复数的概念ppt
合集下载
复数的概念及复数的几何意义ppt课件

几何意义
复数的乘法与除法在复平面上表现为向量的旋转与缩放。
复数的乘方与开方
01 02
乘方运算规则
设$z = a + bi$,则$z^n = (a + bi)^n = a^n + C_n^1 a^{n-1} bi + C_n^2 a^{n-2} (bi)^2 + ldots + (bi)^n$,其中$C_n^k$表示组合数 。
复数与三角函数的对应关系
01
复数的三角形式与三角函数有密切联系,通过欧拉公式可以将
三角函数表示为复数的指数形式。
复数在三角函数计算中的应用
02
利用复数的三角形式和欧拉公式,可以方便地计算三角函数的
值,以及解决与三角函数相关的问题。
复数与三角函数的周期性
03
复数的周期性性质与三角函数的周期性相一致,通过复数运算
几何意义
复数的加法与减法在复平 面上表现为向量的合成与 分解。
复数的乘法与除法
乘法运算规则
设$z_1 = a + bi$,$z_2 = c + di$,则$z_1 times z_2 = (ac - bd) + (ad + bc)i$。
除法运算规则
设$z_1 = a + bi neq 0$,$z_2 = c + di$,则$frac{z_2}{z_1} = frac{c + di}{a + bi} = frac{(c + di)(a - bi)}{(a + bi)(a - bi)} = frac{ac + bd}{a^2 + b^2} + frac{bc - ad}{a^2 + b^2}i$。
复数的乘法与除法在复平面上表现为向量的旋转与缩放。
复数的乘方与开方
01 02
乘方运算规则
设$z = a + bi$,则$z^n = (a + bi)^n = a^n + C_n^1 a^{n-1} bi + C_n^2 a^{n-2} (bi)^2 + ldots + (bi)^n$,其中$C_n^k$表示组合数 。
复数与三角函数的对应关系
01
复数的三角形式与三角函数有密切联系,通过欧拉公式可以将
三角函数表示为复数的指数形式。
复数在三角函数计算中的应用
02
利用复数的三角形式和欧拉公式,可以方便地计算三角函数的
值,以及解决与三角函数相关的问题。
复数与三角函数的周期性
03
复数的周期性性质与三角函数的周期性相一致,通过复数运算
几何意义
复数的加法与减法在复平 面上表现为向量的合成与 分解。
复数的乘法与除法
乘法运算规则
设$z_1 = a + bi$,$z_2 = c + di$,则$z_1 times z_2 = (ac - bd) + (ad + bc)i$。
除法运算规则
设$z_1 = a + bi neq 0$,$z_2 = c + di$,则$frac{z_2}{z_1} = frac{c + di}{a + bi} = frac{(c + di)(a - bi)}{(a + bi)(a - bi)} = frac{ac + bd}{a^2 + b^2} + frac{bc - ad}{a^2 + b^2}i$。
复数的基本概念及运算ppt课件

8.点M是△ABC所在平面内的一点,且满足 AM =
3 4
AB +
1 4
AC
,
则△ABM与△ABC的面积之比为_____.
类似题:《作业手册》P251 选做2
(10分)已知△ABC中, AB = a , AC = b ,对于平面ABC上 任意一点O,动点P满足 OP = OA +λa +λ b ,则动点P的轨. 迹是什么?其轨迹是否过定点,并说明理由.
(1)i4n=1; i4n+1=i; i4n+2=-1 i4n+3=-i
(2)in+in+1+in+2+in+3=0;
(3) (1±i)2=±2i ;
(4) 1 i i, 1 i i; 1i 1 i
(5) 设 ω - 1 3 i 则 22
ω3 1,ω2 ω,ω2 ω 1 0.
EX1:《创新》P213 例3
今晚自修①《作业手册》P315
4. 复数 z = a+bi 的模、共轭复数的概念:
| z | a2 b2
z a bi
5. 复数相等:
a=c
a+bi=c+di (a,b,c,d∈R)
b=d
注意 : 两个虚数不能比较大小!
二、复数的代数形式及运算法则
设 z1 a bi, z2 c di (a,b,c,d R) 加减法:(a bi) (c di) (a c) (b d)i
(2)(3 4i) (1 2i) 2 2i (3)a = 0是复数z = a + bi为纯虚数的必要不充分条件 (4)z = z是复数z R的充要条件 (5)若z z 0,则复数z为纯虚数 (6)任意两个复数不能比较大小 以上说法正确的有 __________
高中数学复数课件

2. 减法:z1 - z2 = (a1 - a2) + (b1 b2)i
3. 乘法:z1 * z2 = (a1 * a2 - b1 * b2) + (a1 * b2 + a2 * b1)i
4. 除法:z1 / z2 = (a1 * a2 + b1 * b2) / (a2^2 + b2^2) + (b1 * a2 a1 * b2) / (a2^2 + b2^2)i
控制系统中的传递函数和稳定 性分析也涉及到复数,是工程 和科学领域的重要数学工具。
04
复数的历史和发展
复数的发展历程
01
02
03
复数概念的产生
起源于16世纪,数学家试 图解决方程的根的问题, 发现了虚数单位i。
复数的早期应用
在电气工程、流体力学等 领域开始使用复数。
复数的普及
19世纪,数学家开始广泛 地研究复数及其性质,并 应用于数学、物理和工程 等领域。
复数的共轭和模长
01
定义
复数的共轭定义为若z=a+bi,则其共轭为z*=a-bi。复数的模长定义为
|z|=sqrt(a^2+b^2)。
02
性质
复数的共轭具有共轭的共轭等于自身、共轭的加法运算等于减法运算等
性质;复数的模长具有模长的平方等于实部和虚部的平方和等性质。
03
计算方法
计算复数的共轭和模长时,可以利用共轭和模长的性质进行计算。
高中数学复数课件
contents
目录
• 复数的基本概念 • 复数的三角形式 • 复数的应用 • 复数的历史和发展 • 复数的扩展知识
01
复数的基本概念
复数的定义
高中数学一轮复习《复数》课件ppt(29张PPT)

解析 1-1 i=1+2 i=12+12i,其共轭复数为12-12i,
∴复数1-1 i的共轭复数对应的点的坐标为12,-12,位于第四象限,故选 D.
答案 D
5.(2019·全国Ⅲ卷)若z(1+i)=2i,则z=( )
A.-1-i
B.-1+i
C.1-i
D.1+i
解析 由 z(1+i)=2i,得 z=12+i i=(21i+(i1)- (1-i)i)=2i(12-i)=i(1-i)=1+i.
D.-
3 2i
解析 (1)∵z=(m2+m-6)+(m-2)i为纯虚数,
∴mm2-+2m≠-0,6=0,解得 m=-3,故选 D.
(2)∵z=1-
3i,∴-zz=z·-z-z2
=(1+|z|23i)2=1+2 43i-3=-12+
-
23i,∴zz的虚部
为 23.故选 C.
答案 (1)D (2)C
规律方法 1.复数的分类及对应点的位置都可以转化为复数的实部与虚部应该 满足的条件,只需把复数化为代数形式,列出实部和虚部满足的方程(不等式) 组即可. 2.解题时一定要先看复数是否为a+bi(a,b∈R)的形式,以确定实部和虚部.
建立平面直角坐标系来表示复数的 数;除了原点外,虚轴
复平面 平面叫做复平面,__x_轴___叫实轴,y 上的点都表示纯虚数,
轴叫虚轴
各象限内的点都表示
虚数
复数的 设O→Z对应的复数为 z=a+bi,则向量 模 O→Z的长度叫做复数 z=a+bi 的模
|z|=|a+bi|=__a_2_+__b_2
2.复数的几何意义
2.(新教材必修第二册 P69 例 1 改编)若复数 z=11++aii为纯虚数,则实数 a 的值为
复数课件ppt免费

02
复数的应用
Chapter
电路分析中的应用
电路分析中,复数是一种常用的数学工具,用于描述交 流电路中的电压、电流和阻抗等参数。
通过使用复数表示,可以简化计算过程,方便分析和设 计电路。
复数在交流电路分析中的应用包括计算交流阻抗、交流 功率和交流电流等。
信号处理中的应用
在信号处理中,复数常用于表示和处 理信号,如频谱分析和滤波器设计等 。
复数在信号处理中的应用还包括数字 滤波器设计和数字信号处理算法的实 现等。
通过将信号表示为复数形式,可以方 便地进行信号的频域分析和处理,如 傅里叶变换和离散余弦变换等。
控制系统中的应用
在控制系统中,复数常用于描 述系统的传递函数和稳定性等 特性。
通过使用复数表示,可以方便 地分析系统的频率响应和稳定 性,以及设计控制系统的参数 。
实例
$2(cos frac{pi}{3} + i sin frac{pi}{3}) + 1(cos frac{pi}{4} + i sin frac{pi}{4}) = sqrt{3}(cos frac{7pi}{12} + i sin frac{7pi}{12})$。
指数形式的计算
定义
复数指数形式是 $re^{itheta}$,其中 $r$ 是模长,$theta$ 是辐角 。
复数课件ppt免费
目录
• 复数的基本概念 • 复数的应用 • 复数的计算方法 • 复数的历史发展 • 复数的扩展知识
01
复数的基本概念
Chapter
复数的定义
总结词
复数是由实部和虚部构成的数,通常表示为a+bi,其中a是实部,b是虚部,i 是虚数单位。
7.1复数的概念PPT课件(人教版)

若a, b, c, d R,
a bi c di
典型例题
例2 已知(2 x 1) i y (3 y)i ,其中x, y R
求 x与y.
解:根据复数相等的定义,得方程组
讲 课
2x 1 y 1 (3 y)
解得 x 5 , y 4
2
人
:
邢
启 强
8
巩固练习
⑴已知 x y x 2y i 2x 5 3x y i ,
2.“a=0”是“复数a+bi(a,b∈R)所对应的点在虚轴上”C
的( )
(A)必要不充分条件 (B)充分不必要条件
(C)充要条件
(D)不充分不必要条件
3.已知复数z=(m2+m-6)+(m2+m-2)i在复平面内所
对应的点位于第二、四象限,求实数m的取值范
围.
讲
m 3 m 2或1 m 2
y 5
5
O
x
–5
16
巩固练习 已知复数z=(m2+m-6)+(m2+m-2)i
求证:对一切实数m,此复数所对应的点不可 能位于第四象限.
解题思考:
表示复数的点所 转化 复数的实部与虚部所满
在象限的问题
足的不等式组的问题
(几何问题)
(代数问题)
讲
课
人
:
邢
启 强
17
课堂小结
知识点:
1.虚数单位i的引入; 复数的代数情势:
7.1 复数的概念
复数的几何意义
新课引入 数系的扩充与复数的概念
自然数 用图形表示数集包含关系:
数
23?
系
正有理数
的 扩
a bi c di
典型例题
例2 已知(2 x 1) i y (3 y)i ,其中x, y R
求 x与y.
解:根据复数相等的定义,得方程组
讲 课
2x 1 y 1 (3 y)
解得 x 5 , y 4
2
人
:
邢
启 强
8
巩固练习
⑴已知 x y x 2y i 2x 5 3x y i ,
2.“a=0”是“复数a+bi(a,b∈R)所对应的点在虚轴上”C
的( )
(A)必要不充分条件 (B)充分不必要条件
(C)充要条件
(D)不充分不必要条件
3.已知复数z=(m2+m-6)+(m2+m-2)i在复平面内所
对应的点位于第二、四象限,求实数m的取值范
围.
讲
m 3 m 2或1 m 2
y 5
5
O
x
–5
16
巩固练习 已知复数z=(m2+m-6)+(m2+m-2)i
求证:对一切实数m,此复数所对应的点不可 能位于第四象限.
解题思考:
表示复数的点所 转化 复数的实部与虚部所满
在象限的问题
足的不等式组的问题
(几何问题)
(代数问题)
讲
课
人
:
邢
启 强
17
课堂小结
知识点:
1.虚数单位i的引入; 复数的代数情势:
7.1 复数的概念
复数的几何意义
新课引入 数系的扩充与复数的概念
自然数 用图形表示数集包含关系:
数
23?
系
正有理数
的 扩
《复数——复数的概念》数学教学PPT课件(4篇)

栏目 导引
第七章 复 数
■名师点拨 (1)复平面内的点 Z 的坐标是(a,b),而不是(a,bi).也就是说,复 平面内的虚轴上的单位长度是 1,而不是 i. (2)当 a=0,b≠0 时,a+bi=0+bi=bi 是纯虚数,所以虚轴上的点 (0,b)(b≠0)都表示纯虚数. (3)复数 z=a+bi(a,b∈R)中的 z,书写时应小写;复平面内的点 Z(a,b)中的 Z,书写时应大写.
第七章 复 数
复数与复平面内的点 已知复数 z=(a2-1)+(2a-1)i,其中 a∈R.当复数 z 在 复平面内对应的点 Z 满足下列条件时,求 a 的值(或取值范围). (1)在实轴上; (2)在第三象限.
栏目 导引
【解】 (1)若 z 对应的点在实轴上,则有 2a-1=0,解得 a=12. (2)若 z 对应的点在第三象限,则有 a22a--11<<00,,解得-1<a<12. 故 a 的取值范围是-1,12.
栏目 导引
第七章 复 数
3.复数的模 复数 z=a+bi(a,b∈R)对应的向量为O→Z,则O→Z的模叫做复数 z 的 模或绝对值,记作|z|或|a+bi|,即|z|=|a+bi|=___a_2_+__b_2 ______. ■名师点拨 如果 b=0,那么 z=a+bi 是一个实数 a,它的模等于|a|(a 的绝对值).
栏目 导引
第七章 复 数
1.已知 z=(m+3)+(m-1)i(m∈R)在复平面内对应的点在第四象
限,则实数 m 的取值范围是( )
A.(-3,1)
B.(-1,3)
C.(1,+∞)
D.(-∞,-3)
解析:选 A.由题意得mm+ -31><00, ,解得-3<m<1.
第七章 复 数
■名师点拨 (1)复平面内的点 Z 的坐标是(a,b),而不是(a,bi).也就是说,复 平面内的虚轴上的单位长度是 1,而不是 i. (2)当 a=0,b≠0 时,a+bi=0+bi=bi 是纯虚数,所以虚轴上的点 (0,b)(b≠0)都表示纯虚数. (3)复数 z=a+bi(a,b∈R)中的 z,书写时应小写;复平面内的点 Z(a,b)中的 Z,书写时应大写.
第七章 复 数
复数与复平面内的点 已知复数 z=(a2-1)+(2a-1)i,其中 a∈R.当复数 z 在 复平面内对应的点 Z 满足下列条件时,求 a 的值(或取值范围). (1)在实轴上; (2)在第三象限.
栏目 导引
【解】 (1)若 z 对应的点在实轴上,则有 2a-1=0,解得 a=12. (2)若 z 对应的点在第三象限,则有 a22a--11<<00,,解得-1<a<12. 故 a 的取值范围是-1,12.
栏目 导引
第七章 复 数
3.复数的模 复数 z=a+bi(a,b∈R)对应的向量为O→Z,则O→Z的模叫做复数 z 的 模或绝对值,记作|z|或|a+bi|,即|z|=|a+bi|=___a_2_+__b_2 ______. ■名师点拨 如果 b=0,那么 z=a+bi 是一个实数 a,它的模等于|a|(a 的绝对值).
栏目 导引
第七章 复 数
1.已知 z=(m+3)+(m-1)i(m∈R)在复平面内对应的点在第四象
限,则实数 m 的取值范围是( )
A.(-3,1)
B.(-1,3)
C.(1,+∞)
D.(-∞,-3)
解析:选 A.由题意得mm+ -31><00, ,解得-3<m<1.
数系—复数集(初等数学课件)

复数的概念
两个复数相等,即a bi c di a c,b d 当两个复数互为共轭复数时,他们的实部不变,虚部变为原来的相反数,即
z a bi z a bi (共轭复数)
如, z 5 2i 的共轭复数就是 z 5 2i
复数的概念
定义2 复数的加、乘运算定义为
a bi c di a c b d i a bic di ac bd bc adi
向量OZ 的模r 叫做复数 z a bi 的模,记作 z 或a bi ,且 z a bi r a2 b2
复数的表示形式
2、三角形式
设复数 z a bi 的模 z r ,则 z r a b i ,令cos a ,sin b ,则 z rcos isin ,
r r
r
r
把 z rcos isin 称为复数 z a bi 的三角形式, 称为复数z a bi 的辐角。
减法、除法定义为
a bi- c di a - c b - d i
a
bi
c
di
ac
c2
bd d2
bc - ad
c2 d2
i
复数的加、乘运算满足交换律、结合律和分配律
复数的表示形式
1、几何与向量表示
复数 z a bi 与直角坐标平面内的点Za,b
一一对应,以原点O 为起点、Z 为终点的
向量OZ 一一对应,向量OZ 表示复数 z a bi ,
z rcos isin r 0有且只有n 个相等的n 次方根:
wk
n
r cos
2k n
isin
2k n
,k
0,1,2,, n
1
性质 3 复数集是不可数集。(实数集是不可数集,而实数集是复数集的子
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二、实数集的进一步扩展
——— 数集的第四次扩展(R→?)
问题2 : 解方程 x²= - 2 引入虚数单位 i 后进一步规定: i 可以与实 数进行四则运算,进行四则运算时,原有的 加、减、乘运算律仍成立。 所以 x² = - 2 的解为 x =
2i ,x = -
2i
问题3 解方程 (x +1)² =-2
例1
已知( x y) ( y 1)i (2 x 3 y) (2 y 1)i 求实数x, y
练习
设a, b R且a(1 i) b(1 i) 2a (1 b)i 求a, b
例2 实数:m为何值时 Z=(m2-8m+15)+(m2-5m+6)i为 (1)实数 (2)虚数 (3)纯虚数
Байду номын сангаас
练习: 例3
2 m + 2m 2 z= + m + 2m - 1 i i m- 1 实数m 为何值时,z 为
(
)
(1)实数(2)虚数(3)纯虚数
三、回顾与小结
b=0 无理数 C (a、bR) 纯虚数 (a=0) 虚数非纯虚数(a0)
复数z=a+bi b 0
正整数 整数 零 负整数 有理数 分数 实数
第三章
复数
§3· 1· 1数系的扩充和复数的概念
①解决实际问题的需要 由于计数的需要产生了自然数;为了表示具 有相反意义的量的需要产生了整数;由于测量的 需要产生了有理数;由于表示量与量的比值(如 正方形对角线的长度与边长的比值)的需要产生 了无理数(既无限不循环小数)。
②解方程的需要。 为了使方程x+5=3 有解,就引进了负数; 为了使方程3x=5 有解,就要引进分数;为了 使方程x2=2 有解,就要引进无理数。
(2)对于复数 z = a+bi (a、bR)
当b=0时, z = a 是实数 当b0时, z = a+bi不是实数,称为虚数 当b0且a=0时, z = bi , 称为纯虚数
二、复数的分类
实数(虚部为0且b=0)
复数
虚数(虚部不为0即b 0)
纯虚数 a 0且b 0
非纯虚数 虚数 实数
x=- 1+
2i , x = -1 - 2i
二、实数集的进一步扩展
定义: 形如a+bi(a、bR)的数 z 称为复数 (1)对于复数 z = a+bi (a、bR) i 称为虚数单位 a 叫做复数 z的实部,记作Re z, 即 a =Re z b 叫做复数 z的虚部,记作Imz , 即 b= Im z
引进无理数后,我们已经能使方程x2=a(a>0) 永远有解,但是,这并没有彻底解决问题,当a<0 时,方程 x2=a 在实数范围内无解。 为了使方程 有解,就必须把实数概念进一步扩 大,这就必须引进新的数。
二、实数集的进一步扩充
——— 数集的第四次扩充(R→?)
问题1:
解方程 x² = -1
引入一个数i ,使得该数的平方等于-1 即i2=-1 所以方程 x² = -1 的解为 x = i 或 x = - i
纯虚数
复数
三、复数的有关性质
1、z a bi为实数 b 0
2、z a bi为纯虚数 a 0且b 0 3、z a bi c di a c且b d 4、z a bi 0 a 0且b 0
5、z a bi与z a bi为共扼复数