电容式电压互感器铁磁谐振抑制方法及常见故障分析

合集下载

浅析电压互感器铁磁谐振解决方案

浅析电压互感器铁磁谐振解决方案

浅析电压互感器铁磁谐振解决方案电压互感器是一种用于测量电气系统中电压的传感器。

它通过感应电气系统中的电压变化,将其转化为标准化的电压信号输出。

在电力系统中,电压互感器的准确性和稳定性对系统的安全运行至关重要。

由于铁磁谐振现象的存在,电压互感器在一定工况下可能会出现误差,严重影响系统的稳定性和可靠性。

针对电压互感器铁磁谐振现象的解决方案备受关注。

针对电压互感器铁磁谐振现象,目前主要的解决方案包括使用无铁芯电压互感器、改进铁芯结构和铁芯质量、优化接线方式和增加补偿电路等措施。

下面将对这些解决方案进行浅析,以期为电力系统工程师提供一些参考。

首先是使用无铁芯电压互感器。

无铁芯电压互感器是一种新型的电压测量装置,其工作原理是利用电磁感应原理,在外加电场作用下,在电容绝缘介质内产生电荷分布,从而实现电场分布与电场强度成正比的效果,不需要铁芯来产生磁通量,因此不会受到铁磁谐振现象的影响。

使用无铁芯电压互感器可以有效解决铁磁谐振问题,提高系统的可靠性。

其次是改进铁芯结构和铁芯质量。

铁芯是电压互感器的主要组成部分,其性能直接影响电压互感器的工作稳定性和可靠性。

通过改进铁芯的结构和制造工艺,可以降低铁芯在铁磁谐振频率点上的磁滞和涡流损耗,从而降低铁磁谐振的影响。

提高铁芯的材料质量和磁导率,也可以有效改善电压互感器的性能,减少铁磁谐振带来的影响。

另外一个解决方案是优化接线方式和增加补偿电路。

在实际的电力系统中,电压互感器的接线方式和周围环境会对其性能产生一定的影响。

通过优化电压互感器的接线方式,可以减少外界电磁干扰,提高电压互感器的抗干扰能力,从而降低铁磁谐振的影响。

增加补偿电路也是一种常见的解决方案,可以通过在电压互感器中引入补偿电路,来调节电压互感器的输入和输出特性,降低铁磁谐振的影响。

针对电压互感器铁磁谐振现象的解决方案有很多种,每种方案都有其适用的场景和特点。

在实际的电力系统工程中,需要根据具体的工程要求和环境条件来选择合适的解决方案,以保证电压互感器的稳定性和可靠性。

浅析电压互感器铁磁谐振解决方案

浅析电压互感器铁磁谐振解决方案

浅析电压互感器铁磁谐振解决方案电压互感器(VT)是一种用于测量高压输电线路中电压的重要设备。

在特定情况下,VT可能会遇到铁磁谐振问题,导致测量误差和设备损坏。

为了解决这个问题,需要采取一些合适的解决方案。

了解什么是铁磁谐振。

铁磁谐振是指当VT的主磁路中的铁磁材料与外界所产生的磁场频率匹配时,就会出现共振现象。

这种共振会导致磁通放大,导致VT的工作点偏离设计值,进而引起测量误差和设备故障。

要解决这个问题,可以采取以下几种方案:1. 优化VT的设计:通过改变磁路结构和参数,可以提高VT的抗谐振能力。

可以通过增加磁路的漏抗来提高VT的谐振频率,从而减小谐振现象的发生。

2. 使用补偿电抗:在VT的主磁路中串联一个补偿电抗,可以有效地滤除谐振分量。

补偿电抗的参数需要根据实际情况进行调整,以实现最佳的抑制效果。

3. 采用变压器绕组的谐振抑制方法:在VT的绕组中增加谐振抑制绕组,可以有效地降低谐振现象的发生。

谐振抑制绕组的匝数和参数需要根据实际谐振频率进行合理设计。

4. 使用谐振抑制电路:可以在VT的输入端或输出端增加一个谐振抑制电路,通过调整电路参数,阻断谐振频率的传播路径,从而消除或减小谐振现象的影响。

需要强调的是,虽然上述方案可以有效地降低铁磁谐振问题的发生,但并不能彻底消除谐振现象。

在实际应用中,还需要根据具体情况进行综合考虑,并采取多种措施综合应对。

电压互感器铁磁谐振是一个普遍存在的技术难题,需要通过合理的设计和优化来解决。

通过优化VT结构设计、使用补偿电抗、增加谐振抑制绕组以及采用谐振抑制电路等方式,可以有效地降低谐振现象的发生,提高VT的抗干扰能力,确保其稳定和准确地进行电压测量。

电容式电压互感器铁磁谐振及抑制-精选资料

电容式电压互感器铁磁谐振及抑制-精选资料

电容式电压互感器铁磁谐振及抑制验。

前言电容式电压互感器(简称CVT是一种十分重要的高压输变电设备,主要用做电压测量和继电保护的信号取样装置,其电容分压器与阻波器结合且能兼作载波通讯的滤波装置。

它具有绝缘性能好,价格便宜等优点。

还能避免因电磁式电压互感器与开关并联电容所产生的谐振过电压。

因此,CVT日渐被电网所接受,在我省110kV及以上变电站的415台电压互感器中CVT占206 台。

但是目前我国生产CVT厂家逐渐增多,有些制造厂对某些技术并没有完全掌握,生产出厂的CVT在运行中暴露出不少的问题。

最常见的问题是发生自身谐振。

严重的CVT自身谐振事故,导致CVT损坏并退出运行。

1、国内采用的几种阻尼装置的工作机理1. 1CVT的自身谐振机理CVT本身的等值电路中就含有电容和非线性电感。

具有发生串联谐振条件。

在图1 中,当发生一次侧突然合闸或二次侧短路、又突然消除等冲击时,过渡过程中产生的过电压会使中间变压器的铁心出现饱和,励磁电感Lm呈非线性下降,回路的固有频率上升(Lm为中间变压器励磁电感,C为等值电容)可达到额定频率的1/2,1/3,1/5……;此时,可能出现某一分数次谐波振荡,最常见的是1/3 次谐波振荡,假如回路中不存在阻尼,或阻尼参数不当。

由于电源不断地供给能量,分数次铁磁谐振就会持续下去,谐振过电压的幅值可能达到额定电压的2〜3倍。

这个非真实的电压信号传到次测量仪表和继电保护装置,将导致误指示或误动作,此外持续的过电压作用,将危害互感器的绝缘。

因此CVT在制造时,必须设置阻尼装置,以抑制铁磁谐振,否则不能投入运行,这是电力部反事故措施一再强调的。

1.2 几种阻尼装置的优缺点1.2.1 纯电阻阻尼器纯电阻阻尼器在剩余电压绕组的输出端长期接入固定电阻,这种阻尼装置结构简单,过去老式CVT使用较多。

其缺点是功率消耗较大,影响测量准确度和次输出容量。

目前已基本逐步淘汰。

1.2.2 电子型阻尼器电子型阻尼器如图2。

浅析电压互感器铁磁谐振解决方案

浅析电压互感器铁磁谐振解决方案

浅析电压互感器铁磁谐振解决方案电压互感器是变压器的一种,用于测量高压电网上的电压,是保护设备中的重要组成部分。

在实际应用中,电压互感器的铁磁谐振问题一直是困扰电力行业的一个难题。

铁磁谐振是由于电压互感器铁芯在高电压下的变压器操作中出现的一种现象。

本文将对电压互感器铁磁谐振问题进行浅析,并提出一些解决方案。

铁磁谐振是由于电压互感器铁芯在高电压下工作时,其磁化特性和线圈特性之间的非线性作用引起的。

当电压互感器处于高压状态时,铁芯中的磁通量会出现非线性变化,导致铁芯和线圈之间发生磁谐振,引起电压互感器的工作不稳定,影响保护系统的可靠性。

铁磁谐振不仅会导致电压互感器输出信号的失真,还会对保护装置产生误动作,给电网带来安全隐患。

针对电压互感器铁磁谐振问题,我们可以采取以下解决方案来进行处理:1. 优化设计铁芯结构:通过优化设计电压互感器的铁芯结构,可以减少铁芯的非线性特性,降低铁磁谐振的发生概率。

可以采用高磁导率且具有低磁滞特性的材料来制作铁芯,减少铁芯的磁滞损耗,提高铁芯的工作稳定性。

2. 采用谐振阻尼器:在电压互感器中加入谐振阻尼器可以有效地抑制铁磁谐振现象的发生。

谐振阻尼器可以通过改变电路参数来调节线圈的谐振频率,使其与铁芯的谐振频率不一致,从而避免谐振现象的发生。

3. 控制电路技术:通过采用先进的控制电路技术,可以对电压互感器的输出信号进行有效地滤波和校正,使其满足保护装置的要求,提高保护系统的可靠性。

4. 加强监测和维护:加强对电压互感器的监测和维护工作,及时发现和解决铁磁谐振问题,可以有效地提高电压互感器的工作性能和可靠性。

电压互感器铁磁谐振问题一直是电力行业的一个难题,需要通过优化设计铁芯结构、采用谐振阻尼器、控制电路技术和加强监测维护等多种手段来进行解决。

只有通过不断的技术创新和改进,才能提高电压互感器的工作稳定性和可靠性,保障电网的安全运行。

浅析电压互感器铁磁谐振解决方案

浅析电压互感器铁磁谐振解决方案

浅析电压互感器铁磁谐振解决方案电压互感器铁磁谐振问题一直是电力系统中一个比较棘手的问题,铁磁谐振会导致电压互感器的输出不稳定,甚至损坏整个电气设备。

为了解决这一问题,电力系统工程师们一直在探索各种解决方案。

本文将从电压互感器铁磁谐振的原因分析入手,探讨一些解决方案,并分析它们各自的优缺点。

我们来看一下电压互感器铁磁谐振的原因。

铁磁谐振是指在电力系统中,由于互感器铁芯受到谐振电容的作用,导致电压互感器输出端的短路电流急剧增大,进而引起互感器的过热、损坏甚至整个系统的故障。

其主要原因有两点:一是电力系统中的负载变化和电容负载的存在;二是电压互感器的设计和设置不当。

针对电力系统负载变化和电容负载的存在,可以采取以下解决方案之一:1.增加电压互感器的阻尼通过在电压互感器的二次侧串联阻尼电阻来提高系统的阻尼比,减小谐振电容对电压互感器的影响,从而抑制铁磁谐振的产生。

这种解决方案的优点在于成本低廉、易于实施,但缺点是阻尼电阻会降低电压互感器的测量精度。

2.在谐振电容上串联电阻在谐振电容上串联适当的电阻,减小谐振电容的充电速度,降低谐振电流的峰值,从而解决铁磁谐振问题。

这种解决方案的优点是能够有效抑制铁磁谐振的产生,但需要对系统进行重新设计,成本较高。

在实际工程中,通常会综合考虑以上各种解决方案,采取多种措施来解决电压互感器铁磁谐振问题。

可以同时增加电压互感器的阻尼和在谐振电容上串联电阻,或者优化电压互感器的设计并调整设置参数。

除了上述提到的解决方案之外,还可以考虑使用数字电压互感器来替代传统的模拟电压互感器。

数字电压互感器采用数字信号处理技术,不仅能够实现更高精度的电压测量,还能够通过数字滤波技术有效抑制谐振电流,从根本上解决铁磁谐振问题。

但数字电压互感器的成本较高,需要配合数字保护装置使用,对系统的要求也较高。

电压互感器铁磁谐振问题的解决方案需要综合考虑电力系统的实际情况、成本和技术可行性。

在实际工程中,工程师们需要结合具体情况,选择合适的解决方案,确保电压互感器能够稳定可靠地工作,为电力系统的安全运行提供保障。

浅析电压互感器铁磁谐振解决方案

浅析电压互感器铁磁谐振解决方案

浅析电压互感器铁磁谐振解决方案电压互感器是电力系统中常用的一种测量电压的设备,通常将高压侧的电压信号通过变比转换成低压侧的信号输出,以便送入电力系统的各种保护、计量、控制设备中使用。

然而,在实际应用中,电压互感器的铁磁谐振问题常常导致电压互感器输出异常、测量误差严重等问题,危害电力系统的稳定性和安全性。

为此,本文将对电压互感器铁磁谐振解决方案进行浅析。

电压互感器的铁磁谐振是由于其高压绕组与低压绕组之间具有一定的互感性而产生的,当低压绕组产生谐振时,其自感与互感所形成的谐振电容会导致铁磁谐振现象。

铁磁谐振会使得电压互感器输出电压出现负载光电压、负载电流共振等异常,影响电力系统的测量和保护功能。

1、改进低压绕组结构,减小互感电容低压绕组结构的改进可以减小其自感电容,降低互感电容,从而减少铁磁谐振的可能性。

常见的改进措施包括增加低压绕组的层次数、采用环形绕组等方式。

2、采用铁芯材料的改进选择适合的铁芯材料可以降低电压互感器的谐振容性,从而减少铁磁谐振。

目前,市场上常用的铁芯材料包括Si-Fe、Ni-Fe、FeCrCo等。

其中,FeCrCo材料的磁强度和磁导率都比Si-Fe高,可实现更高的工作频率和更小的体积,是一种优良的铁芯材料选择。

3、采用补偿电容器的方法补偿电容器是将电感电容结构单独构成的LC谐振回路中,串接一个等效电容器Cp。

常常采用二次补偿法,在电压互感器高压侧串接一个电容器,低压侧串接两个偏置电容器。

补偿电容器可以降低谐振回路的共振频率和谐振电容,以减轻铁磁谐振的影响。

4、采用调制技术的方法最近几年,随着多普勒雷达、通信、数字电视和音频等技术领域的飞速发展,调制技术越来越被广泛应用。

在电压互感器中,采用调制技术,通过调制数字信号的频率来达到抑制铁磁谐振的目的。

这种方法不仅可避免了串联补偿电容器后所带来的传统问题,还能减少谐振回路的自感,更加稳定可靠。

总之,电压互感器铁磁谐振问题是业内广泛关注的课题,众多专家学者对此进行了深入研究,并提出了多种解决方案。

电压互感器的铁磁谐振及消谐措施分析

电压互感器的铁磁谐振及消谐措施分析

电压互感器的铁磁谐振及消谐措施分析对电压互感器铁磁谐振产生的危害、原因、现象进行阐述,提出了各种有效的电压互感器消谐措施,并对其原理和优缺点逐一进行分析、比较。

标签:电压互感器;铁磁谐振;消谐1 概述电力系统是一个复杂网络,其中存在着许多感性或容性的元件,电感元件包括发电机、变压器、消弧线圈、电抗器、电压互感器等,电容元件包括输电线路、电容补偿、高压设备的杂散电容等。

各种电感、电容元件在电力系统中形成不同的LC振荡回路。

在正常工况下,电力系统稳定运行不会出现振荡。

在外界的激发条件下,比如进行某种倒闸操作或系统发生故障时,电网参数发生变化达到某种特定匹配,系统就可能发生谐振。

例如中性点不接地系统中,由电压互感器和线路对地电容之间、受电变压器和相间电容之间构成的振荡回路,在发生单相接地故障时都有可能激发谐振发生。

电压互感器这类带铁芯的电感元件,在正常工作电压下铁芯工作于线性区,磁通密度并不高,在过电压下铁心会迅速饱和,电感值随之减小,从而与电容匹配发生谐振,这时的谐振称作铁磁谐振。

铁磁谐振过电压可以在3~220千伏的任何系统中发生,特别是在35千伏及以下的电网中,很多内部过电压事故都是由铁磁谐振引起的。

铁磁谐振引起的过电压持续时间长,甚至可能长期存在,严重威胁系统安全。

2 铁磁谐振产生原因及现象电压互感器谐振回路是由电压互感器的非线性电感和电网对地电容构成的。

电压互感器带有铁芯,容易出现饱和现象,电感值会随着电流或磁通的变化而变化。

正常运行时,电压互感器的感抗很大,远大于电网对地电容的容抗,此时不具备谐振条件,系统保持稳定状态。

在外界的激发条件下,如单相接地故障突然消失、线路合闸、雷电冲击等,可能造成互感器励磁电感饱和,感抗降低,与电网对地电容匹配激发谐振。

由电压互感器铁磁谐振造成的过电压,因为不同的网络参数和外界激发条件,大致可分为三类:工频谐振过电压、高频过电压、分频谐振过电压。

发生工频谐振过电压时,其现象表现为两相(饱和相)对地电压升高,一相(非饱和相)对地电压降低,该现象类似于单相接地故障。

浅析电压互感器铁磁谐振过电压防范措施

浅析电压互感器铁磁谐振过电压防范措施

浅析电压互感器铁磁谐振过电压防范措施电压互感器是一种用于测量电力系统中电压的设备,其作用是将高压电网的电压信号变换为低压信号,以便与保护设备或测量设备相连。

当电网中出现铁磁谐振情况时,往往会给电压互感器带来负面影响,甚至引发过电压事故。

对电压互感器的铁磁谐振过电压进行有效的防范措施,显得尤为重要。

铁磁谐振过电压是指在电网中存在电容性电压降与电容性感应电流之间的共振现象,当系统中存在频率相同的电容性电压降和感应电流时,就会形成共振。

在电网中,由于各种原因,例如电容性电压降和高电压电网中的感应电流,会引起电网中的谐振。

而电压互感器作为电力系统中的重要设备之一,其铁磁谐振过电压会导致其损坏,甚至对整个电网的稳定性和安全性造成影响。

为了有效防范电压互感器的铁磁谐振过电压,需要采取一系列的措施。

首先是合理选用电压互感器的类别和型号。

电压互感器的类别和型号应根据具体的电力系统条件和要求来选定,避免盲目选用不合适的电压互感器,导致频率与系统谐振频率相接近,从而产生谐振现象。

其次是合理设置电压互感器的接线方式。

在电网的设计和施工中,应按照要求合理设置电压互感器的接线方式,减少因连接方式不当导致的谐振风险。

还需加强对电网的监测和维护。

通过对电网的实时监测和及时维护,可以及时发现存在的谐振风险,采取相应的措施进行处理,保障电网的稳定运行。

除了以上措施外,还可以采用谐振阻抗装置来防范电压互感器的铁磁谐振过电压。

谐振阻抗装置是一种专门用于防范电网谐振现象的装置,其作用是在谐振发生时,通过调节电路的阻抗来阻止电路共振,从而有效地防范铁磁谐振过电压。

谐振阻抗装置可以根据具体的电网条件和需求设计定制,安装在电网中的关键位置,有效地避免电压互感器因谐振而产生过电压。

加强对电压互感器的维护和检修也是防范铁磁谐振过电压的重要手段。

定期对电压互感器进行检查和维护,及时清除电压互感器周围的杂物,保证电压互感器正常运行,并避免因外界物体的干扰而引起谐振现象。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电容式电压互感器铁磁谐振抑制方法及常见故障分析
发表时间:2018-03-13T11:22:41.733Z 来源:《电力设备》2017年第30期作者:乔斌1 王一婧2 贾炜1 [导读] 摘要:介绍了电容式电压互感器(CVT)铁磁谐振的几种抑制方法,重点对谐振型阻尼器的常见故障进行了分析并提出了改进意见,希望以此能够降低谐振型阻尼器的故障发生率。

(1.国网山西检修公司山西太原 030032;2.国网太原供电公司山西太原 030012)摘要:介绍了电容式电压互感器(CVT)铁磁谐振的几种抑制方法,重点对谐振型阻尼器的常见故障进行了分析并提出了改进意见,希望以此能够降低谐振型阻尼器的故障发生率。

关键词:谐振;抑制措施;改进意见
Methods of reducing ferromagnetic resonance and normal fault analysis for capacitor voltager transducer Abstract:Introduce several reducing methods of capacitor voltage transducer(CVT)ferromagnetic resonance . The point is the normal fault analysis and improving advices of resonant damper . Hoping this could reduce the fault rate of resonant damper. Keywords:Resonance;Reducing methods;Improving advices。

相关文档
最新文档