华师大高数二重积分2

合集下载

高等数学(第三版)课件:二重积分的计算

高等数学(第三版)课件:二重积分的计算
D
式:0 x π ,0 y 2 所确定的长方形区域. 2
解 这题可以不必画积区域.分析被积函数可知,如先
对x积分,需用分部积分法. 如先对y积分则不必,
计算会简单些.因此,我们选择先对y积分,即
π
xy
cos(
xy
2
)dxdy
2
0
dx
2
0
xy
cos(
xy
2
)dy
D

2
2
0
sin( xy 2 )

x
π
D
所围成的三角形区域.
2
解法1 先对y积分. 作平行于y轴的直线与积分 区域D
相交,沿着y的正方向看,入口曲线为y=0,出口
曲线为y=x,D在x 轴上的投影区间为[0, π] . 2
sin
x
cos
ydxdy
π
2
0
dx
x
0
sin
x
cos
ydy
D
π
02
sin
x
sin
y
x 0
dy
π
02
sin
2
xdx
由 y x, x 2,
得x 2, y 2.
在y轴上的积分区间为12 ,2
当1 y 1时,平行于x轴的直线与区域D相交时,
2 沿x轴正方向看,入口曲线为
x,出1口曲线为x=2.
y
当1 y 2时,平行于x轴的直线与区域D相交时, 沿x轴正方向看,入口曲线为x=y,出口曲线为x=2.
依上述不等式组可作出区域D的图形,
再化为先对y积分后对x积分的二次积分.
01
dy
1y

二重积分的计算与应用

二重积分的计算与应用

目录摘要 (1)关键词 (1)Abstract (1)Keywords (1)前言 (1)1.二重积分的概念 (1)1.1二重积分的定义 (1)1.2可积条件 (2)1.3可积类 (2)1.4二重积分的性质 (2)2.二重积分的计算方法 (3)2.1直角坐标系下的二重积分的计算 (3)2.2二重积分的变量变换 (4)2.2.1普通情况下的变换 (4)2.2.2极坐标计算二重积分 (4)3.广义二重积分 (6)4.二重积分的应用 (6)4.1体积 (7)4.2曲面的面积 (8)4.3其它 (8)参考文献 (9)二重积分的计算与应用学生姓名:学号:数学与信息科学学院数学与应用数学专业指导教师:职称:摘要:研究了二重积分的几何意义,概念,性质以及在直角坐标系及极坐标下的计算方法,并给出了计算公式及相关例题,最后总结了二重积分的计算方法.关键词:二重积分;直角坐标系;极坐标;曲顶柱体The calculation and application of double integral Abstract : This paper mainly studies the geometric significance of double integral, the concept, nature and calculation method under the rectangular coordinate system and polar coordinate calculation method.Key Words: Double integral; The rectangular coordinate system; The polar coordinate; Curved top cylinder前言我们已经很熟悉定积分的一些性质及计算方法.同样,二重积分在实际中应用广泛,且有直观的几何解释,所不同的是现在讨论的对象为定义在平面区域上的二元函数.这类问题在物理学与工程技术中也常遇到,如求非均匀平面的质量、质心、转动惯量等.二重积分的计算的基本途径是将其转化成二次积分计算,计算二重积分时选择积分顺序,交换积分次序以及转换坐标系都是至关重要的问题.本文对二重积分的计算方法进行了全面的概括和总结,并对各种计算方法的选择进行了认真地研究,为准确的计算二重积分提供有效的帮助.1.二重积分的概念1.1[]2二重积分的定义设(,)f x y是定义在可求面积的有界闭区域D上的函数.J是一个确定的数,若对任给的某个正数ε,总存在某个正数δ,是对于D的任何分割T,当它的细度||T||时,属于T 的所有积分和都有1(,)||ni i i i f J ξσσε=∆-<∑则成(,)f x y 在D 上可积,数J 称为(,)f x y 的二重积分,记为(,)σDJ f x y d =⎰⎰.1.2[]1可积条件二重积分的可积条件与定积分类似(1)必要条件:函数(,)f x y 在D 上可积,则(,)f x y 在D 上必有界. (2)充要条件:①函数(,)f x y 在D 上可积s S =⇔(其中S ,s 分别为在上的上积分和下积分). ②函数(,)f x y 在D 上可积⇔对0>∀ε,存在分割T ,使得()().ε<-T s T S③函数(,)f x y 在D 上可积⇔对0>∀ε,存在分割T ,使得.1εσω<∑=∆ni i i1.3[]1可积类(1)有界闭区域D 上的连续函数必可积.(2)若(,)f x y 在有界闭区域D 上有界,且仅在D 内有限条光滑曲线上不连续,则(,)f x y 在D 上可积.1.4[]2二重积分的性质性质4.1(线性性) (,)σ(,)σDDkf x y d k f x y d =⎰⎰⎰⎰.性质4.2(线性性)[](,)(,)σ=(,)σ(,)σDDDf x yg x y d f x y d g x y d ±±⎰⎰⎰⎰⎰⎰.性质4.3(分段可加性)1212(,)σ=(,)σ+(,)σD D D D f x y d f x y d f x y d +⎰⎰⎰⎰⎰⎰.性质4.4(保不等式性) 设(,),(,)(,)x y D f x y g x y ∀∈<, 则 (,)σ(,)σDDf x y dg x y d <⎰⎰⎰⎰.性质4.5 设(,)m f x y M ≤≤,则(,)σDm f x y d M σσ≤≤⎰⎰其中σ表示D 的面积.性质4.6 (二重积分的中值定理)设函数(,)f x y 在闭区域D 上连续,D S 是D 的面积,则∃(ζ,η)∈D 使得(,)Df x y ⎰⎰σd =(,)f ξηDS.其中中值定理的几何意义:以D 为底,z=(,)f x y ((,)f x y ≥0)为曲顶的曲顶柱体体积等于一个同底的平顶柱体的体积,这个平顶柱体的高等于(,)f x y 在区域D 某点的函数值(,)f ξη.2.二重积分的计算方法定理1 设在矩形区域[][],,D a b c d =⨯上可积,且对每个[],x a b ∈积分存在,则累次积分(,)b d acdx f x y dy ⎰⎰也存在,且(,)σ=(,)b d acDf x y d dx f x y dy ⎰⎰⎰⎰.另外,同理(,)σ=(,)db caDf x y d dy f x y dx ⎰⎰⎰⎰.2.1[]4直角坐标系下的二重积分的计算此方法的关键就是化二重积分为累次积分,对于一般区域,通常可以分为以下两种区域进行计算:①X 型区域:平面点集12{(,)|()(),},D x y y x y y x a x b =≤≤≤≤ 则化二重积分为累次积分21()()(,)σ(,)bx a x Dy f x y d dx f x y dy y =⎰⎰⎰⎰. ②Y 型区域:平面点集{12(,)|()(),}D x y x y x x y c y d =≤≤≤≤则化二重积分为累次积分21()()(,)σ=(,)dy c y Dx f x y d dy f x y dx x ⎰⎰⎰⎰. 例1 设D 是由直线0,1x y ==及x y =围成的区域,试计算22()y DI x e d σ-=⎰⎰.解 利用Y 型区域积分:231123001()3yy y I dy x e dx y e dy --==⎰⎰⎰.由分部积分法得 1163I e=-. 例2 计算二重积分Dd σ⎰⎰,其中D 为由直线2,2y x x y ==及3x y +=所围的三角形区域.解 利用X 型区域,则相应的221()2(01),()3(12),2x y x x x y x x x y =≤≤=-<≤=所以 1223012212x x x x DD D d d d dx dy dx dy σσσ-=+=+⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰1201(2)(3)22x xx dx x dx =-+--⎰⎰ =32. 2.2[]5 二重积分的变量变换定理2 设(,)f x y 在有界闭区域D 上可积,变换T: (,),(,)x u v y u v ==将uv 平面由按段光滑闭曲线所围成的闭区域∆一对一的映成xy 平面上的闭区域D ,函数(,),(,)x u v y u v 在∆内分别具有一阶连续偏导数且它们的行列式 (,)0(,)(,)x y J u v u v ∂=≠∈∆∂, 则 (,)((,),(,))|(,)|D f x y dxdy f x u v y u v J u v dudv ∆=⎰⎰⎰⎰. 2.2.1普通情况下的变换例3 求抛物线22,y mx y nx ==和直线,y x y x αβ==所围成的区域D 的面积S (0,0m n αβ<<<<).解 D 的面积DS dxdy =⎰⎰为了简化积分区域,做变换2,,u ux y v v==则[][],,m n αβ∆=⨯.由于4(,)(,)(,)x y uJ u v u v v ∂==∈∆∂,所以 22334433()()6n m Du dv n m S dxdy dudv u du v v βαβααβ∆--====⎰⎰⎰⎰⎰⎰. 2.2.2极坐标计算二重积分当积分区域是圆域或圆域的一部分时,或者背积函数的形式为22()f x y +时,采用极坐标变换T :cos ,sin (0,02)x r y r r θθθπ==≤<+∞≤≤, 则 (,)(,)(,)x y J r r u v θ∂==∂.定理3 设(,)f x y 满足定理1的条件,且在极坐标变换下xy 平面上有界闭区域D 与r θ平面上区域∆对应,则成立(,)(cos ,sin )Df x y dxdy f r r rdrd θθθ∆=⎰⎰⎰⎰.二重积分在极坐标下化为累次积分有以情况:1.θ型区域:若原点o D ∈,且xy 平面上射线θ=常数与D 的边界至多交与两点,则必可表示为12()(),r r r θθαθβ≤≤≤≤, 于是有 2()1()(,)(cos ,sin )r r Df x y dxdy d f r r rdr βθαθθθθ=⎰⎰⎰⎰.R 型区域:若平面上的圆r =常数与D 的边界至多交与两点,则∆必可表示为1212()(),r r r r r θθθ≤≤≤≤,于是有 2211()()(,)(cos ,sin )r r Dr f x y dxdy rdr f r r d r θθθθθ=⎰⎰⎰⎰.2.若原点为D 的内点,D 的边界的极坐标方程为()r r θ=,则∆必可表示成为0(),02r r θθπ≤≤≤≤,于是有 2()0(,)(cos ,sin )r Df x y dxdy d f r r rdr πθθθθ=⎰⎰⎰⎰.3.若原点O 在D 的边界上,则∆为0(),r r θαθβ≤≤≤≤, 于是有 ()0(,)(cos ,sin )r Df x y dxdy d f r r rdr βθαθθθ=⎰⎰⎰⎰.例4 计算I=D其中D 为圆域.122≤+y x解 由于原点为D 的内点故有210Dd πθ=⎰⎰[].212010202πθθππ=--=⎰⎰d d r例5 求球体2222x y z R ++≤被圆柱体22x y Rx +=所割下部分的体积(称为维维安尼体(Viviani )).解 由所求立体的对称性,只要求出第一卦限的部分体积后乘以4即可.在第一卦限内的体积是一个曲顶柱体,其底为xy 平面内由0y ≥和22x y Rx +=所确定的区域,曲顶的方程为z =所以4DV σ=.其中D={}22(,)|0,x y y x y Rx ≥+≤,用极坐标变换后有cos33322004424(1sin )()3323R V d R d R ππθπθθθ==-=-⎰⎰⎰.3[]4.广义二重积分若在无界区域D 上(),0,≥y x f 则()σd y x f D⎰⎰,收敛⇔在D 的任何有界子区域上f 可积,且积分值有上界.例6 证明反常积分σd e Dy x⎰⎰+-)(22收敛,其中[)[);,0,0+∞⨯+∞=D 并由此计算概率积分.02dx e x ⎰+∞-证明 设(),,)(22y xe y xf +-= 则显然()y x f ,在[)[)+∞⨯+∞=,0,0D 上非负.设,0,0,:222≥≥≤+y x R y x D R 则).1(4r 2222020)(R Rr Dy x e e d d e--+--==⎰⎰⎰⎰πθσπ显然对D的任何有限子集'D ,只要R 充分大,总可使得,'R D D ⊂ 于是有.4'22'22)()(πσσ≤≤⎰⎰⎰⎰+-+-d e d e Dy xDy x即广义积分σd e Dy x⎰⎰+-)(22收敛.记,2dx e I x ⎰+∞-=则.))(()(022222dxdy e dy e dx e I Dy xy x ⎰⎰⎰⎰+-+∞-+∞-== 其中[)[),,0,0:+∞⨯+∞D 做极坐标代换,0,20,sin ,cos +∞<≤≤≤⎩⎨⎧==r r y r x πθθθ 则,4r 02022πθπ==⎰⎰∞+-dr e d I r .202π==⎰∞+-dx e I x 4.二重积分的应用二重积分在几何、物理等许多学科中有着广泛的应用,这里重点介绍它在几何方面的应用. 4.1体积根据二重积分的几何意义,⎰⎰Dd y x f σ),(表示以),(y x f 为曲顶,以),(y x f 在xOy坐标平面的投影区域D 为底的曲顶柱体的体积.因此,利用二重积分可以计算空间曲面所围立体的体积. 例7[]6 求椭球面1222222=++cz b y a x 所围之椭球的体积.解 由于椭球体在空间直角坐标系八个卦限上的体积是对称的.令D 表示椭球面在xOy 坐标面第一象限的投影区域,则D ,0,0,1),(2222⎭⎬⎫⎩⎨⎧≥≥≤+=y x b y a x y x体积.),(8⎰⎰=Ddxdy y x z V 作广义极坐标变换θθsin ,cos br y ar x ==,则此变换的雅可比行列式abr J =,与D 相对应的积分区域{},20,10),(*πθθ≤≤≤≤=r r D 此时,1),(2r c y x z z -==从而 abrdr r c d drd J br ar z V D ⎰⎰⎰⎰-==2*1218)sin ,cos (8πθθθθ.34128102abc dr r r abc ππ⎰=-⋅= 例8[]6 求球面+2x 2224a z y =+与圆柱面)0(222>=+a ax y x 所围立体的体积.图1解 由对称性(图1(a )给出的是第一卦限部分).44222⎰⎰--=Ddxdy y x a V其中D 为半圆周22x ax y -=及x 轴所围成的闭区域(图1(b )).在极坐标系中,与闭区域D 相应的区域*D {},20,cos 20),(πθθθ≤≤≤≤=a r r 于是⎰⎰⎰⎰-=-=Da rdr r a d rdrd r a V 20cos 2022224444πθθθ=.)322(332)sin 1(33220333⎰-=-ππθθa d a4.2曲面的面积设曲面S 的方程为),,(y x f z = 它在xOy 面上的投影区域为,xy D 求曲面S 的面积.A若函数),(y x f z =在域xy D 上有一阶连续偏导数,可以证明,曲面S 的面积.),(),(122dxdy y x f y x f A xyD y x ⎰⎰'+'+=(1)例9 计算抛物面22y x z +=在平面1=z 下方的面积.解 1=z 下方的抛物面在xOy 面的投影区域xy D {}.1),(22≤+=y x y x又,2x z x =',2y z y =' 221y x z z '+'+=,44122y x ++ 代入公式(1)并用极坐标计算,可得抛物面的面积 ⎰⎰⎰⎰+=++=xyxyD D rdrd r dxdy y x A *22241441θ=).155(6)41(201212-=+⎰⎰πθπrdr r d如果曲面方程为),(z y g x =或),(z x h y =,则可以把曲面投影到yOz 或xOz 平面上,其投影区域记为yz D 或xz D ,类似地有.),(),(122dydz z y g z y g A yzD zy ⎰⎰'+'+= 或.),(),(122dxdz x z h x z h A xzD z x⎰⎰'+'+= 4.3其它例10[]4 平均利润 某公司销售商品Ⅰx 个单位,商品Ⅱy 个单位的利润),(y x P .5000)100()200(22+----=y x现已知一周内商品Ⅰ的销售数量在150~200个单位之间变化,一周内商品Ⅱ的销售数量在80~100个单位之间变化.求销售这两种商品一周的平均利润.解 由于y x ,的变化范围{},10080,200150),(≤≤≤≤=y x y x D 所以D 的面积.10002050=⨯=σ 由二重积分的中值定理,该公司销售这两种商品一周的平均利润为[]σσσd y x d y x P DD⎰⎰⎰⎰+----=5000)100()200(10001),(122 []dy y x dx 5000)100()200(100012210080200150+----=⎰⎰ dx y y y x 100803220015050003)100()200(10001⎥⎦⎤⎢⎣⎡+----=⎰ 20015020015023292000)200(2030001⎰⎥⎦⎤⎢⎣⎡+--=x x dx 4033300012100000≈=(元). 参考文献:[1] 赵树原,胡显佑,陆启良.微积分学习与考试指导[M] .北京:中国人民大学出版社, 1999. [2] 华东师范大学数学系.数学分析(第三版)[M]. 北京:高等教育出版社,2004. [3] 刘玉琏,傅沛仁等.数学分析讲义(第四版)[M]. 北京:高等教育出版社,2003. [4] 周应编著. 数学分析习题及解答[M]. 武汉:武汉大学出版社,2001. [5] 胡适耕,张显文编著. 数学分析原理与方法[M].北京:科学出版社,2008. [6] 吴良森等编著. 数学分析习题精解[M].北京:科学出版社,2002.。

高等数学第十章第二节二重积分的计算法课件.ppt

高等数学第十章第二节二重积分的计算法课件.ppt
• 若积分区域为
y y y2(x)
D
y y1(x)
a
bx

f (x, y) d
b
dx
y2 (x) f (x, y) d y
D
a
y1( x)
• 若积分区域为

f (x, y) d
d
dy
x2 ( y) f (x, y) d x
D
c
x1( y)
y x x2 ( y) d
D
c
x x1( y) x
一、利用直角坐标计算二重积分
由曲顶柱体体积的计算可知, 当被积函数 f (x, y) 0
且在D上连续时, 若D为 X – 型区域
y y 2(x)

D
D
:
1
(
x) a
y x
b
2
(
x)
f (x, y) dx dy
b
2 (x)
a d x 1(x)
f
(x,
D
x o a y 1(x)b y) d y
d
dy
2(y)
f (x, y) dx
c
1(y)
y d
y 2(x)
x
y
c
1(
y) y
x
D
1(x)
2
(
y)
o a x bx
为计算方便,可选择积分序, 必要时还可以交换积分序.
(2) 若积分域较复杂,可将它分成若干 y
D2
X-型域或Y-型域 , 则
D1
D D1 D2 D3
D3
o
x
例1. 计算 I D x2 yd , 其中D 是直线 y=1, x=2, 及

华东师范大学数学系《数学分析》(第4版)(下册)课后习题-重积分(圣才出品)

华东师范大学数学系《数学分析》(第4版)(下册)课后习题-重积分(圣才出品)

证明:假设 f 在 D 上可积,但在 D 上无界,那么,对 D 的任一分割

必在某个小区域 上无界.
当 i≠k 时,任取

由于 f 在 上无界,从而存在 从而
使得
另一方面,由 f 在 D 上可积知:存在
对任一 D 的分割

时,T 的任一积分和
都满足
1 / 48
圣才电子书 十万种考研考证电子书、题库视频学习平台
时).即 f(x,y)在 D 上不可积.
因此
的极
7.证明:若 f(x,y)在有界闭区域 D 上连续,g(x,y)在 D 上可积且不变号,则
存在一点
使得
证明:不妨设
令 M,m 分别是 f 在 D 上的最大、最小值,从而

=0,则由上式

则必大于 0,于是
于是任取
即可.
3 / 48
圣才电子书

为D内
证明:设 D 在 x 轴和 y 轴上的投影区间分别为[a,b]和[c,d].
考虑
9 / 48
圣才电子书 十万种考研考证电子书、题库视频学习平台

由于
因此
所以
,同理可证


7.设 D=[0,1]×[0,1],
其中 表示有理数 x 化成既约分数后的分母.证明 f(x,y)在 D 上的二重积分存在而两个
同理可证先 y 后 x 的累次积分不存在.
8.设 D=[0,1]×[0,1],
其中 意义同第 7 题.证明 f(x,y)在 D 上的二重积分不存在而两个累次积分存在.
10 / 48
圣才电子书 十万种考研考证电子书、题库视频学习平台

证明:因为在正方形的任何部分内,函数 f 的振幅等于 1.所以二重积分不存在.对固

华东师范大学数学系《数学分析》讲义重积分【圣才出品】

华东师范大学数学系《数学分析》讲义重积分【圣才出品】

第21章重积分21.1本章要点详解本章要点■二重积分的概念■二重积分的定义、存在性及性质■格林公式■曲线积分与路径无关的定义■二重积分的变量替换■三重积分的定义、计算■重积分的应用重难点导学一、二重积分的概念1.平面图形的面积(1)设P是一平面有界图形,用某一平行于坐标轴的一组直线网T分割这个图形(如图21-1所示)这时直线网T的网眼——小闭矩形Δi可分为三类①Δi上的点都是P的内点;②Δi上的点都是P的外点,即;③Δi上含有P的边界点.图21-1将所有介于直线网T 的第①类小矩形(如图21-1中阴影部分)的面积加起来,记这个和数为s p (T ),则有(这里ΔR 表示包含P 的那个矩形R 的面积);将所有第①类与笫③类小矩形(如图21-1中粗线所围部分)的面积加起来,记这个和数为S p (T ),则有s p (T )≤S p (T ).由确界存在定理可以推得,对于平面上所有直线网,数集{s p (T )}有上确界,数集{S p (T )}有下确界,记显然有通常称I P 为P 的内面积,P I 为P 的外面积.(2)若平面图形P 的内面积I P 等于它的外面积P I ,则称P 为可求面积,并称其共同值P P P I I I ==为P 的面积.(3)平面有界图形P 可求面积的充要条件是:对任给的ε>0,总存在直线网T ,使得S p (T )-s p (T )<ε(4)平面有界图形P 的面积为零的充要条件是它的外面积0P I =,即对任给的ε>0,存在直线网T ,使得S p (T )<ε或对任给的ε>0,平面图形P 能被有限个面积总和小于ε的小矩形所覆盖.(5)平面有界图形P可求面积的充要条件是:P的边界K的面积为零.(6)若曲线K为定义在[a,b]上的连续函数f(x)的图像,则曲线K的面积为零.(7)参数方程所表示的光滑曲线K的面积为零.(8)由平面上分段光滑曲线所围成的有界闭区域是可求面积的.2.二重积分的定义及其存在性(1)设f(x,y)是定义在可求面积的有界闭区域D上的函数,J是一个确定的数,若对任给的正数ε,总存在某个正数δ,使对于D的任何分割T,当它的细度时,属于T的所有积分和都有则称f(x,y)在D上可积,数J称为函数f(x,y)在D上的二重积分,记作其中f(x,y)称为二重积分的被积函数,x,y称为积分变量,D称为积分区域.(2)f(x,y)在D上可积的充要条件是:.(3)f(x,y)在D上可积的充要条件是:对于任给的正数ε,存在D的某个分割T,使得S(T)-s(T)<ε.(4)有界闭区域D上的连续函数必可积.(5)设ε在有界闭域D上有界,且其不连续点集E是零面积集,则f(x,y)在D上可积.3.二重积分的性质(1)若f (x ,y )在区域D 上可积,k 为常数,则kf (x ,y )在D 上也可积,且(,)d (,)d D Dkf x y k f x y σσ=⎰⎰⎰⎰(2)若f (x ,y ),g (x ,y )在D 上都可积,则f (x ,y )±g (x ,y )在D 上也积,且(3)若f (x ,y )在D 1和D 2上都可积,且D 1与D 2无公共内点,则f (x ,y )在D 1∪D 2上也可积,且(4)若f (x ,y )与g (x ,y )在D 上可积,且f (x ,y )≤g (x ,y ),(x ,y )∈D则(5)若f (x ,y )在D 上可积,则函数|f (x ,y )|在D 上也可积,且(6)若f (x ,y )在D 上可积,且则这里S D 是积分区域D 的面积.(7)中值定理若f (x ,y )在有界闭区域D 上连续,则存存(ξ,η)∈D ,使得这里S D 是积分区域D 的面积.二、直角坐标系下二重积分的计算1.定义在矩形区域D =[a ,b ]×[c ,d ]上二重积分计算问题(1)设f (x ,y )在矩形区域D =[a ,b ]×[c ,d ]上可积,且对每个x ∈[a ,b ],积分(,)d dc f x y y ⎰存在,则累次积分d (,)d b da c x f x y y ⎰⎰也存在,且(,)d d (,)db da c D f x y x f x y y σ=⎰⎰⎰⎰(2)设f (x .y )在矩形区域D =[a ,b ]×[c ,d ]上可积,且对每个y ∈[c ,d ],积分(,)d ba f x y x⎰存在,则累次积分d (,)d dbc a y f x y x ⎰⎰也存在且(,)d d (,)d d bc a D f x y y f x y x σ=⎰⎰⎰⎰2.定义在一般区域的二重积分计算问题若f (x ,y )在x 型区域D 上连续,其中y 1(x ),y 2(x )在[a ,b ]上连续,则21()()(,)d d (,)d b y x a y x D f x y x f x y yσ=⎰⎰⎰⎰即二重积分可化为先对y ,后对x 的累次积分.三、格林公式、曲线积分与路线的无关性1.格林公式(1)设区域D 的边界L 中一条或几条光滑曲线所组成边界曲线的正方向规定为:当人沿边界行走时,区域D总在它的左边;如图21-2所示,与上述规定的方向相反的方向称为负方向,记为-L.图21-2(2)若函数P(x,y),Q(x,y)在闭区域D上连续,且有连续的一阶偏导数,则有(21-1)这里L为区域D的边界曲线,分段光滑,并取正方向.(3)格林公式沟通了沿闭曲线的积分与二重积分之间的联系.格林公式(21-1)也可写成下述形式2.曲线积分与路线的无关性(1)若对于平面区域D上任一封闭曲线,皆可不经过D以外的点而连续收缩于属于D 的某一点,则称此平面区域为单连通区域.否则称为复连通区域.(2)设D是单连通闭区域,若函数P(x,y),Q(x,y)在D内连续,且具有一阶连续偏导数,则以下四个条件等价①沿D内任一按段光滑封闭曲线L,有。

华师大重积分习题课

华师大重积分习题课

R 2 d xd y d xd y z dz R D1 z D2 z 2 R 2 2 2 2 (2 R z z ) d z R z ( R z ) d z 2



P101. 5(3). 试计算椭球体
的体积 V.
解法1 利用“先二后一”计 算.
V d x d y d z 2 d z
第九章
重积分习题课
P80 4(2) 计算二重积分 其中D 为圆周 提示: 利用极坐标 所围成的闭区域.
0 r R cos D: 2 2
原式
y
r R cos
o
D
Rx
2 3 R 2 (1 sin 3 ) d 0 3
P101. 3. 且 求 I d x f ( x) f ( y ) d y .


b a b f 2 ( x) d x b f 2 ( y ) d y 利用 2 a a


(b a) f 2 ( x)d x = 右端 a
b
2ab a 2 b 2
例3. 设函数 f (x) 连续且恒大于零,
(t ) f ( x y z ) d v F (t ) f (x2 y2 ) d D(t ) 2 2 D(t ) f ( x y ) d G (t ) t f (x2 ) d x t
0 x 1 1
y 1 y yx 1 x
o x
1
提示: 交换积分顺序后, x , y互换
I d y f ( x) f ( y ) d x d x
0 0 0
1
y
2 I d x f ( x) f ( y ) d y d x

数学分析课本(华师大三版)-习题及答案第二十一章

数学分析课本(华师大三版)-习题及答案第二十一章

第十一章 重积分§1 二重积分的概念1.把重积分⎰⎰D xydxdy 作为积分和的极限,计算这个积分值,其中D=[][]1,01,0⨯,并用直线网x=n i ,y=nj (i,j=1,2,…,n-1)分割这个正方形为许多小正方形,每一小正方形取其右上顶点为其界点.2.证明:若函数f 在矩形式域上D 可积,则f 在D 上有界.3.证明定理(20.3):若f 在矩形区域D 上连续,则f 在D 上可积.4.设D 为矩形区域,试证明二重积分性质2、4和7.性质2 若f 、g 都在D 上可积,则f+g 在D 上也可积,且()⎰+D g f =⎰⎰+D D g f . 性质4 若f 、g 在D 上可积,且g f ≤,则 ⎰⎰≤D Dg f , 性质7(中值定理) 若f 为闭域D 上连续函数,则存在()D ,∈ηξ,使得()D ,f f D∆ηξ=⎰. 5.设D 0、D 1和D 2均为矩形区域,且210D D D =,∅=11D int D int , 试证二重积分性质3.性质3(区域可加性) 若210D D D =且11D int D int ∅=,则f 在D 0上可积的充要条件是f 在D 1、D 2上都可积,且⎰0D f =⎰⎰+21D D f f , 6.设f 在可求面积的区域D 上连续,证明:(1)若在D 上()0y ,x f ≥,()0y ,x f ≠则0f D>⎰; (2)若在D 内任一子区域D D ⊂'上都有⎰'=D 0f ,则在D 上()0y ,x f ≡。

.7.证明:若f 在可求面积的有界闭域D 上连续,,g 在D 上可积且不变号,则存在一点()D ,∈ηξ,使得()()⎰⎰D dxdy y ,x g y ,x f =()ηξ,f ()⎰⎰Ddxdy y ,x g .8.应用中值定理估计积分⎰⎰≤-++10y x 22ycos x cos 100dxdy 的值§2 二重积分的计算1.计算下列二重积分:(1)()⎰⎰-Ddxdy x 2y ,其中D=[][]2,15,3⨯;(2)⎰⎰D2dxdy xy ,其中(ⅰ)D=[][]3,02,0⨯,(ⅱ)D=[]3,0 []2,0⨯; (3)()⎰⎰+Ddxdy y x cos ,其中D=[]π⨯⎥⎦⎤⎢⎣⎡π,02,0; (4)⎰⎰+D dx dy x y 1x ,其中D=[][]1,01,0⨯. 2. 设f(x,y)=()()y f x f 21⋅为定义在D=[]⨯11b ,a []22b ,a 上的函数,若1f 在[]11b ,a 上可积,2f 在[]22b ,a 上可积,则f 在D 上可积,且⎰D f =⎰⎰⋅1122b a b a 21f f . 3.设f 在区域D 上连续,试将二重积分()⎰⎰Ddxdy y ,x f 化为不同顺序的累次积分:(1)D 由不等式x y ≤,a y ≤,b x ≤()b a 0≤≤所确的区域:(2)D 由不等式222a y x ≤+与a y x ≤+(a>0)所确定的区域;(3)D=(){}1,≤+y x y x .4.在下列积分中改变累次积分的顺序:(1) ()⎰⎰20x 2x dy y ,x f dx ; (2) ()⎰⎰----11x 1x 122dy y ,x f dx ; (3)()⎰⎰10x 02dy y ,x f dy +()()⎰⎰-31x 3210dy y ,x f dx .5.计算下列二重积分:(1)⎰⎰D2dxdy xy ,其中D 由抛物线y=2px 与直线x=2p (p>0)所围的区域; (2)()⎰⎰+D 22dxdy y x,其中D=(){1x 0y ,x ≤≤, y x ≤ }x 2≤; (3)⎰⎰-D x a 2dx dy (a>0),其中D 为图(20—7)中的阴影部分; (4)⎰⎰Ddxdy x ,其中D=(){}x y x y ,x 22≤+; (5)⎰⎰D dxdy xy ,其中为圆域222a y x ≤+.6.写出积分()⎰⎰ddxdy y ,x f 在极坐标变换后不同顺序的累次积分:(1)D 由不等式1y x 22≤+,x y ≤,0y ≥所确定的区域;(2)D 由不等式2222b y x a ≤+≤所确定的区域;(3)D=(){}0x ,y y x y ,x 22≥≤+.7.用极坐标计算二重积分: (1) ⎰⎰+D22dxdy y x sin ,其中D=(){222y x y ,x +≤π }24π≤; (2)()⎰⎰+Ddxdy y x ,其中D=(){}y x y x y ,x 22+≤+; (3)()⎰⎰+'D22dxdy y x f ,其中D 为圆域222R y x ≤+.8.在下列符号分中引入新变量后,试将它化为累次积分:(1) ()⎰⎰--20x 2x 1dy y ,x f dx ,其中u=x+y,v=x-y;(2) ()dxdy y ,x f D⎰⎰,其中D=(){a y x y ,x ≤+,0x ≥, }0y ≥,若x=v cos U 4, v sin U y 4=.(3)()⎰⎰dxdy y ,x f ,其中D=(){a y x y ,x ≤+,0x ≥, }0y ≥,若x+y=u,y=uv.9.求由下列曲面所围立体V 的体积:(1) v 由坐标平面及x=2,y=3,x+y+Z=4所围的角柱体;(2) v 由z=22y x +和z=x+y 围的立体; (3) v 由曲面9y 4x Z 222+=和2Z=9y 4x 22+所围的立体.11.试作适当变换,计算下列积分:(1)()()⎰⎰-+Ddxdy y x sin y x ,D=(){π≤+≤y x 0y .x }π≤-≤y x 0;(2)⎰⎰+D y x y dxdy e,D=(){1y x y ,x ≤+,0x ≥,}0y ≥.12.设f:[a,b]→R 为连续函数,应用二重积分性质证明:()≤⎥⎦⎤⎢⎣⎡⎰2b a dx x f ()()⎰-b a 2dx x f a b , 其中等号仅在f 为常量函数时成立。

《数学分析》(第3版)(上下册) 华东师范大学 第21章重积分 21-4

《数学分析》(第3版)(上下册) 华东师范大学 第21章重积分 21-4
r 0 时, J(r,)0,因此不满足定理21.13 的条件.
但是仍然有下面的结论.பைடு நூலகம்
前页 后页 返回
y
2
E
F
2
O
A
D B
A
x
B
C
D
O
Rr
(a )
(b )
图2126
定理21.14 设 f (x, y) 满足定理21.13 的条件, 且在
极坐标变换 (8)下, x y 平面上的有界闭域 D 与 r 平
前页 后页 返回
一阶连续偏导数且它们的函数行列式 J(u,v)(x,y)0, (u,v) , (u,v)
则有
f ( x ,y ) d x d y f ( x ( u ,v ) ,y ( u ,v ) ) |J ( u ,v ) |d u d v .
D
证 用曲线网把 分成 n 个小区域 i , 在变换 T 作用
为 的扇形 BBAA后所得的区域(图21-26(a)),则
在变换 (8)下,D 对应于 [,R ] [ 0 ,2 ] ,且
D 与 之间是一一对应的( 图 21-26 (b) ). 又因在
上 J(r,)0,于是由定理21.13, 有
前页 后页 返回
f ( x ,y ) d x d y f ( r c o s,r s i n ) r d r d .( 1 0 )
n
f(x (u i,v i),y (u i,v i))|J (u i,v i)| ( i).
i 1
这个和式是可积函数 f ( x ( u ,v ) ,y ( u ,v ) ) |J ( u ,v ) |
在 上的积分和. 又由变换 T 的连续性可知, 当 的分割 T :{ 1 , 2 , n } 的细度 ||T ||0时, D 的 相应分割 T D :{ D 1 ,D 2 , D n } 的细度|| T D || 也趋于零. 因此得到
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二节
第九章
二重积分的计算法
一、利用直角坐标计算二重积分 二、利用极坐标计算二重积分 *三、二重积分的换元法
科学出版社
一、利用直角坐标计算二重积分
先从曲顶柱体体积开始.
y y2(x) z z f (x, y)
设曲顶柱体的底为x 型区域:
y
D (x, y)
y1 ( x) a
y x
y2 ( x) b
D f (r cos , r sin ) r d r d

r( )
0
d 0
f (r cos ,r sin ) r d r
D
O
x
科学出版社
此时若 f ≡1 则可求得D 的面积
d 1 2π r2( )d
D
20
r r( )
D
O
x
如果 D为 r - 型区域
D
:
1
(r) r1
r
2
r2
(r)
k k k
及射线 =常数, 分划区域D 为
k (k 1, 2, , n)
O
r
rk x
k
则除包含边界点的小区域外, 小区域的面积
k
1 2
(rk
rk )2 k
1 2
rk
2
k
rk k
rk rk k
在 k 内取点(rk ,k ), 对应有
k O
rk
rk
k rk cosk , k rk sink
(2) 在 D上 雅可比行列式 J (u, v) (x, y) 0; (u, v)
y D
定(积3)分变换换元T法: D D是一一对应的 , O
x

D
f
b
(xa, fy()xd)xddxy
f [f (tx)(]u,v(t)), dy(tu,(vx))J(u(t,)v))
D
dudv
科学出版社
v
Ou
D
ev
1 2
d
u
d
v
e e1
科学出版社
例9. 试计算椭球体
的体积V.
解:
取D
:
x2 a2
y2 b2
1,
由对称性
2c
D
1
x2 a2
y2 b2
d
xd
y
令 x a r cos , y b r sin , 则D 的原象为
D : r 1, 0 2 π
J
(x, y)
( r, )
a cos b sin
ex2d x π
0
2
(1)
事实上,

π
故(1)式成立 .
科学出版社
例9. 求球体 x2 y2 z2 a2 被圆柱面 x2 y2 ax
所截得的(含在柱面内的)立体的体积.
解: 设 D : 0 r a cos , 0 π
z
由对称性可知
2
V 4 a2 r2 r d r d D
D (x, y) x1( y) x x2( y), c y d
则其体积可按如下两次积分计算 y
V D f (x, y) d
d
[
x2 ( y) f (x, y) dx ]d y
c
x1( y)
记 作
d
x x1( y)
y c O
x x2 ( y)
x
这样就将二重积分的计算转化为二个定积分的计算. 后者称为二次积分,或累次积分.
yx
例8. 计算 e yxd x d y , 其中D 是 x 轴 y 轴和直线
所围成的闭域.
解: 令 u y x , v y x,则
x v u , y v u (D D)
2
2
y
x y 2
D
O
x
v v2
J (x, y) (u, v)
1 2 1 2
1 2 1 2
1 2
u
u
v
D u
科学出版社
注: (1) 若积分区域既是 x 型区域又是 y 型区域 ,
则有 D f (x, y) dx dy
b
dx
y2 (x) f (x, y) d y
a
y1( x)
d
dy
x2( y) f (x, y)dx
c
x1( y)
y d
y y2(x)
x
y
c
x1(
y) y
x
D
y1 ( x)
x2( y)
科学出版社
因此,当 f (x, y) 0 且在 D上连续时, y y y2(x)
D为 x 型区域
D
D
:
y1
(
x) a
y x
y2 b
(
x)
x O a y y1(x)b x

f (x, y)dx dy D
b
dx
a
y2 (x) f (x, y) d y
y1( x)
y
D为y 型区域
D
2
x2
22
8 x 2
I
0
d
x 2 0
f (x, y)dy 2
dx0
f (x, y)dy
解: 积分域由两部分组成:
y
D1
:
0
y
1 2
0 x
x2 2
,
D2
:
0
y
8 x2
2x2 2
将 D D1 D2 视为 y 型区域 , 则
x2 y2 8
2
y
1 2
x2 D1 D2
O 22 2 x
D
:
3
dy
y
O
(x2 y2)d x
1
y 1
1
D
3 x3
1
3
xy
2
y
dy
y1
3
(2
y2
y
1)
d
y
1
3
7 13 19 62 3
14
科学出版社
若把区域 D看成 x 型区域,则要把 D 分成三个区域:
D1 (x, y) |1 y 1 x,0 x 1,
y=1+x
D2 (x, y) | x y 1 x,1 x 2,
1
dy
y x2e y2 d x 1
1 y3e y2 d y
D
0
0
30
1 1 y2e y2 d y2 1 1 y2 d e y2
60
60
1 y2 ey2 1 1 ey2 1 1 1
6
0 6 0 6 3e
无法计算!
若将 D看作 x 型区域,将会是什么情况?
科学出版社
例6. 交换下列积分顺序
r r2( )
D
:
r1( )
r
r2 (
)
,

D f (r cos , r sin )r d r d
D
O
r r1( )
x
d
r2( ) f (r cos , r sin )r d r
r1( )
特别,

D
:
0 r r( ) 0 2π
r r2( )
D
O
r r1( )
x
r r( )
2y x 0 y2
8 y2
2
I f (x, y) d x d y dy
D
0
8 y2
f (x, y)dx
2y
科学出版社
例7. 计算
其中D 由
y 4 x2, y 3x , x 1 所围成. 解: 令 f (x, y) x ln(y 1 y2 )
y
4 y 4 x2
D D1 D2 (如图所示)
z
x2 y2 R2, x2 z2 R2
利用对称性, 考虑第一卦限部分,
R
其曲顶柱体的顶为 z R2 x2
OR
(
x,
y
)
D
:
0 0
y x
R
R
2
x2
则所求体积为
x x2 z2 R2
y
R
8
R2 x2 d x
R2 x2
dy
0
0
8 R (R2 x2 ) d x 16 R3
0
3
a r sin b r cos
abr
2 abc 2π d 1
0
0
1
r2
r
d
r
4 3
π
abc
科学出版社
总结计算步骤及方法 (1) 确定积分区域,画出草图. (2) 选择坐标系. 积分区域为圆形区域或环形区域,或
被积函数形如 f (x2 y2) 时,建议采用极坐标. (3) 确定积分次序. 积分区域分块尽量要少,还要考虑 计算方便. (4) 写出积分限. 注意上限一定大于下限. (5) 计算. 计算时要充分利用积分性质,如对称性等.
I
1
dy
3 2
(4
x2
y2
)d
x
35
.
0
0
8
科学出版社
例4. 计算二重积分 I (x2 y2)d , 其中D是由直线
D
y=x, y=1, y=3 及 y=1+ x 围成.
3 y=1+x D
解: 若把区域 D 看作 y 型区域:
1
D:y 1 x y, 1 y 3, 则
I
(x2 y2)d
科学出版社
例3. 计算二重积分 I (4 x2 y2)d,其中D 是
矩形区域:0
x
3,
相关文档
最新文档