第六章 实数 三维目标教案 新版人教七年级数学下册
人教版初中数学七年级下册6.3.1《实数》教案设计

人教版初中数学七年级下册6.3 实数教案思考:实数还可以怎样分类?典例精析例1.将下列各数分别填入下列相应的括号内:,93,7,π16,-,5-,83-4,9,0,250.3232232223⋅⋅⋅14,无理数:{ } 有理数:{ } 正实数:{ } 负实数:{ }方法总结:对每个数都要进行判断,分类标准不同结果不同.探究点2:实数与数轴上的点问题8:如图,直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上一点从原点到达A 点,则数轴上表示点A 的数是多少?问题9:你能在数轴上表示出2和 -2吗?方法总结:每一个实数都可以用数轴上的一个点来表示;【教学提示】通过例题充分理解实数的分类。
【教学提示】引导学生观察OA 的长与园的关系,从而得到A 点所表示的数。
【教学提示】通过边长为1的小正方形的对角线的长为2,引导学生自己归纳在数轴上画出2和 -2。
【教学提示】通过例题,让学生体会数轴上的点与实数A0 -- 1 3 2 4●●反过来,数轴上的每一点都表示一个实数.★实数和数轴上的点是一一对应的.例2:如图所示,数轴上A ,B 两点表示的数分别为 和5.1,则A ,B 两点之间表示整数的点共有( ) A .6个 B .5个 C .4个 D .3个 探究点3:实数的大小比较 知识要点:实数的大小比较与有理数规定的大小一样,数轴上右边的点表示的实数比左边的点表示的实数大. 问题10:不用计算器,5与2比较哪个大?与3比较呢?5,2可以分别看作是面积为5,4的正方形的边长,容易说明:面积较大的正方形,它的边长也较大,因此25> 例3 试在数轴上标出π,35-,的大致位置,并借助数轴比较它们的大小. 例4 比较下列各组数的大小: ();与31-121 () 3.-10-2与 探究点4:实数的性质 知识要点:在实数范围内 ,相反数、倒数、绝对值的意义和有理数范围内的相反数、倒数、绝对值的意义完全一样. 例5:分别求下列各数的相反数、倒数和绝对值. .11 (3) ; 225 (2) ; 64 )1(3-课堂小结基础训练1.判断快枪手——看谁最快最准!(1)实数不是有理数就是无理数. ( ) (2)无理数都是无限不循环小数. ( ) (3)带根号的数都是无理数. ( ) (4)无理数都是无限小数. ( )一一对应。
新人教版七年级下册第六章实数教案

新人教版七年级下册第六章实数教案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第六章 实数6.1.1平方根第一课时【教学目标】知识与技能:通过实际生活中的例子理解算术平方根的概念,会求非负数的算术平方根并会用符号表示;教学重点:算术平方根的概念和求法。
教学难点:算术平方根的求法。
教学方法: 自主探究、启发引导、小组合作【教学过程】一、情境引入:问题:学校要举行美术作品比赛,小欧很高兴,他想裁出一块面积为225dm 的正方形画布,画上自己得意的作品参加比赛,这块正方形画布的边长应取多少?二、探索归纳:1.探索:学生能根据已有的知识即正方形的面积公式:边长的平方等于面积,求出正方形画布的边长为dm 5。
接下来教师可以再深入地引导此问题:如果正方形的面积分别是1、9、16、36、254,那么正方形的边长分别是多少呢?学生会求出边长分别是1、3、4、6、52,接下来教师可以引导性地提问:上面的问题它们有共同点吗它们的本质是什么呢这个问题学生可能总结不出来,教师需加以引导。
上面的问题,实际上是已知一个正数的平方,求这个正数的问题。
2.归纳:⑴算术平方根的概念:一般地,如果一个正数x 的平方等于a ,即x2=a 那么这个正数x 叫做a 的算术平方根。
⑵算术平方根的表示方法:a 的算术平方根记为a ,读作“根号a ”或“二次很号a ”,a 叫做被开方数。
三、应用:求下列各数的算术平方根:⑴100 ⑵6449 ⑶971 ⑷0001.0 ⑸0解:⑴因为,100102=所以100的算术平方根是10,即10100=; ⑵因为6449)87(2=,所以6449的算术平方根是87,即876449=; ⑶因为916)34(,9169712==,所以971的算术平方根是34,即34916971==; ⑷因为0001.001.02=,所以0001.0的算术平方根是01.0,即01.00001.0=;⑸因为002=,所以0的算术平方根是0,即00=。
新人教版七年级数学下册《六章 实数 数字活动》教案_2

人教版七年级下册数学第六章数学活动教学设计一、教学目标1)知识目标:探索正方体和圆柱体的制作方法,掌握计算正方体的棱长和圆柱体侧面展开图的长与宽的方法,并用数轴上的点表示。
2)能力目标:体验数学活动中的探索与创造,培养学生的观察、归纳、动手实践能力以及分析问题、解决问题能力。
3)情感目标:通过计算、测量、裁剪、粘贴等手段,探索正方体和圆柱体的制作方法,感受数学知识与动手实践相结合的乐趣,体会数学知识与生活的密切联系,并在合作学习中获得成功的体验。
二、教材分析与学情分析本节活动课实际上是对第六章知识的一个小节,第六章主要包括算术平方根、平方根、立方根以及实数的有关概念运算和实数在数轴上的表示等内容。
通过本章的学习,学生对数的认识就由有理数范围扩大到实数范围,本活动课通过动手实践完成无理数在数轴上的表示,并探索如何制作正方体和圆柱体,有利于同学们消化吸收本章知识,并培养学生理解空间几何体的能力。
本活动课不仅是初中阶段学习几何图形、实数等知识的基础,也是学习高中数学内容的基础。
学生们已经在七年级上学期掌握了正方体和圆柱体的展开图的形式,同时在本学期实数章节又学习了如何在数轴上表示无理数的运算,本活动课是一个很好的巩固提高过程同时能体现同学们的动手能力、实践能力。
三、教学重点、难点分析重点是探索并实践制作正方体和圆柱体的方法以及如何用数轴表示制作正方体和圆柱体时所用到的无理数。
难点是如何用数轴表示制作正方体和圆柱体时所用到的无理数。
四、教学方法本节课采取引导发现、自主探究、动手实践、总结归纳等多种方法,并结合多媒体直观教学,数形结合,动手操作等多种形式的教学手段进行教学,以小组讨论的学习形式,让学生成为课堂主体,不仅充分调动了学生的积极性,也让整个课堂活跃了起来。
五、教学准备铅笔、直尺、剪刀、卡纸、透明胶带、圆规、微课视频、多媒体课件、多媒体展台六、教学过程(一)复习导入、回顾旧知1.观看正方体与圆柱体展开视频,回顾正方体和圆柱体的展开图(上示三图为视频截图)问题1:图中的几何体是什么图形?问题2:你们尝试过将一个正方体展开吗?问题3:谁能说出你所知道的正方体展开图形式?【设计意图】:通过课件演示和提问帮助学生回顾正方体和圆柱体的展开图。
七年级数学下册6实数教案新版新人教版

第六章实数6.1平方根(1)掌握平方根的定义,会求平方根.重点平方根的概念及其符号表示.难点理解平方根的概念.一、创设情境,引入新课问题 学校要举行美术作品比赛,小鸥很高兴.想裁出一块面积为25 dm 2的正方形画布,画上自己的得意之作参加比赛,这块正方形画布的边长应取多少?师:∵52=25,∴这个正方形画框的边长应取5 dm . 二、讲授新课师:请同学们填表:师:上面的问题,实际上是已知一个正数的平方,求这个正数的问题.师:一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 叫做a 的算术平方根.记作a ,读作“根号a ”,a 叫做被开方数.规定:0的算术平方根是0. 师:我们一起来做题. 展示课件:【例】 求下列各数的算术平方根:(1)100; (2)4964; (3)0.0001.学生活动:尝试独立完成.教师活动:巡视、指导,派一生上黑板板演. 师生共同完成.解:(1)∵102=100,∴100的算术平方根是10. 即100=10.(2)∵(78)2=4964,∴4964的算术平方根是78,即4964=78.(3)∵0.012=0.0001,∴0.0001的算术平方根是0.01,即0.0001=0.01.三、随堂练习课本第41页练习.四、课堂小结本节课你学到了哪些知识?与同伴交流.师生共同归纳算术平方根的定义及其表示方法.教师首先利用例子提出问题:请你说出上面等式右边各数的平方根,通过学生动脑动口加深对算术平方根概念的初步理解;然后在上面叙述的基础上提出算术平方根概念的符号表示方法,同时用练习巩固所学新知,由量变到质变,使学生能牢固掌握本节内容.6.1平方根(2)能用夹值法求一个数的算术平方根的近似值,会用计算器.重点夹值法估计一个数的算术平方根的大小.难点夹值法估计一个数的算术平方根的大小.一、创设情境,引入新课师:怎样用两个面积为1的小正方形拼成一个面积为2的大正方形?运用多媒体,展示课件:怎样用两个面积为1的小正方形拼成一个面积为2的大正方形?学生活动:小组合作操作、观察、交流.二、讲授新课师:将两个小正方形沿对角线剪开,得到几个直角三角形?生:4个.师:大正方形的面积多大?生:面积为2的大正方形.师:这个大正方形的边长如何求?学生活动:尝试独立完成.教师活动:启发,适时点拨.师生共同归纳:设大正方形的边长为x,则x2=2,由算术平方根的意义可知:x= 2. ∴大正方形的边长为 2.师:小正方形的对角线的长为多少?生:对角线长为 2.师:很好,2有多大呢?学生活动:小组合作交流.教师活动:适时启发,点拨.师生共同归纳:∵12=1,22=4,∴1<2<2.∵1.42=1.96,1.52=2.25,∴1.4<2<1.5.∵1.412=1.9881,1.422=2.0164,∴1.41<2<1.42.∵1.4142=1.999396,1.4152=2.002225,∴1.414<2<1.415.……如此进行下去,可以得到2的更精确的近似值.其实,2=1.41421356……它是一个无限不循环小数,无限不循环小数是指小数位数无限,且小数部分不循环的小数.师:你能举出几个例子吗?生:能,如:3、5、7等.师:如何用计算器求出一个正有理数的算术平方根(或其近似值).学生活动:尝试独立完成例2.师:请同学们用计算器求出引言中的第一宇宙速度、第二宇宙速度.学生活动:用计算器小组合作完成.第一宇宙速度:v1≈7.9×103m/s;第二宇宙速度:v2≈1.1×104m/s.展示课件:1.利用计算器计算,并将计算结果填在表中,你发现了什么规律?你能说出其中的道理吗?师:你能说出其中的规律吗?学生活动:小组讨论交流.师生共同归纳:求算术平方根时,被开方数的小数点要两位两位地移动,当被开方数向左(右)每移动两位时,它的算术平方根相应地向左(右)移动一位.新知应用:师:我们一起来做题:展示课件.运用多媒体:【例】小丽想用一块面积为400 cm2的正方形纸片,沿着边的方向裁出一块面积为300 cm2的长方形纸片,使它的长宽之比为3∶2.她不知能否裁得出来,正在发愁.小明见了说:“别发愁,一定能用一块面积大的纸片裁出一块面积小的纸片.”你同意小明的说法吗?小丽能用这块纸片裁出符合要求的纸片吗?解:设长方形纸片的长为3x cm,宽为2x cm.根据边长与面积的关系得3x·2x=300,6x2=300,x2=50,x=50.因此长方形纸片的长为350 cm.因为50>49,所以50>7.由上可知350>21,即长方形纸片的长应该大于21 cm.因为400=20,所以正方形纸片的边长只有20 cm.这样,长方形纸片的长将大于正方形纸片的边长.【答】不能同意小明的说法.小丽不能用这块正方形纸片裁出符合要求的长方形纸片.三、随堂练习课本第44页练习.四、课堂小结通过本节课的学习,你有哪些收获?与同伴交流.1.使每个学生都参与用计算器求一个正有理数的算术平方根,由于有的同学没有带计算器,所以没有很好地理解所学的知识.2.平方根移动的规律,须让学生通过查表、探索、发现、总结,最好是自己找出其中所蕴含的规律.6.1平方根(3)数的开方意义、平方根的意义、平方根的表示法.重点平方根.难点正确理解平方根的意义.一、创设情境,引入新课师:如果一个数的平方等于9,这个数是多少?学生思考、讨论.生:3.师:除此之外,还有没有别的数的平方也等于9呢?生:-3.师:所以,若一个数的平方等于9,这个数是3或-3.二、讲授新课师:请同学们填表.展示课件:如果一个数的平方等于a,那么这个数叫做a的平方根或二次方根.用字母表示为:如果x2=a,则x叫做a的平方根.例:3和-3是9的平方根,简记为±3是9的平方根.求一个数a的平方根的运算,叫做开平方.师:请同学们看图.展示课件:师:平方与开平方有何联系? 生:平方与开平方互为逆运算.师:我们可以根据这种运算关系,来求一个数的平方根.请同学们做题: 【例】 求下列各数的平方根: (1)100;(2)916;(3)0.25.解:(1)因为(±10)2=100,所以100的平方根是±10; (2)因为(±34)2=916,所以916的平方根是±34;(3)因为(±0.5)2=0.25,所以0.25的平方根是±0.5.师:正数、负数、0的平方根有何特点? 生讨论、交流. 师生共同分析:正数的平方根有两个,它们互为相反数,正的平方根是这个数的算术平方根. ∵负数的平方是正数,∴在我们所认识的数中,任何一个数的平方都不会是负数. ∴负数没有平方根. ∵02=0,∴0的平方根是0.归纳:①正数有两个平方根,它们互为相反数; ②负数没有平方根; ③0的平方根是0.师:正数a 的平方根表示为±a ,读作“正、负根号a ”. 如:±9=±3,±25=±5.师:a 只有当a ≥0时有意义,a <0时无意义,为什么? 生:负数没有平方根. 师:请大家做题. 求下列各式的值:(1)144;(2)-0.81;(3)±121196. 学生活动:尝试独立完成,一生上黑板板演. 教师活动:巡视、指导、纠正. 师生共同完成:(1)∵122=144,∴144=12.(2)∵0.92=0.81,∴-0.81=-0.9. (3)∵(±1114)2=121196,∴±121196=±1114. 三、随堂练习课本第46页、第47页第1、2、3、4题. 四、课堂小结通过本节课的学习,你有哪些收获?请与同伴交流.1.提供足够的时间,让学生理解平方根的意义.掌握正数、0、负数的平方根的特点. 2.多提供适量的有代表性的习题,随堂练习. 3.易出错的题目随堂订正.6.2 立方根掌握立方根的定义;正数、负数、0的立方根的特点;用计算器求立方根.重点掌握立方根的定义.难点运用所学知识解决问题.一、创设情境,引入新课要制作一种容积为27 m 3的正方体形状的包装箱,这种包装箱的边长应该是多少? 师:设这种包装箱的边长为x m ,则 x 3=27这就是要求一个数,使它的立方等于27. ∵33=27, ∴x =3.即这种包装箱的边长为3 m .师:一般地,如果一个数的立方等于a ,那么这个数叫做a 的立方根或三次方根.即:如果x 3=a ,那么x 叫做a 的立方根. ∵33=27,∴3是27的立方根. 师:什么是开立方?生:求一个数的立方根的运算,叫做开立方.师:正如开平方与平方互为逆运算一样,开立方与立方也互为逆运算,据此我们可以求一个数的立方根.师:请看大屏幕.根据立方根的意义填空,看看正数、0和负数的立方根各有什么特点? ∵23=8,∴8的立方根是(2);∵(0. 5)3=0. 125,∴0.125的立方根是(0.5);∵(0)3=0,∴0的立方根是(0);∵(-2)3=-8,∴-8的立方根是(-2);∵(-23)3=-827,∴-827的立方根是(-23).师生共同归纳:正数的立方根是正数. 负数的立方根是负数. 0的立方根是0.师:你能说说数的平方根与数的立方根有什么不同吗? 生:每一个数均有一个立方根,而负数没有平方根.师:一个数a的立方根表示法:3a,读作“三次根号a”.其中a是被开方数,3是根指数.如38表示8的立方根,即38=2.3-8表示-8的立方根,即3-8=-2.3a中的根指数3不能省略.注:算术平方根的符号a,实际上省略了2a中的根指数2,因此a也可读作“二次根号a”.师:请同学们填空:∵3-8=________,-38=________.∴3-8________-38.∵3-27=________,-327=________.∴3-27________-327.一般地,3-a________-3a.师:请同学们做题:【例】求下列各式的值:(1)364;(2)-318;(3)3-2764.解:(1)364=4;(2)-318=-12;(3)3-2764=-34.其实,很多有理数的立方根是无限不循环小数.如32、33等都是无限不循环小数,可以用有理数、近似数表示它们.师:请同学们用计算器求出一个数的立方根.学生活动:用计算器求一些数的立方根.师:请同学们观看大屏幕.用计算器计算…,30.000216,30.216,3216,3216000,…,你能发现什么规律?用计算器计算3100(精确到0.001),并利用你发现的规律求30.1,30.0001,3100000的近似值.师:同学们发现了什么规律?学生讨论、交流并发言.师生共同归纳:被开方数的小数点向左(右)每移动三位,其立方根的小数点相应地向左(右)移动一位.二、随堂练习课本第51页练习.三、课堂小结通过本节课的学习,你有哪些收获?请与同伴交流.教学设计着重于把立方根与开立方进行类比教学,注重概念的形成过程,让学生在新概念的形成过程中,逐步理解新概念,通过设置问题,组织思考讨论来帮助学生理解立方根和开立方的概念.让学生通过实例和抽象类比来理解立方根与平方根概念的联系与区别.6.3实数第1课时实数了解无理数和实数的意义,会对实数进行分类,了解实数的绝对值和相反数的意义.重点理解实数的概念.难点运用所学知识解决问题.一、创设情境,引入新课师:请同学们使用计算器,把下列有理数写成小数的形式,你有什么发现? 3,-35,478,911,1190,59生1:3=3.0 -35=-0.6 478=5.875911=0.81 1190=0.12 59=0.5 生2:这些有理数都可以写成有限小数或者无限循环小数. 二、讲授新课 师:很好,其实,任何一个有理数都可以写成有限小数或无限循环小数的形式.反过来,任何有限小数或无限循环小数也都是有理数.师:很多数的平方根和立方根都是无限不循环小数,无限不循环小数叫做无理数.例如:2、-5、32、33等都是无理数.π=3. 14159265……也是无理数.师:有理数和无理数统称实数.实数⎩⎪⎨⎪⎧有理数 有限小数或无限循环小数无理数 无限不循环小数师:像有理数一样,无理数也有正负之分.无理数⎩⎨⎧正无理数 2,33,π,……负无理数 -2,-33,-π,……师:由于非0有理数和无理数都有正、负之分,所以实数可以这样分类:实数⎩⎪⎨⎪⎧正实数⎩⎪⎨⎪⎧正有理数正无理数0负实数⎩⎪⎨⎪⎧负有理数负无理数师:每个有理数都可以用数轴上的点来表示,无理数也可以用数轴上的点来表示.请大家观看大屏幕: 如图所示,直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上的一点由原点到达点O ′,点O ′的坐标是多少?师:从图中可以看出,OO ′的长是多少? 生1:这个圆的周长为π. 师:O ′的坐标是多少? 生2:O ′的坐标是π.师:所以无理数π可以用数轴上的点表示出来. 师:如何在数轴上表示±2呢? 学生活动:小组合作交流.教师活动:巡视、检查,适时点拨. 师生共同完成:归纳:每一个无理数都可以用数轴上的一个点表示出来.即数轴上的点有些表示有理数,有些表示无理数.师:实数与数轴上的点有何关系?师:实数与数轴上的点是一一对应的,即每一个实数都可以用数轴上的一个点来表示.反过来,数轴上的每一个点都表示一个实数.师:平面直角坐标系中的点与有序实数对之间也是一一对应的.右边的点表示的实数总比左边的点表示的实数大,当数从有理数扩充到实数以后,有理数关于相反数和绝对值的意义同样适合实数.师:请同学们做题:2的相反数是________,-π的相反数是________,0的相反数是________,|2|=________,|-π|=________,|0|=________.师:同学们有什么发现?生:与有理数一样.师生共同归纳:数a的相反数是-a(a表示任意一个实数).一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;0的绝对值是0.【例】(1)分别写出-6,π-3.14的相反数;(2)指出-5,1-33分别是什么数的相反数;(3)求3-64的绝对值;(4)已知一个数的绝对值是3,求这个数.解:(1)因为-(-6)=6,-(π-3.14)=3.14-π,所以,-6,π-3.14的相反数分别为6,3.14-π.(2)因为-(5)=-5,-(33-1)=1-33,所以,-5,1-33分别是5,33-1的相反数.(3)因为3-64=-364=-4,所以|3-64|=|-4|=4.(4)因为|3|=3,|-3|=3,所以绝对值为3的数是3或- 3.三、随堂练习课本第56页第1、2、3题.四、课堂小结通过本节课的学习,同学们有哪些收获?请与同伴交流.本节课通过对无理数的学习,使学生对数的认识又提升到一个新的层次.通过举一些数让学生对其进行分类,即按有理数和无理数归类,使他们对这两类数进行区分,更深入地认识这两类数的区别.第2课时实数的运算法则实数的运算法则.重点掌握实数的运算法则.难点实数运算法则的正确应用.一、创设情境,引入新课师:有理数的运算法则是什么?生:先算高级运算,同级运算从左至右,遇有括号的先算括号内.二、讲授新课师:很好.有理数运算法则仍适用于实数,请大家看几个题目:展示课件:【例1】计算下列各式的值:(1)(3+2)-2;(2)33+2 3.学生活动:尝试独立完成,两名学生上黑板板演,其余学生在位上做.教师活动:巡视、指导.师生共同完成:(1)(3+2)-2=3+(2-2)(加法结合律)=3+0= 3(2)33+2 3=(3+2) 3 分配律=5 3师:在实数运算中,当遇到无理数并且需要求出结果的近似值时,可以按照所要求的精确度用相应的近似有限小数去代替无理数,再进行计算.【例2】计算(结果保留小数点后两位):(1)5+π;(2)3· 2.学生尝试独立计算,一学生上黑板板演.教师巡视、纠正.师生共同完成:(1)5+π≈2.236+3.142≈5.38(2)3· 2≈1.732×1.414≈2.45三、随堂练习课本第56页第4题,第57页第4、5、6题.四、课堂小结通过本节课的学习,你有哪些收获?首先通过课本引例问题,旨在使学生通过自己的探究活动,经过老师的引导,感受并经历实数的运算、化简;让学生根据实例进行探索,通过学生互相交流合作,得出两个化简的公式,培养他们的合作精神和探索能力,也让他们获得成功的体验,充分调动、发挥学生主动性的多样化学习方式,促进学生在老师指导下主动地、富有个性地学习.。
人教版数学七年级下册教案6.3《 实数》

人教版数学七年级下册教案6.3《实数》一. 教材分析《实数》是人教版数学七年级下册的一章内容,主要介绍了实数的概念、性质和运算。
本章内容包括有理数、无理数和实数的分类,以及实数的运算规则。
通过本章的学习,学生能够理解实数的概念,掌握实数的性质和运算规则,为后续的数学学习打下基础。
二. 学情分析学生在学习本章内容前,已经学习了有理数的概念和运算规则,对数学运算有一定的基础。
但是,学生可能对无理数的概念和性质较为陌生,需要通过实例和讲解来加深理解。
此外,学生可能对实数的分类和运算规则有一定的困惑,需要通过具体的例题和练习来进行巩固。
三. 教学目标1.了解实数的概念和性质,能够对实数进行分类。
2.掌握实数的运算规则,能够进行实数的加减乘除运算。
3.能够运用实数的概念和运算规则解决实际问题。
四. 教学重难点1.实数的分类:有理数、无理数和实数的区别和联系。
2.实数的运算规则:实数的加减乘除运算规则。
五. 教学方法采用问题驱动法和案例教学法,通过提问和举例引导学生思考和探索实数的概念和性质,通过具体的例题和练习来讲解和巩固实数的运算规则。
六. 教学准备1.PPT课件:实数的概念、性质和运算规则的讲解和例题。
2.练习题:针对实数的分类和运算的练习题。
七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾有理数的概念和运算规则,为新课的学习做好铺垫。
2.呈现(15分钟)讲解实数的概念和性质,通过具体的例子来阐述实数的分类,如有理数、无理数和实数的区别和联系。
3.操练(20分钟)讲解实数的运算规则,通过具体的例题来演示和解释实数的加减乘除运算,引导学生进行思考和提问。
4.巩固(10分钟)学生进行实数的分类和运算的练习,教师进行个别指导和讲解,确保学生能够掌握实数的分类和运算规则。
5.拓展(10分钟)通过实际问题引导学生运用实数的概念和运算规则进行解决问题,培养学生的应用能力和创新思维。
6.小结(5分钟)对本节课的内容进行总结和回顾,强调实数的概念、性质和运算规则的重点和难点。
七年级数学下册 第六章 实数本章复习教案 (新版)新人教版

学习资料本章复习【知识与技能】掌握本章基本概念与运算,能用本章知识解决实际问题.【过程与方法】通过梳理本章知识点,挖掘知识点间的联系,并应用于实际解题中。
【情感态度】领悟分类讨论思想,学会类比学习的方法。
【教学重点】本章知识梳理及掌握基本知识点。
【教学难点】应用本章知识解决实际与综合问题.一、知识框图,整体把握【教学说明】1。
通过构建框图,帮助学生回忆本节所有基本概念和基本方法。
2.帮助学生找出知识间联系,如平方与开平方,平方根与立方根,有理数与实数等等。
二、释疑解惑,加深理解1.利用平方根的概念解题在利用平方根的概念解题时,主要涉及平方根的性质:正数有两个平方根,且它们互为相反数;以及平方根的非负性:被开方数为非负数,算术平方根也为非负数.例1已知某数的平方根是a+3及2a-12,求这个数。
分析:由题意可知,a+3与2a-12互为相反数,则它们的和为0。
解:根据题意可得,a+3+2a—12=0.解得a=3.∴a+3=6,2a-12=—6.∴这个数是36。
【教学说明】负数没有平方根,非负数才有平方根,它们互为相反数,而0是其中的一个特例。
2.比较实数的大小除常用的法则比较实数大小外,有时要根据题目特点选择特别方法。
例2比较34-与53-的大小。
分析:先比较它们的绝对值34与53的大小,然后由绝对值大的反而小得出结论.可用平方法比较,即分别将34与53平方,平方数大的实数大。
【教学说明】用平方法比较实数的大小,是运用下列推理:当a >0,b >0时,若a2>b2,则a >b ;若a >b >0,则b a >。
3。
实数的运算实数的有关运算律及运算顺序、相反数、绝对值等与有理数的运算基本相同.有理数的运算律及运算顺序对实数同样适用.【教学说明】在进行实数混合运算时,首先要观察算式的特点,选择合适的方法进行计算.一般按照先乘方,后乘除,再加减的顺序计算,另外还要注意符号.三、典例精析,复习新知例1 如图所示,数轴上表示3的点是 。
人教版七年级数学下册第六章实数优秀教学案例
(二)讲授新知
1.教师引导学生探究实数的定义和性质,通过讲解、示例等方式,让学生理解实数的概念,掌握实数的分类。
2.运用数形结合的思想,讲解实数与数轴的关系,让学生能够将实数对应到数轴上的正确位置。
3.教授实数的运算方法,包括加、减、乘、除等基本运算,通过示例和练习,让学生熟练掌握实数的运算规则。
人教版七年级数学下册第六章实数优秀教学案例
一、案例背景
本案例背景以人教版七年级数学下册第六章“实数”为主题,本章主要内容包括实数的定义、分类及实数与数轴的关系。对于七年级的学生来说,实数是数学学习中一个非常重要的概念,它既包括有理数,也包括无理数,是对前面学习的数的扩充。在本章节的教学中,我以提高学生的数学思维能力、培养学生的抽象思维和逻辑推理能力为目标,充分运用教学策略,提高教学效果。
4.组织小组展示和分享,让学生在课堂上展示自己的研究成果,培养学生的表达能力和自信心的同时,增进学生之间的相互学习。
(四)总结归纳
1.教师引导学生对实数的相关知识进行总结归纳,帮助学生梳理实数的定义、分类、运算方法以及实数与数轴的关系等。
在教学过程中,我充分考虑学生的认知规律和学习特点,以生活实例引入实数的概念,让学生感受数学与生活的紧密联系。通过设置具有启发性的问题,引导学生主动探究、积极思考,从而加深对实数的理解。同时,注重运用数形结合的思想,让学生在动手操作、观察中发现实数与数轴之间的关系,提高学生的空间想象力。
在教学评价方面,我采用多元化的评价方式,既关注学生的知识掌握程度,也重视学生的能力发展。通过课堂提问、小组讨论、数学日记等形式,了解学生在实数学习过程中的困惑和问题,及时调整教学策略,为学生提供个性化的指导。此外,还结合课后作业和练习,对学生的学习效果进行检测,为下一步教学提供依据。
新人教版七年级下册第六章实数教案
第六章实数6.1.1平方根第一课时【教学目标】知识与技能:通过实际生活中的例子理解算术平方根的概念,会求非负数的算术平方根并会用符号表示;教学重点:算术平方根的概念和求法。
教学难点:算术平方根的求法。
教学方法: 自主探究、启发引导、小组合作【教学过程】一、情境引入:问题:学校要举行美术作品比赛,小欧很高兴,他想裁出一块面积为225dm的正方形画布,画上自己得意的作品参加比赛,这块正方形画布的边长应取多少?二、探索归纳:1.探索:学生能根据已有的知识即正方形的面积公式:边长的平方等AHA12GAGGAGAGGAFFFFAFAFAHA12GAGGAGAGGAFFFFAFAF 于面积,求出正方形画布的边长为dm 5。
接下来教师可以再深入地引导此问题:如果正方形的面积分别是1、9、16、36、254,那么正方形的边长分别是多少呢?学生会求出边长分别是1、3、4、6、52,接下来教师可以引导性地提问:上面的问题它们有共同点吗?它们的本质是什么呢?这个问题学生可能总结不出来,教师需加以引导。
上面的问题,实际上是已知一个正数的平方,求这个正数的问题。
2.归纳:⑴算术平方根的概念:一般地,如果一个正数x 的平方等于a ,即x2=a 那么这个正数x 叫做a 的算术平方根。
⑵算术平方根的表示方法:a 的算术平方根记为a ,读作“根号a ”或“二次很号a ”,a叫做被开方数。
三、应用:AHA12GAGGAGAGGAFFFFAFAF求下列各数的算术平方根:⑴100 ⑵6449 ⑶971 ⑷0001.0 ⑸0解:⑴因为,100102=所以100的算术平方根是10,即10100=; ⑵因为6449)87(2=,所以6449的算术平方根是87,即876449=;AHA12GAGGAGAGGAFFFFAFAF⑶因为916)34(,9169712==,所以971的算术平方根是34,即34916971==;⑷因为0001.001.02=,所以0001.0的算术平方根是01.0,即01.00001.0=;⑸因为002=,所以0的算术平方根是0,即00=。
初中实数的三维目标教案
初中实数的三维目标教案教学目标:1. 知识与技能目标:让学生掌握实数的定义、性质和运算方法,能够熟练地运用实数解决实际问题。
2. 过程与方法目标:通过探究实数的性质和运算规律,培养学生的逻辑思维能力和解决问题的能力。
3. 情感、态度与价值观目标:激发学生对数学的兴趣,培养学生的团队合作意识,使学生认识到数学在实际生活中的重要性。
教学内容:1. 实数的定义和性质2. 实数的运算方法3. 实数在实际问题中的应用教学步骤:一、导入(5分钟)1. 复习有理数的概念,引导学生思考有理数是否能表示所有实数。
2. 学生通过小组讨论,发现有理数无法表示某些实数,如无理数。
3. 教师引入实数的概念,解释实数包括有理数和无理数。
二、实数的性质(15分钟)1. 教师引导学生探究实数的性质,如正负性、奇偶性、绝对值等。
2. 学生通过实例理解实数的性质,并能够运用性质解决简单问题。
三、实数的运算(20分钟)1. 教师讲解实数的运算方法,如加减乘除、乘方等。
2. 学生通过练习题,掌握实数的运算方法,并能够熟练运用运算解决实际问题。
四、实数在实际问题中的应用(15分钟)1. 教师提出实际问题,如测量身高、计算面积等,引导学生运用实数解决。
2. 学生通过实际问题,理解实数在生活中的重要性,并提高解决问题的能力。
五、总结与反思(10分钟)1. 教师引导学生总结实数的学习内容,巩固知识点。
2. 学生分享自己在学习实数过程中的收获和感悟。
3. 教师给予鼓励和指导,提醒学生不足之处需要加强。
教学评价:1. 课堂参与度:观察学生在课堂上的发言和提问情况,了解学生的学习状态。
2. 练习题的正确率:检查学生做练习题的情况,评估学生对实数的掌握程度。
3. 实际问题的解决能力:通过课后作业或课堂讨论,评估学生运用实数解决实际问题的能力。
4. 学生的反馈:收集学生的学习反馈,了解学生的学习需求和困惑,不断调整教学方法。
通过以上教学设计,希望能够达到实数教学的目标,培养学生的知识与技能、过程与方法、情感态度与价值观。
人教版七年级下册(新)第六章《6.3.2实数的性质及运算》教案
-幂运算:实数的幂运算遵循指数法则。
二、核心素养目标
1.培养学生的数学抽象能力,使其能理解实数的概念,把握实数的性质,并运用性质进行问题分析。
2.提高学生的逻辑推理能力,通过实数运算的探究,让学生掌握实数运算的法则,并能运用法则解决实际问题。
3.培养学生的数学建模能力,使学生能将现实问题转化为实数运算问题,从而运用所学知识进行解决。
五、教学反思
在今天的教学过程中,我发现学生们对于实数的概念和性质的理解总体上是不错的。他们在课堂上能够积极参与讨论,对于实数运算的规则也能够较好地掌握。但在教学过程中,我也注意到了一些问题。
首先,对于无理数的理解,部分学生仍然存在困难。在讲解无理数时,虽然我通过举例和故事来帮助学生理解,但显然这部分内容还需要进一步强化。在以后的教学中,我需要寻找更多生动有趣的例子,让学生更加直观地感受无理数。
然而,我也注意到,在小组讨论过程中,有些学生过于依赖同伴,自己思考不足。为了培养学生的独立思考能力,我将在以后的课堂中,更加关注每个学生的参与情况,并适时给予指导和鼓励。
在总结回顾环节,学生们对于今天所学的知识点掌握得还不错,但在提问环节,我发现有些学生仍然存在疑问。这提醒我在今后的教学中,要更加关注学生的个体差异,尽量在课堂上解答他们的疑惑,确保每个学生都能跟上教学进度。
其次,实数的混合运算对于一些学生来说是个难点。在课堂上,我尽量通过典型例题进行讲解,但在实际操作过程中,部分学生仍然容易混淆运算顺序和规则。针对这个问题,我打算在下一节课的复习环节中,再次强调实数混合运算的法则,并增加一些类似的练习题,让学生多加练习,以便更好地掌握。
另外,在实践活动和小组讨论环节,我发现学生们对于实数在实际生活中的应用有着浓厚的兴趣。他们能够提出很多有趣的问题,并通过讨论和实验操作来解决问题。这一点让我感到很欣慰,说明学生们已经能够将所学知识运用到实际中。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 (此文档为word格式,下载后您可任意编辑修改!) 按住Ctrl键单击鼠标打开教学动画名师视频播放 第六章 实数 单元(章)教学计划 1、地位与作用: 本章是人教版八年级数学上册第三十章内容。学习算术平方根,平方根,立方根之后,为学习实数打下基础;由于实际计算中需要引入无理数,使数的范围从有理数扩充到了实数,完成了初中阶段数的扩展。运算方面,在乘方的基础上以引入了开方运算,使代数运算得以完善。因此,本章是今后学习根式运算、方程、函数等知识的重要基础。 2、目标与要求:
知识与技能 通过实际生活中的例子理解算术平方根的概念,会求非负数的算术平方根并会用符号表示;会用计算器求算术平方根;使学生理解平方根的概念,了解平方与开平方的关系。学会平方根的表示法和求非负数的平方根;进一步认识实数和数轴上的点一一对应蕴含着数形结合的思想,通过学习不仅是完善了学生的知识结构,而且让学生领会到数形结合的思想,培养了学生的分类意识,使学生养成用多角度思维的思考习惯 过程与方法 通过了解平方与开平方的关系,培养学生逆向思维能力;能对具体情景中的数学信息作出合理的解释和推断、解决问题,能由实际问题抽象成数学问题,让学生讨论、类比提出自己的见解,并在探索的同时较好的获得新知;经历在具体例子中抽象出概念的过程,培养学习的主动性,提高数学运算能力。 情感态度与价值观 通过主动探究,合作交流,感受探索的乐趣和成功的体验,体会数学的合理性和严谨性,使学生养成积极思考,独立思考的好习惯,并且同时培养学生的团队合作精神。 3、重点与难点: 重点:算术平方根、平方根、立方根的概念和运算;实数的认识。 难点:算术平方根与平方根联系与区别;有理数与无理数的区别。 4、教法与学法: 2
教师启发引导,学生自主探究,分类比较法,统一归纳法,自学讨论法,小组互动法等教学方法. 5、活动步骤: 一、创设导入; 二、探索归纳; 三、应用;四、练习;五、课堂总结;六、布置作业; 6、时间安排:
6.1平方根 3课时 6.2立方根 1课时 6.3实数 2课时 复习与小结 2课时
6.1.1平方根(第一课时) 【教学目标】 知识与技能: 通过实际生活中的例子理解算术平方根的概念,会求非负数的算术平方根并会用符号表示; 过程与方法: 通过生活中的实例,总结出算术平方根的概念,通过计算非负数的算术平方根,真正掌握算术平方根的意义。 情感态度与价值观: 通过学习算术平方根,认识数与人类生活的密切联系,建立初步的数感和符号感,发展抽象思维,为学生以后学习无理数做好准备。 教学重点:算术平方根的概念和求法。
教学难点:算术平方根的求法。
教具准备: 三块大小相等的正方形纸片;学生计算器。 3
教学方法: 自主探究、启发引导、小组合作
【教学过程】 一、情境引入: 问题:学校要举行美术作品比赛,小欧很高兴,他想裁出一块面积为的正方形画布,画上自己得意的作品参加比赛,这块正方形画布的边长应取多少? 二、探索归纳: 1.探索: 学生能根据已有的知识即正方形的面积公式:边长的平方等于面积,求出正方形画布的边长为。 接下来教师可以再深入地引导此问题: 如果正方形的面积分别是1、9、16、36、,那么正方形的边长分别是多少呢? 学生会求出边长分别是1、3、4、6、,接下来教师可以引导性地提问:上面的问题它们有共同点吗?它们的本质是什么呢?这个问题学生可能总结不出来,教师需加以引导。 上面的问题,实际上是已知一个正数的平方,求这个正数的问题。 2.归纳: ⑴算术平方根的概念: 一般地,如果一个正数x的平方等于a,即x2=a那么这个正数x叫做a的算术平方根。 ⑵算术平方根的表示方法: a的算术平方根记为,读作“根号a”或“二次很号a”,a叫做被开方数。 三、应用: 求下列各数的算术平方根: ⑴ ⑵ ⑶ ⑷ ⑸ 解:⑴因为所以的算术平方根是,即; 4
⑵因为,所以的算术平方根是,即; ⑶因为,所以的算术平方根是,即; ⑷因为,所以的算术平方根是,即; ⑸因为,所以的算术平方根是,即。 注:①根据算术平方根的定义解题,明确平方与开平方互为逆运算; ②求带分数的算术平方根,需要先把带分数化成假分数,然后根据定义去求解; ③0的算术平方根是0。 由此例题教师可以引导学生思考如下问题: 你能求出-1,-36,-100的算术平方根吗?任意一个负数有算术平方根吗? 归纳:一个正数的算术平方根有1个;0的算术平方根是0;负数没有算术平方根。 即:只有非负数有算术平方根,如果有意义,那么。 注:且这一点对于初学者不太容易理解,教师不要强求,可以在以后的教学中慢慢渗透。 求下列各式的值: (1) (2) (3) (4) 分析:此题本质还是求几个非负数的算术平方根。 解:(1) (2) (3) (4) 求下列各数的算术平方根: ⑴ ⑵ ⑶ ⑷ 解:(1)因为,所以; ⑵因为,所以; ⑶因为,所以; ⑷因为,所以。 根据学生的学习能力和理解能力可进行如下总结: 5
1、由,,可得 2、由,,可得 教师需强调时对两种情况都成立。 四、随堂练习: 1、算术平方根等于本身的数有_____。 2、求下列各式的值: , , , 3、求下列各数的算术平方根: ,, , , 4、已知求的值。 五、课堂小结 1、这节课学习了什么呢? 2、算术平方根的具体意义是怎么样的? 3、怎样求一个正数的算术平方根? 六、布置作业 课本第47页习题6.1第1、2题
6.1.2平方根(第2课时) 【教学目标】 知识与技能: 会用计算器求算术平方根;了解无限不循环小数的特点;会用算术平方根的知识解决实际问题。 过程与方法: 通过折纸认识第一个无理数,并通过估计它的大小认识无限不循环小数的特点。用计算器计算算术平方根,使学生了解利用计算器可以求出任意一个正数的算术平方根,再通过一些特殊的例子找出一些数的算术平方根的规律,最后让学生感受算术平方根在实际生活中的应用。 情感态度与价值观:
通过探究的大小,培养学生的估算意识,了解两个方向无限逼近的数学思想,并且锻炼学生克服困难的意志,建立自信心,提高学习热情。 6
教学重点: ①认识无限不循环小数的特点,会估算一些数的算术平方根。 ②会用算术平方根的知识解决实际问题。 教学难点: 认识无限不循环小数的特点,会估算一些数的算术平方根。 教学方法: 自主探究、启发引导、小组合作 教学过程: 一、通过实验引入: 怎样用两个面积为1的小正方形拼成一个面积为2的大正方形? 如图,把两个小正方形沿对角线剪开,将所得的4个直角三角形拼在一起,就得到一个面积为2的大正方形。你知道这个大正方形的边长是多少吗? 设大正方形的边长为,则,由算术平方根的意义可知, 所以大正方形的边长为。 二、讨论的大小: 由上面的实验我们认识了,它的大小是多少呢?它所表示的数有什么特征呢?下面我们讨论的大小。 因为<<,所以<<. 因为,,所以<<。 因为,,所以<< 因为,,所以<< „„ 如此进行下去,我们发现它的小数位数无限,且小数部分不循环,像这样的数我们成为无限不循环小数。=„„ 注:这种估算体现了两个方向向中间无限逼近的数学思想,学生第一次接触,不好理解,教师在讲解时速度要放慢,可能需要讲两遍。=„„,是个无限不循环小数,7
但是很抽象,没有办法全部表示出来它的大小,类似这样的数还有很多,比如等,圆周率π也是一个无限不循环小数。 三、用计算器求算术平方根: 大多数计算器都有“”键,用它可以求出一个有理数的算术平方根或近似值。 用计算器求下列各式的值: ;(精确到 解:(1)依次按键,显示:56.所以 (2)依次按键2=,显示:,这是一个近似值。所以 注:不同品牌的计算器,按键的顺序可能有所不同。 四、探索规律: (1)利用计算器计算,并将计算结果填在表中,你发现了什么规律? … …
… …(2)用计算器计算(结果保留4个有效数字),并利用你发现的规律写出, ,的近似值。你能根据的值求出的值吗?
学生通过计算器可求出(1)的答案,依次是:250,1.79,25,91.7,5.2,791.0,25.0。从运算结果可以发现,被开方数扩大或缩小100倍时,它的算术平方根就扩大或缩小10倍。
由可得2.17330000,32.17300,1732.003.0,由的值不能求出的值,因为规律是被开方数扩大或缩小100倍时,它的算术平方根才扩大或缩小10倍,而3到30扩大的是10倍,所以不能由此规律求出。 此题学生可独立完成。 五、实际应用: 例1、小丽想用一块面积为的正方形纸片,沿着边的方向裁出一块面积为 8
的长方形纸片,使它的长与宽之比为:,不知道能否裁出来,正在发愁,小明见了说:“别发愁,一定能用一块面积大的纸片裁出一块面积小的纸片。”你同意小明的说法吗?小丽能否用这块纸片裁出符合要求的纸片吗? 分析:学生一般认为一定能用一块面积大的纸片裁出一块面积小的纸片。通过计算和讲解纠正这种错误的认识。 解:设长方形纸片的长为,宽为。 根据边长与面积的关系可得:,,, ∴长方形纸片的长为。因为﹥,所以﹥,从而﹥ 即长方形纸片的长应该大于,而已知正方形纸片的边长只有,这样长方形纸片的长将大于正方形纸片的边长。 答:不能同意小明的说法。小丽不能用这块正方形纸片裁出符合要求的长方形纸片。 六、随堂练习: 1.用计算器求下列各式的值: (1) (2) (3)(精确到) 2、估计大小: (1)与 (2)与 3、已知,求,,,的值。 七、课堂小结 1、被开方数增大或缩小时,其相应的算术平方根也相应地增大或缩小,因此我们可以利用夹值的方法来求出算术平方根的近似值; 2、利用计算器可以求出任意正数的算术平方根的近似值; 3、被开方数扩大(或缩小)与它的算术平方根扩大(或缩小)的规律是怎样的呢? 4、怎样的数是无限不循环小数?