83; ④()f x 的图象可能过原点.其中的真命题有 (写出所有真命题的序号)三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知等差数列{}n a 的前n 项和为n S ,等比数列{}n b 的前n 项和为n T ,11a =-,11b =,223a b +=.(1)若337a b +=,求{}n b 的通项公式; (2)若313T =,求n S .18. 在锐角ABC ∆中,内角,,A B C 的对边分别是,,a b c ,满足cos 2cos 22cos()cos()066A B B B ππ-+-+=.(1)求角A 的值; (2)若3b =且b a ≤,求a 的取值范围.19. 甲、乙两名运动员参加“选拔测试赛”,在相同条件下,两人6次测试的成绩(单位:分)记录如下:甲 86 77 92 72 78 84 乙 78 82 88 82 95 90(1)用茎叶图表示这两组数据,现要从中选派一名运动员参加比赛,你认为选派谁参赛更好?说明理由(不用计算);(2)若将频率视为概率,对运动员甲在今后三次测试成绩进行预测,记这三次成绩高于85分的次数为X ,求X 的分布列和数学期望()E X 及方差()D X .20. 如图1,在矩形ABCD 中,4AB =,2AD =,E 是CD 的中点,将ADE ∆沿AE 折起,得到如图2所示的四棱锥1D ABCE -,其中平面1D AE ⊥平面ABCE .(1)设F 为1CD 的中点,试在AB 上找一点M ,使得//MF 平面1D AE ; (2)求直线1BD 与平面1CD E 所成的角的正弦值.21. 已知抛物线2:2C x py =(0p >)和定点(0,1)M ,设过点M 的动直线交抛物线C 于,A B 两点,抛物线C 在,A B 处的切线交点为N .(1)若N 在以AB 为直径的圆上,求p 的值;(2)若三角形ABN 的面积最小值为4,求抛物线C 的方程.22.已知函数()1xf x e ax =--(a R ∈)( 2.71828e =…是自然对数的底数). (1)求()f x 单调区间;(2)讨论1()()()2g x f x x =•-在区间[]0,1内零点的个数.试卷答案一、选择题1-5:CDBCD 6-10: BDCAD 11、12:BA二、填空题13. 2 14. 552-15. -12 16.③ 三、解答题17.(1)设{}n a 的公差为d ,{}n b 的公比为q ,则1(1)n a n d =-+-,1n n b q -=.由223a b +=,得4d q += ① 由227a b +=,得228d q += ②联立①和②解得0q =(舍去),或2q =,因此{}n b 的通项公式12n n b -=.(2)∵231(1)T b q q =++,∴2113q q ++=,3q =或4q =-,∴41d q =-=或8.∴21113(1)222n S na n n d n n =+-=-或245n n -. 18.(1)由已知cos 2cos 22cos()cos()066A B B B ππ-+-+=得2222312sin 2sin 2(cos sin )044B A B B -+-=化简得sin A =,又三角形ABC 为锐角三角形,故3A π=.(2)∵3b a =≤,∴ca ≥,∴32C ππ≤<,63B ππ<≤由正弦定理得:sin sin a bA B=即:3sin 32B=,即32sin a B = 由13sin (,]22B ∈知[3,3)a ∈. 19.(1)由图可知乙的平均水平比甲高,故选乙 (2)甲运动员每次测试高于85分的概率大约是13,成绩高于85分的次数为X 服从二项分布,分布列为X 0123P8274929127()313E X =•=,()3333D X =••=20.(1)14AM AB =取1D E 中点L ,连接AL ,∵//FL EC ,//EC AB ,∴//FL AB且14FL AB =,所以,,,M F L A 共面,若//MF 平面1AD E ,则//MF AL , ∴AMFL 为平行四边形,所以14AM FL AB ==(2)设点B 到1CD E 的距离为d ,由11B BCD D BCE V V --=可得122CED d S ∆•=设AE 中点为H ,作HG 垂直直线CE 于G ,连接DG ,∵1D E ⊥平面AECB ∴1D G EC ⊥,则13DG 123D B =,∴11132CED S EC D G ∆=••=26d =1BD 与平面1CD E 2.21.解:(1)可设:1AB y kx =+,11(,)A x y ,22(,)B x y , 将AB 方程代入抛物线C 方程得2220x pkx p --= 则122x x pk +=,122x x p =- ①又22x py =得'x y p=,则,A B 处的切线斜率乘积为12221x x p p =-=-则有2p = (2)由①可得122N x x x pk +==21AB x =-=点N 到直线AB的距离d ==12ABN S AB d ∆=••=≥∴4=,∴2p =,故抛物线C 的方程为24x y = 22.解:(1)'()xf x e a =-当0a ≤时,'()0f x >,()f x 单调增间为(,)-∞+∞,无减区间; 当0a >时,()f x 单调减间为(,ln )a -∞,增区间为(ln ,)a +∞ (2)由()0g x =得()0f x =或12x =先考虑()f x 在区间[]0,1的零点个数当1a ≤时,()f x 在(0,)+∞单调增且(0)0f =,()f x 有一个零点; 当a e ≥时,()f x 在(,1)-∞单调递减,()f x 有一个零点; 当1a e <<时,()f x 在(0,ln )a 单调递减,(ln ,1)a 单调递增.而(1)1f e a =--,所以1a ≤或1a e >-时,()f x 有一个零点,当11a e <≤-时,()f x 有两个零点而12x =时,由1()02f =得1)a =所以1a ≤或1a e >-或1)a =时,()g x 有两个零点;当11a e <≤-且1)a ≠时,()g x 有三个零点。
湖北省部分重点中学高三数学起点考试试题 文

第5题图湖北省部分重点中学2017-2018学年度上学期新高三起点考试数 学 试 卷(文科)一、选择题(本大题共12小题,每小题5分,共60分.)1. 已知集合}034|{2≥++=x x x A ,}12|{<xx B =,则=B A I A .)0,1[]3,(---∞Y B .]1,3[-- C .]0,1(]3,(---∞Y D .)0,(-∞ 2. 下列说法中,不正确的是A .已知a ,b ,m ∈R ,命题:“若am 2<bm 2,则a <b ”为真命题B .命题:“∃x 0∈R ,x 20-x 0>0”的否定是:“∀x ∈R ,x 2-x ≤0”C .命题“p 或q ”为真命题,则命题p 和命题q 均为真命题D .“x >3”是“x >2”的充分不必要条件3. 已知复数3(2)(2)z i a i =++在复平面对应的点在第四象限,则实数a 的取值范围是A .(,1)-∞-B .(4,)+∞C .(1,4)-D .(4,1)-- 4.已知数列{}n a 为等差数列,其前n 项和为n S ,7825a a -=,则11S 为A. 110B. 55C. 50D. 不能确定5.某几何体的三视图如图所示(单位:cm ),则该几何体的体积等于( ) 3cmA .243π+B .342π+C .263π+D .362π+6. 某商场对某一商品搞活动,已知该商品每一个的进价为3元,销售价为8元,每天售出的第20个及之后的半价出售.该商场统计了近10天的这种商品销量,如图所示:设x 为每天商品的销量,y 为该商场每天销售这种商品的的利润.从日利润不少于96元的几天里任选2天,则选出的这2天日利润都是97元的概率为A.19 B .110 C .15 D .187.偶函数f (x )在(0,+∞)上递增,)2(log ),23(31(log 32f c f b f a ===),,则下列关系式中正确的是A .a <b <cB .a <c <bC .c <a <bD .c <b <a8.美索不达米亚平原是人类文明的发祥地之一。
湖北省部分重点中学2017-2018学年高三上学期起点考试数学(理)试题Word版含答案

湖北省部分要点中学2017-2018学年度上学期新起点考试数学试卷 (理科 )一、选择题:本大题共 12 小题,每题 5 分,共 60 分.在每题给出的四个选项中,只有一项为哪一项切合题目要求的.1.设函数的定义域为 M ,N =,则以以以下图的暗影部分所表示的会集是2.已知复数的实部是 m,虚部是 n,则 mn = A.3B.- 3C.3i D.-3i3.已知函数,则 f (x)是奇函数是”“” “的A.充分不用要条件B.必需不充分条件C.充分必需条件D.既不充分也不用要条件4. 2.5 微米的颗粒物 .一般状况下是指环境空气中空气动力学当量直径小于或等于浓度越高 ,就代表空气污染越严重 ,以以以下图的茎叶图表示的是某市里甲、乙两个监测站某 10日内每日的浓度读数(单位:),则以下说法正确的选项是A.这 10 日内甲、乙监测站读数的极差相等B.这 10 日内甲、乙监测站读数的中位数中,乙的较大C.这 10 日内乙监测站读数的众数与中位数相等D.这 10 日内甲、乙监测站读数的均匀数相等5.设是两个不同样的平面,l,m是两条不同样的直线,则l ∥m;.以下为真的是A.p或q B.p且q C.p或q D.p且q6.如图 1 是某区参加 2015届高考学生的身高条形统计图,从左到右的各条形图表示的学生人数挨次记为(如 A2表示身高在[ 150,155)内的学生人数,图2是统计图1 中身高在[160,185)(单位:厘米)的学生人数,那么在流程图中的判断框内应填写的条件是.i <8?. i <7?. i <6?. i <9?A B C D7.已知定义在R上的函数 f (x)满足则 f (2014), f (2015), f (2016)的大小关系为A.C.f>f ( 2 01 5)> f ( 2 0 1 6 )f (2016) = f (2014) >f (2015)B.D.f (2016) >f (2014) >f (2015)f (2014) > f (2015) = f (2016)8.已知圆,设平面地域,,若圆心 C且圆与x 轴相切,则的最大值为A.5B. 29C.37D. 499.设为非零向量,,两组向量均由两个和两个摆列而成 ,而全部可能取值中的最小值为夹角为10.已知分别是双曲线的左右焦点,若在双曲线的右支上存在一点 M ,使得(此中O为坐标原点 ),且, 则双曲线的离心率为11.已知函数函数,若函数恰有4个零点,则b的取值范围是A12 .确立的曲线为函数,关于函数y =f (x)有以下说方程y =f (x)的图像法:①在上单调递减 ;=4 f (x) +3x不存在零点 ;③函数y =f (x)的值f (x)R② F(x)域是 R;④若函数 g(x)和 f (x)的图像关于原点对称,则函数y=g(x)的图像就是方程确立的曲线 .以下说法正确的选项是二、填空题:本大题共 4小题,每题 5分,共 20分. 请将答案填在答. 题.卡.对.应.题.号.的地点上.答错地点,书写不清,含糊其词均不得分.13. 设 张开式的常数项为____14. 在平面直角坐标系xoy 中,点 A,B 在抛物线 y 2 =4x 上,满足 OA OB =- 4, F 是抛物线的焦点,则=______15.若自然数n 使得 n +(n +1) +(n +2)作竖式加法不产生进位现象,则称 n 为 “良数 ”例.如32 是 “良数 ”,因为 32+33+34 不产生进位现象; 23 不是 “良数 ”,因为 23+24+25 产生进位现象,那么小于 1000 的 “良数 ”的个数为16.关于函数,有以下四个:① 任取,都有恒建立;②对全部恒建立;③函数y =f (x)-ln(x-1)有3 个零点;④对任意的x> 0,不等式恒成立.则此中真的序号是三、解答题:本大题共6 小题,共75分. 解答应写出文字说明、证明过程或演算步骤.17.(本小题满分12 分)设是公比大于1 的等比数列, S n为数列的前 n项和 ,已知S 3 =7,且构成等差数列(1) 求数列 的通项公式 ;(2)令 *,求数列的前 n 项和 T n .18 .(本小题满分 12分)如图,四棱柱 ABCD -底面 ABCD 四边形,ABCDAD BC, AD = 2BC A ,C,D与 的交点为为梯形,∥,过1三点的平面记为Q(1) 证明 : Q 为 BB 1 的中点 ;(2) 若 A A =4,CD =2,梯形 ABCD 与底面ABCD1的面积为 6,求平面所成角的大小 .19.(本小题满分 12 分)在一个盒子中 ,放有大小同样的红 ,白 ,黄三个小球 ,先从中任意摸出一 球,假如红球 ,记 1 分 ,白球记 2 分,黄球记 3 分 .现从这个盒子中有放回地先后摸出两球 ,所得分数分别记为 x, y ,设 O 为坐标原点 ,点 P 的坐标为 ( x -2, x -y ),记(1)求随机变量 的最大值 ,并求事件 ” 获得最大值 ”的概率 ;(2)求随机变量的分布列和数学希望 .20.(本小题满分 12 分)已知椭圆 ,两定直线直线 l 1恰为抛物线 E : y 2 =16x 的准线 ,直线 l : x +2y -4 =0与椭圆相切 .(1) 求椭圆 C 的方程 ;A 右焦点为F ,过 F 的直线与椭圆 C 交于 P,Q 两点 直线(2) 假如椭圆 C 的左极点为,,与直线 l 2分别交于N,M 两点 ,求证 :四边形 MNPQ 的对角线的交点是定点 .AP, AQ21.(本小题满分 12分)已知函数(1) 求 的单调区间与极大值 ;(2) 任取两个不相等的正数,若存在建立 ,求证:;(3) 已知数列满足*,求证 :(e 为自然对数的底数 )四.选作题请考生在第22、23、24 题中任选一题作答,多答按所答的首题进行评分。
最新湖北省武汉市2018届新高三数学起点调研考试试题-文

2017-2018学年度武汉市部分学校新高三起点调研测试文科数学第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合2{20}A x x x =-≥,{12}B x x =<≤,则AB =( )A .{2}B .{12}x x <<C .{12}x x <≤D .{01}x x <≤ 2. 设(1)1i x yi -=+,其中,x y 是实数,则x yi +在复平面内所对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 3.函数()sin(2)sin(2)33f x x x ππ=-++的最小正周期为( ) A .2π B .4π C .π D .2π4.设非零向量,a b 满足22a b a b +=-,则( )A .a b ⊥B .2a b = C. //a b D .a b <5.已知双曲线2222:1x y C m n -=(0,0m n >>)的离心率与椭圆2212516x y +=的离心率互为倒数,则双曲线C 的渐近线方程为( )A .430x y ±=B .340x y ±= C. 430x y ±=或340x y ±= D .450x y ±=或540x y ±= 6. 一个几何体的三视图如图,则它的表面积为( )A .28B .24+20+.20+7.设,x y 满足约束条件2330233030x y x y y +-≤⎧⎪-+≥⎨⎪+≥⎩,则2z x y =+的最大值是( )A .-15B .-9 C. 1 D .98.函数22()log (45)f x x x =--的单调递增区间是( )A .(,2)-∞-B .(,1)-∞- C. (2,)+∞ D .(5,)+∞ 9.给出下列四个结论:①命题“(0,2)x ∀∈,33xx >”的否定是“(0,2)x ∃∈,33xx ≤”;②“若3πθ=,则1cos 2θ=”的否命题是“若3πθ≠,则1cos 2θ≠”;③p q ∨是真命题,则命题,p q 一真一假;④“函数21xy m =+-有零点”是“函数log a y x =在(0,)+∞上为减函数”的充要条件. 其中正确结论的个数为( )A .1B .2 C. 3 D .410. 执行下面的程序框图,如果输入的0x =,1y =,1n =,则输出,x y 的值满足( )A .2y x =B .3y x = C. 4y x = D .5y x =11.标有数字1,2,3,4,5的卡片各一张,从这5张卡片中随机抽取1张,不放回的再随机抽取1张,则抽取的第一张卡片上的数大于第二张卡片上的数的概率为( )A .12 B .15 C. 35 D .2512.过抛物线2:2C y px =(0p >)的焦点F ,C 于点M (M 在x轴上方),l 为C 的准线,点N 在l 上且MN l ⊥,若4NF =,则M 到直线NF 的距离为( )A ..第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知函数()f x 是定义在R 上的奇函数,当(,0)x ∈-∞时,2()2xf x x -=+,则(2)f = .14.函数()3sin 6cos f x x x =+取得最大值时sin x 的值是 .15.已知三棱锥A BCD -的三条棱,,AB BC CD 所在的直线两两垂直且长度分别为3,2,1,顶点,,,A B C D 都在球O 的表面上,则球O 的表面积为 .16.在钝角ABC ∆中,内角,,A B C 的对边分别为,,a b c ,若4a =,3b =,则c 的取值范围是 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17. 已知等差数列{}n a 的前n 项和为n S ,等比数列{}n b 的前n 项和为n T ,11a =-,11b =,223a b +=.(1)若337a b +=,求{}n b 的通项公式; (2)若313T =,求n S .18. 已知函数()2cos 2f x x x a =++(a 为常数) (1)求()f x 的单调递增区间; (2)若()f x 在[0,]2π上有最小值1,求a 的值.19. 如图1,在矩形ABCD 中,4AB =,2AD =,E 是CD 的中点,将ADE ∆沿AE 折起,得到如图2所示的四棱锥1D ABCE -,其中平面1D AE ⊥平面ABCE .(1)证明:BE ⊥平面1D AE ;(2)设F 为1CD 的中点,在线段AB 上是否存在一点M ,使得//MF 平面1D AE ,若存在,求出AMAB的值;若不存在,请说明理由. 20. 海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg ),其频率分布直方图如下:(1)估计旧养殖法的箱产量低于50kg 的概率并估计新养殖法的箱产量的平均值; (2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:附:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++参考数据:22899840.078525÷≈21. 设O 为坐标原点,动点M 在椭圆222:1x C y a+=(1a >,a R ∈)上,过O 的直线交椭圆C 于,A B 两点,F 为椭圆C 的左焦点.(1)若三角形FAB 的面积的最大值为1,求a 的值; (2)若直线,MA MB 的斜率乘积等于13-,求椭圆C 的离心率. 22.设函数2()(1)xf x x x e =+-( 2.71828e =…是自然数的底数). (1)讨论()f x 的单调性;(2)当0x ≥时,2()12f x ax x ≤++,求实数a 的取值范围.试卷答案一、选择题1-5:CDCAA 6-10: DDDBD 11、12:AB 二、填空题13.-8 14. 515. 14π 16. (5,7) 三、解答题17. (1)设{}n a 的公差为d ,{}n b 的公比为q ,则1(1)n a n d =-+-,1n n b q -=.由223a b +=,得4d q += ①由227a b +=,得228d q += ②联立①和②解得0q =(舍去),或2q =,因此{}n b 的通项公式12n n b -=.(2)∵231(1)T b q q =++,∴2113q q ++=,3q =或4q =-,∴41d q =-=或8.∴21113(1)222n S na n n d n n =+-=-或245n n -.18.(1)1()2cos 2)2f x x x a =++ 2sin(2)6x a π=++222262k x k πππππ-≤+≤+,k Z ∈∴36k x k ππππ-≤≤+,k Z ∈∴()f x 单调增区间为[,]36k k ππππ-+,k Z ∈ (1)02x π≤≤时,72666x πππ≤+≤1sin(2)126x π-≤+≤ ∴当2x π=时,()f x 最小值为11a -=∴2a =19.(1)证明:连接BE ,∵A B C D为矩形且2AD DE EC BC ====,所以090AEB ∠=,即BE AE ⊥,又1D AE ⊥平面ABCE ,平面1D AE 平面ABCE AE =∴BE ⊥平面1D AE(2)14AM AB =取1D E 中点L ,连接AL ,∵//FL EC ,//EC AB ,∴//FL AB且14FL AB =,所以,,,M F L A 共面,若//MF 平面1AD E ,则//MF AL . ∴AMFL 为平行四边形,所以14AM FL AB ==.20.(1)旧养殖法的箱产量低于50kg 的频率为(0.0120.0140.0240.0340.040)50.62++++⨯=所以概率估计值为0.62;新养殖法的箱产量的均值估计为1(750.02850.10950.221050.341150.231250.051350.04)52.352⨯+⨯+⨯+⨯+⨯+⨯+⨯=(2)根据箱产量的频率分布直方图得列联表22200(62663438)15.70510010096104K ⨯⨯-⨯=≈⨯⨯⨯由于15.705 6.635>,故有99%的把握认为箱产量与养殖方法有关. 21.(1)112FAB A B S OF y y OF ∆=∙-≤==,所以a =(2)由题意可设00(,)A x y ,00(,)B x y --,(,)M x y ,则2221x y a +=,220021x y a+=,2222022022200022222220000011(1)()1MA MBx x x x y y y y y y a a a k k x x x x x x x x x x a ------+-∙=∙====--+--- 所以23a =,所以a =所以离心率3c e a ===22.(1)'2()(2)(2)(1)xxf x x x e x x e =--=-+-当2x <-或1x >时,'()0f x <,当21x -<<时,'()0f x > 所以()f x 在(,2)-∞-,(1,)+∞单调递减,在(2,1)-单调递增; (2)设2()()(12)F x f x ax x =-++,(0)0F ='2()(2)4x F x x x e x a =----,'(0)2F a =-当2a ≥时,'2()(2)4(2)(1)42(2)[(1)2]x x x F x x x e x a x x e x x x e =----≤-+---=-+-+设()(1)2x h x x e =-+,'()0x h x xe =≥,所以()(1)2(0)1xh x x e h =-+≥= 即'()0F x ≤成立,所以2()12f x ax x ≤++成立;当2a <时,'(0)20F a =->,而函数'()F x 的图象在(0,)+∞连续不断且逐渐趋近负无穷,必存在正实数0x 使得'0()0F x =且在0(0,)x 上'0()0F x >,此时()(0)0F x F >=,不满足题意.综上,a 的取值范围[2,)+∞。
精品解析:【全国市级联考】湖北省武汉市2017-2018学年度部分学校新高三起点调研考试文科数学(原卷版)
2017-2018学年度武汉市部分学校新高三起点调研测试文科数学第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合,,则()A. B. C. D.2. 设,其中是实数,则在复平面内所对应的点位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限3. 函数的最小正周期为()A. B. C. D.4. 设非零向量满足,则()A. B. C. D.5. 已知双曲线()的离心率与椭圆的离心率互为倒数,则双曲线的渐近线方程为()A. B.C. 或D. 或6. 一个几何体的三视图如图,则它的表面积为()A. 28B.C.D.7. 设满足约束条件,则的最大值是()A. -15B. -9C. 1D. 98. 函数的单调递增区间是()A. B. C. D.9. 给出下列四个结论:①命题“,”的否定是“,”;②“若,则”的否命题是“若,则”;③是真命题,则命题一真一假;④“函数有零点”是“函数在上为减函数”的充要条件.其中正确结论的个数为()A. 1B. 2C. 3D. 410. 执行下面的程序框图,如果输入的,,,则输出的值满足()A. B. C. D.11. 标有数字1,2,3,4,5的卡片各一张,从这5张卡片中随机抽取1张,不放回的再随机抽取1张,则抽取的第一张卡片上的数大于第二张卡片上的数的概率为()A. B. C. D.12. 过抛物线()的焦点,且斜率为的直线交于点(在轴上方),为的准线,点在上且,若,则到直线的距离为()A. B. C. D.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 已知函数是定义在上的奇函数,当时,,则__________.14. 函数取得最大值时的值是__________.15. 已知三棱锥的三条棱所在的直线两两垂直且长度分别为3,2,1,顶点都在球的表面上,则球的表面积为__________.16. 在钝角中,内角的对边分别为,若,,则的取值范围是__________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知等差数列的前项和为,等比数列的前项和为,,,.(1)若,求的通项公式;(2)若,求.18. 已知函数(为常数)(1)求的单调递增区间;(2)若在上有最小值1,求的值.19. 如图1,在矩形中,,,是的中点,将沿折起,得到如图2所示的四棱锥,其中平面平面.(1)证明:平面;(2)设为的中点,在线段上是否存在一点,使得平面,若存在,求出的值;若不存在,请说明理由.20. 海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:),其频率分布直方图如下:(1)估计旧养殖法的箱产量低于50的概率并估计新养殖法的箱产量的平均值;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:箱产量箱产量合计旧养殖法新养殖法合计附:,其中0.050 0.010 0.0013.841 6.635 10.828参考数据:21. 设为坐标原点,动点在椭圆(,)上,过的直线交椭圆于两点,为椭圆的左焦点.(1)若三角形的面积的最大值为1,求的值;(2)若直线的斜率乘积等于,求椭圆的离心率.22. 设函数(…是自然数的底数).(1)讨论的单调性;(2)当时,,求实数的取值范围.。
湖北省部分重点中学2017-2018学年新高三上学期起点考试 数学(文) Word版含答案
湖北省部分重点中学2017-2018学年度上学期新高三起点考试数学试题(文科)一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设全集U=R,若集合A={>13|x x },B={>0log |3x x },A ∩C u B().A.{<0|x x }B. {>1|x x }C. {<10|x x ≤}D. {1<0|≤x x } 2.已知复数i iz 2310-+=(其中i 为虚数单位),则|z | = ( ). A. 33 B. 23 C. 32D. 223.在平面直角坐标xoy 中,已知四边形ABCD 是平行四边形,错误!未找到引用源。
=(3,1),错误!未找到引用源。
=(2,-2),则错误!未找到引用源。
•错误!未找到引用源。
= ( ). A.2 B. -2 C.-10D. 104. 己知P: >ax 5),3,2(2+∈∀x x 是假,则实数a 的取值范围是( ) A. [52,+∞)B.[29, +∞) C .[314, +∞) D.(-∞,52] 5.先后抛掷两颗质地均匀的骰子,则两次朝上的点数之积为奇数的概率为( ). A.121B.61 C.41D.316.过双曲线1322=-y x 的右焦点且与x 轴垂直的直线,交该双曲线的两条渐近线于 A 、B 两点,则|AB|=( ). A.334 B. 32 C. 3π D. 125π7.函数x y 2cos =的图象向右平移)2<<0(πϕϕ 个单位后,与函数)62sin(π-=x y 的图象重合, 则ϕ=( ). A.12π B. 6π C.3πD.125π8. 己知等比数列{n a }满足14,25311=++=a a a a ,则=++321111a a a ( ).A.87 B. 47 C. 913 D. 18139.已知变量x,y 满足约束条件⎪⎩⎪⎨⎧≤+≤-≥4220y x t x x ,则13-+=x y z 的取值范围是( )A.(-∞,-3]∪[1,+∞)B. [-1,3]C. (-∞,-1]∪[3,+∞)D. [-3,1]10. 阅读如图所示的程序框图,则输出结果S 的值为( ).A.81 B. 21 C. 163 D. 16111.如图是某几何体的三视图,当xy 最大时,该几何体的体积为( ). A. 1215152π+B. 121π+ C.41515π+D.4151π+12. 若函数x a x x x f sin 2sin 31)(+-=在(-∞,+∞)上单调递增,则a 的取值范围是().A. [-1,1]B. [-1,31] C. [31-,31] D. [-1, 31-] 二、填空题:本大题共4小题,每小题5分,共20分.请将答案填在答题卡对应题号的位置上,答错位置,书写不清,模棱两可均不得分。
(全优试卷)湖北省武汉市部分学校高三起点调研考试文数试题Word版含答案
2017-2018学年度武汉市部分学校新高三起点调研测试文科数学 第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合2{20}A x x x =-≥,{12}B x x =<≤,则AB =( )A .{2}B .{12}x x <<C .{12}x x <≤D .{01}x x <≤ 2. 设(1)1i x yi -=+,其中,x y 是实数,则x yi +在复平面内所对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 3.函数()sin(2)sin(2)33f x x x ππ=-++的最小正周期为( ) A .2π B .4π C .π D .2π4.设非零向量,a b 满足22a b a b +=-,则( )A .a b ⊥B .2a b = C. //a b D .a b <5.已知双曲线2222:1x y C m n -=(0,0m n >>)的离心率与椭圆2212516x y +=的离心率互为倒数,则双曲线C 的渐近线方程为( )A .430x y ±=B .340x y ±= C. 430x y ±=或340x y ±= D .450x y ±=或540x y ±=6. 一个几何体的三视图如图,则它的表面积为( )A .28B .24+20+.20+7.设,x y 满足约束条件2330233030x y x y y +-≤⎧⎪-+≥⎨⎪+≥⎩,则2z x y =+的最大值是( )A .-15B .-9 C. 1 D .98.函数22()log (45)f x x x =--的单调递增区间是( )A .(,2)-∞-B .(,1)-∞- C. (2,)+∞ D .(5,)+∞ 9.给出下列四个结论:①命题“(0,2)x ∀∈,33x x >”的否定是“(0,2)x ∃∈,33x x ≤”;②“若3πθ=,则1cos 2θ=”的否命题是“若3πθ≠,则1cos 2θ≠”;③p q ∨是真命题,则命题,p q 一真一假;④“函数21xy m =+-有零点”是“函数log a y x =在(0,)+∞上为减函数”的充要条件. 其中正确结论的个数为( )A .1B .2 C. 3 D .410. 执行下面的程序框图,如果输入的0x =,1y =,1n =,则输出,x y 的值满足( )A .2y x =B .3y x = C. 4y x = D .5y x =11.标有数字1,2,3,4,5的卡片各一张,从这5张卡片中随机抽取1张,不放回的再随机抽取1张,则抽取的第一张卡片上的数大于第二张卡片上的数的概率为( )A .12 B .15 C. 35 D .2512.过抛物线2:2C y px =(0p >)的焦点F ,C 于点M (M 在x轴上方),l 为C 的准线,点N 在l 上且MN l ⊥,若4NF =,则M 到直线NF 的距离为( )A ..第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知函数()f x 是定义在R 上的奇函数,当(,0)x ∈-∞时,2()2xf x x -=+,则(2)f = .14.函数()3sin 6cos f x x x =+取得最大值时sin x 的值是 .15.已知三棱锥A BCD -的三条棱,,AB BC CD 所在的直线两两垂直且长度分别为3,2,1,顶点,,,A B C D 都在球O 的表面上,则球O 的表面积为 .16.在钝角ABC ∆中,内角,,A B C 的对边分别为,,a b c ,若4a =,3b =,则c 的取值范围是 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17. 已知等差数列{}n a 的前n 项和为n S ,等比数列{}n b 的前n 项和为n T ,11a =-,11b =,223a b +=.(1)若337a b +=,求{}n b 的通项公式; (2)若313T =,求n S .18. 已知函数()2cos 2f x x x a =++(a 为常数) (1)求()f x 的单调递增区间; (2)若()f x 在[0,]2π上有最小值1,求a 的值.19. 如图1,在矩形ABCD 中,4AB =,2AD =,E 是CD 的中点,将ADE ∆沿AE 折起,得到如图2所示的四棱锥1D ABCE -,其中平面1D AE ⊥平面ABCE .(1)证明:BE ⊥平面1D AE ;(2)设F 为1CD 的中点,在线段AB 上是否存在一点M ,使得//MF 平面1D AE ,若存在,求出AMAB的值;若不存在,请说明理由. 20. 海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg ),其频率分布直方图如下:(1)估计旧养殖法的箱产量低于50kg 的概率并估计新养殖法的箱产量的平均值; (2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:附:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++参考数据:22899840.078525÷≈21. 设O 为坐标原点,动点M 在椭圆222:1x C y a+=(1a >,a R ∈)上,过O 的直线交椭圆C 于,A B 两点,F 为椭圆C 的左焦点.(1)若三角形FAB 的面积的最大值为1,求a 的值;(2)若直线,MA MB 的斜率乘积等于13-,求椭圆C 的离心率. 22.设函数2()(1)xf x x x e =+-( 2.71828e =…是自然数的底数). (1)讨论()f x 的单调性;(2)当0x ≥时,2()12f x ax x ≤++,求实数a 的取值范围.试卷答案一、选择题1-5:CDCAA 6-10: DDDBD 11、12:AB 二、填空题13.-8 14. 515. 14π 16. (5,7) 三、解答题17. (1)设{}n a 的公差为d ,{}n b 的公比为q ,则1(1)n a n d =-+-,1n n b q -=.由223a b +=,得4d q += ① 由227a b +=,得228d q += ②联立①和②解得0q =(舍去),或2q =,因此{}n b 的通项公式12n n b -=.(2)∵231(1)T b q q =++,∴2113q q ++=,3q =或4q =-,∴41d q =-=或8.∴21113(1)222n S na n n d n n =+-=-或245n n -.18.(1)1()2(2cos 2)22f x x x a =++ 2sin(2)6x a π=++222262k x k πππππ-≤+≤+,k Z ∈∴36k x k ππππ-≤≤+,k Z ∈∴()f x 单调增区间为[,]36k k ππππ-+,k Z ∈ (1)02x π≤≤时,72666x πππ≤+≤1sin(2)126x π-≤+≤ ∴当2x π=时,()f x 最小值为11a -=∴2a =19.(1)证明:连接BE ,∵A B C D为矩形且2AD DE EC BC ====,所以090AEB ∠=,即BE AE ⊥,又1D AE ⊥平面ABCE ,平面1D AE平面ABCE AE =∴BE ⊥平面1D AE (2)14AM AB =取1D E 中点L ,连接AL ,∵//FL EC ,//EC AB ,∴//FL AB且14FL AB =,所以,,,M F L A 共面,若//MF 平面1AD E ,则//MF AL . ∴AMFL 为平行四边形,所以14AM FL AB ==.20.(1)旧养殖法的箱产量低于50kg 的频率为(0.0120.0140.0240.0340.040)50.62++++⨯=所以概率估计值为0.62;新养殖法的箱产量的均值估计为1(750.02850.10950.221050.341150.231250.051350.04)52.352⨯+⨯+⨯+⨯+⨯+⨯+⨯=(2)根据箱产量的频率分布直方图得列联表22200(62663438)15.70510010096104K ⨯⨯-⨯=≈⨯⨯⨯由于15.705 6.635>,故有99%的把握认为箱产量与养殖方法有关. 21.(1)112FAB A B S OF y y OF ∆=∙-≤==,所以a =(2)由题意可设00(,)A x y ,00(,)B x y --,(,)M x y ,则2221x y a +=,220021x y a+=,2222022022200022222220000011(1)()1MA MBx x x x y y yy y y a aa k k x xx x x x x x x x a ------+-∙=∙====--+--- 所以23a =,所以a =所以离心率3c e a ===22.(1)'2()(2)(2)(1)x xf x x x e x x e =--=-+-当2x <-或1x >时,'()0f x <,当21x -<<时,'()0f x > 所以()f x 在(,2)-∞-,(1,)+∞单调递减,在(2,1)-单调递增; (2)设2()()(12)F x f x ax x =-++,(0)0F ='2()(2)4x F x x x e x a =----,'(0)2F a =-当2a ≥时,'2()(2)4(2)(1)42(2)[(1)2]x x x F x x x e x a x x e x x x e =----≤-+---=-+-+设()(1)2x h x x e =-+,'()0x h x xe =≥,所以()(1)2(0)1xh x x e h =-+≥= 即'()0F x ≤成立,所以2()12f x ax x ≤++成立;当2a <时,'(0)20F a =->,而函数'()F x 的图象在(0,)+∞连续不断且逐渐趋近负无穷,必存在正实数0x 使得'0()0F x =且在0(0,)x 上'0()0F x >,此时()(0)0F x F >=,不满足题意.综上,a 的取值范围[2,)+∞。
湖北省武汉市度部分学校新高三数学起点调研考试试题文
2017-2018学年度武汉市部分学校新高三起点调研测试文科数学第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合,,则()A. B. C. D.【答案】C【解析】本题选择C选项.2. 设,其中是实数,则在复平面内所对应的点位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】D【解析】由,其中是实数,得:,所以在复平面内所对应的点位于第四象限.本题选择D选项.3. 函数的最小正周期为()A. B. C. D.【答案】C【解析】∴最小正周期.本题选择C选项.4. 设非零向量满足,则()A. B. C. D.【答案】A【解析】∵非零向量满足,本题选择A选项.5. 已知双曲线()的离心率与椭圆的离心率互为倒数,则双曲线的渐近线方程为()A. B.C. 或D. 或【答案】A【解析】由题意,双曲线离心率∴双曲线的渐近线方程为,即.本题选择A选项.点睛:双曲线的渐近线方程为,而双曲线的渐近线方程为(即),应注意其区别与联系.6. 一个几何体的三视图如图,则它的表面积为()A. 28B.C.D.【答案】D【解析】如图所示,三视图所对应的几何体是长宽高分别为2,2,3的长方体去掉一个三棱柱后的棱柱:ABIE-DCJH,该几何体的表面积为:.本题选择D选项.点睛:(1)以三视图为载体考查几何体的表面积,关键是能够对给出的三视图进行恰当的分析,从三视图中发现几何体中各元素间的位置关系及数量关系.(2)多面体的表面积是各个面的面积之和;组合体的表面积应注意重合部分的处理.(3)圆柱、圆锥、圆台的侧面是曲面,计算侧面积时需要将这个曲面展为平面图形计算,而表面积是侧面积与底面圆的面积之和.7. 设满足约束条件,则的最大值是()A. -15B. -9C. 1D. 9【答案】D【解析】x、y满足约束条件的可行域如图:z=2x+y经过可行域的A时,目标函数取得最小值,由解得A(−6,−3),则z=2x+y的最小值是:−15.故选:A.点睛:求线性目标函数z=ax+by(ab≠0)的最值,当b>0时,直线过可行域且在y轴上截距最大时,z值最大,在y轴截距最小时,z值最小;当b<0时,直线过可行域且在y轴上截距最大时,z值最小,在y轴上截距最小时,z值最大.8. 函数的单调递增区间是()A. B. C. D.【答案】D【解析】由得:x∈(−∞,−1)∪(5,+∞),令,则y=t,∵x∈(−∞,−1)时,为减函数;x∈(5,+∞)时, 为增函数;y=t为增函数,故函数的单调递增区间是(5,+∞),本题选择D选项.点睛:复合函数的单调性:对于复合函数y=f[g(x)],若t=g(x)在区间(a,b)上是单调函数,且y=f(t)在区间(g(a),g(b))或者(g(b),g(a))上是单调函数,若t=g(x)与y=f(t)的单调性相同(同时为增或减),则y=f[g(x)]为增函数;若t=g(x)与y=f(t)的单调性相反,则y=f[g(x)]为减函数.简称:同增异减.9. 给出下列四个结论:①命题“,”的否定是“,”;②“若,则”的否命题是“若,则”;③是真命题,则命题一真一假;④“函数有零点”是“函数在上为减函数”的充要条件.其中正确结论的个数为()A. 1B. 2C. 3D. 4【答案】B【解析】由题意得,根据全程命题与存在性命题的否定关系,可知①是正确的;②中,命题的否命题为“若,则”,所以是错误的;③中,若“”或“”是真命题,则命题都是假命题;④中,由函数有零点,则,而函数为减函数,则,所以是错误的,故选A。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
复平面内所对应的点位于第四象限. 本题选择 D 选项. 3. 函数 A. 【答案】C 【解析】 = sin2xcos3−cos2xsin3 + sin2xcos3 + cos2xsin3 = sin2x ∴最小正周期T = 本题选择 C 选项. 4. 设非零向量a,b满足|2a + b| = |2a−b|,则( A. a ⊥ b B. |2a| = |b| C. a//b )
π 1 π 1
{
)
B. (−∞,−1)
C. (2, + ∞)
D. (5, + ∞)
【答案】B 【解析】由题意得,根据全程命题与存在性命题的否定关系,可知①是正确的;
4
②中,命题的否命题为“若θ ≠ 3,则cosθ ≠ 2”,所以是错误的; ③中,若“p ∧ q”或“p ∨ q”是真命题,则命题p,q都是假命题; ④中,由函数y = 2x + m−1有零点,则1−m = 2x > 0⇒m < 1,而函数y = logmx为减函数,则0 < m < 1,所以是错误的,故选 A。
a b x2 y2 b y2 x2案】D
B. 24 + 2 5
C. 20 + 4 5
D. 20 + 2 5
【解析】 如图所示, 三视图所对应的几何体是长宽高分别为 2,2,3 的长方体去掉一个三棱柱 后的棱柱:ABIE-DCJH,该几何体的表面积为: S = (2 × 2) × 5 + 2 × 1 × 2 × 2 + 2 × 1 + 2 × 5 = 24 + 2 5. 本题选择 D 选项.
a2 + b2−c2 2ab b2 + c2−a2 2bc π 5 5
= =
16 + 9−c2 2ab 9 + c2−16 2bc
< 0,解得:c>5,② < 0,解得:c < 7,③
结合①②③可得 c 的取值范围是(1, 7) ∪ (5,7). 三、解答题 (本大题共 6 小题,共 70 分.解答应写出文字说明、证明过程或演算步骤.) 17. 已知等差数列{an}的前n项和为Sn,等比数列{bn}的前n项和为Tn,a1 = −1,b1 = 1,a2 + b2 = 3. (1)若a3 + b3 = 7,求{bn}的通项公式; (2)若T3 = 13,求Sn. 【答案】(1)bn = 2n−1;(2)Sn = 2n2−2n或4n2−5n. 【解析】试题分析: (1)由题意可得数列的公比为 2,则数列的通项公式为bn = 2n - 1.
1 2 3
1
3
)
B.
1 5
C.
3 5
D.
2 5
【答案】A 【解析】5 张卡片上分别写有数字 1,2,3,4,5,从这 5 张卡片中随机抽取 2 张, 基本事件总数n = A2 5 = 20, 抽得的第一张卡片上的数大于第二张卡片上的数的情况有:
5
①第一张抽到 2,第二张抽到 1; ②第一张抽到 3,第二张抽到 1 或 2; ③第一张抽到 4,第二张抽到 1 或 2 或 3; ④第一张抽到 5,第二张抽到 1 或 2 或 3 或 4.共 10 种. 故抽取的第一张卡片上的数大于第二张卡片上的数的概率为P = 20 = 2. 本题选择 A 选项. 12. 过抛物线C:y2 = 2px(p > 0)的焦点F,且斜率为 3的直线交C于点M(M在x轴上方), 为C的准线,点N在上且MN ⊥ l,若|NF| = 4,则M到直线NF的距离为( A. 5 B. 2 3 C. 3 3 D. 2 2 )
2
(
1
)
点睛:(1)以三视图为载体考查几何体的表面积,关键是能够对给出的三视图进行恰当的分 析,从三视图中发现几何体中各元素间的位置关系及数量关系. (2)多面体的表面积是各个面的面积之和;组合体的表面积应注意重合部分的处理. (3)圆柱、圆锥、圆台的侧面是曲面,计算侧面积时需要将这个曲面展为平面图形计算,而 表面积是侧面积与底面圆的面积之和. 2x + 3y−3 ≤ 0 7. 设x,y满足约束条件 2x−3y + 3 ≥ 0,则z = 2x + y的最大值是( y+3≥0 A. -15 【答案】D 2x + 3y - 3 ≤ 0 【解析】x、y 满足约束条件 2x - 3y + 3 ≥ 0 的可行域如图: y+3≥0 B. -9 C. 1 D. 9
{
)
{
z=2x+y 经过可行域的 A 时,目标函数取得最小值,
3
y = −3 由 2x−3y + 3 = 0 解得 A(−6,−3), 则 z=2x+y 的最小值是:−15. 故选:A. 点睛:求线性目标函数 z=ax+by(ab≠0)的最值,当 b>0 时,直线过可行域且在 y 轴上截 距最大时,z 值最大,在 y 轴截距最小时,z 值最小 ; 当 b<0 时,直线过可行域且在 y 轴上 截距最大时,z 值最小,在 y 轴上截距最小时,z 值最大. 8. 函数f(x) = log2(x2−4x−5)的单调递增区间是( A. (−∞,−2) 【答案】D 【解析】由x2−4x−5 > 0得:x∈(−∞,−1)∪(5,+∞), 令t = x2−4x−5,则 y=log2t, ∵x∈(−∞,−1)时,t = x2−4x−5为减函数; x∈(5,+∞)时, t = x2−4x−5为增函数; y=log2t 为增函数, 故函数f(x) = log2(x2 - 4x - 5)的单调递增区间是(5,+∞), 本题选择 D 选项. 点睛:复合函数的单调性:对于复合函数 y=f[g(x)],若 t=g(x)在区间(a,b)上是单调函 数,且 y=f(t)在区间(g(a),g(b))或者(g(b),g(a))上是单调函数,若 t=g(x)与 y=f(t) 的单调性相同(同时为增或减),则 y=f[g(x)]为增函数;若 t=g(x)与 y=f(t)的单调性相 反,则 y=f[g(x)]为减函数.简称:同增异减. 9. 给出下列四个结论: ①命题“∀x ∈ (0,2),3x > x3”的否定是“∃x ∈ (0,2),3x ≤ x3”; ②“若θ = 3,则cosθ = 2”的否命题是“若θ ≠ 3,则cosθ ≠ 2”; ③p ∨ q是真命题,则命题p,q一真一假; ④“函数y = 2x + m−1有零点”是“函数y = logax在(0, + ∞)上为减函数”的充要条件. 其中正确结论的个数为( A. 1 B. 2 C. 3 ) D. 4
2π 2 π π π π
的最小正周期为( B. C. D.
)
= π.
D. |a| < |b|
1
【答案】A 【解析】∵非零向量a,b满足|2a + b| = |2a - b|, ∴ (2a + b) ⋅ (2a + b) = (2a−b) ⋅ (2a−b), ∴ a ⋅ b = 0, ∴ a ⊥ b. 本题选择 A 选项. 5. 已知双曲线C: 2− 2 = 1(m > 0,n > 0)的离心率与椭圆 + = 1的离心率互为倒数,则双 25 16 m n 曲线C的渐近线方程为( A. 4x ± 3y = 0 )
10 1
【答案】B 【解析】由题意可得,直线 MN 的方程为:x = 3 y + 2, 与抛物线方程联立可得:( 3y + p)(y− 3p) = 0, 结合题意可知:yM = 3p,即:N −2, 3p ,F 2,0 , 结合两点之间距离公式有:|NF| = p2 + 3p2 = 2p = 4, ∴ p = 2, 据此可得: ........................ 且点 M 的坐标为M( 3,2 3),利用点到直线的距离公式可得: M 到直线 NF 的距离d = 2 3. 本题选择 B 选项. 第Ⅱ卷(共 90 分) 二、填空题(每题 5 分,满分 20 分,将答案填在答题纸上) 13. 已知函数f(x)是定义在R上的奇函数,当x ∈ (−∞,0)时,f(x) = 2−x + x2,则f(2) = __________. 【答案】-8 【解析】当x ∈ ( - ∞,0)时,f(x) = 2 -x + x2,∴f(−2)=8, 又∵函数 f(x)是定义在 R 上的奇函数,∴f(2)=-8. 14. 函数f(x) = 3sinx + 6cosx取得最大值时sinx的值是__________. 【答案】 5
7
1 3
(2)首先由题意求得数列的公差,然后结合等差数列前 n 项和公式可得Sn = 2n2 - 2n或4n2 - 5n. 试题解析: (1)设{an}的公差为d,{bn}的公比为q,则an = - 1 + (n - 1)d,bn = qn - 1. 由a2 + b2 = 3,得d + q = 4 由a2 + b2 = 7,得2d + q2 = 8 ① ②
π
1
10. 执行下面的程序框图,如果输入的x = 0,y = 1,n = 1,则输出x,y的值满足(
)
A. y = 2x 【答案】D
B. y = 3x
C. y = 4x
D. y = 5x
【解析】试题分析:运行程序,x = 0,y = 1,判断否,n = 2,x = 2,y = 2,判断否,n = 3,x = 2,y = 6,判断是,输出x = 2,y = 6,满足y = 4x. 考点:程序框图. 11. 标有数字 1,2,3,4,5 的卡片各一张,从这 5 张卡片中随机抽取 1 张,不放回的再随 机抽取 1 张,则抽取的第一张卡片上的数大于第二张卡片上的数的概率为( A.
5 3 p
(
p
) (p )
,直线 NF 的方程为: