数列专题训练及答案

合集下载

数列练习题

数列练习题

数列练习题一、等差数列1. 已知等差数列的前三项分别是2,5,8,求第10项的值。

2. 一个等差数列的前5项和为35,前10项和为110,求该数列的公差。

3. 已知等差数列的公差为3,第5项为12,求第8项的值。

4. 等差数列的前7项和为49,第8项为11,求第4项的值。

5. 已知等差数列的公差为2,第3项为8,求前6项的和。

二、等比数列1. 已知等比数列的前三项分别是2,6,18,求第6项的值。

2. 一个等比数列的前4项和为21,前8项和为189,求该数列的公比。

3. 已知等比数列的公比为3,第4项为81,求第7项的值。

4. 等比数列的前5项和为31,第6项为48,求第3项的值。

5. 已知等比数列的公比为1/2,第2项为4,求前5项的和。

三、数列的通项公式1. 已知数列的前三项分别是1,3,5,推测数列的通项公式。

2. 已知数列的前四项分别是2,6,12,20,推测数列的通项公式。

3. 已知数列的前三项分别是1,4,9,推测数列的通项公式。

4. 已知数列的前四项分别是1,4,9,16,推测数列的通项公式。

5. 已知数列的前三项分别是1,2,3,推测数列的通项公式。

四、数列的求和1. 求等差数列1,3,5,7,9,…的前10项和。

2. 求等比数列3,6,12,24,…的前6项和。

3. 求等差数列2,5,8,11,…的前8项和。

4. 求等比数列2,4,8,16,…的前5项和。

5. 求数列1,3,6,10,15,…的前7项和。

五、综合运用1. 已知数列的前三项分别是2,4,8,求该数列的前10项和。

2. 已知等差数列的公差为2,前5项和为35,求该数列的前7项和。

3. 已知等比数列的公比为3,第3项为27,求该数列的前5项和。

4. 已知数列的通项公式为an = n^2 + n,求前8项的和。

5. 已知数列的通项公式为an = 2^n 1,求前6项的和。

六、数列的递推关系1. 已知数列满足递推关系an = an1 + 3,且a1 = 2,求a5的值。

数列练习题高中

数列练习题高中

数列练习题高中一、等差数列1. 已知等差数列的前三项分别为3,5,7,求第10项的值。

2. 在等差数列{an}中,若a1=1,公差d=2,求前10项的和。

3. 已知等差数列的通项公式为an=3n2,求前n项和的表达式。

4. 在等差数列{an}中,若a5+a8=34,a3+a6=26,求首项a1和公差d。

二、等比数列1. 已知等比数列的前三项分别为2,6,18,求第6项的值。

2. 在等比数列{bn}中,若b1=3,公比q=3,求前5项的和。

3. 已知等比数列的通项公式为bn=2^n,求前n项和的表达式。

4. 在等比数列{bn}中,若b3•b6=144,b4•b5=108,求首项b1和公比q。

三、数列的综合应用1. 已知数列{cn}的通项公式为cn=n^2+n,求前n项和。

2. 在数列{dn}中,若d1=1,d2=3,dn=dn1+dn2(n≥3),求第10项的值。

3. 已知数列{en}的前n项和为Sn=2^n1,求通项公式。

4. 设数列{fn}的通项公式为fn=3n+2,求证:数列{fn+1 fn}是等差数列。

四、数列的极限1. 求极限:lim(n→∞) (1+1/n)^n。

2. 求极限:lim(n→∞) (n^2 n) / (2n^2 + 3n + 1)。

3. 求极限:lim(n→∞) (sqrt(n^2+1) sqrt(n^21))。

五、数列的应用题1. 一等差数列的前5项和为35,前10项和为110,求前15项和。

2. 一等比数列的第3项为12,第6项为48,求首项和公比。

3. 一数列的前n项和为2^n 1,求第10项的值。

4. 一数列的通项公式为an=n^2+n,求证:该数列的前n项和为(n+1)(n+2)/2。

六、数列的性质与判定3. 已知数列{gn}的通项公式为gn=2n1,判断数列{gn+1 gn}是否为等差数列。

4. 已知数列{hn}的通项公式为hn=n^3,判断数列{hn+1 / hn}是否为等比数列。

高考数学《数列》大题训练50题含答案解析整理版

高考数学《数列》大题训练50题含答案解析整理版

高考数学《数列》大题训练50题1 .数列{}的前n 项和为,且满足,.n a n S 11a =2(1)n n S n a =+(1)求{}的通项公式; (2)求和T n =.n a 1211123(1)na a n a ++++L 2 .已知数列,a 1=1,点在直线上.}{n a *))(2,(1N n a a P n n ∈+0121=+-y x (1)求数列的通项公式;}{n a (2)函数,求函数最小值.)2*,(1111)(321≥∈++++++++=n N n a n a n a n a n n f n且 )(n f 3 .已知函数(a ,b 为常数)的图象经过点P (1,)和Q (4,8)x ab x f =)(81(1) 求函数的解析式;)(x f (2) 记a n =log 2,n 是正整数,是数列{a n }的前n 项和,求的最小值。

)(n f n S n S 4 .已知y =f (x )为一次函数,且f (2)、f (5)、f (4)成等比数列,f (8)=15.求=f (1)+f (2)+…+f (n )的表达式.n S 5 .设数列的前项和为,且,其中是不等于和0的实常数.{}n a n n S 1n n S c ca =+-c 1-(1)求证: 为等比数列;{}n a (2)设数列的公比,数列满足,试写出 的{}n a ()q f c ={}n b ()()111,,23n n b b f b n N n -==∈≥1n b ⎧⎫⎨⎬⎩⎭通项公式,并求的结果.12231n n b b b b b b -+++L 6 .在平面直角坐标系中,已知A n (n,a n )、B n (n,b n )、C n (n -1,0)(n ∈N *),满足向量与向量共线,且1+n n A A n n C B 点B n (n,b n ) (n ∈N *)都在斜率为6的同一条直线上.(1)试用a 1,b 1与n 来表示a n ;(2)设a 1=a ,b 1=-a ,且12<a ≤15,求数列{a n }中的最小项.7 .已知数列的前三项与数列的前三项对应相同,且…对任意的{}n a {}n b 212322a a a +++12n n a -+8n =∈n N*都成立,数列是等差数列.1{}n n b b +-(1)求数列与的通项公式;{}n a {}n b (2)问是否存在N *,使得?请说明理由.k ∈(0,1)k k b a -∈8 .已知数列),3,2(1335,}{11 =-+==-n a a a a nn n n 且中(I )试求a 2,a 3的值;(II )若存在实数为等差数列,试求λ的值.}3{,nn a λλ+使得9 .已知数列的前项和为,若,{}n a n n S ()1,211++=⋅=+n n S a n a n n(1)求数列的通项公式;{}n a (2)令,①当为何正整数值时,:②若对一切正整数,总有,求的n nn S T 2=n 1+>n n T T n m T n ≤m 取值范围。

数列大题训练50题及答案

数列大题训练50题及答案

数列大题训练50题及答案本卷含答案及知识卡片,同学们做题务必认真审题,规范书写。

保持卷板整洁。

一.解答题(共50题),2a n+1a n+a n+1−a n=0.1. (2019•全国)数列{an}中, a1=13(1)求{aₙ}的通项公式 ;(2)求满足a1a2+a2a3+⋯+a n−1a n<1的n的最大值 .72.( 2019•新课标Ⅰ )记 Sn为等差数列{aₙ}的前 n项和 .已知Sg= -a₅.(1)若 a₃=4,求{aₙ}的通项公式 ;(2)若 a₁>0, 求使得Sₙ≥aₙ的n的取值范围 .3.( 2019·新课标Ⅱ)已知数列aₙ和bₙ满足a₁=1,b₁=0,4aₙ₊₁=3aₙ−bₙ+4,4bₙ₊₁=3bₙ−aₙ−4.( 1) 证明 : aₙ+bₙ是等比数列,aₙ−bₙ是等差数列;(2)求{aₙ}和bₙ的通项公式 .4.( 2019•新课标Ⅱ)已知{ aₙ}是各项均为正数的等比数列, a₁=2,a₃=2a₂+16.(1)求{aₙ}的通项公式 ;(2)设bₙ=log₂aₙ,求数列bₙ的前n项和 .5.(2018•新课标Ⅱ)记 Sn为等差数列aₙ}的前 n项和 , 已知a₁= - 7 , S₃= -15 .(1)求{ aₙ}的通项公式;(2)求Sₙ,并求Sₙ,的最小值 ..6 .( 2018•新课标Ⅰ )已知数列{ aₙ满足a₁=1,naₙ₊₁=2(n+1)aₙ,设b n=a nn(1)求b₁,b₂,b₃;( 2) 判断数列{bₙ}是否为等比数列,并说明理由;(3)求{aₙ}的通项公式 .7.( 2018•新课标Ⅲ ) 等比数列{aₙ}中 ,a₁=1,a₅=4a₃·(1)求{aₙ}的通项公式 ;(2)记 Sn为{aₙ}的前 n项和 .若Sₙ=63,求m..8.(2017•全国)设数列{bₙ}的各项都为正数 , 且b n+1=b nb n+1}为等差数列;( 1) 证明数列{1b n(2)设 b₁=1,求数列{ bₙbₙ₊₁的前n项和Sₙ.9 .( 2017•新课标Ⅱ )已知等差数列{aₙ}的前 n项和为 Sₙ,等比数列{bₙ}的前 n项和为Tₙ,a₁=−1,b₁=1,a₂+b₂=2(1)若 a₃+b₃=5,又求{bₙ}的通项公式 ;(2)若 T₃=21, 求 S₃.10 .( 2017•新课标Ⅰ )记. Sₙ,为等比数列{aₙ}的前 n项和 .已知 S₂=2,S₃=-6.(1)求{aₙ}的通项公式 ;(2)求Sₙ,并判断Sₙ₊₁,Sₙ,Sₙ₊₂是否成等差数列 .11 .( 2017•新课标Ⅲ)设数列{aₙ}满足a1+3a2++(2n−1)a n=2n.(1)求{an}的通项公式 ;}的前 n项和 .(2)求数列{a n2n+112.( 2016·全国) 已知数列aₙ}的前 n项和Sₙ=n².( Ⅰ )求{aₙ}的通项公式 ;,求数列{bₙ}的前 n项和 .(Ⅱ)记b n=√a n+√a n+113 .( 2016•新课标Ⅲ ) 已知数列aₙ}的前n项和Sₙ=1+λaₙ,其中λ≠0.(1) 证明{aₙ}是等比数列,并求其通项公式;,求λ .(2)若S5=313214 .( 2016•新课标Ⅰ ) 已知{aₙ}是公差为 3 的等差数列 , 数列{ bₙ满足b₁=1,,a n b n+1+b n+1=nb n.b2=13( Ⅰ )求{aₙ}的通项公式 ;(Ⅱ)求{bₙ}的前n项和.15 .( 2016•新课标Ⅲ) 已知各项都为正数的数列aₙ满足a1=1,a n2−(2a n+1(1)aₙ−2aₙ₊₁=0.(1)求 a₂, a₃;(2)求{aₙ}的通项公式 .16 .( 2016•新课标Ⅱ ) 等差数列{aₙ}中 ,a₃+a₄=4,a₅+a₇=6.( Ⅰ )求{aₙ}的通项公式 ;数列全国高考数学试题 参考答案与试题解析一 . 解答题(共50 小题)1.( 2019•全国)数列{a ₙ}中 , a 1=13,2a n+1a n +a n+1−a n =0.(1)求{a ₙ}的通项公式 ;( 2)求满足 a 1a 2+a 2a 3+⋯+a n−1a n <17的n 的最大值 .【解答】解:(1) ∵2a n+1a n +a n+1−a n =0.∴1a n+1−1a n=2,∴a 1a 2+a 2a 3++a n−1a n =12[(13−15)+(15−17)+⋯+(12n−1−12n+1)]=12(13−12n+1),∵a 1a 2+a 2a 3++a n−1a n <17,∴12(13−12n+1)<17, ∴4n +2<42,∴n <10,∵n ∈N ∗, ∴n 的最大值为9.【点评】本题考查了等差数列的定义 ,通项公式和裂项相消法求出数列的前 n【分析】(1)由 2aₙ₊₁aₙ+aₙ₊₁−aₙ=0可得−=2,可知数列 {}是等差数列 ,求出- 的通项公式可得 an ;(2)由(1)知1a a =1(2n−1)(2n+1)=12(12n−1−12n+1)(n ≥2),然后利用裂项相消法求出 a 1a 2+a 2a 3+⋯+a n−1a n 再解不等式可得n 的范围,进而得到n 的最大值 . 又1a =3,∴数列 {}是以3为首项 ,2 为公差的等差数列 , ∴1a =2n +1,∴a n =12n+1;(2)由(1)知 , a n−1a n =1(2n−1)(2n+1)=12(12n−1−12n+1)(n ≥2),。

高中数学--数列大题专项训练(含详解)

高中数学--数列大题专项训练(含详解)

高中数学--数列大题专项训练(含详解)一、解答题(本大题共16小题,共192.0分)1.已知{}n a 是等比数列,满足12a =,且2a ,32a +,4a 成等差数列,数列{}n b 满足*1231112()23n b b b b n n N n+++⋅⋅⋅+=∈(1)求{}n a 和{}n b 的通项公式;(2)设(1)()n n n n c a b =--,求数列{}n c 的前2n 项和2.n S 2.已知数列{}n a 的前n 项和为n S ,且233.n n S a +=(1)求数列{}n a 的通项公式;(2)若32log n n n b a a +=⋅,求数列{}n b 的前n 项和.n T 3.在数列{}n a 中,111,(1n n n a a a c c a +==⋅+为常数,*)n N ∈,且1a ,2a ,5a 成公比不为1的等比数列.(1)求证:数列1{}na 是等差数列;(2)求c 的值;(3)设1n n n b a a +=,求数列{}n b 的前n 项和.n S4.在ABC 中,已知三内角A ,B ,C 成等差数列,且11sin().214A π+=()Ⅰ求tan A 及角B 的值;()Ⅱ设角A ,B ,C 所对的边分别为a ,b ,c ,且5a =,求b ,c 的值.5.在数列{}n a 中,11a =,11(1)(1)2nn n a a n n +=+++⋅(1)设n n a b n=,求数列{}n b 的通项公式(2)求数列{}n a 的前n 项和nS 6.已知数列的各项均为正数,前项和为,且()Ⅰ求证数列是等差数列;()Ⅱ设求7.已知数列{}n a 的前n 项和为n S ,且22n n a a S S =+对一切正整数n 都成立.(1)求1a ,2a 的值;(2)设10a >,数列110lg n a a ⎧⎫⎨⎬⎩⎭的前n 项和为n T ,当n 为何值时,n T 最大?并求出n T 的最大值.8.已知等差数列{}n a 的前四项和为10,且2a ,3a ,7a 成等比数列.(1)求通项公式na (2)设2n a nb =,求数列n b 的前n 项和.n S 9.已知在数列{}n a 中,13a =,1(1)1n n n a na ++-=,*.n N ∈(1)证明数列{}n a 是等差数列,并求n a 的通项公式;(2)设数列11{}n n a a +的前n 项和为n T ,证明:1.(126n T <分)10.已知函数2(1)4f x x +=-,在等差数列{}n a 中,1(1)a f x =-,232a =-,3().a f x =(1)求x 的值;(2)求数列{}n a 的通项公式.n a 11.已知数列{}n a 是公比大于1的等比数列,1a ,3a 是函数2()109f x x x =-+的两个零点.(1)求数列{}n a 的通项公式;(2)若数列{}n b 满足3log n n b a n =+,求数列{}n b 的前n 项和n S 。

数列综合练习题(含答案)精选全文

数列综合练习题(含答案)精选全文

3月6日数列综合练习题一、单选题1.已知数列为等比数列,是它的前n项和.若,且与的等差中项为,则()A .35B .33C .31D .29【答案】C 【解析】试题分析:∵等比数列{}n a ,∴21a a q =⋅,∴13134222a q a a q a a ⋅⋅=⇒⋅=⇒=,又∵与的等差中项为54,∴477512244a a a ⋅=+⇒=,∴3741182a q q a ==⇒=,∴41316a a q ==,515116(1)(1)32311112a q S q--===--.2.等差数列{}n a 中,19173150a a a ++=则10112a a -的值是()A.30B.32C.34D.25【答案】A 【解析】试题分析:本题考查等差数列的性质,难度中等.由条件知930a =,所以10112a a -=930a =,故选A.3.数列满足且,则等于()A.B.C.D.【答案】D 【解析】由有解知数列1n x ⎧⎫⎨⎬⎩⎭是首项为1,公差为211112x x -=的等差数列;所以11121(1),221n n n n x x n +=+-=∴=+.故选D 4.设等差数列{}n a 的前n 项和为n S ,数列21{}n a -的前n 项和为n T ,下列说法错误..的是()A .若n S 有最大值,则n T 也有最大值B .若n T 有最大值,则n S 也有最大值C .若数列{}n S 不单调,则数列{}n T 也不单调D .若数列{}n T 不单调,则数列{}n S 也不单调【答案】C 【解析】【详解】解:数列{a 2n ﹣1}的首项是a 1,公差为2d ,A .若S n 有最大值,则满足a 1>0,d <0,则2d <0,即T n 也有最大值,故A 正确,B .若T n 有最大值,则满足a 1>0,2d <0,则d <0,即S n 也有最大值,故B 正确,C .S n =na 1()12n n -+•d 2d =n 2+(a 12d -)n ,对称轴为n 111122222d da a a d d d --=-==--⨯,T n =na 1()12n n -+•2d =dn 2+(a 1﹣d )n ,对称轴为n 111222a d d -=-=-•1a d,不妨假设d >0,若数列{S n }不单调,此时对称轴n 11322a d =-≥,即1a d-≥1,此时T n 的对称轴n 1122=-•111122a d ≥+⨯=1,则对称轴1122-•132a d <有可能成立,此时数列{T n }有可能单调递增,故C 错误,D .不妨假设d >0,若数列{T n }不单调,此时对称轴n 1122=-•132a d ≥,即1a d-≥2,此时{S n }的对称轴n 11122a d =-≥+25322>=,即此时{S n }不单调,故D 正确则错误是C ,故选C .5.设n=()A .333n 个B .21333n - 个C .21333n- 个D .2333n 个【答案】A【解析】1013333n n -====⋅⋅⋅ 个.故选A.6.已知各项均为正数的数列{}n a 的前n 项和为n S ,满足2124n n a S n +=++,且21a -,3a ,7a 恰好构成等比数列的前三项,则4a =().A .1B .3C .5D .7【答案】C 【详解】∵2124n n a S n +=++,当2n ≥,()21214n n a S n -=+-+,两式相减,化简得()2211n n a a +=+,∵0n a >,∴11n n a a +=+,数列{}n a 是公差1的等差数列.又21a -,3a ,7a 恰好构成等比数列的前三项,∴()()211126a a a +=+,∴12a =,∴45a =.故选:C第II 卷(非选择题)二、填空题7.已知数列{}n a 的首项11a =,且1(1)12nn na a n a +=+ ,则5a =____.【答案】198.等差数列{}n a 中,39||||a a =,公差0d <,则使前n 项和n S 取得最大值的自然数n 是________.【答案】5或6【解析】试题分析:因为0d <,且39||||a a =,所以39a a =-,所以1128a d a d +=--,所以150a d +=,所以60a =,所以0n a >()15n ≤≤,所以n S 取得最大值时的自然数n 是5或6.9.数列{}n a 满足:11a =,121n n a a +=+,且{}n a 的前n 项和为n S ,则n S =__.【答案】122n n +--【详解】由121n n a a +=+得()1+121n n a a +=+所以1112+n n a a +=+,且112a +=所以数列{}1n a +是以2为首项,2为公比的等比数列,且11=222n nn a -+⨯=所以21nn a =-前n 项和()123121222222212n nn nS n n n +-=++++-==--- 10.已知数列{}n a 中,132a =前n 项和为n S ,且满足()*123n n a S n N ++=∈,则满足2348337n n S S <<所有正整数n 的和是___________.【答案】12【详解】由()*123n n a S n N++=∈得()123n n n SS S +-+=,即()11332n n S S +-=-,所以数列{}3n S -是首项为113332S a -=-=-,公比为12的等比数列,故31322n nS -=-⋅,所以332n n S =-,所以22332n n S =-.由2348337n n S S <<得2332334833732n n -<-<,化简得1113327n <<,故3,4,5n =.满足2348337n nS S <<所有正整数n 的和为34512++=.故答案为:12三、解答题11.已知数列{a n }满足a 1=3,a n ﹣a n ﹣1﹣3n =0,n ≥2.(1)求数列{a n }的通项公式;(2)设b n 1na =,求数列{b n }的前n 项和S n .【详解】(1)数列{a n }满足a 1=3,a n ﹣a n ﹣1﹣3n =0,n ≥2,即a n ﹣a n ﹣1=3n ,可得a n =a 1+(a 2﹣a 1)+(a 3﹣a 2)+…+(a n ﹣a n ﹣1)=3+6+9+…+3n 12=n (3+3n )32=n 232+n ;(2)b n 123n a ==•2123n n =+(111n n -+),前n 项和S n 23=(1111112231n n -+-++-+ )23=(111n -+)()231n n =+.12.在数列{}n a 中,n S 为其前n 项和,满足2(,*)n n S ka n n k R n N =+-∈∈.(I )若1k =,求数列{}n a 的通项公式;(II )若数列{}21n a n --为公比不为1的等比数列,求n S .【答案】解:(1)当1k =时,2,n n S a n n =+-所以21,(2)n S n n n -=-≥,即22(1)(1),(1)n S n n n n n =+-+=+≥……3分所以当1n =时,112a S ==;当2n ≥时,221(1)(1)2n n n a S S n n n n n -=-=+----=所以数列{}n a 的通项公式为.……………6分(II )当时,1122n n n n n a S S ka ka n --=-=-+-,1(1)22n n k a ka n --=-+,111a S ka ==,若1k =,则211n a n --=-,从而{}21n a n --为公比为1的等比数列,不合题意;……………8分若1k ≠,则10a =,221a k=-,3246(1)k a k -=-212325378333,5,71(1)k k k a a a k k --+--=--=-=--由题意得,2213(5)(3)(7)0a a a -=--≠,所以0k =或32k =.……10分当0k =时,2n S n n =-,得22n a n =-,213n a n --=-,不合题意;…12分当32k =时,1344n n a a n -=-+,从而1213[2(1)1]n n a n a n ---=---因为121130,a -⨯-=-≠210n a n --≠,{}21n a n --为公比为3的等比数列,213nn a n --=-,所以231nn a n =-+,从而1233222n n S n n +=+-+.………………………14分【解析】试题分析:解:(1)当1k =时,2,n n S a n n =+-所以21,(2)n S n n n -=-≥,即22(1)(1),(1)n S n n n n n =+-+=+≥……3分所以当1n =时,112a S ==;当2n ≥时,221(1)(1)2n n n a S S n n n n n -=-=+----=所以数列{}n a 的通项公式为…6分(2)当时,1122n n n n n a S S ka ka n --=-=-+-,1(1)22n n k a ka n --=-+,111a S ka ==,若1k =,则211n a n --=-,从而{}21n a n --为公比为1的等比数列,不合题意;若1k ≠,则10a =,221a k=-,3246(1)k a k -=-212325378333,5,71(1)k k k a a a k k --+--=--=-=--由题意得,2213(5)(3)(7)0a a a -=--≠,所以0k =或32k =.当0k =时,2n S n n =-,得22n a n =-,213n a n --=-,不合题意;当32k =时,1344n n a a n -=-+,从而1213[2(1)1]n n a n a n ---=---因为121130,a -⨯-=-≠210n a n --≠,{}21n a n --为公比为3的等比数列,213nn a n --=-,所以231nn a n =-+,从而1233222n n S n n +=+-+.13.设数列{}n a 的通项公式63n a n =-+,{}n b 为单调递增的等比数列,123512b b b =,1133a b a b +=+.()1求数列{}n b 的通项公式.()2若3nn na cb -=,求数列{}n c 的前n 项和n T .【详解】()1由题意,数列{}n a 的通项公式n a 6n 3=-+,{}n b 为单调递增的等比数列,设公比为q ,123b b b 512=,1133a b a b +=+.可得331b q 512=,2113b 15b q -+=-+,解得1b 4=,或1q 2(2=-舍去),则n 1n 1n b 422-+=⋅=。

数列解答题专练(含答案版)

数列高考真题汇编1.已知等差数列{a n }的公差为2,前n 项和为S n ,且S 1,S 2,S 4成等比数列. (1)求数列{a n }的通项公式;(2)令b n =(-1)n -14n a n a n +1,求数列{b n }的前n 项和T n .解析 (1)因为S 1=a 1,S 2=2a 1+2×12×2=2a 1+2, S 4=4a 1+4×32×2=4a 1+12,(3分)由题意得(2a 1+2)2=a 1(4a 1+12),解得a 1=1. 所以a n =2n -1.(5分)(2)b n =(-1)n -14n a n a n +1=(-1)n -14n(2n -1)(2n +1)=(-1)n -1⎝ ⎛⎭⎪⎫12n -1+12n +1.(6分)当n 为偶数时,T n =⎝ ⎛⎭⎪⎫1+13-⎝ ⎛⎭⎪⎫13+15+…+⎝ ⎛⎭⎪⎫12n -3+12n -1-⎝ ⎛⎭⎪⎫12n -1+12n +1=1-12n +1=2n 2n +1. 当n 为奇数时,T n =⎝ ⎛⎭⎪⎫1+13-⎝ ⎛⎭⎪⎫13+15+…-⎝ ⎛⎭⎪⎫12n -3+12n -1+⎝ ⎛⎭⎪⎫12n -1+12n +1=1+12n +1=2n +22n +1.(10分)2.已知数列{a n }的前n 项和S n =n 2+n2,n ∈N *.(1)求数列{a n }的通项公式;(2)设b n =2a n +(-1)n a n ,求数列{b n }的前2n 项和. 解析 (1)当n =1时,a 1=S 1=1;当n ≥2时,a n =S n -S n -1=n 2+n 2-(n -1)2+(n -1)2=n .故数列{a n }的通项公式为a n =n .(2)由(1)知,a n =n ,故b n =2n +(-1)n n . 记数列{b n }的前2n 项和为T 2n ,则T 2n =(21+22+…+22n )+(-1+2-3+4-…+2n ). 记A =21+22+…+22n ,B =-1+2-3+4-…+2n , 则A =2(1-22n )1-2=22n +1-2,B =(-1+2)+(-3+4)+…+[-(2n -1)+2n ]=n . 故数列{b n }的前2n 项和T 2n =A +B =22n +1+n -2.3.数列{a n }满足a 1=1,na n +1=(n +1)a n +n (n +1),n ∈N *.(1)证明:数列⎩⎨⎧⎭⎬⎫a n n 是等差数列;(2)设b n =3n ·a n ,求数列{b n }的前n 项和S n . 解析 (1)证明:由已知可得a n +1n +1=a n n +1,即a n +1n +1-a nn=1.(4分) 所以数列⎩⎨⎧⎭⎬⎫a n n 是以a 11=1为首项,1为公差的等差数列.(5分)(2)解:由(1)得a nn =1+(n -1)·1=n ,所以a n =n 2. 从而b n =n ·3n .(7分)S n =1×31+2×32+3×33+…+n ·3n ,① 3S n =1×32+2×33+…+(n -1)·3n +n ·3n +1.② ①—②,得-2S n =31+32+ (3)-n ·3n+1=3·(1-3n )1-3-n ·3n +1=(1-2n )·3n +1-32.(10分)所以S n =(2n -1)·3n +1+34.(12分)4.已知S n 是数列{a n }的前n 项和,a 1=2,S n +1=3S n +n 2+2(n ∈N *),设b n =a n +n .(1)证明:数列{b n }是等比数列;(2)若c n =n b n ,数列{c n }的前n 项和为T n ,求证:T n <45.解析 (1)证明:因为a 1=2,S n +1=3S n +n 2+2, 所以当n =1时,a 1+a 2=3a 1+12+2,解得a 2=7.(2分)由S n +1=3S n +n 2+2及S n =3S n -1+(n -1)2+2(n ≥2),两式相减,得 a n +1=3a n +2n -1.故a n +1+n +1=3(a n +n ). 即b n +1=3b n (n ≥2).(4分)又b 1=3,b 2=9,所以当n =1时上式也成立. 故数列{b n }是以3为首项,3为公比的等比数列.(5分) (2)由(1)知b n =3n,所以c n =n3n .所以T n =13+232+333+…+n -13n -1+n 3n , ①3T n =1+23+332+…+n -13n -2+n3n -1. ②(7分)②-①,得2T n =1+13+132+…+13n -1-n 3n =32-3+2n2·3n . 所以T n =34-3+2n4·3n .(10分) 因为n ∈N *,显然有3+2n4·3n >0. 又34<45,所以T n <45.(12分)5.已知首项为12的等比数列{a n }是递减数列,其前n 项和为S n ,且S 1+a 1,S 2+a 2,S 3+a 3成等差数列.(1)求数列{a n }的通项公式;(2)若b n =a n ·log 2a n ,数列{b n }的前n 项和为T n .解析 (1)设等比数列{a n }的公比为q ,由题知a 1=12, 又∵S 1+a 1,S 2+a 2,S 3+a 3成等差数列, ∴2(S 2+a 2)=S 1+a 1+S 3+a 3.∴S 2-S 1+2a 2=a 1+S 3-S 2+a 3,即3a 2=a 1+2a 3. ∴32q =12+q 2,解得q =1或q =12.(4分) 又{a n }为递减数列,于是q =12. ∴a n =a 1q n -1=(12)n .(6分) (2)∵b n =a n log 2a n =-n (12)n ,∴T n =-[1×12+2×(12)2+…+(n -1)(12)n -1+n ×(12)n ]. 于是12T n =-[1×(12)2+…+(n -1)(12)n +n ×(12)n +1].(8分)两式相减,得12T n =-[12+(12)2+…+(12)n -n ×(12)n +1]=-12×[1-(12)n ]1-12+n ×(12)n +1.∴T n =(n +2)(12)n-2,6.已知首项都是1的两个数列{a n },{b n }(b n ≠0,n ∈N *)满足a n b n +1-a n +1b n +2b n +1b n =0.(1)令c n =a nb n,求数列{c n }的通项公式;(2)若b n =3n -1,求数列{a n }的前n 项和S n .解析 (1)因为a n b n +1-a n +1b n +2b n +1b n =0,b n ≠0(n ∈N *), 所以a n +1b n +1-a n b n=2,即c n +1-c n =2.(4分)所以数列{c n }是以首项c 1=1,公差d =2的等差数列,故c n =2n -1. (2)由b n =3n -1,知a n =c n b n =(2n -1)3n -1. 于是数列{a n }的前n 项和S n =1·30+3·31+5·32+…+(2n -1)·3n -1, 3S n =1·31+3·32+…+(2n -3)·3n -1+(2n -1)·3n ,相减得-2S n =1+2·(31+32+…+3n -1)-(2n -1)·3n =-2-(2n -2)3n .所以S n =(n -1)3n +1.7.已知{a n }是递增的等差数列,a 2,a 4是方程x 2-5x +6=0的根. (1)求{a n }的通项公式;(2)求数列⎩⎨⎧⎭⎬⎫a n 2n 的前n 项和.解析 (1)方程x 2-5x +6=0的两根为2,3,由题意得a 2=2,a 4=3 设数列{a n }的公差为d ,则a 4-a 2=2d ,故d =12,从而a 1=32. 所以{a n }的通项公式为a n =12n +1.(2)设⎩⎨⎧⎭⎬⎫a n 2n 的前n 项和为S n ,由(1)知a n 2n =n +22n +1,则S n =322+423+…+n +12n +n +22n +1,12S n =323+424+…+n +12n +1+n +22n +2. 两式相减,得12S n =34+(123+…+12n +1)-n +22n +2=34+14(1-12n -1)-n +22n +2. 所以S n =2-n +42n +1.8.已知{a n }是各项均为正数的等比数列,且a 1·a 2=2,a 3·a 4=32. (1)求数列{a n }的通项公式;(2)设数列{b n }满足b 11+b 23+b 35+…+b n 2n -1=a n +1-1(n ∈N *),求数列{b n }的前n 项和.解析 (1)设等比数列{a n }的公比为q ,由已知得⎩⎨⎧a 21q =2,a 21q 5=32.又∵a 1>0,q >0,∴⎩⎨⎧a 1=1,q =2.∴a n =2n -1.(2)由题意,可得b 11+b 23+b 35+…+b n2n -1=2n -1.∴2n -1-1+b n 2n -1=2n -1(n ≥2),b n2n -1=2n -1.∴b n =(2n -1)2n -1(n ≥2). 当n =1时,b 1=1,符合上式, ∴b n =(2n -1)·2n -1(n ∈N *).设T n =1+3×21+5×22+…+(2n -1)·2n -1,2T n =1×2+3×22+5×23+…+(2n -3)·2n -1+(2n -1)·2n ,两式相减,得-T n =1+2(2+22+…+2n -1)-(2n -1)·2n =-(2n -3)·2n -3. ∴T n =(2n -3)2n +3.9.已知数列{a n }是a 3=164,公比q =14的等比数列.设b n +2=3log 14a n (n ∈N *),数列{c n }满足c n =a n b n .(1)求证:数列{b n }是等差数列; (2)求数列{c n }的前n 项和S n .解析 (1)证明:由已知,可得a n =a 3q n -3=(14)n . 则b n +2=3log 14(14)n =3n ,∴b n =3n -2. ∵b n +1-b n =3,∴{b n }为等差数列. (2)由(1)知c n =a n b n =(3n -2)(14)n ,∴S n =1×14+4×(14)2+7×(14)3+…+(3n -2)×(14)n , ①14S n =1×(14)2+4×(14)3+7×(14)4+…+(3n -5)×(14)n +(3n -2)×(14)n +1. ② ①-②,得34S n =14+3[(14)2+(14)3+(14)4+…+(14)n ]-(3n -2)·(14)n +1 =14+3·(14)2[1-(14)n -1]1-14-(3n -2)·(14)n +1 =12-(3n +2)·(14)n +1.∴S n =23-3n +23·(14)n.健康文档 放心下载 放心阅读。

(完整版)数列求通项专题(总复习专题-方法全面-有答案)全

求数列通项专题题型一:定义法(也叫公式法)直接利用等差数列或等比数列的定义求通项的方法叫定义法,这种方法适应于已知数列类型的题目例:等差数列}a {n 是递增数列,前n 项和为n S ,且931a ,a ,a 成等比数列,255a S =.求数列}a {n 的通项。

解:设数列}a {n 公差为)0d (d > ∵931a ,a ,a 成等比数列,∴9123a a a =,即)d 8a (a )d 2a (1121+=+,得d a d 12= ∵0d ≠,∴d a 1=………①∵255S a = ∴211)d 4a (d 245a 5+=⋅⨯+…………②由①②得:53a 1=,53d = ∴n 5353)1n (53a n =⨯-+=题型二:已知的关系求通项公式(或)n n S a 与()n n S f a =这种类型一般利用与消去⎩⎨⎧≥⋅⋅⋅⋅⋅⋅⋅-=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=-)2()1(11n S S n S a n n n )()(11---=-=n n n n n a f a f S S a n S )2(≥n 或与消去进行求解。

)(1--=n n n S S f S )2(≥n n a 例:(1)已知数列的前项和,求数列的通项公式}{n a n 22+=n S n }{n a 解:当时,;1=n 311==S a 当时,; 2≥n 122)1(2221-=---+=-=-n n n S S a n n n ⎩⎨⎧≥-==∴)2(12)1(3n n n a n (2)已知数列的前项和满足,求数列的通项公式}{n a n n S 1)1(log 2+=+n S n }{n a 解:由,得,1)1(log 2+=+n S n 121-=+n n S ⎩⎨⎧≥==∴)2(2)1(3n n a nn 练习:1、已知数列{}的前n 项和为, 求.n a 32nn S =-n a 2、数列的前n 项和为,,,求的通项公式{}n a n S 11=a )(1121≥+=+n S a n n {}n a题型三:形如用累加法(也叫逐差求和法):)(1n f a a n n +=+(1)若f(n)为常数,即:,此时数列为等差数列,则=.d a a n n =-+1n a d n a )1(1-+(2)若f(n)为n 的函数时,用累加法. 方法如下: 由 得:)(1n f a a n n =-+时,,2≥n )1(1-=--n f a a n n ,)2(21-=---n f a a n n )2(23f a a =-以上各式相加得)1(12f a a =- 即:.)1()2()2()1(1f f n f n f a a n +++-+-=- ∑-=+=111)(n k n k f a a 为了书写方便,也可用横式来写:时,,2≥n )1(1-=--n f a a n n ∴112211)()()(a a a a a a a a n n n n n +-++-+-=--- =.1)1()2()2()1(a f f n f n f ++++-+- 例1:已知数列{a n }中,a 1=1,对任意自然数n 都有11(1)n n a a n n -=++,求n a .解:由已知得11(1)n n a a n n --=+,121(1)n n a a n n ---=-,……,32134a a -=⨯,21123a a -=⨯,以上式子累加,利用111(1)1n n n n =-++得 n a -1a =1111...23(2)(1)(1)(1)n n n n n n ++++⨯---+=1121n -+, 3121n a n ∴=-+例2:已知数列满足,求数列的通项公式。

高考数学《数列》大题训练50题含答案解析

一.解答题(共30小题)1.(2012•上海)已知数列{a n}、{b n}、{c n}满足.(1)设c n=3n+6,{a n}是公差为3的等差数列.当b1=1时,求b2、b3的值;(2)设,.求正整数k,使得对一切n∈N*,均有b n≥b k;(3)设,.当b1=1时,求数列{b n}的通项公式.2.(2011•重庆)设{a n}是公比为正数的等比数列a1=2,a3=a2+4.(Ⅰ)求{a n}的通项公式;(Ⅱ)设{b n}是首项为1,公差为2的等差数列,求数列{a n+b n}的前n项和S n.3.(2011•重庆)设实数数列{a n}的前n项和S n满足S n+1=a n+1S n(n∈N*).(Ⅰ)若a1,S2,﹣2a2成等比数列,求S2和a3.(Ⅱ)求证:对k≥3有0≤a k≤.4.(2011•浙江)已知公差不为0的等差数列{a n}的首项a1为a(a∈R)设数列的前n项和为S n,且,,成等比数列.(Ⅰ)求数列{a n}的通项公式及S n;(Ⅱ)记A n=+++…+,B n=++…+,当a≥2时,试比较A n 与B n的大小.5.(2011•上海)已知数列{a n}和{b n}的通项公式分别为a n=3n+6,b n=2n+7(n∈N*).将集合{x|x=a n,n∈N*}∪{x|x=b n,n∈N*}中的元素从小到大依次排列,构成数列c1,c2,c3,…,c n,…(1)写出c1,c2,c3,c4;(2)求证:在数列{c n}中,但不在数列{b n}中的项恰为a2,a4,…,a2n,…;(3)求数列{c n}的通项公式.6.(2011•辽宁)已知等差数列{a n}满足a2=0,a6+a8=﹣10(I)求数列{a n}的通项公式;(II)求数列{}的前n项和.7.(2011•江西)(1)已知两个等比数列{a n},{b n},满足a1=a(a>0),b1﹣a1=1,b2﹣a2=2,b3﹣a3=3,若数列{a n}唯一,求a的值;(2)是否存在两个等比数列{a n},{b n},使得b1﹣a1,b2﹣a2,b3﹣a3.b4﹣a4成公差不为0的等差数列?若存在,求{a n},{b n}的通项公式;若不存在,说明理由.8.(2011•湖北)成等差数列的三个正数的和等于15,并且这三个数分别加上2、5、13后成为等比数列{b n}中的b3、b4、b5.(I)求数列{b n}的通项公式;(II)数列{b n}的前n项和为S n,求证:数列{S n+}是等比数列.9.(2011•广东)设b>0,数列{a n}满足a1=b,a n=(n≥2)(1)求数列{a n}的通项公式;(4)证明:对于一切正整数n,2a n≤b n+1+1.10.(2011•安徽)在数1 和100之间插入n个实数,使得这n+2个数构成递增的等比数列,将这n+2个数的乘积计作T n,再令a n=lgT n,n≥1.(I)求数列{a n}的通项公式;(Ⅱ)设b n=tana n•tana n+1,求数列{b n}的前n项和S n.11.(2010•浙江)设a1,d为实数,首项为a1,公差为d的等差数列{a n}的前n项和为S n,满足S5S6+15=0.(Ⅰ)若S5=5,求S6及a1;(Ⅱ)求d的取值范围.12.(2010•四川)已知等差数列{a n}的前3项和为6,前8项和为﹣4.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=(4﹣a n)q n﹣1(q≠0,n∈N*),求数列{b n}的前n项和S n.13.(2010•四川)已知数列{a n}满足a1=0,a2=2,且对任意m、n∈N*都有a2m﹣1+a2n﹣1=2a m+n﹣1+2(m﹣n)2(1)求a3,a5;(2)设b n=a2n+1﹣a2n﹣1(n∈N*),证明:{b n}是等差数列;(3)设c n=(a n+1﹣a n)q n﹣1(q≠0,n∈N*),求数列{c n}的前n项和S n.14.(2010•陕西)已知{a n}是公差不为零的等差数列,a1=1,且a1,a3,a9成等比数列.(Ⅰ)求数列{a n}的通项;(Ⅱ)求数列{2an}的前n项和S n.15.(2010•宁夏)设数列满足a1=2,a n+1﹣a n=3•22n﹣1(1)求数列{a n}的通项公式;(2)令b n=na n,求数列的前n项和S n.16.(2010•江西)正实数数列{a n}中,a1=1,a2=5,且{a n2}成等差数列.(1)证明数列{a n}中有无穷多项为无理数;(2)当n为何值时,a n为整数,并求出使a n<200的所有整数项的和.17.(2009•陕西)已知数列{a n}满足,,n∈N×.(1)令b n=a n+1﹣a n,证明:{b n}是等比数列;(2)求{a n}的通项公式.18.(2009•山东)等比数列{a n}的前n项和为S n,已知对任意的n∈N*,点(n,S n),均在函数y=b x+r(b>0)且b≠1,b,r均为常数)的图象上.(1)求r的值;(2)当b=2时,记b n=n∈N*求数列{b n}的前n项和T n.19.(2009•江西)数列{a n}的通项,其前n项和为S n,(1)求S n;(2),求数列{b n}的前n项和T n.20.(2009•辽宁)等比数列{a n}的前n项和为s n,已知S1,S3,S2成等差数列,(1)求{a n}的公比q;(2)求a1﹣a3=3,求s n.21.(2009•湖北)已知数列{a n}是一个公差大于0的等差数列,且满足a2a6=55,a2+a7=16(1)求数列{a n}的通项公式;(2)数列{a n}和数列{b n}满足等式a n=(n∈N*),求数列{b n}的前n项和S n.22.(2009•福建)等比数列{a n}中,已知a1=2,a4=16(I)求数列{a n}的通项公式;(Ⅱ)若a3,a5分别为等差数列{b n}的第3项和第5项,试求数列{b n}的通项公式及前n项和S n.23.(2009•安徽)已知数列{a n}的前n项和S n=2n2+2n,数列{b n}的前n项和Tn=2﹣b n(Ⅰ)求数列{a n}与{b n}的通项公式;(Ⅱ)设c n=a n2•b n,证明:当且仅当n≥3时,c n+1<c n.24.(2009•北京)设数列{a n}的通项公式为a n=pn+q(n∈N*,P>0).数列{b n}定义如下:对于正整数m,b m是使得不等式a n≥m成立的所有n中的最小值.(Ⅰ)若,求b3;(Ⅱ)若p=2,q=﹣1,求数列{b m}的前2m项和公式;(Ⅲ)是否存在p和q,使得b m=3m+2(m∈N*)?如果存在,求p和q 的取值范围;如果不存在,请说明理由.25.(2008•浙江)已知数列{x n}的首项x1=3,通项x n=2n p+np(n∈N*,p,q为常数),且成等差数列.求:(Ⅰ)p,q的值;(Ⅱ)数列{x n}前n项和S n的公式.26.(2008•四川)设数列{a n}的前n项和为S n=2a n﹣2n,(Ⅰ)求a1,a4(Ⅱ)证明:{a n+1﹣2a n}是等比数列;(Ⅲ)求{a n}的通项公式.27.(2008•四川)在数列{a n}中,a1=1,.(Ⅰ)求{a n}的通项公式;(Ⅱ)令,求数列{b n}的前n项和S n;(Ⅲ)求数列{a n}的前n项和T n.28.(2008•陕西)已知数列{a n}的首项,,n=1,2,3,….(Ⅰ)证明:数列是等比数列;(Ⅱ)求数列的前n项和S n.29.(2008•辽宁)在数列{a n},{b n}是各项均为正数的等比数列,设.(Ⅰ)数列{c n}是否为等比数列?证明你的结论;(Ⅱ)设数列{lna n},{lnb n}的前n项和分别为S n,T n.若a1=2,,求数列{c n}的前n项和.30.(2008•辽宁)在数列{a n},{b n}中,a1=2,b1=4,且a n,b n,a n+1成等差数列,b n,a n+1,b n+1成等比数列.(1)求a2,a3,a4及b2,b3,b4,由此猜测{a n},{b n}的通项公式,并证明你的结论;(2)证明:.答案与评分标准一.解答题(共30小题)1.(2012•上海)已知数列{a n}、{b n}、{c n}满足.(1)设c n=3n+6,{a n}是公差为3的等差数列.当b1=1时,求b2、b3的值;(2)设,.求正整数k,使得对一切n∈N*,均有b n≥b k;(3)设,.当b1=1时,求数列{b n}的通项公式.考点:数列递推式;数列的函数特性。

数列经典试题(含答案)

强力推荐人教版数学高中必修5习题第二章数列1 . 孔}是首项a1= 1, 公差为d =3的等差数列,如果a n =2 005, 则序号n 等千().A. 667B. 668C. 669D. 6702. 在各项都为正数的等比数列{孔}中,首项a1= 3 f前三项和为21I则a3+ a4 + a s = ( ). A. 33B. 72C. 84D. 1893. 如果a1,a2, …,as 为各项都大千零的等差数列,公差d-:t-0,则().A.a泣s > a 泣5B.a也s < a 泣5C . a 1+as < a4 + a s D . a 1as= a 泣54. 已知方程(Jf -2x+ m )(烂-2x+ n ) = 0的四个根组成一个首项为-的等差数列,则4 Im-n I 等于().A. 13-4B 1_2c D. 3-85. 等比数列{孔}中,a2= 9 , as = 243 , 则{动的前4项和为(). A. 81B. 120C. 168D. 1926. 若数列a 动是等差数列,首项a1> 0, B2 003 + a2 004 > 0 , a2 003·a2 004 < 0 , 则使前n项和Sn>0成立的最大自然数E=In 定:().A. 4 005B. 4 006C. 4 007D. 4 0087. 已知等差数列{劲的公差为2,若a1, a3 , a4成等比数列则a2=().A. -4B. -6C. -8D. -108. 设岛是等差数列{劲的前n项和,若化=5 S ——,贝u----2...= ()a 39 S 5A. 1 B . -1C.2 l-2.D 9. 已知数列-l,a1,a2-4成等差数列-1 a — 2 aII纺,纺,�/-4成等比数列,则]的值是(b 2)1_2. A l -2 . B l -2 或l -2 . cl-4. D 10. 在等差数列{孔}中,a n t:-0,a n -l -a�+ a n +l = O (n�2), 若S2n -l = 38 , 则n =( ) .A. 38B. 20C. 10D.9二、填空题11 . 设心= 1,利用课本中推导等差数列前n 项和公式的方法,可求得I(-5) + I(-4) + ... + f(O) +…+ /(5) 2勹一五+ /(6)的值为12. 已知等比数列{动中,(1)若a3盆·as =8, 则a2·务函岔兔=(2)若a1+ a2 = 324 , a3 + a4 = 36 , 则as+a 产(3)若S4=2,Ss =6,则a17+ a1s + a19 + a20 = 8 2713 . 在-和—之间插入三个数,使这五个数成等比数列,则插入的三个数的乘积为14. 在等差数列{孔}中,3(a 产生)+ 2(动+a10 + a13) = 2 4 , 则此数列前13项之和为15 . 在等差数列{孔}中,as =3,a6= -2, 则a4+as+…+a10 =16. 设平面内有n 条直线(n�3)/其中有且仅有两条直线互相平行,任意三条直线不过同—点.若用杯)表示这n 条直线交点的个数,则私)=三、解答题;当n>4时,杯)=17 . (1)已知数列{孔}的前n 项和S n =3rF -2n,求证数列{孔}成等差数列(2)已知1 1 1 — —, -成等差数列,求证b+cc+a a+b也成等差数列abcab c18. 设{孔}是公比为q的等比数列,且a1,a3,a2成等差数列.(1)求q的值;(2)设{如是以2为首项,q为公差的等差数列,其前n项和为S n,当n�2时,比较岛与幻的大小,并说明理由.19. 数列{孔}的前n项和记为S n,已知a1= 1 求证:数列{二}是等比数列.n+2, an+ 1 = Sn(n = 1 , 2 , 3 ...) .20. 已知数列{孔}是首项为a且公比不等于1的等比数列,岛为其前n项和,a1/ 2句,3a4成等差数列,求证:1253 / 55 / 512 -55成等比数列第二章数列参考答案一、选择题1.C解析:由题设,代入通项公式a n=a1 +(n -l)d, 即2005 = 1 +3(n -1) ,.·.n = 699 .2.C解析:本题考查等比数列的相关概念,及其有关计算能力.设等比数列{孔}的公比为q(q>0) /由题意得a1+ a2 +a3 = 21 ,即a1(l+ q+矿)= 21, 又a1=3,:.l+q+矿=7.解得q=2或q=-3(不合题意,舍去),.岛+函+a s=a1矿(1+ q+矿)= 3x2奴7=84.3.B.解析:由a1+as=a4+a s,才非除C.又a1岔=a1(a1 +7动=a产+7 a1d,a4· 无=(a1 +3功(a1+ 4动=a产+7 a1d + 12d > a1·as .4.C解析:1解法1:设a1= , a尸1 1 1— —+ d, a3 = -+ 2d, a4 =—+3d, 而方程烂-2x+m=O中两根之和为2烂-2x+n=O4 4 4 4中两根之和也为2,.a1 +a2 +a3 +函=1+6d=4,7 3 5:.d=—, a1 =—, a4=—是一个方程的两个根,a1=—, a产—是另一个方程的两个根.2 4 4 4 47 15.-. —, —分别为m或n,1616.-. Im -n I =_!_, 故选C .2解法2:设方程的四个根为X 1, X2 , X3 , X4 , 且X 1+X2=X3+X4=2 IX1为=m ,X3凶=n.由等差数列的性质:若等差数列为,1 3 5 7 4 4 4 4715 :.m =—, n =— 1616+s =p +q ,则a7+ a s = a p+ a q /若设X1为第—项,X 2必为第四项,则X2=—,千是可得4.-. Im -n I.1-25.B解析:a2 = 9 , as = 243 , 生-=矿=—-243 =27 a 29.·.q = 3 I a1q = 9 I a1 = 3 I S 4= 3—35=严=120l —326. B 解析:解法1:由a2003 + a 2 004 > 0 , a2 003·a2 004 < 0 , 知a2003和a2004两项中有—正数—负数,又a1> 0 /则公差为负数,否则各项总为正数,故a2003 > a2 004 , 即a2003 > 0 , a2 004 < 0.4 006(a1+a 4 006 )4 006(a +a ).-. 54 006 ==2 003 2 004 > O ,224 0074 007 :.S4 007 =·(a1+ a4 007) =·2a2 004 < 0 , 22 故4006为S n>0的最大自然数选B.解法2:由a1> 0 , a2 003 + a2 004 > 0 , a2 003·a2 004 < 0 ,同解法1的分析得a2003 >0 , a2 004 < 0 ,.·.S2 003为岛中的最大值.I(第6题)岛是关于n的二次函数,如草图所示,.2 003到对称轴的距离比2004到对称轴的距离小,4 007.在对称轴的右侧.根据已知条件及图象的对称性可得4006在图象中右侧零点B的左侧,4007 I4 008都在其右侧,S n >0的最大自然数是4006.7.B解析:了{孔}是等差数列,..岔=a1 + 4 , a4 = a1 + 6 , 又由a1, a 3, a4成等比数列,..(a1 + 4)2 = a1(a1 + 6) , 解得a 1= -8 t .a 2 = -8 + 2 = -6 . 8.AA 选, 1 __ 5-9 9-5 = 53 a a .. 95 __ 、丿、晶,丿95 a a +2+2a l a _ (( 95 __ s 9-i ·' .. 析解9.A解析:设d和q分别为公差和公比,则-4 = -1 + 3d且-4 = (-1) cf / .d = -1 , 矿=2,a -a .2 I d l ..= =— 九-矿210. C解析:{孔}为等差数列,a�= an-l + an+l, .·.a�= 2an, 又BntO, ."孔=2 / {孔}为常数数列,s2n-138而a n =I即2n -1 =—= 19,2n -12:.n = 10二、填空题11. 3五.解析:了伈劝=2勹一五2x.f(_l -劝=1 =2x=✓2 i 1-x 十五2+✓2·2x 忒+2XI·2x l + 1.y1(✓2+ 2x)伈店-劝=1+✓2=✓2 =✓2五+2x迈+2x五+2x丘+2x设S =I(_ -5) +/(_ -4) +…+和)+…+朽)+秅),贝U 5 = /(_6) + /(_5) +…+ f(_O) +…+ I(_ -4) + I(_ -5):.2S = [/(_6) + I(_ -5)] +团5)+ /(_ -4)] +…+ [/(_ -5) +秅)] = 6✓2..S = I(_ -5) + /(_ -4) + ... +和)+…+朽)+秅)=3五.12 . (1) 32 ; (2) 4 ; (3) 32 . 解析:(1)由a3岔=Q�/得a4= 2I_2__ :.a2·a3·a4·a5·a6 = a 5 = 32. (2) {a , + a , �324⇒ 矿=丿(a, +aJ 矿=369 I.岛+a6= (a1 + a2)才=4.(3){义�a 三+a ,+a 4�24⇒旷�2'S 8=a 1+a 2+· · ·+a 8=S 4+S 4q:.a 17 + a 1s + a19 + a20 = S4泸=32.13 . 216 .8 27解析:本题考查等比数列的性质及计算,由插入三个数后成等比数列,因而中间数必与-,—同号,由等比中项的中间数为厂产=6I ..插入的三个数之积为汇竺x6= 216. 3 23214. 26.解析:·.岔+a s =2a4, 句+au =2a10, :.6(a4 + a 10) = 24 , a4 + a 10 = 4 , :.S 13 =13(a 1+a 13) 13(a 4+a 10) 13X42 = 2 = 2= 26. 15 . -49. 解析:·:d =a 6 -a s = -5 , .·.a4 +a s+…+ a10 =7(a 4+a 10)_ 7(a 5—d+a 5+5d) =7(a s +2动= -49.16. 5, —(n + l)(n-2) . 解析:同一平面内两条直线若不平行则一定相交,故每增加一条直线一定与前面已有的每条直线都相交,.f(k)=f(k-1) + (k-1)由/(3)= 2/(4) = /(3) + 3 = 2 + 3 = 5 , /(5) = /(4) + 4 = 2 + 3 + 4 = 9 ,f(n) = f(n -1) + (n -1), 相加得杯)=2+3+4+ 三、解答题1…+ (n -1) =—(n + l)(n -2) . 2 17. 分析:判定给定数列是否为等差数列关键看是否满足从第2项开始每项与其前一项差为常数.证明:(1) n= 1时,a1=51=3-2=1,当n�2时,a n =S n -S n _ 1 = 3 ff -2 n -[3(n -1)2 -2(n -1)] = 6n -5 n=l 时,亦满足,:.a n =6n -S(nE N *) .首项a1= 1 ,a n -a n -1 = 6n -5 -[6(n -1) -5] = 6(常数)(nEN*),.数列{动成等差数列且a1= 1, 公差为6.(2) .. 1 1 1 , 成等差数列,a b c 2 1 1 :. —=-+-化简得2a c =以a +CJ b a cb+c a+b += bc+c 2+a 2+ab b(a+c)+a 2+c 2 (a+c)2 (a+c)2 a+c = = = = 2a C ac acac b(a+c) b . b+c c+a a+b, 也成等差数列.a bc 18. 解:(1)由题设2a3= a1 + a2 , 即2a心=a1 + a1q, :a1-:t-O, :.2矿-q -1=0,:.q= 1或-—.12(2)若q=1, 则S n =2n+= n(n —I) n 2+3n 2 2当n�2时,S -b n = S n -(n —1) (n+2)n 1=>O, 故S n >b n .若q = 2I n(n 1),则S n =2n + l —n +9n -—(-—) =2 2 2 4. 当n�2时,S n -炕=S n -1 =, (n —I) (IO —n)2故对于nEN+,当2匀区9时,S 户肛;当n =10时,S n =b n ; 当n�ll时,S n <b n . 19. 证明...n+2 .. a n +i = Sn+l -S n I a n +i = nS n I .·.(n + 2)S n = n(S n +l -S n ),整理得nS n +l = 2(n + 1) S n , s 所以n +l 2S n n+I n s 故{二}是以2为公比的等比数列.20. 证明:由a1/ 2句,3a4成等差数列,得4句=a1 + 3a4, 即4a1cf = a1 + 3a1矿,变形得(4矿+1)(矿-1) = 0 , 1 矿=--或矿=1(舍).4 吓-矿)由戈=1-q = l+q 3 =上12S 3 12a, (1-矿)12 16 1—qa l (l —q '2) S ,2-S 6 =旯l —q 1-1= -1=1+ -1=—·# s 6 s 6 a , (1—q 勹得戈=凡-S 6. 12S 3 S 61-q .12S3 I S5 I S12 -吴成等比数列.16。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数列解答题专题训练1 班级_________姓名__________日期:1.已知正项数列}{n a 的前n 项和为n S ,321=a ,且满足211322++=+n n n a S S )(*N n ∈。

(1)求数列}{n a 通项公式n a ; (2)求证:当2≥n 时,2222234111194n a a a a ++++<。

解:(1)1≥n 时, 211322++=+n n n a S S ……………①2≥n 时,21322n n n a S S =+-…………………②………………………1分2≥n 时,①-②得:3221=++n n a a )(221n n a a -+∵0>n a ∴01>++n n a a ,321=-+n n a a ……………3分 令2=n ,2223322)32(2a a =⨯++∵02>a ∴342=a 2≥n 时,n n a n 3232)2(34=⨯-+=又321=a ∴)(32*N n n a n ∈=………………………6分(2)当2≥n 时,左边222291111()4234n=++++91111[]4122334(1)n n <++++⨯⨯⨯- 91111111(1)4223341n n=-+-+-++--49)11(49<-=n ∴当2≥n 时,2222311194n a a a +++<2.在数列{}n a 中,311=a ,并且对于任意*∈N n ,且1>n ,都有n n n n a a a a -=⋅--11成立,令()*∈=N n a b nn 1.(Ⅰ)求数列{}n b 的通项公式;(Ⅱ)求数列⎭⎬⎫⎩⎨⎧n a n 的前n 项和n T ,若对于任意的正整数n 都有n T ≥m 成立,试求常数m 的最大值. 解:(I ),31,111===a b n 时当 111,21111=⋅-=-=-≥----n n n n n n n n a a a a a a b b n 时当, ∴数列}{n b 是首项为3,公差为1的等差数列,∴数列}{n b 的通项公式为2+=n b n .(II )11111()(2)22n n a n nb n n n n ===-++, ∴31121231n n n aa a a a T n n -=+++++-1111111111[(1)()()()()]232435112n n n n =-+-+-++-+--++ 1311[()]2212n n =-+++ 又 ()()03111>++=-+n n T T n n , 故 n T 的最小值为311=T ,从而所求m 最大值为31.1、设数列}{n a 的前n 项和为S n =2n 2,}{n b 为等比数列,且.)(,112211b a a b b a =-= (1)求数列}{n a 和}{n b 的通项公式; (2)设nnn b a c =,求数列}{n c 的前n 项和n T 。

解:(1):当111,2;n a S ===时 ,24)1(22,2221-=--=-=≥-n n n S S a n n n n 时当故{a n }的通项公式为4,2}{,241==-=d a a n a n n 公差是即的等差数列. 设{b n }的通项公式为.41,4,,11=∴==q d b qd b q 则 故.42}{,4121111---=⨯-=n n n n n n b b q b b 的通项公式为即 ……………6分(2),4)12(422411---=-==n n nn nn n b a c]4)12(4)32(454341[4],4)12(45431[13212121nn n n n n n n T n c c c T -+-++⨯+⨯+⨯=-++⨯+⨯+=+++=∴--两式相减得 ].54)56[(91]54)56[(314)12()4444(2131321+-=∴+-=-+++++--=-n n n n n n n T n n T2.已知数列{}n a 的前n 项和为n S ,满足22()n n S a n n N +=-∈,(1)求数列{}n a 的通项公式n a ;(2)若数列{}n b 满足2log (2),n n b a =+n T 为数列{}2n n b a +的前n 项和,求证:12n T ≥. (1)解:当n N +∈时,22n n S a n =-,则当2n ≥, n N +∈时,1122(1)n n S a n --=--①-②,得1222n n n a a a -=--,即122n n a a -=+ ∴122(2)n n a a -+=+,∴1222n n a a -+=+,当1n =时,1122S a =-,则12a =.∴{2}n a +是以124a +=为首项,2为公比的等比数列,∴112422n n n a -++=⋅=, ∴122n n a +=-………………………6分 (1) 证明:122log (2)log 21n n n b a n +=+==+.∴1122n n n b n a ++=+, 则231231222n n n T ++=++⋅⋅⋅+, 3412123122222n n n n n T +++=++⋅⋅⋅++…………………………④ ③-④,得23412121111222222n n n n T +++=+++⋅⋅⋅+-211(1)114214212n n n +-+=+-- 1211114222n n n +++=+--23342n n ++=- ∴13322n n n T ++=-. 11.已知数列{}n a 的前n 项和为n S ,且满足)2(02,2111≥=+=-n S S a a n n n (错误!未找到引用源。

) 判断⎭⎬⎫⎩⎨⎧n S 1是否为等差数列?并证明你的结论;(错误!未找到引用源。

) 求n S 和n a ;(错误!未找到引用源。

)求证:nS S S n412122221-≤+++ 。

解:(1),即时,当111111-2,2.21,21---=--=≥=∴==n n n n n n n S S S S S S a n S a S为公差的等差数列。

为首项,以是以故221.2111⎭⎬⎫⎩⎨⎧=-∴-n n n S S S (2)由1)得().21,22121nS n n S n n ==⨯-+= 时当2≥n ,;)1(2121--=-=-n n S S a n n n .21,11==a n 时当 ⎪⎪⎩⎪⎪⎨⎧≥--==∴2,)1(211,21n n n n a n ()2221222222211111111=(1)44243442311111111111111122314223124n S S S n n n n n n n +++=++++++++⨯⨯⨯⎡⎤⎛⎫≤++++=+-+-++-=-⎢⎥ ⎪⨯⨯--⎝⎭⎣⎦2.已知等差数列}{n a 满足:公差.0>d 1421-=⋅+n a a n n (n=1,2,3,…)①求通项公式n a ; ②求证:212a a + 322a a +432a a +…+121<+n n a a . 解: ① ∵1421-=⋅+n a a n n ∴.12-=n a n②∵142221-=+n a a n n 121121)12)(12(2+--=-+=n n n n ∴212a a + 322a a +432a a +…+12+n n a a 111111(1)()()=1 1.335212121n n n =-+-++--<-++1.已知数列{}n a 满足23123222241n n n a a a a ++++=-。

(1)求{}n a 的通项;(2)设21n nb a =,求{}n b 的前项和。

解:(1) 231232222=41n n n a a a a ++++-2n ≥,231112312222=41n n n a a a a ---++++-,∴1143442--⋅=-=n n n n n a ∴当2n ≥时,n n a 243⋅=,又n=1时 2a 1 =41-1得a 1=3/2,∴n n a 243⋅= (2) 222114141=3323424n nn n n b a ⎛⎫⎛⎫==⋅= ⎪ ⎪⎝⎭⎝⎭⋅故{}n b 是以31为首项,41为公比的等比数列,∴nnn S ⎪⎭⎫ ⎝⎛-=-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-=41949441141131 2、已知二次函数)(x f y =的图像经过坐标原点,其导函数为.26)(-='x x f 数列{n a }的前n 项和为n S ,点))(,(*N n S n n ∈均在函数)(x f y =的图像上.(I )求数列{n a }的通项公式;(II )设13+=n n n a a b ,}{n n b T 是数列的前n 项和,求使得20mT n <对所有*N n ∈都成立的最小正整数m .解:(I )设这二次函数b ax x f a bx ax x f +=≠+=2)(),0()(2则,由于2)(-=bx x f ,得x x x f b a 23)(,2,32-=-==所以又因为点)())(,(*x f y N n S n n =∈均在函数的图像上,所以.232n n S n -=当)]1(2)1(3[)23(,2221-----=-=≥-n n n n S S a n n n n 时.56-=n(II )由(I )得知]5)1(6)[56(331---==+n n a a b n n n ).161561(21+--=n n故)]161561()13171()711[(21+--++-+-=n n T n ).1611(21+-=n 因此,要使m N n m n 成立的)(20)1611(21*∈<+-,必须且仅须满足,2021m≤即10≥m ,所以满足要求的最小正整数m 为10。

数列解答题专题训练5 班级_________姓名__________日期:1. 等比数列{n a }的前n 项和为n S , 已知对任意的n N +∈ ,点(,)n n S ,均在函数(0xy b r b =+>且1,,b b r ≠均为常数)的图像上.(1)求r 的值; (11)当b=2时,记 1()4n nn b n N a ++=∈ 求数列{}n b 的前n 项和n T 解:因为对任意的n N +∈,点(,)n n S ,均在函数(0xy b r b =+>且1,,b b r ≠均为常数)的图像上.所以得n n S b r =+,当1n =时,11a S b r ==+,当2n ≥时,1111()(1)n n n n n n n n a S S b r b r b b b b ----=-=+-+=-=-, 又因为{n a }为等比数列, 所以1r =-, 公比为b , 所以1(1)n n a b b -=-(2)当b=2时,11(1)2n n n a b b --=-=, 111114422n n n n n n n b a -++++===⨯ 则234123412222n n n T ++=++++; 3451212341222222n n n n n T +++=+++++相减,得23451212111112222222n n n n T +++=+++++-= 31211(1)112212212n n n -+⨯-++--12311422n n n +++=--所以113113322222n n n n n n T ++++=--=-2.设数列{}n a 的前n 项和为,n S 已知11,a =142n n S a +=+(I )设12n n n b a a +=-,证明数列{}n b 是等比数列(II )求数列{}n a 的通项公式。

相关文档
最新文档