电磁式电压互感器铁磁谐振及消谐方法的分析
5.25电磁式电压互感器引发铁磁谐振原因及消谐措施分析

电磁式电压互感器引发铁磁谐振原因及消谐措施分析近年来,在35kV及以下中性点不接地系统中,电磁式电压互感器饱和引发的铁磁谐振过电压,熔断压变熔丝,烧毁电压互感器,甚至是系统事故案例恨多。
那么,一起了解下系统中的电压互感器有什么作用?电压互感器主要是用来给测量仪表和继电保护装置供电,用来测量线路的电压、功率和电能等,对电力系统很重要。
根据电压互感器行业市场运行的数据现状,了解到配电网电压互感器使用类型占比如下图。
由于电磁式电压互感器存在铁芯,在励磁特性曲线中,当施加的励磁电流增加,而激励出电压值增加幅度较小或不变,出现拐点。
即随着励磁电流的增加,激励出的电压变化很小或不变(在这过程中电感是下降),称为PT的饱和特性。
电压互感器的空母线突然合闸、系统发生单相接地故障。
在这两种情况下,电压互感器一次电流都会出现很大的励磁涌流;使电压互感器一次电流增大60倍左右,造成电压互感器饱和,从而诱发电压互感器产生过电压。
电压互感器发生铁磁谐振时系统的线电压指示不变,还可能引起其高压侧熔断器熔断,造成继点保护和自动装置的误动作,不仅会给电压互感器造成损害,严重时还可能影响电网安全运行。
通常情况下发生铁磁谐振时会产生以下危害:(1)在一次熔断器尚未熔断时;可能使电压互感器烧毁。
(2)在一次熔断器熔断时,则无法读取系统的正确电压值。
系统发生铁磁谐振,通常采用以下消除措施:(1)当只带电压互感器的空载母线产生基波谐振时;应立即投人一个备用设备,改变电网参数,消除谐振。
(2)当发生单相接地产生电压互感器分频谐振时,应立即投人一个单相负荷。
由于分频谐振具有零序性质,故此时投人三相对称负荷不起作用。
(3)铁磁谐振造成电压互感器一次熔断器熔断或电压互感器烧毁,应加装KLMP系列流敏型消谐器和KLMP系列微机消谐装置,消除铁磁谐振,使电压互感器的正常运行。
综上可知,35kV及以下中性点不接地系统中,选用全绝缘电磁式电压互感器加装KLMP系列流敏型消谐装置,有效防止铁磁谐振过电压,确保设备安全运行。
电磁式电压互感器发生铁磁谐振的危害及解决措施

电磁式电压互感器发生铁磁谐振的危害及解决措施发表时间:2016-11-09T09:25:29.473Z 来源:《电力设备》2016年第16期作者:程新恒张献红[导读] 谐振的危害非常大必须采取措施加以解决。
在常村变10KV电压互感器一次侧加装消谐器后再没有发生谐振现象。
(国网河南叶县供电公司河南平顶山 467200)摘要:电力系统中电磁式电压互感器由于激磁特性的非线性,当系统进行操作及发生故障等造成电压发生波动时,一旦满足电网感抗等于容抗条件时便发生串联谐振,产生谐振过电压。
且过电压倍数高,持续时间长。
轻者造成电磁式电压互感器熔丝熔断、电压互感器烧毁、重者造成电网设备绝缘损毁、相间短路、保护装置误动作等,因此必须采取措施,加装一次消谐器。
破坏谐振发生条件,预防谐振发生。
关键词:电磁式电压互感器谐振;危害;处理引言电力系统中一些电感、电容元件在系统进行操作或发生故障时可形成各种串联振荡回路,在一定的能源作用下,导致系统某些元件出现严重的过电压,给电网安全稳定运行带来不利影响,这种现象称为串联谐振现象,由于电磁式电压互感器激磁特性的非线性,当电压发生波动使网络中感性阻抗等于容性阻抗时,便产生串联谐振过电压。
这种谐振过电压统称为铁磁谐振过电压。
特别是遇有激磁特性不好(易饱和)的电磁式电压互感器及系统发生单相对地闪络或接地时,更容易引发谐振过电压。
轻者令到电磁式电压互感器的熔断器熔断、匝间短路或爆炸;重者则发生避雷器爆炸、相间短路、保护装置误动作等严重威胁电力系统和电气设备运行安全的事故。
一、铁磁谐振发生的原因电路是电流流通的路径,在具有电阻、电感和电容的电路里,对电路中的电流所起的阻碍作用叫做阻抗。
阻抗常用Z表示,是一个复数,实部称为电阻,虚部称为电抗。
电抗呈现感性或容性,电力系统正常运行时,电抗呈感性,当长距离输电且负荷较小时或系统投入电容器较多时则电抗呈容性。
而一旦,虚部为零(感抗等于容抗),即阻抗完全为电阻时,就构成了触发谐振的条件,谐振便产生了。
电磁式电压互感器铁磁谐振产生及治理方法

电磁式电压互感器铁磁谐振产生及治理方法摘要:电磁式电压互感器大量应用于35kV及以下中性点不接地电力系统中,铁磁谐振在电力系统中的频发导致电磁式电压互感器烧损,严重时甚至发生爆炸事故。
本文主要针对某330kV变电站发生铁磁谐振导致电磁式电压互感器烧损并进一步导致主变进区短路使主变绕组烧损进行分析,且对电压互感器发生铁磁谐振的原因及防止措施提出可行性意见,保证电网安全稳定运行。
关键词:电磁式电压互感器、铁磁谐振、消除措施1、引言随着电网高速发展,电磁式电压互感器作为保护与计量设备广泛应用于35kV 及以下电压等级的中性点不接地系统中。
但系统中发生单相接地故障或者开关开断操作时,电磁式电压互感器等电磁元件与电网系统中电容元件以及线路对地电容等形成谐振回路,系统中产生能够激发铁磁谐振的谐振频率。
变电站35kV及以下系统大量安装电磁式电压互感器,然而由于电磁式电压互感器电磁特性,经常发生铁磁谐振,导致电压互感器烧损,严重时甚至发生爆炸事故。
本文结合实际事故进行原因分析,并提出相应的预防治理措施。
2、事故现象及初步结论2.1 事故发生过程某日03时10分40秒,某330kV变电站#1主变低压侧35kV#1电容器#3561开关动作合闸,#1主变三侧电压无异常。
03时25分19秒030毫秒,35kV#1电容器#3561开关动作分闸,#1电容器组退出运行,35kV I段母线三相电压发生畸变,故障录波显示最大电压幅值达到56kV如图1所示。
35kV#1电容器、#2电容器、#1所用变保护报频率异常、装置报警。
该过程持续到03时48分52秒910毫秒,故障持续时间为23分34秒。
图1 #1电容器组退出运行后电压开始畸变03时49分24秒794毫秒,#1主变35kV侧C相电压互感器断线,发生35kV I母C相单相接地故障,35kV#1电容器、#2电容器、#1所用变保护报频率异常、03时49分24秒814毫秒,#1主变保护装置运行异常。
浅谈电力系统中的铁磁谐振过电压及消除方法

浅谈电力系统中的铁磁谐振过电压及消除方法摘要:本文简要分析了电力系统中铁磁谐振产生的原因、现象及对电气设备的危害,并介绍了消除铁磁谐振过电压的常用方法。
关键词:电力系统;铁磁谐振;过电压;电容;电感1 引言电力系统中有许多的电感、电容元件,如变压器、互感器、电抗器、消弧线圈、发电机等的电感,输电线路的对地电容及相间电容,以及各种高压设备的电容。
这些电感,电容元件在特定的参数配合条件下构成振荡回路,当系统进行操作或发生故障时形成谐振现象,从而产生谐振过电压,导致系统中某些电气设备出现严重的过电压而损坏,影响电力系统的安全运行。
2铁磁谐振过电压产生的原因电力系统内,一般的回路都可简化成电阻R、感抗、容抗的串联和并联回路。
铁磁谐振回路由带铁芯的电感元件(如空载变压器、电压互感器)和系统的电容元件组成。
正常运行条件下,感抗大于容抗,即>,此时电路运行在感性工作状态,不具备线性谐振条件,回路保持稳定状态。
铁磁谐振回路的容抗在频率不变的情况下基本上是个不变的常数,而感抗一般是由带铁芯的线圈产生的,铁芯饱和时感抗会变小。
当电源电压有所升高或电感线圈中出现涌流时,就有可能使铁芯饱和,其感抗值随之减小,当=时,即满足串联谐振条件,于是发生铁磁谐振[4]。
电力系统运行参数具有随机性,其运行方式灵活,构架比较复杂,容易使系统参数发生变化。
在进行操作或者发生故障的条件下,电力系统中的电容和电抗元件很容易形成振荡回路,尤其是主变压器,电压互感器等有绕组及铁芯的设备在一定的激励条件下,最容易产生电磁耦合现象,进而产生串、并联谐振,引发铁磁谐振过电压。
35kV、10kV系统大多采用中性点不接地方式运行,电网结构相对薄弱,加上电力系统操作频繁,运行方式又多变,很容易导致铁磁谐振过电压。
据有关统计,铁磁谐振过电压导致故障概率高达50% ~ 55%。
铁磁谐振过电压导致故障的严重性可见一般。
铁磁谐振过电压本质上是由于非线性励磁电感与电力系统对地电容所构成的铁磁谐振所引发的电网中性点不稳定现象。
经典-电压互感器的铁磁谐振分析

某 县 的 两 座 35 kV 变 电 站 10 kV 电 压 互 感 器 最 初 选 用 JSW-10 型,都曾出现因铁磁谐振烧毁互感器情况,因谐振使 电压互感器一次保险熔断现象时有发生。 如果是电压互感器 一次保险熔断还能及时更换,对供电不会有太大影响。 但是, 对 于 上 世 纪 90 年 代 初 建 设 的 这 些 小 型 35 kV 站 ,10 kV 母 线是单母线不分段,只装有一组电压互感器,物资部门很少 有备件,如果出现烧毁互感器情况,将不能及时更换,其后果 一是影响表计和 10 kV 母线电压的监视,二是交流系统失去 绝缘监察,当系统出现单相接地时不能及时报警发信号。
四、铁磁谐振预防与消谐
产生谐振的原因是某些激发因素使电压互感器铁芯饱 和, 感抗由大变小 或 是 电 网 的 电 容 参 数 变 化 使 XL=XCO 而 产 生谐振。 因而防止谐振就是防止铁芯饱和,尽量避免产生激 发因素。
一是选用励磁特性不易饱和的、绝缘性能较高的电压互 感器,或是在互感器一次的中性点串接消谐装置。 某县两座 变电站就是在互感器一次的中性点串接消谐装置,解决了谐 振过电压、间歇性弧光接地而烧毁电压互感器的问题。 二是 加强运行维护,改善开关的同期性,尽量减少瞬间接地故障, 即减少谐振的激发因素。 三是电压互感器开口三角串电阻安 装 WNXⅢ-10(60)型 微 电 脑 消 谐 装 置 ,某 县 8 座 35 kV 站 装 上后,运行效果比较好,该装置不仅能消除谐振,还能记录谐 振类型、时间。 只是要注意消谐器安装点距互感器较远时,要 保证连接二者的二次回路电阻不能大于 3Ω。 四是操作中注 意监视母线电压,如电压过高则立即改变运行方式,投入或 切除线路或设备,实质上就是改变 XCO/XL 值,消除谐振。 五是 给母线充电前先切除母线所带电压互感器, 充电后再投入, 停母线时也先切除电压互感器,再拉开开关。 或者给母线充 电时采用线路及母线一并充电的方式。 六是采用电容式电压 互感器,由于其对地呈现容性,从根本上失去了谐振的基础, 从而防止铁磁谐振的发生。
浅谈电压互感器铁磁谐振产生原因及消除措施

浅谈电压互感器铁磁谐振产生原因及消除措施发布时间:2023-03-08T04:25:05.108Z 来源:《福光技术》2023年3期作者:周家典[导读] 本文结合新疆金晖110KV变电站项目10KV二段PT柜由于发生三相铁磁谐振而烧毁电压互感器的案例分析其铁磁谐振特点并给出其相关的抑制措施。
福建中能电气有限公司摘要:根据电压互感器在现场运行发生铁磁谐振当时的内外部电网环境,从而对其产生原理及特点进行分析,提出了5条有效的抑制方案。
关键词:电压互感器、铁磁谐振引言:本文结合新疆金晖110KV变电站项目10KV二段PT柜由于发生三相铁磁谐振而烧毁电压互感器的案例分析其铁磁谐振特点并给出其相关的抑制措施。
在电力系统的输配电回路中,由于电磁式电压互感器是非线性的铁芯电感元件,如果系统出现电力参数的突然变动,则电压互感器的铁芯就有可能饱和,从而造成LC共振回路,激发起持续的、较高幅值的过电压,这就是铁磁谐振过电压。
根据这几十年来电网运行情况表明,在 10kV及以下的中性点不接地系统中,电压互感器引起的铁磁谐振现象是一种常见的故障,严重威胁到了电网的安全运行。
由于单相铁磁谐振的电路是电力系统中最常见的铁磁谐振,因此本文结合我公司客户新疆金晖110KV变电站项目10KV二段PT柜由于发生单相铁磁谐振而烧毁电压互感器的案例,分析其铁磁谐振特点并给出其相关的抑制措施。
案例:新疆金晖工业园区采用110/10KV的供电方式,10KV供电采用电缆敷设;另外10KV采用中性点不接地的供电方式(小电流接地)。
另外发生事故时,多数线路处于空载运行状态,用电负荷很小;整个工业园区正处于紧锣密鼓的安装施工中,由于管理混乱,施工中经常出现10KV电缆被挖断的事故;110KV变电所10KV二段电压互感器柜由于发生铁磁谐振,造成电压互感器烧毁,I段10KV进线柜和110KV 1号主变出线柜失电跳闸事故(2号主变未投运)。
本次故障就现场的情况分析跟10KV电缆经常被挖断有关,造成了单相接地或弧光接地,而后值班人员发现后切除该条线路(造成单相接地或弧光接地突然消失),为铁磁谐振的形成创造了条件,从而导致发生了较为严重的铁磁谐振故障,电压互感器击穿烧毁。
电磁式电压互感器谐振过电压分析

Science &Technology Vision科技视界0前言在中性点不接地系统中,母线上一般装设中性点接地的电磁式电压互感器,由于电磁式电压互感器低压侧的负荷很小,接近空载,高压侧具有很高的励磁阻抗,在某些倒闸操作时,或者在接地故障消失之后,它与导线对地电容或其它设备的杂散电容间形成特殊的三相或单相谐振回路,并能激发起各种谐波的铁磁谐振过电压。
1电磁式电压互感器引起铁磁谐振的原理电压互感器通常接在变电站或发电机的母线上,其一次绕组接成星型,中性点直接接地,因此各相对地励磁电感L 1,L 2,L 3与母线对地电容C 0间各自组成独立的振荡回路。
中性点绝缘系统中,接有电磁式电压互感器的母线接线等值电路,见图1,其中E A ,E B ,E C 为三相电源电势。
图1在正常运行条件下,励磁电感L 1=L 2=L 3=L 0,故各相对地导纳Y 1=Y 2=Y 3=Y 0,三相对地负荷是平衡的,电网的中性点处在零电位,即不发生位移现象。
当电网发生冲击扰动时,例如开关突然合闸,或母线发生瞬间弧光接地现象等,都可能是一相或两相的对地电压瞬间提高。
由于扰动,若A 相对地电压瞬间提高,使得A 相互感器的励磁电流突然增大而发生饱和,其等值励磁电感L 1相应减小,以致Y 1≠Y 0,这样,三相对地负荷不平衡,中性点发生位移电压。
如果参数配合不当,恰好使总导纳接近为零就会产生串联谐振现象,中性点位移电压急剧上升。
此时,三相导线的对地电压等于各相电源电势和位移电压量的向量和,向量叠加的结果,通常是两相对地电压升高,一相对地电压降低,这就是基波谐振的表现形式。
图2图2中H.A.Peterson 曲线研究了产生各种谐波振荡的条件,其中X c 为系统每相的容抗;X L 为电压互感器的单相绕组在额定线电压作用下的对地励磁电抗;U 是电压互感器事故前的运行相电压;是电压互感器的铭牌线电压,U △为铁芯电感的额定线电压。
从图2可以看出,随着X c /X L 比值的增大,依次发生1/2分次谐波(曲线1)、基波(曲线2)和高次谐波(曲线3)的谐振,同时所需的U 也逐渐增大。
电压互感器铁磁谐振分析

第32卷增刊2 电网技术 V ol. 32 Supplement 22008年12月 Power System Technology Dec. 2008文章编号:1000-3673(2008)S2-0311-03 中图分类号:TM64 文献标志码:A 学科代码:470·4051电压互感器铁磁谐振分析梅成林,张超树(广东省电力工业局试验研究所,广东省广州市 510600)Analysis of Voltage Transformer FerroresonanceMEI Cheng-lin,ZHANG Chao-shu(Guangdong Power Test & Research Institute,Guangzhou 510600,Guangdong Province,China )摘要:铁磁谐振是电力系统中的一种常见现象,文中论述了电力系统中串、并联铁磁谐振的发生机理,介绍了不同频率铁磁谐振的特点。
针对一起发电机出口侧电压互感器烧毁事故进行了深入分析,得出此次铁磁谐振的发生机理。
最后总结了当前消除和防止铁磁谐振的方法。
关键词:中性点不接地系统;电压互感器;铁磁谐振0 引言在中性点不接地系统中,为了监视三相对地电压,电磁式电压互感器(potential transformer,PT 的一次绕组接成星形,中性点直接接地。
这种情况下,除了系统的对地电容外,还有PT 对地的励磁电感,正常运行时,PT 励磁绕组感抗很大,远远大于对地电容,PT 三相基本平衡,中性点的位移电压很小,系统不会发生谐振[1-2]。
铁磁谐振一般由单相接地、合闸等引发,单相接地或合闸等情况可使电压互感器饱和,电感减小,出现电感与系统电容相等的情况,引发铁磁谐振[3]。
1 谐振的原理及分类电力系统的谐振根据谐振电路分为串联谐振和并联谐振[4]。
串联谐振的示意图如图1所示。
设基波时的电容容抗为X C ,电感的感抗为X L ,谐波源的频率与基波频率的比值为N 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
( hna gIstt o nier gS eyn 1 16 C ia S eyn tue f gnei ,hnag10 3 , hn ) ni E n
Abs r c : ya ay ig te fr ma n t eo a c n am fa lcrma n t otg r s r r terlt n t a t B n lz h er g ei rs n n e a d h r o n ee t n o c o g ei v l e t f me ,h eai s c a n a o o
产生铁 磁 谐振 :
谐振条件 ; 快速消耗谐振能量 , 降低谐振过 电压 、 电 过 流 的倍 数 ; 合理地 分配 有功 负荷 , 般在 轻载 或空 载条 一 件 下 易发生谐 振 。在 电力 系统 实 际应 用 中 , 采 用 J 常
下 述消谐 措施 :
() 1 电压互感 器一 次绕 组 中性 点 经 消 谐 电阻 接地 消谐 。在 单相 接 地 故 障 消失 后 , 消谐 电 阻 限 制 T V一 次绕 组 中的励 磁 电流 大 小 , 免 T 铁 芯 过 饱 和 使 其 避 V 电抗下 降 , 成谐 振 电路 。消谐 电阻越大 , 形 消谐 效果 越 好 , 一般 为几 千 欧到几 万 欧不 等 。但是 , 其 消谐 电阻 太 大时 , 也会产生 负 面影 响 。如 : 消谐 电阻越 大 电压降 也
b tent l t mant eo a c xin o d c o n s eo a c p saeep u dd T ess m t nl- e e ee cr g e crsnn eect gcn u t na di ‘ sn net e r x on e . h t a caa w h e o i i i tr y ye i y
4
<电气开关> 2 1 . o 1 (0 0 N . )
文章编 号 :0 4—2 9 2 1 ) 1 0 O 0 10 8 X(0 0 0 — O 4— 3
电磁式 电压互感器铁磁谐振及 消谐方法的分析
戴宪滨
( 阳工程 学院 , 宁 沈阳 10 3 ) 沈 辽 1 16
摘 要 : 过分析 电磁 式 电压互 感 器铁 磁谐振 机 理及危 害 , 通 阐述 了铁 磁谐 振 激 发条 件 与其谐 振 类 型之 间的 关 系, 进 一 步对现 有 消谐 方 法进 行 系统 分析 。
s o t e ei n t g r s n c v i b e i rh r c ri d o t i t l s h mi a n e o a e a al l sf t e a r u . i n a u e
Ke r s:otg a s r e ; r ma e crsn n e n trlp it y wo d v l et n fm r f r g t —e 0 a c : au a on a r o eo n i
关键词 : 电压互感 器 ; 铁磁 谐 振 ; 中性 点 中图分 类号 :M4 1 T 5 文 献标识 码 : B
Ana y i f Fe r m a n tc Re o a c nd Elm i a i s n n e l ss o r o g e i s n n e a i n tng Re o a c M e h d f El c r m a ne i la e Tr ns o m e t o o e to g tc Vo t g a f r r
N
图 1 中性点不接地系统接线图
< 电气开 关》 2 1. o 1 (0 0 N . )
5
电力系 统安 全稳定 运行 。
3 谐振激发条件与谐振类型之 间的关 系
在 中性点不接地系统 中, 了单相接地 故障消失 除
后 能激 发 铁磁 谐振外 , 在下 列激 发条 件作 用下 , 也可 能
带铁芯 的电感元件 , 当电力 系统受 到某些扰动 ( 或受
激发条件作用) 电感 元件 的电抗值会发生变化 , 时, 与 电力系统中的电容构成谐振 电路。一般把带铁芯的电 感元件 产 生 的谐 振称 为铁磁 谐振 。 Leabharlann 2 铁磁谐振机理及 危害
以图 l 为例 , 分析中性点不接地系统 中电磁式电 压互感器铁磁谐振机理 。图 1 为电磁式 电压互 中, Ⅳ
、 为 系统 三相 电源 电势 。为 了研 究 铁 磁谐 振
E
机理 , 忽略 系统 中的 电 阻 、 问 电容 和 系统 电源阻 抗 , 相 假 设 系统处 于空载 状态 。 系统正 常运 行 时 , 统 中性 点 N 电压 为 零 , 系 电压 互 感 器激磁 阻抗很 大 , 激磁 电流很 小 , 以 T 其 所 V铁 芯 不饱 和 , 电抗数值 不 变。 当 图 1中 K点 发生 单 相接 其 地 短 路故 障 , 统 中性点 N 的 电压 升 高 不 为 零 , 地 系 接
短路电流在三相系统 、 及接地点 K间流动, 其数值 较大 ( 与系统正常运行时比) 非故障相 电压升高 倍 ;
额定相电压 , 使非故障相 G 充满电。 0 当单相接地故障消失后 , 非故障相 c 经 T 0 v一次
绕组及其 中性点放电, 此时 T v激磁 电流突然增大 , 使 ,r I 铁芯处于严重饱和状态 , T 、 其激磁阻抗下降。当 T V 激磁阻抗与 c 的容抗相等时 , 0 产生铁磁谐振。因此, T V铁芯 的非线性 铁 磁 特性 是 产 生铁 磁 谐 振 的根 本 原 因。铁磁谐振的发生, 会给 电力 系统带来 很大危害。 谐振过电流引起 电压互感器一次熔断器熔断或烧毁; 谐振 过 电压影 响高压 电气设 备 的绝 缘性 能 , 至 影 响 甚
1 引 言
为 了监控 电力系 统 的运 行 状 态 , 电力 系 统 中安 装 了大量 电磁 式 电压互感 器 。而 电磁式 电压互 感器 属于
感器 ,V Ir V 为电压互感器三相一次绕组 ,、 T 小, T c 、 ,r I
一
次绕组中性点直接接地 ; 。 C 为系统对地等效电容 ;