勾股定理专题复习(经典一对一教案哟)
北师大版八年级上册第一章勾股定理复习(教案)

举例:针对勾股定理证明的难点,教师可以通过以下方法帮助学生突破:
-使用直观的图形和动画演示面积法的证明过程,让学生看到面积转化的直观效果。
-分步骤讲解证明过程,强调每一步的逻辑关系和数学意义。
-组织学生进行小组讨论,鼓励他们用自己的语言解释证明过程,加深理解。
其次,在新课讲授环节,我注重理论与实践相结合,通过具体的案例分析和实验操作,帮助学生加深对勾股定理的理解。这种教学方法取得了较好的效果,但我也注意到部分学生在理解证明过程时仍存在困难。因此,在今后的教学中,我需要更加关注学生的个体差异,针对不同水平的学生进行有针对性的辅导。
在实践活动环节,分组讨论和实验操作使学生积极参与到课堂中,提高了他们的动手能力和团队协作能力。但同时,我也发现部分小组在讨论过程中存在时间分配不均的问题。为了提高课堂效率,我需要在今后的教学中加强对小组讨论的引导和监督,确保每个学生都能充分参与到讨论中来。
-对于勾股数的性质,教师可以设计一些探索性的活动,如让学生尝试找出一定范围内所有的勾股数,通过实践活动发现勾股数的规律。
-在解决实际问题时,教师应引导学生如何从问题中抽象出数学模型,如何将现实问题转化为数学问题,并通过示例来演示解题步骤。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要复习的是《勾股定理》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要计算直角三角形斜边长度的情况?”比如,测量一块三角形的草地面积。这个问题与我们将要复习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同回顾勾股定理的奥秘。
-勾股定理的应用:学会将勾股定理应用于解决实际问题,如计算直角三角形的斜边长度或判断一组数是否为勾股数。
八年级数学下《勾股定理》总复习教案范文

八年级数学下《勾股定理》总复习教案范文一、知识回顾1. 直角三角形直角三角形是指其中一个角为90度的三角形。
直角三角形的特点是有一个边的长度被称为斜边,其他两条边的长度我们分别称为直角边。
2. 勾股定理勾股定理是直角三角形中一条重要的定理,表达式为"直角边的平方和等于斜边的平方",可以用以下公式表示:c² = a² + b²其中,c表示斜边的长度,a和b分别表示两条直角边的长度。
3. 应用举例勾股定理在解决直角三角形的边长和角度问题时非常有用。
例如,可以用勾股定理计算直角三角形各边长,或者求解角度等。
二、教学目标通过本次教学,学生应能够:1. 理解勾股定理的概念和原理;2. 运用勾股定理解决直角三角形相关问题;3. 掌握勾股定理的证明方法。
三、教学重点与难点1. 教学重点:勾股定理的概念、运用和证明;2. 教学难点:勾股定理的证明方法。
四、教学准备1. 教学工具:黑板、彩色粉笔、直角三角形的示意图;2. 教学资源:相关教学PPT,教材、练习册。
五、教学过程【导入】1. 上课前提问几个问题,激发学生对勾股定理的兴趣:- 什么是直角三角形?- 直角三角形有哪些特点?- 有没有谁能举一个实际生活中的例子来说明直角三角形的应用?【知识讲解】2. 通过PPT等教学资源向学生讲解勾股定理的概念和原理:- 解释直角三角形、斜边、直角边等相关概念;- 呈现勾股定理的表达式,并解释其含义;- 举例说明勾股定理的应用。
【知识运用】3. 给学生分发练习册,并指导学生进行练习:- 通过练习册的课后习题,让学生运用勾股定理计算直角三角形的边长;- 针对较为简单的题目,可以鼓励学生口算或心算,提高计算速度;- 对于较难的题目,可以引导学生采用勾股定理解题的思路和方法。
【知识拓展】4. 引导学生思考勾股定理的证明方法:- 提示学生回想过去学过的相关几何知识,如相似三角形、平行四边形等;- 引导学生从图形特征入手,寻找直观的证明思路;- 鼓励学生进行探索性学习,尝试自己找到勾股定理的证明方法。
第四讲 勾股定理(总复习)(教案)

京师蜀都学堂创新教材系列勾股定理(总复习)专题第讲时间:2014年月日老师:电话:一、兴趣导入(Topic-in):专题简析:1、勾股定理:如果直角三角形两直角边分别为a,b,斜边为c,那么a2+b2=c2,即直角三角形两直角边的平方和等于斜边的平方。
2、勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,即三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形。
(C为斜边最长,c>a,c>b )注释:(1)勾股定理揭示了一个直角三角形三边之间的数量关系。
(2)勾股定理只适用于直角三角形,而不适用于锐角三角形和钝角三角形。
(3)理解勾股定理的一些变式: c2=a2+b2,a2=c2-b2, b2=c2-a23、图形解释:4、勾股数:满足a2+b2=c2的三个正整数成为勾股数.例如:(3,4,5),(6,8,10),(5,12,13),(7,24,25)注释:勾股数的每一项的整数倍的组合也是勾股数,例如(3,4,5)的二倍(6,8,10)同样也为勾股数。
二、知识讲解及例题分析(Teaching):例1 已知两边求第三边:1.在△ABC中,∠C=90°,a、b、c分别是∠A、∠B、∠C的对边①若a=5,b=12,则c=________;②若c=41,a=40,则b=________;③若∠A=45°,a=1.则b=________,c=________ ,a:b:c= .2. 在直角三角形中,若两直角边的长分别为1cm,2cm ,则斜边长为_____________.3. 已知直角三角形的两边长为3、2,则另一条边长是________________.4.如图,在△ABC中,AB=AC,∠BAC的角平分线交BC边于点D,AB=5,BC=6,则AD= 。
5. 如图∠B=∠ACD=90°, AD=13,CD=12, BC=3,则AB的长是多少?总结:在应用勾股定理进行计算时,一定要分清哪条是直角边哪条是斜边。
复习数学中的勾股定理教案

勾股定理是初中数学中的经典定理,它被认为是数学中最有名的定理之一。
在今天的教学中,勾股定理仍然深受关注、深受喜爱。
本文将介绍一篇关于复习数学中的勾股定理教案,帮助学生更好地掌握勾股定理。
一、教学目标1、了解勾股定理的定义和基本形式2、够应用勾股定理解决一些实际问题3、培养学生的推理和证明能力二、教学过程1、引入勾股定理老师可以用一些实际的例子引导学生认识勾股定理。
如:在修建四合院时,如何确定房子需要多少木板、砖瓦等建材。
在引入勾股定理的同时,也可以引入直角三角形的概念。
通过明确直角三角形的定义,让学生了解直角三角形的特征,进而理解勾股定理的产生过程。
2、教学内容在讲解勾股定理的内容时,要结合图形直观地表达,让学生对勾股定理有深刻的印象。
特别是勾股定理在解决实际问题时的应用,让学生对勾股定理产生感性认识。
3、教学练习在教学练习环节中,老师要注意区分练习难度和练习类型。
在初学阶段,学生可通过简单直观的图形练习勾股定理的应用。
在练习过程中,老师可利用学生之间的竞赛形式,提升学生的兴趣和学习效果。
4、教学总结在教学总结中,老师可以通过提问、复习等方式对本节课的内容进行总结,强化学生对勾股定理的理解和记忆。
三、教学重点勾股定理及其应用四、教学难点勾股定理的证明五、教学方法1、直观性教学2、启发性教学3、练习性教学六、教学工具1、直尺2、圆规3、笔、纸七、教学建议教学建议基于不同教学阶段而定。
在初学阶段,教师要注重学生对勾股定理概念的认知,强化其学习兴趣;在中等难度阶段,考虑到勾股定理的具体应用,教师要关注学生对实例应用的掌握程度;在高难度阶段,老师可引导学生进行证明和思考,提升学生对勾股定理的理解深度。
八、结语勾股定理是初中数学中的重要定理。
老师要注重勾股定理与实际生活的联系,提高学生学习的主动性和兴趣性。
在教学中,注重实践是非常重要的,通过实例化教学,学生能够更为快速地理解勾股定理应用及实际意义。
希望这篇教案能够帮助初学者更好地掌握勾股定理。
勾股定理单元复习教案

年级数学科辅导讲义(第讲)学生姓名:授课教师:授课时间:专题勾股定理章节复习目标掌握勾股定理及其逆定理重难点勾股定理的应用常考点勾股定理的计算、勾股定理的应用勾股定理知识梳理1.勾股定理:直角三角形的两直角边的平方和等于斜边的平方。
若直角三角形的两条直角边为a、b,斜边为c,则a²+b²=c²。
2.勾股定理的逆定理:如果三角形的三边长a,b,c有下面关系:a²+b²=c²,那么这个三角形是直角三角形。
3.满足a²+b²=c²的三个正整数,称为勾股数。
若a,b,c是一组勾股数,则ak,bk,ck(k为正整数)也必然是一组勾股数。
常用的几组勾股数有3,4,5;5,12,13;6,8,10;7,24,25;8,15,17;9,40,41等。
4.勾股定理的应用:①圆柱形物体表面上的两点间的最短距离;②长方体或正方体表面上两点间的最短距离问题。
5.直角三角形的判别:①定义,判断一个三角形中有一个角是直角;②根据勾股定理的逆定理,三角形一边的平方等于另外两边的平方和,则该三角形是直角三角形。
6.拓展:特殊角的直角三角形相关性质定理。
精讲点拨考点1. 勾股定理【例1】在Rt△ABC中,已知两边长为3、4,则第三边的长为变式1 在Rt△ABC中,已知两边长为5、12,则第三边的长为变式2 等边三角形的边长为6,则它的高是________变式3 在Rt△ABC中,∠C=90°,a,b,c分别为∠A,∠B,∠C所对的边,(1)已知c=4,b=3,求a;(2)若a:b=3:4,c=10cm,求a、b。
考点2. 勾股定理的证明【例2】如图:由四个全等直角三角形拼成如下大的正方形,求证:222a b c +=变式 如图:由四个全等直角三角形拼成如下大的正方形,求证:222a b c +=考点3 勾股定理的应用【例3】 如图,A 市气象站测得台风中心在A 市正东方向300千米的B 处,以107千米/时的速度向北偏西60°的BF 方向移动,距台风中心200•千米范围内是受台风影响的区域. (1)A 市是否会受到台风的影响?写出你的结论并给予说明; (2)如果A 市受这次台风影响,那么受台风影响的时间有多长?变式1 飞机在空中水平飞行,某一时刻刚好飞到一个男孩子头顶上方4000米处,过了20秒,飞机距离这个男孩子头顶5000米,飞机每小时飞行多少千米?变式2 一个25m 长的梯子AB ,斜靠在一竖直的墙AO 上,这时的AO 距离为24m ,如果梯子的顶端A沿墙下滑4m ,那么梯子底端B 也外移4m 吗?考点4. 直角三角形的判定【例4】三角形的三边为a 、b 、c ,由下列条件不能判断它是直角三角形的是( )A .a:b:c=8∶16∶17B . a 2-b 2=c 2C .a 2=(b+c)(b-c) D . a:b:c =13∶5∶12 变式1 三角形的三边长为ab c b a 2)(22+=+,则这个三角形是( )A. 等边三角形B. 钝角三角形C. 直角三角形D. 锐角三角形.变式2 已知,△ABC 中,17AB cm =,16BC cm =,BC 边上的中线15AD cm =,试说明△ABC是等腰三角形.变式3 如图,在正方形ABCD 中,F 为DC 的中点,E 为BC 上一点,且EC=41BC , 求证:AF ⊥EF .考点5. 勾股定理及其逆定理相关面积计算【例5】一个零件的形状如图,已知∠A=900,按规定这个零件中∠DBC 应为直角,工人师傅量得零件各边尺寸:AD = 4,AB = 3, BC = 12 , DC=13,问这个零件是否符合要求,并求四边形ABCD 的面积.变式1 如图示,有块绿地ABCD ,AD=12m ,CD=9m ,AB=39m ,BC=36m ,∠ADC=90°,求这块绿地的面积。
勾股定理教案-【通用,经典教学资料】

勾股定理(第一课时)教学目标1.知识与技能:(1)了解勾股定理的发现过程。
(2)掌握勾股定理的内容。
(3)会用面积法证明勾股定理。
(4)会应用勾股定理进行简单的计算。
2.过程与方法:(1)经历利用等腰直角三角形探索勾股定理的过程,进一步发展学生的合情推理意识,主动探究的习惯,进一步体会数学与现实生活的紧密联系。
(2)探索并理解直角三角形的三边之间的数量关系,进一步发展学生的说理和简单的推理的意识及能力。
3.情感、态度与价值观:(1)介绍我国古代在勾股定理研究方面所取得的成就,激发学生的爱国热情,促其勤奋学习。
(2)培养在实际生活中发现问题、总结规律的意识和能力。
教学重难点勾股定理的内容及证明。
教学过程一、引入新课。
教师活动:目前世界上许多科学家正在试图寻找其他星球的“人”,为此向宇宙发出了许多信号,如地球上人类的语言、音乐、各种图形等。
我国数学家华罗庚曾建议,发射一种反映勾股定理的图形,如果宇宙人是“文明人”,那么他们一定会识别这种语言的。
这个事实可以说明勾股定理的重大意义。
尤其是在两千年前,更是非常了不起的成就。
二、进行新课。
1.勾股定理的内容及其证明。
教师活动:引导学生阅读课本相关的内容。
相传2500年前,毕达哥拉斯又一次在朋友家做客时,发现朋友家的用砖铺成的地面中反映了直角三角形三边的某种数量关系。
我们也来观察下图中的地面,看看能发现些什么?思考:你能发现下面图中的直角三角形有什么性质吗?可以发现,以等腰直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积。
即我们惊奇的发现,等腰三角形的三边之间有一种特殊的关系:斜边的平方等于两直角边的平方和。
探究:等腰直角三角形有上述性质,其他的直角三角形也有这个性质吗?上图中,每个小方格的面积均为1,请分别算出图中正方形A,B,C,'A,'B,'C 的面积,看看能得出什么结论。
(提示:以斜边为边长的正方形的面积,等于以某个正方形的面积减去4个直角三角形的面积。
勾股定理复习教案
勾股定理复习教案教案标题:勾股定理复习教案教案目标:1. 复习和巩固学生对勾股定理的理解和应用能力。
2. 引导学生进行勾股定理的证明和推导。
3. 培养学生的逻辑思维和问题解决能力。
教学资源:1. 教科书、教学投影仪、白板和标记笔。
2. 勾股定理的示例题目和练习题目。
3. 学生练习册和作业本。
教学步骤:引入阶段:1. 使用教学投影仪展示一个直角三角形,并提醒学生勾股定理的概念和公式。
2. 引导学生回忆勾股定理的应用场景和实际意义,例如在建筑、测量和导航中的应用。
复习阶段:1. 提供一些勾股定理的示例题目,要求学生使用勾股定理计算未知边长或角度。
2. 分组讨论和解答示例题目,鼓励学生之间的合作和讨论。
3. 教师对示例题目进行点评和解答,强调解题的思路和方法。
证明与推导阶段:1. 提出一个勾股定理的证明问题,例如:如何证明勾股定理成立?2. 引导学生提供自己的证明思路和方法,鼓励学生进行推理和逻辑分析。
3. 教师给出勾股定理的几种证明方法,例如几何证明、代数证明和图像证明,并解释其原理和思想。
4. 学生进行小组讨论和展示,分享他们的证明思路和方法。
拓展与应用阶段:1. 提供一些拓展题目,要求学生应用勾股定理解决实际问题,如测量斜坡的高度或计算航空器的航程。
2. 学生独立或小组完成拓展题目,并相互检查和讨论答案。
3. 教师对拓展题目进行点评和解答,鼓励学生思考不同解题方法和策略的优劣。
总结阶段:1. 教师对整堂课进行总结,强调勾股定理的重要性和应用价值。
2. 学生回答教师提出的总结问题,巩固对勾股定理的理解和应用。
3. 鼓励学生提出问题和疑惑,教师进行解答和指导。
作业布置:1. 布置一些练习题目,要求学生独立完成,并在下节课前交作业。
2. 强调学生在解题过程中要运用勾股定理,并注重解题思路和步骤的清晰性。
评估方式:1. 教师观察学生在课堂上的参与和表现,包括问题的提出、讨论和解答。
2. 批改学生的作业,评估他们对勾股定理的理解和应用能力。
勾股定理复习课教案
五、布置作业:同步练习册.
六、板书设计:
第18章勾股定理复习课
1、复习提问 2、讲解例题 3、课堂练习
4、课堂小结5、布置作业
七、教学后记
复备
复备
教学难点
运用勾股定理及其逆定理解决问题.
教具学具准备
教案、多媒体课件。
教学方法
问题法
学法指导自主阅读法、练习法
教 学 过 程
一、导入新课:
在课前自主阅读课本64-75的内容,然后把本章的知识点用框图总结出来.
二、教学新课
活动一:
1、小组内展示自己总结的知识框图,相互交流完善知识框图。
2、 每个小组选取一名代表,出示本组的知识框图。
设计意图:通过学生阅读,相互交流,整理知识框图复习本章知识点,自觉内化到自身的知识体系中。
活动二:
1、勾股定理及其逆定理阐述的是哪种图形的性质及判定?
2、它们阐述的是直角三角形的哪方面(边、角)的性质?
3、你还知道直角三角形的哪些性质?
4、用框图总结直角三角形的性质及判定.
设计意图:复习与直角三有形有关的知识,加强知识的前后联系,把勾股定理及判定纳入直角三角形的知识体系中,把以前的零散的知识形成知识体系。
课 题:第18章勾股定理复习课
课 题
第18章勾股定理复习课
授课时间
课型
新授课
课时安排
1课时
教
学
目
标
知识与技能:进一步理解勾股定Biblioteka 及其逆定理,弄清两定理之间的关系。
过程与方法:复习直角三角形的有关知识,形成知识体系。
情感态度与价值观:运用勾股定理及其逆定理解决问题。
勾股定理复习教案(整理)
勾股定理基础知识点:1:勾股定理直角三角形两直角边a 、b 的平方和等于斜边c 的平方。
(即:a 2+b 2=c 2)勾股定理的证明:拼图,根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理。
方法一 方法二方法一:4EFGH S S S ∆+=正方形正方形ABCD ,2214()2ab b a c ⨯+-=,化简可证. 方法二:221422S ab c ab c =⨯+=+,222()2S a b a ab b =+=++ ,所以222a b c += 主要应用:(1)已知直角三角形的两边求第三边(在ABC ∆中,90C ∠=︒,则22c a b =+,22b c a =-,22a c b =-)(2)已知直角三角形的一边与另两边的关系,求直角三角形的另两边(3)利用勾股定理可以证明线段平方关系的问题2:勾股定理的逆定理如果三角形的三边长:a 、b 、c ,则有关系a 2+b 2=c 2,那么这个三角形是直角三角形。
要点诠释:勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时应注意:(1)首先确定最大边,不妨设最长边长为:c ;(2)验证c 2与a 2+b 2是否具有相等关系,若c 2=a 2+b 2,则△ABC 是以∠C 为直角的直角三角形(若c 2>a 2+b 2,则△ABC 是以∠C 为钝角的钝角三角形;若c 2<a 2+b 2,则△ABC 为锐角三角形)。
(定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三边长a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边) 3:勾股数c b a H G F E D C B A①能够构成直角三角形的三边长的三个正整数称为勾股数,即222+=中,a,b,c为a b c正整数时,称a,b,c为一组勾股数②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25;8,15,17;9,40,41等经典例题类型一:勾股定理的直接用法1、在Rt△ABC中,∠C=90°(1)已知a=6,c=10,求b,(2)已知a=40,b=9,求c;(3)已知c=25,b=15,求a.举一反三【变式】:如图∠B=∠ACD=90°, AD=13,CD=12, BC=3,则AB的长是多少?类型二:勾股定理的构造应用2、如图,已知:在中,,,. 求:BC的长.举一反三【变式1】如图,已知:,,于P. 求证:.【变式2】已知:如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2。
专题复习:勾股定理(教案)
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与勾股定理相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。通过制作直角三角形模型,演示勾股定理的基本原理。
1.数学抽象:通过勾股定理的学习,使学生能够从实际问题中抽象出数学模型,理解数学概念的本质,提高数学思维能力。
2.逻辑推理:培养学生运用不同的证明方法,理解和掌握勾股定理的推理过程,提高逻辑思维能力和解题技巧。
3.数学建模:学会将勾股定理应用于解决实际问题,建立数学模型,培养学生解决实际问题的能力。
五、教学反思
在今天《勾股定理》的复习课上,我发现学生们对于定理的概念和应用有了较好的掌握,但在证明过程中还存在一些困难。我尝试用生活中的实例引入勾股定理,让学生感受到数学与生活的紧密联系,这一点效果不错,大家都很感兴趣。但在教学过程中,我也注意到了几个问题。
首先,对于定理的证明方法,尤其是代数法的证明,部分学生感到难以理解。在今后的教学中,我需要更加耐心地引导他们,通过多举例、多解释,帮助他们突破这个难点。
-掌握至直角三角形的边长比例关系,如30°-60°-90°和45°-45°-90°直角三角形。
-例:通过实际例题,如计算墙壁上悬挂画框的合适位置,强调勾股定理在实际问题中的应用。
2.教学难点
-理解勾股定理的证明过程:学生需要理解并掌握从具体实例中抽象出定理的过程,以及不同证明方法背后的逻辑。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
卓越教育教案专用学生姓名授课时间:授课科目:数学教学课题勾股定理知识点解析(二)重点、难点能准确证明勾股定理,并能将以灵活运用。
教师姓名年级:初二课型:复习课一、作业检查作业完成情况:优□良□中□差□二、课前回顾对上次家庭作业进行检查并评讲三、知识整理知识点1.勾股定理(1)勾股定理:直角三角形两直角边的平方和等于斜边的平方。
如果用a,b和c分别表示直角三角形的两直角边和斜边(即:a2+b2=c2)注意:○1勾股定理揭示的是直角三角形三边关系的定理,只适用于直角三角形。
○2应用勾股定理时,要注意确定那条边是直角三角形的最长边,也就是斜边,在Rt△ABC中,斜边未必一定是c,当∠A=90时,a2=b2 +c2 ;当∠B=90时,b2=a2 +c2例1.(1)如图1所示,在Rt△ABC中,∠C=90,AC=5,BC=12,求AB的长;(2)如图2所示,在Rt△ABC中,∠C=90,AB=25,AC=20,求BC的长(3)在Rt△ABC中,AC=3,BC=4,求AB2的值 AC B图1C BA 图2知识点2.勾股定理的证明(1)勾股定理的证明方法很多,可以用测量计算,可以用代数式的变形,可以用几何证明,也可以用面积(拼图)证明,其中拼图证明是最常见的一种方法。
思路:①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下:方法一:4EFGH S S S ∆+=正方形正方形ABCD ,2214()2ab b a c ⨯+-=,化简可证.方法二:四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角三角形的面积与小正方形面积的和为221422S ab c ab c =⨯+=+大正方形面积为222()2S a b a ab b =+=++ 所以222a b c +=知识点3.直角三角形的判别条件(1)如果三角形的三边长啊a ,b ,c ,满足a 2+b 2=c 2足,那么这个三角形为直角三角形(此判别条件也称为勾股定理的逆定理)注意:○1在判别一个三角式是不是直角三角形时,a 2+b 2是否等于c2时需通过计算说明,不能直接写成a 2+b 2=c 2。
○2验证一个三角形是不是直角三角形的方法是:(较小边长)+(较长边长)=(最大边长)时,此三角形为直角三角形;否则,此三角形不是直角三角形.例1. 五根小木棒,其长度分别为7,15,20,24,25,现将他们摆成两个直角三角形,其中正确的是( )cbaHG F EDCB Abacbac cabca b例2.在△ABC 中,a=m 2-n 2,b=2mn ,c=m 2+n 2,其中m ,n 是正整数,且m >n,试判断△ABC 是不是直角三角形。
知识点4.勾股数满足a 2+b 2=c 2的三个正整数,称为勾股数。
常见的勾股数有:○13,4,5○26,8,10○38,15,17○47,24,25○55,12,13○69,12,15○79,40,41 例1.判断下列各组数是不是勾股数(1)3,4,7 (2)5,12,13 (3)1/3,1/4,1/5 (4)3,-4,5四、典型例题题型一、应用勾股定理建立方程【例 1】如图,△ABC 中,AB=13,BC=14,AC=15,求BC 边上的高AD .cbaHG F EDCBAbacbac cabcab【变式1】直角三角形周长为12cm,斜边长为5cm,求直角三角形的面积。
【变式2】四边形ABCD中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD的面积。
题型二、勾股定理在折叠问题中的应用例1.如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿直线AD折叠,使AC恰好落在斜边AB上,且点C与点E重合,求CD的长。
【变式1】如图所示,折叠矩形的一边AD,使点D落在BC边的点F处,已知AB=8cm,BC=10cm,求EF的长。
【变式2】在矩形纸片ABCD中,AD=4cm,AB=10cm,按如图方式折叠,使点B与点D重合,折痕为EF.求DE的长;【变式3】如图,矩形纸片ABCD的边AB=10 cm,BC=6 cm,E为BC上的一点.将矩形纸片沿着AE折叠,点B恰好落在边DC的点G处,求BE的长【变式4】在矩形纸片ABCD中,AB=3,BC=6,沿EF折叠后,点C落在AB边上的点P处,点D落在点Q处,AD与PQ相交于点H,∠BPE=30°,(1)BE的长为________,QF的长为_______;(2)四边形PEFH的面积为_______。
题型三、确定几何体上的最短路线例1、如图所示,有一圆柱形油罐,现要以油罐底部的一点A环绕油罐建子(图中虚线),并且要正好建到A点正上方的油罐顶部的B点,已知油罐高AB=5米,底面的周长是的12米,则梯子最短长度为________米【变式1】一只蚂蚁从长为4cm、宽为3 cm,高是5 cm的长方体纸箱的A点沿纸箱爬到B点,那么它所行的最短路线的长是____________cm。
【变式2】如图,在笔直的铁路上A、B两点相距25km,C、D为两村庄,DA=10km,CB=15km,DA⊥AB于A,CB⊥AB于B,现要在AB上建一个中转站E,使得C、D两村到E站的距离相等,求E应建在距A多远处?题型四、勾股定理及逆命题有关的几何证明例1、在四边形ABCD中,∠C是直角,AB=13,BC=3,CD=4,AD=12 证明:AD⊥BD【变式1】CD是△ABC中AB边上的高,且CD2=AD×DB,试说明∠ACB=90【变式2】△ABC三边的长为a,b, c,根据下列条件判断△ABC的形状(1)a2+b2+c2+200=12a+16b+20c;(2)a3-a2b+ab2-ac2+bc2-b3=0【变式3】如图△ABC中,∠ BAC=90,AB=AC,P为BC上任意一点,求证:BP2+CP2=AP2题型五、勾股定理与旋转例1、在等腰△RtABC中,∠ CAB=90,P是三角形内一点,且PA=1,PB=3,PC=7求:∠ CPA的大小?【变式1】如图,在等腰△ABC中,∠ACB=90°,D、E为斜边AB上的点,且∠DCE=45°。
求证:DE2=AD2+BE2。
【变式2】已知,如图△ABC中,∠ACB=90°,AC=BC,P是△ABC内一点,且PA=3,PB=1,PC=2,求∠BPC五、对应训练一、选择题(每小题3分,共30分)1. 下列各组中,不能构成直角三角形的是 ( ).(A )9,12,15 (B )15,32,39 (C )16,30,32 (D )9,40,41 2. 如图1,直角三角形ABC 的周长为24,且AB :BC=5:3,则AC= ( ).(A )6 (B )8 (C )10 (D )123. 已知:如图2,以Rt△ABC 的三边为斜边分别向外作等腰直角三角形.若斜边AB =3,则图中阴影部分的面积为 ( ).(A )9 (B )3 (C )49 (D )294. 如图3,在△ABC 中,AD⊥BC 与D ,AB=17,BD=15,DC=6,则AC 的长为( ).(A )11 (B )10 (C )9 (D )85. 若三角形三边长为a 、b 、c ,且满足等式ab c b a 2)(22=-+,则此三角形是( ). (A )锐角三角形 (B )钝角三角形 (C )等腰直角三角形 (D )直角三角形 6. 一只蚂蚁沿直角三角形的边长爬行一周需2秒,如果将直角三角形的边长扩大1倍,那么这只蚂蚁再沿边长爬行一周需 ( ). (A )6秒 (B )5秒 (C )4秒 (D )3秒 二、填空题(每小题3分,共30分)11. 写出两组直角三角形的三边长 .(要求都是勾股数) 12. 如图6(1)、(2)中,(1)正方形A 的面积为 . (2)斜边x= .13. 如图7,已知在Rt ABC △中,Rt ACB ∠=∠,4AB =,分别以AC ,BC 为直径作半圆,面积分别记为1S ,2S ,则1S +2S 的值等于 .14. 四根小木棒的长分别为5cm ,8cm ,12cm ,13cm ,任选三根组成三角形,其中有 个直角三角形.15. 如图8,有一块直角三角形纸片,两直角边AC=6cm ,BC=8cm ,现直角边沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 的长为 .三、简答题18.(8分)如图11,这是一个供滑板爱好者使用的U 型池,该U 型池可以看作是一个长方体去掉一个“半圆柱”而成,中间可供滑行部分的截面是半径为4m 的半圆,其边缘AB=CD=20m ,点E 在CD 上,CE=2m ,一滑行爱好者从A 点到E 点,则他滑行的最短距离是多少?(边缘部分的厚度可以忽略不计,结果取整数)21.如图14,一架云梯长25米,斜靠在一面墙上,梯子靠墙的一端距地面24米.(1)这个梯子底端离墙有多少米?(2)如果梯子的顶端下滑了4米,那么梯子的底部在水平方向也滑动了4米吗?六、课堂小结谈谈你这节课的收获和还有疑惑的地方。
七、作业1、折叠矩形纸片,先折出折痕对角线BD,在绕点D折叠,使点A落在BD的E处,折痕DG,若AB=2,BC=1,求AG的长.2、如图,一块直角三角形的纸片,两直角边AC=6㎝,BC=8㎝。
现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,则CD等于ACDB E16题FEDC BACA DB3、已知:如图,∠ABD=∠C=90°,AD=12,AC=BC,∠DAB=30°,求BC的长.4、如图,将一个边长分别为4、8的长方形纸片ABCD折叠,使C点与A点重合,则EB的长是().A.3 B.4 C.5 D.55、如图5所示,一条清水河的同旁有两个村庄A和B.到河岸l的距离分别为3千米和5千米,两个村的水平距离CD=6千米.问:要在河边修一个水泵站向两个村供水.需要的水管最少应为多少千米?6、如图所示的一块地,∠ADC=90°,AD=12m,CD=9m,AB=39m,BC=36m,求这块地的面积。
交教务时间:课时:年级学生姓名:班主任姓名:家长签名。