超音速进气道 ppt课件
航空发动机部件-进气道

➢混合式:混合式超音速进气道由外压式和内压式 组成。超音速气流在进气道以外压缩后, 仍然是 超音速, 再进入进气道以内继续压缩, 通过喉部 或扩张段中的正激波转变为亚音速。
➢由于混合式超音速进气道兼有外压式和内压式 进气道的优点, 飞行马赫数大于2.0 的飞机上 很多采用混合式进气道。
亚音速进气道性能参数
➢3.空气流量
➢单位时间流入进气道的空气质量称为空气流量。 ➢单位是:公斤/秒。
qm,a AV K
po* T0*
A0q(Ma)
➢影响流量的因素有: 大气密度, 飞行速度和 压气机的转速。
➢大气密度越高, 进入发动机的空气流量越多,而大 气密度受大气温度和飞行高度的影响
➢流动损失:当大气温度和飞行速度一定时,流动 损失大,冲压比低;
➢飞行速度:当大气温度和流动损失一定时,飞行 速度大,冲压比高;
➢大气温度:当飞行速度和流动损失一定时,大气 温度高,冲压比低。
• 大气温度是随着飞行高度而变化的。
• 当飞行速度和流动损失一定时,在对流层内, 随着飞 行高度的增高, 大气温度下降, 所以冲压比上升;
➢ 大气温度越高, 则空气的密度越低; ➢ 飞行高度越高, 空气的密度也越低;
➢飞行速度越大, 则进入发动机的空气流量也越多;
➢压气机转速越高, 进入发动机的空气流多。
• 4.流量系数
• 进气道远前方截面的面积与进气道唇口处的面 积的比值为流量系数。
•
i
AO Ai
• 进气道流量系数的变化规律
• 当V=0,Ma=0时,i
[美国高超音速项目PPT]EN-AVT-150-10-PPT
![[美国高超音速项目PPT]EN-AVT-150-10-PPT](https://img.taocdn.com/s3/m/1903a91ca76e58fafab003f8.png)
Acknowledgements
An advanced weapon and space systems company
I gratefully acknowledge my colleagues and sponsors at the following institutions: AFRL ATK GASL ATK Launch Systems DARPA NASA ONR Their work, contributions, and support form the basis of this lecture
X-43A Flight Milestones • Mach 7 Flight: March 27, 2004 • Mach 10 Flight: November 16, 2004
4
“NASP Era” Culminates in the Successful X-43A Flights
An advanced weapon and space systems company
An advanced weapon and space systems company
Air Inlet Diffuser / Isolator Combustor
Nozzle
Dual Mode Scramjet (HC-Fuel) Dual Mode Scramjet (HC-Fuel)
• Liquid Jet Fuel (JP-7) – Fuel Cooled • Liquid Jet Fuel (JP-7) – Fuel Cooled • Mach 3.0 to 7.0+ Cruise • Mach 3.0 to 7.0+ Cruise • Long Range Cruise, Time Critical Strike • Long Range Cruise, Time Critical Strike • 1stst Stage Access to Space • 1 Stage Access to Space
DSI进气道知识

DSI进气道知识目录1何为DIS2基础知识3DSI概念4DSI 在JSF …5问题与未来1 何为DISDSI,即无附面层隔道超音速进气道(也有人根据其外形称之为“鼓包式”进气道)。
这种进气道是洛克希德•马丁公司耗时10 年开发的全新概念的超音速进气道,其突出特点是取消了传统超音速进气道上面的附面层隔道(这就是DSI 名称的由来)以及其他一些复杂机构,也因此减少了生产和维护费用。
在JSF 竞争中获胜的洛•马F-35 就采用了DSI 设计。
为了降低其技术风险,洛•马还专门改装了一架F-16 进行DSI 验证试飞。
按照洛•马的说法,DSI 可以在包括高超音速在内的各种速度条件下提供出色的性能。
2 基础知识随着喷气式飞机性能的提高和未来战场对战术飞机的要求日益严苛,进气道设计人员面临的挑战也越来越艰巨。
现在的战斗机进气道必须在大的速度、高度范围内以及在机动条件下向发动机高质量的气流,而无论此时发动机油门此时处于何种位置——慢车、军用推力还是加力状态。
同时进气道设计人员还必须考虑到一些由于构形特征带来的限制,例如前起落架、武器舱、设备维护口盖以及前机身形状等,以便确定最佳构形从而减小阻力、减轻重量、降低费用、提高可靠性以及提供良好的推进性能。
近年来的空中作战中,隐形飞机的技术优势逐渐凸现,“隐形”已成为下一代战斗机必备的基本特征。
进气道作为飞机上一个重要的雷达波反射源,设计人员要将低可见性要求纳入考虑范畴,令各方面性能获得良好折中,殊非易事。
喷气式发动机的工作过程,简单地说就是:压缩空气,然后点火做功产生推力。
除了高速飞行器使用的冲压式喷气发动机外,我们通常所说的喷气发动机都是利用自身的压气机来完成大部分空气压缩工作(根据压气机的类型不同又分为离心式压气机和轴流式压气机),而剩下的那部分空气压缩工作,则是由进气道来完成的。
此外,压气机(特别是作为目前主流的轴流式压气机)对气流畸变相当敏感,因此进气道还有一个工作就是要保证压气机入口处的气流畸变尽可能小。
航发原理-第四章进气道

流量系数定义示意图
进气道附加阻力和外罩压差阻力定义示意图
A 1
A
一、亚声速进气道在设计状态的工作
亚声速进气道非设计状态
亚声速进气道设计状态
气流流动示意图
外压式进气道
a)进气道在高亚音速飞行时,外部可能局部存在超声速区,从而
产生激波,使进气道外阻增大;低超音速飞行时,存在弓形脱
体激波;
在不同飞行马赫数和发动机工作状态下外压式进气道的气流流动图形
正常工况未起动
起动
几何不可调超声速外压式进气道特性。
飞机进气道与尾喷管参数设计43页PPT

6、纪律是自由的第一条件。——黑格 尔 7、纪律是集体的面貌,集体的声音, 集体的 动作, 集体的 表情, 集体的 信念。 ——马 卡连柯
8、我们现在必须完全保持党的纪律, 否则一 切都会 陷入污 泥中。 ——马 克思 9、学校没有纪律便如磨坊没有水。— —夸美 纽斯
10、一个人应该:活泼而守纪律,天 真而不 幼稚, 勇敢而 鲁莽, 倔强而 有原则 ,热情 而不冲 动,乐 观而不 盲目。 ——马 克思
谢谢!
36、自己的鞋子,自己知道紧在哪里。——西班牙
ห้องสมุดไป่ตู้
37、我们唯一不会改正的缺点是软弱。——拉罗什福科
xiexie! 38、我这个人走得很慢,但是我从不后退。——亚伯拉罕·林肯
39、勿问成功的秘诀为何,且尽全力做你应该做的事吧。——美华纳
40、学而不思则罔,思而不学则殆。——孔子
第十三章 进气道控制资料

进气道是航空发动机动力装置中一个十分重要的部件。现代 飞机动力装置进气道的主要功能是:供给发动机需要的空气 流量;保证发动机在各种状态下都能稳定工作;对进入进气 道的空气进行压缩,使气流的部分动能变为压力能。 气流流过进气道,总要产生压力损失。这种损失是磨擦、形 成涡流(当速度场不均匀,气流分离时)和热交换引起的, 而当超声速气流受到滞止时,还有因产生激波而引起的压力 损失。因为有损失,所在进气道中实际能达到的增压比值小 于理论上可能达到的值。 为了有效而充分的发挥进气效果,现代发动机进气道应该保 证:有尽可能高的总压恢复系数:压气机进口处的流场要足 够地均匀;在各种使用工作状态下都能稳定地工作(没有严 重的气流分离和压力脉动);外部阻力尽可能小。
超音速进气道 3. 超音速进气道特性 (5)共同工作的特性图 当飞行M数上升时,在进气道的前部,斜激波的交点 要落到进气道内,有可能造成不稳定工作,在进气道 的后部,总温T1*上升,q(1)下降,则发动机需要的 流量小于进气道供给的流量,自动地谓整正激波前移 并减弱,这时候有可能把正激波 推出口外,甚至出现喘振。 另一方面,由于飞行M数 的增加,i是下降的。
(a)
(b)
超音速进气道 3. 超音速进气道特性
(1)波系角度变化,交点不再落在唇口上
此外,例如轴对称进气道受到气流迎角或侧滑角的
影响时,破坏了波系的对称性,在对称的部位上有 可能同时出现上述两种不同的情况。
超音速进气道 3. 超音速进气道特性
(2)扩压段的正激波被推出口外 出现这一现象的原因是发动机所需要的流 量小于进气道所提供的流量,在压气机前 反压增加,正激波前移,直至被推出口外 。 这种现象出现在发动机转速下降或进口总 温T1*增加的时候。 出现这一现象,破坏 了波系的组织,会使i下降, <1,外阻 增加,并可能导致喘振。
飞机的进气道

P DFmy URL.c o m
在收缩段内不断减速到喉部恰为音速,在扩散段内继续减到低亚音速。内压式进气道效率高、阻力小,但非设计状态性能不好,起动困难,在飞机上 未见采用。混合式进气道:是内外压式的折衷。
对于超音速飞机而言,本身其飞行马赫数变化范围较宽,对于进气道就要求在较宽的范围内高效的减速增压;而且,由于超音速飞行,进口前 气流不能自动地适应发动机所需而引入适当的流量,容易发生溢流。所以随着速度提高,飞机进气道也发生了很大的变化,结构上朝着更加复杂化 发展,这也是性能和速度提高后确保发动机工作稳定的先决条件。飞机进气口大小是不变的,而高速和低速飞行时发动机对空气量的需求却不一样, 尤其超音速飞行时,进入进气道的空气量超过了发动机的实际需求,如果不将其排除则会导致额外的阻力,所以,超音速进气道都设有旁路系统,空 气超过发动机需求时,则开启旁路系统,将多余的空气排放出去。圆形或半圆形的进气道有个中心锥,它一是用来调节进气量,还有一个重要的作用 是调节激波的位置,超音速进气道与亚音速进气道在外形上的的主要区别就是是否有中心锥和压缩斜板,中心锥可以看到,而压缩板有的在进气道 内部。
P DFmy URL.c o m
内部则没有压缩斜板,外压式进气道的超音速减速过程在进口外实现,附面层隔板还可以提高总压恢复。
随着战斗机性能不断提高,其对进气要求也越来越严格,三维轴对称进气道在某方面存在着一些不足,无法满足现代飞机高机动性的飞行要求, 第一、它速度调节范围小。由于三维轴对称进气道是利用中心锥在轴上前后移动来调节进气的,因此,调节范围小,若改变中心锥截面积的调节方法 ,则构造复杂,黑鸟的解决方式是混压式进气道;第二、它抗进气畸变的能力弱。正常飞行时,进气均匀,畸变小,但作高机动飞行时,迎角和侧滑 角动作都会破坏气流的对称性,使进气道效率降低;第三、如果进气口安置在头部,则不利于电子设备的这安装,其进气通道也太长,能量损失较多 ,空间浪费严重,机头进气方式基本上已不再使用。
(精品)空气动力学课件:超声速和跨声速翼型气动特性

Folie 9
y d sin 2 (x Bh)
l
Folie 21
9.1.2 薄翼型超声速的线化理论
在线化理论假设下,对于超声速气流绕过波纹壁面的 扰动速度和流线的幅值均不随离开壁面的距离而减小。
在壁面处的压强分布为
超声速绕流压强系数与波纹壁面相位差 /2,亚声速差
。
4 d 2x
C ps
B
cos l
l
超声速
超声速翼型将承受阻力,这种与马赫波传播有关的阻力 称为波阻。
Folie 7
9.1.1超声速薄翼型的绕流特点和流动图画
在超声速流动中,绕流物体产生的激波阻力大小与物 体头部钝度存在密切的关系。由于钝物体的绕流将产生 离体激波,激波阻力大;而尖头体的绕流将产生附体激 波,激波阻力小。
Folie 8
9.1.1超声速薄翼型的绕流特点和流动图画
空气动力学
Folie1
超声速和跨声速翼型 气动特性
超声速和跨声速翼型气动特性
本章主要应用超声速流的线化理论来研究薄翼型在无 粘性有位绕流和小扰动假设下的纵向空气动力特性。由 于作了无粘性绕流的假设,因此,不涉及与粘性有关的 摩擦阻力和型阻力的特性。
与亚声速翼型绕流不同,超声速翼型绕流,承受有波 阻力,这是超声速空气动力特性与亚声速空气动力特性 的主要区别之一。
Folie 12
9.1.2 薄翼型超声速的线化理论