人教版2019-2020学年八年级数学第一学期第12章《全等三角形》单元测试题含答案

合集下载

人教版新版初中数学8年级《第12章 全等三角形》单元测试题2019学年

人教版新版初中数学8年级《第12章 全等三角形》单元测试题2019学年

人教版新版《第12章全等三角形》单元测试题2019学年一.选择题(共10小题)1.下列图形中,属于全等形的是()A.B.C.D.2.下列语句:①面积相等的两个三角形全等;②两个等边三角形一定是全等图形;③如果两个三角形全等,它们的形状和大小一定都相同;④边数相同的图形一定能互相重合.其中错误的说法有()A.4个B.3个C.2个D.1个3.如图,△ABE≌△ACD,点B、C是对应顶点,△ACD的周长为32cm,AC=14cm,CD=11cm,则AE的长为()A.6cm B.7cm C.8cm D.9cm4.已知△ABC的三边长分别为3,5,7,△DEF的三边长分别为3,3x﹣2,2x﹣1,若这两个三角形全等,则x为()A.B.4C.3D.不能确定5.如图,CD⊥AB于D,BE⊥AC于E,BE与CD交于O,OB=OC,则图中全等三角形共有()A.2对B.3对C.4对D.5对6.如图所示,AC=BD,AB=CD,图中全等的三角形的对数是()A.5B.4C.3D.27.如图,BE=CF,AE⊥BC,DF⊥BC,要根据“HL”证明Rt△ABE≌Rt△DCF,则还要添加一个条件是()A.AB=DC B.∠A=∠D C.∠B=∠C D.AE=BF8.如果两个直角三角形的两条直角边对应相等,那么这两个直角三角形全等,依据为()A.AAS B.SAS C.HL D.SSS9.如图,△ABC中,∠ABC、∠EAC的角平分线BP、AP交于点P,延长BA、BC,则下列结论中正确的个数()①CP平分∠ACF;②∠ABC+2∠APC=180°③∠ACB=2∠APB;④若PM⊥BE,PN⊥BC,则AM+CN=ACA.1个B.2个C.3个D.4个10.下列各说法一定成立的是()A.画直线AB=10厘米B.已知A、B、C三点,过这三点画一条直线C.画射线OB=10厘米D.过直线AB外一点画一条直线和直线AB平行二.填空题(共6小题)11.如图所示的图案是由全等的图形拼成的,其中AD=0.5cm,BC=1cm,则AF=cm.12.如图,两个全等的直角三角形重叠在一起,将其中的一个三角形沿着点B到C的方向平移到△DEF的位置,AB=10,DO=4,平移距离为6,则阴影部分面积为13.如图,已知点A、D、B、F在一条直线上,AC=EF,AB=DF,要使△ABC≌△FDE,还需添加一个条件,这个条件可以是.(只需填一个即可)14.下列语句:①有一边对应相等的两个直角三角形全等;②一般三角形具有的性质,直角三角形都具有;③有两边相等的两直角三角形全等;④两直角三角形的斜边为5cm,一条直角边都为3cm,则这两个直角三角形必全等.其中正确的有个.15.如图,三个边长均为的正方形重叠在一起,O1和O2是其中两个正方形的中心,则阴影部分的面积是.16.如图,某同学将三角形玻璃打碎,现要到玻璃店配一块完全相同的玻璃,应带去.三.解答题(共8小题)17.根据下列证明过程填空:(1)如图1,已知直线EF与AB、CD都相交,且AB∥CD,试说明∠1=∠2的理由.解:∵AB∥CD(已知)∴∠2=∠3()∵∠1=∠3()∴∠1=∠2(等量代换)(2)如图2,已知:△AOC≌△BOD,试说明AC∥BD成立的理由.解:∵△AOC≌△BOD∴∠A=()∴AC∥BD()18.△ABC≌△DEF,且△ABC的周长为18.若AB等于5,EF等于6,求AC的值.19.如图,AE=CF,AD=CB,DF=BE,求证:△ADF≌△CBE.20.如图:DF=CE,AD=BC,∠D=∠C.求证:△AED≌△BFC.21.如图,AB=AC,∠BAC=90°,BD⊥AE于D,CE⊥AE于E,且BD>CE.求证:BD=EC+ED.22.如图,AB⊥BC,AD⊥DC,AB=AD,求证:∠1=∠2.23.如图,Rt△ABC,∠B=90°,AD平分∠BAC,交BC于点D,DF⊥AC于F.线段AB上一点E,且DE=DC.证明:BE=CF.24.如图,在四边形ABCD中,AD=BC=10,AB=CD,BD=14,点E从D点出发,以每秒2个单位的速度沿DA向点A匀速移动,点F从点C出发,以每秒5个单位的速度沿C→B→C,作匀速移动,点G从点B出发沿BD向点D匀速移动,三个点同时出发,当有一个点到达终点时,其余两点也随之停止运动,假设移动时间为t 秒.(1)试证明:AD∥BC;(2)在移动过程中,小明发现有△DEG与△BFG全等的情况出现,请你探究这样的情况会出现几次?并分别求出此时的移动时间t和G点的移动距离.人教版新版《第12章全等三角形》单元测试题2019学年参考答案与试题解析一.选择题(共10小题)1.下列图形中,属于全等形的是()A.B.C.D.【解答】解:A、两个正方形的边长不相等,不能完全重合,故本选项错误;B、两个图形能够完全重合,故本选项正确.C、两图形不能完全重合,故本选项错误;D、两图形不能完全重合,故本选项错误.故选:B.2.下列语句:①面积相等的两个三角形全等;②两个等边三角形一定是全等图形;③如果两个三角形全等,它们的形状和大小一定都相同;④边数相同的图形一定能互相重合.其中错误的说法有()A.4个B.3个C.2个D.1个【解答】解:①面积相等的两个三角形不一定全等,故本选项错误;②两个等边三角形一定是相似图形,但不一定全等,故本选项错误;③如果两个三角形全等,它们的形状和大小一定都相同,符合全等形的定义,正确;④边数相同的图形不一定能互相重合,故本选项错误;综上可得错误的说法有①②④共3个.故选:B.3.如图,△ABE≌△ACD,点B、C是对应顶点,△ACD的周长为32cm,AC=14cm,CD=11cm,则AE的长为()A.6cm B.7cm C.8cm D.9cm【解答】解:∵△ACD的周长为32cm,AC=14cm,CD=11cm,∴AD=32﹣14﹣11=7(cm),∵△ABE≌△ACD,∴AE=AD=7(cm),故选:B.4.已知△ABC的三边长分别为3,5,7,△DEF的三边长分别为3,3x﹣2,2x﹣1,若这两个三角形全等,则x为()A.B.4C.3D.不能确定【解答】解:∵△ABC与△DEF全等,当3x﹣2=5,2x﹣1=7,x=,把x=代入2x﹣1中,2x﹣1≠7,∴3x﹣2与5不是对应边,当3x﹣2=7时,x=3,把x=3代入2x﹣1中,2x﹣1=5,故选:C.5.如图,CD⊥AB于D,BE⊥AC于E,BE与CD交于O,OB=OC,则图中全等三角形共有()A.2对B.3对C.4对D.5对【解答】解:∵CD⊥AB于D,BE⊥AC于E,在△BOD和△COE中,,∴△BOD≌△COE(AAS),进一步得△ADO≌△AEO,△ABO≌△ACO,△ABE≌△ACD共4对.故选:C.6.如图所示,AC=BD,AB=CD,图中全等的三角形的对数是()A.5B.4C.3D.2【解答】解:∵AC=BD,AB=CD,BC=BC,∴△ABC≌△DCB(SSS),∴∠BAC=∠CDB.同理得△ABD≌△DCA(SSS).又因为AB=CD,∠AOB=∠COD,∴△ABO≌△DCO(AAS).故选:C.7.如图,BE=CF,AE⊥BC,DF⊥BC,要根据“HL”证明Rt△ABE≌Rt△DCF,则还要添加一个条件是()A.AB=DC B.∠A=∠D C.∠B=∠C D.AE=BF【解答】解:条件是AB=CD,理由是:∵AE⊥BC,DF⊥BC,在Rt△ABE和Rt△DCF中,,∴Rt△ABE≌Rt△DCF(HL),故选:A.8.如果两个直角三角形的两条直角边对应相等,那么这两个直角三角形全等,依据为()A.AAS B.SAS C.HL D.SSS【解答】解:两边及夹角对应相等的两个三角形全等,这为“边角边”定理,简写成“SAS“.故选:B.9.如图,△ABC中,∠ABC、∠EAC的角平分线BP、AP交于点P,延长BA、BC,则下列结论中正确的个数()①CP平分∠ACF;②∠ABC+2∠APC=180°③∠ACB=2∠APB;④若PM⊥BE,PN⊥BC,则AM+CN=ACA.1个B.2个C.3个D.4个【解答】解:①作PD⊥AC于D.∵PB平分∠ABC,P A平分∠EAC,PM⊥BE,PN⊥BF,∴PM=PN,PM=PD,∴PM=PN=PD,∴点P在∠ACF的角平分线上,故①正确;②∵PM⊥AB,PN⊥BC,∴∠ABC+90°+∠MPN+90°=360°,∴∠ABC+∠MPN=180°,在Rt△P AM和Rt△P AD中,,∴Rt△P AM≌Rt△P AD(HL),∴∠APM=∠APD,同理:Rt△PCD≌Rt△PCN(HL),∴∠CPD=∠CPN,∴∠MPN=2∠APC,∴∠ABC+2∠APC=180°,②正确;③∵P A平分∠CAE,BP平分∠ABC,∴∠CAE=∠ABC+∠ACB,∠P AM=∠ABC+∠APB,∴∠ACB=2∠APB,③正确;④∵Rt△P AM≌Rt△P AD(HL),∴AD=AM,同理:Rt△PCD≌Rt△PCN(HL),∴CD=CN,∴AM+CN=AD+CD=AC,④正确;故选:D.10.下列各说法一定成立的是()A.画直线AB=10厘米B.已知A、B、C三点,过这三点画一条直线C.画射线OB=10厘米D.过直线AB外一点画一条直线和直线AB平行【解答】解:A、直线无限长,错误;B、若A、B、C三点不共线,则无法画出一条直线,错误;C、射线无限长,错误;D、过直线AB外一点只能画一条直线与AB平行,正确.故选:D.二.填空题(共6小题)11.如图所示的图案是由全等的图形拼成的,其中AD=0.5cm,BC=1cm,则AF=6cm.【解答】解:由题可知,图中有8个全等的梯形,所以AF=4AD+4BC=4×0.5+4×1=6cm.12.如图,两个全等的直角三角形重叠在一起,将其中的一个三角形沿着点B到C的方向平移到△DEF的位置,AB=10,DO=4,平移距离为6,则阴影部分面积为48【解答】解:由平移的性质知,BE=6,DE=AB=10,∴OE=DE﹣DO=10﹣4=6,∴S四边形ODFC=S梯形ABEO=(AB+OE)•BE=(10+6)×6=48.故答案为48.13.如图,已知点A、D、B、F在一条直线上,AC=EF,AB=DF,要使△ABC≌△FDE,还需添加一个条件,这个条件可以是∠A=∠F或AC∥EF或BC=DE(答案不唯一)..(只需填一个即可)【解答】解:增加一个条件:∠A=∠F,显然能看出,在△ABC和△FDE中,利用SAS可证三角形全等(答案不唯一).故答案为:∠A=∠F或AC∥EF或BC=DE(答案不唯一).14.下列语句:①有一边对应相等的两个直角三角形全等;②一般三角形具有的性质,直角三角形都具有;③有两边相等的两直角三角形全等;④两直角三角形的斜边为5cm,一条直角边都为3cm,则这两个直角三角形必全等.其中正确的有2个.【解答】解:①直角三角形两直角对应相等,有一边对应相等的两个直角三角形只具备一边与一角对应相等,所以有一边对应相等的两个直角三角形不一定全等;②直角三角形是特殊的三角形,所以一般三角形具有的性质,直角三角形都具有;③如果一个直角三角形的两直角边与另一个直角三角形的一条直角边与斜边分别相等,那么这两个直角三角形不全等,所以有两边相等的两直角三角形不一定全等;④两直角三角形的斜边为5cm,一条直角边都为3cm,根据HL可得这两个直角三角形必全等.所以正确的结论是②④.故答案为2.15.如图,三个边长均为的正方形重叠在一起,O1和O2是其中两个正方形的中心,则阴影部分的面积是1.【解答】解:连接O1B、O1C,如图:∵∠BO1F+∠FO1C=90°,∠FO1C+∠CO1G=90°,∴∠BO1F=∠CO1G,∵四边形ABCD是正方形,∴∠O1BF=∠O1CG=45°,在△O1BF和△O1CG中,∴△O1BF≌△O1CG(ASA),∴O1、O2两个正方形阴影部分的面积是S正方形,同理另外两个正方形阴影部分的面积也是S正方形,∴S阴影部分=S正方形=×()2=1.故答案为:1.16.如图,某同学将三角形玻璃打碎,现要到玻璃店配一块完全相同的玻璃,应带③去.【解答】解:第一块,仅保留了原三角形的一个角和部分边,不符合全等三角形的判定方法;第二块,仅保留了原三角形的一部分边,所以此块玻璃也不行;第三块,不但保留了原三角形的两个角还保留了其中一个边,所以符合ASA判定,所以应该拿这块去.故答案为:③.三.解答题(共8小题)17.根据下列证明过程填空:(1)如图1,已知直线EF与AB、CD都相交,且AB∥CD,试说明∠1=∠2的理由.解:∵AB∥CD(已知)∴∠2=∠3(两直线平行,同位角相等)∵∠1=∠3(对顶角相等)∴∠1=∠2(等量代换)(2)如图2,已知:△AOC≌△BOD,试说明AC∥BD成立的理由.解:∵△AOC≌△BOD∴∠A=∠B(全等三角形的对应角相等)∴AC∥BD(内错角相等,两直线平行)【解答】解:(1)∵AB∥CD(已知),∴∠2=∠3(两直线平行,同位角相等),∵∠1=∠3(对顶角相等),∴∠1=∠2(等量代换).故答案是:两直线平行,同位角相等;对顶角相等;(2)∵△AOC≌△BOD,∴∠A=∠B(全等三角形的对应角相等),∴AC∥BD(内错角相等,两直线平行).故答案是:全等三角形的对应角相等;内错角相等,两直线平行.18.△ABC≌△DEF,且△ABC的周长为18.若AB等于5,EF等于6,求AC的值.【解答】解:∵△ABC≌△DEF,∴EF=BC=6,∵△ABC的周长为18.AB=5,∴AC=18﹣6﹣5=7,即AC=7.19.如图,AE=CF,AD=CB,DF=BE,求证:△ADF≌△CBE.【解答】证明:∵AE=CF,∴AE﹣EF=CF﹣EF,∴AF=CE.在△ADF和△CBE中,∴△ADF≌△CBE(SSS).20.如图:DF=CE,AD=BC,∠D=∠C.求证:△AED≌△BFC.【解答】证明:∵DF=CE,∴DF﹣EF=CE﹣EF,即DE=CF,在△AED和△BFC中,∵,∴△AED≌△BFC(SAS).21.如图,AB=AC,∠BAC=90°,BD⊥AE于D,CE⊥AE于E,且BD>CE.求证:BD=EC+ED.【解答】证明:∵∠BAC=90°,CE⊥AE,BD⊥AE,∴∠ABD+∠BAD=90°,∠BAD+∠DAC=90°,∠ADB=∠AEC=90°.∴∠ABD=∠DAC.∵在△ABD和△CAE中,∴△ABD≌△CAE(AAS).∴BD=AE,EC=AD.∵AE=AD+DE,∴BD=EC+ED.22.如图,AB⊥BC,AD⊥DC,AB=AD,求证:∠1=∠2.【解答】证明:∵AB⊥BC,AD⊥DC,∴∠B=∠D=90°,∴△ABC与△ACD为直角三角形,在Rt△ABC和Rt△ADC中,∵AB=AD,AC为公共边,∴Rt△ABC≌Rt△ADC(HL),∴∠1=∠2.23.如图,Rt△ABC,∠B=90°,AD平分∠BAC,交BC于点D,DF⊥AC于F.线段AB上一点E,且DE=DC.证明:BE=CF.【解答】证明:∵∠B=90°,AD平分∠BAC,DF⊥AC于F,∴BD=DF,在Rt△BED与Rt△DFC中,∴Rt△BED≌Rt△DFC(HL),∴BE=CF.24.如图,在四边形ABCD中,AD=BC=10,AB=CD,BD=14,点E从D点出发,以每秒2个单位的速度沿DA向点A匀速移动,点F从点C出发,以每秒5个单位的速度沿C→B→C,作匀速移动,点G从点B出发沿BD向点D匀速移动,三个点同时出发,当有一个点到达终点时,其余两点也随之停止运动,假设移动时间为t 秒.(1)试证明:AD∥BC;(2)在移动过程中,小明发现有△DEG与△BFG全等的情况出现,请你探究这样的情况会出现几次?并分别求出此时的移动时间t和G点的移动距离.【解答】(1)证明:在△ABD和△CDB中,,∴△ABD≌△CDB(SSS),∴∠ADB=∠CBD,∴AD∥BC;(2)解:设G点的移动距离为x,当△DEG与△BFG全等时,∵∠EDG=∠FBG,∴DE=BF、DG=BG或DE=BG、DG=BF,①∵BC=10,=2,∴当点F由点C到点B,即0<t≤2时,则:,解得:,或,解得:(不合题意舍去);②当点F由点B到点C,即2<t≤4时,则,解得:,或,解得:,∴综上所述:△DEG与△BFG全等的情况会出现3次,此时的移动时间分别是秒、秒、秒,G点的移动距离分别是7、7、.。

第12章《全等三角形》人教版八年级数学上册单元检测A+B+C卷(含答案)

第12章《全等三角形》人教版八年级数学上册单元检测A+B+C卷(含答案)

A.AAS
B.ASA
C.SAS
D.SSS
3.如图,在△ABC 与△DEF 中,给出以下六个条件:
(1)AB=DE;
(2)BC=EF;
(3)AC=DF;
(4)∠A=∠D;
(5)∠B=∠E;
(6)∠C=∠F.
以其中三个作为已知条件,不能判断△ABC 与△DEF 全等的是( )
A.(1)(5)(2) B.(1)(2)(3) C.(4)(6)(1) D.(2)(3)(4) 4.如图,已知 MB=ND,∠MBA=∠NDC,下列条件中不能判定△ABM≌△CDN 的是( )

∴△ABC≌△DBE(ASA), 故选:B. 3.解:A、正确,符合判定方法 SAS; B、正确,符合判定方法 SSS; C、正确,符合判定方法 AAS; D、不正确,不符合全等三角形的判定方法. 故选:D. 4.解:A、∠M=∠N,符合 ASA,能判定△ABM≌△CDN,故 A 选项不符合题意; B、根据条件 AM=CN,MB=ND,∠MBA=∠NDC,不能判定△ABM≌△CDN,故 B 选项符合题意; C、AB=CD,符合 SAS,能判定△ABM≌△CDN,故 C 选项不符合题意; D、AM∥CN,得出∠MAB=∠NCD,符合 AAS,能判定△ABM≌△CDN,故 D 选项不 符合题意. 故选:B.
∴∠ABP=∠PBC=∠PCD﹣∠BPC=(x﹣40)°, ∴∠BAC=∠ACD﹣∠ABC=2x°﹣(x°﹣40°)﹣(x°﹣40°)=80°, ∴∠CAF=100°, 在 Rt△PFA 和 Rt△PMA 中,
∴FG=EF ∵GC+CF>FG ∴BE+CF>EF 故选:A.
9.解:在△ABC 中,AD⊥BC,CE⊥AB, ∴∠AEH=∠ADB=90°; ∵∠EAH+∠AHE=90°,∠DHC+∠BCH=90°, ∵∠EHA=∠DHC(对顶角相等), ∴∠EAH=∠DCH(等量代换); ∵在△BCE 和△HAE 中

人教版八年级上册数学12章全等三角形单元测试题(含答案)

人教版八年级上册数学12章全等三角形单元测试题(含答案)

人教版八年级上册数学12章全等三角形单元测试题一、单选题1.如图,AC 与BD 相交于点O ,,OA OD OB OC ==,不添加辅助线,判定ABO DCO △≌△的依据是( )A .SSSB .SASC .AASD .HL 2.如图,在Rt △ABC 中,∠C =90°,AC =8m ,13DC AD =,BD 平分∠ABC ,则点D 到AB 的距离为( )A .2mB .3mC .4mD .6m 3.如图,AD 是∠ABC 的角平分线,DE ∠AB 于点E ,S △ABC =9,DE =2,AB =5,则AC 的长是( )A .2B .3C .4D .5 4.平面上有△ACD 与△BCE ,其中AD 与BE 相交于P 点,如图.若AC =BC ,AD =BE ,CD =CE ,∠ACE =55°,∠BCD =155°,则∠BPD 的度数为( )A .110°B .125°C .130°D .155°5.如图,已知点A ,D ,C ,F 在同一条直线上,AB =DE ,AD =CF ,要使△ABC ∠∠DEF ,则下列条件可以添加的是( )A .∠B =∠E B .∠A =∠EDFC .AC =DFD .BC ∠EF 6.如图,在ABC 中,AB AC =,AB BC >,点D 在边BC 上,2CD BD =,点E 、F 在线段AD 上,12BAC ∠=∠=∠,若ABC 的面积为21,则FAC 与BDE 的面积之和是( )A .6B .7C .8D .9 7.如图,BD 是∠ABC 的角平分线,AE ∠BD ,垂足为M .若∠ABC =30°,∠C =38°,则∠CDE 的度数为( )A .68°B .70°C .71°D .74° 8.如图,等腰直角三角形ABC 的直角顶点C 与坐标原点重合,分别过点A 、B 作x 轴的垂线,垂足为D 、E ,点A 的坐标为(-2,5),则线段DE 的长为( )A .4B .6C .6.5D .7 9.如图,在锐角∠ABC 中,∠BAC =45°,点B 到AC 的距离为2,∠BAC 的平分线交BC 于点D ,M 、N 分别是AD 和AB 上的动点,则BM +MN 的最小值是( )A .1B .1.5C .2D .3 10.如图,在ABC 和ADE 中,90ACB ADE ∠=∠=︒,AB AE =,12∠=∠,线段BC 的延长线交DE 于点F ,连接AF .若14ABF S =,4=AD ,54CF =,则线段EF 的长度为( )A .4B .92C .5D .112二、填空题11.已知ABC DEF ≅,5AB =,6BC =,4DF =,则EF =______.12.如图,∠ABC 中,BD 平分∠ABC ,AD ∠BD ,∠BCD 的面积为10,∠ACD 的面积为6,则∠ABD 的面积是_________.13.如图,在ABC 中,45ABC ∠=︒,F 是高AD 和BE 的交点,8AC =cm ,则线段BF 的长度为______.14.一个等腰三角形的两边长分别为4cm 和8cm ,则周长是 _____cm . 15.如图,AD 是ABC 中BAC ∠的角平分线,DE AB ⊥于点E ,7ABC S =△,2DE =,4AB =,则AC 长是______.16.如图,已知BE =DC ,请添加一个条件,使得△ABE ∠∠ACD :_____.17.如图,四边形ABCD 中,AC 平分∠BAD ,CE ∠AB 于点E ,且∠B +∠D =180°,若BE =3,CE =4,S △ACE =14,则S △ACD =________.18.如图,在△ABC 中,BD =CD ,BE 交AD 于F ,AE =EF ,若BE =7CE ,52AE =,则BF =_______.19.如图,点B 、C 、E 三点在同一直线上,且AB =AD ,AC =AE ,BC =DE ,若∠+∠+∠=︒,则∠3=______°.1239420.如图所示,直线a经过正方形ABCD的顶点A,分别过正方形的顶点B、D作BF∠a于点F,DE∠a于点E,若DE=8,BF=5,则EF的长为__.三、解答题21.如图,四边形ABCD中,BC=CD=2AB,AB//CD,∠B=90°,E是BC的中点,AC与DE相交于点F.(1)求证:ABC∠ECD;(2)判断线段AC与DE的位置关系,并说明理由.22.如图,已知AB∥CD,OA=OD,AE=DF.试说明:EB∥CF.23.如图,在∠ABC 中,BD ∠AC 于点D ,CE ∠AB 于点E ,BD 、CE 相交于点G ,BD =DC ,DF ∠BC 交AB 于点F ,连接FG .求证:(1)∠DAB ∠∠DGC ;(2)CG =FB +FG .24.如图,点D 和点C 在线段BE 上,BD CE =,AB EF =,AB EF ∥.求证:AC DF ∥.25.如图,在四边形ABCD 中,AD =AB ,DC =BC ,∠DAB =60°,∠DCB =120°,E 是AD 上一点,F 是AB 延长线上一点,且DE =BF .(1)求证:CE =CF ;(2)若G 在AB 上且∠ECG =60°,试猜想DE ,EG ,BG 之间的数量关系,并证明.26.如图1,在∠ABC中,∠BAC=90°,AB=AC,点D在边AC上,CD∠DE,且CD =DE,连接BE,取BE的中点F,连接DF.(1)请直接写出∠ADF的度数及线段AD与DF的数量关系;(2)将图1中的△CDE绕点C按逆时针旋转,∠如图2,(1)中∠ADF的度数及线段AD与DF的数量关系是否仍然成立?请说明理由;∠如图3,连接AF,若AC=3,CD=1,求S△ADF的取值范围.参考答案:1.B2.A3.C4.C5.B6.B7.D8.D9.C10.B11.612.1613.8 cm14.2015.316.∠B=∠C17.818.10 319.4720.1321.(2)AC∠DE,25.(2)DE+BG=EG,26.(1)∠ADF=45°,AD(2)∠成立,∠1≤S△ADF≤4.答案第1页,共1页。

人教版数学八年级上册第12章《全等三角形》单元测试

人教版数学八年级上册第12章《全等三角形》单元测试

《全等三角形》一、填空题(3×13 = 39分)1.如图,ABE ∆≌ACD ∆,︒=∠︒=∠==4060cm 5cm 8B A AD AB ,,,,则AE =____,C ∠=____。

2.已知,如图ABC ∠=DEF ∠,DE AB =,要说明ABC ∆≌DEF ∆(1) 若以“SAS ”为依据,还要添加的条件为______________;(2) 若以“ASA ”为依据,还要添加的条件为______________。

3.如图要测量河岸相对的两点B A 、之间的距离,先从B 处出发与AB 成90°角方向向前 走50米到C 处立一根标杆,然后方向不变继续朝前走50米到D 处,在D 处转90°沿DE 方向再走17米,到达E 处,使E C A 与、在同一直线上,则测得B A 、的距离为_____米。

4.如图,将ABC ∆绕B 点旋转到C B A ''∆的位置,A A '∥BC ,︒=∠70ABC ,则/CBC ∠= 。

5.如图,在ABC ∆中,_______80,,=∠︒=∠==CED A BE AB DE AD ,则。

第5题图 第6题图 第7题图 第8题图6.如图,ABC ∆≌DEC ∆,_______78===DE AC AB ,则,。

7.如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3= 。

8.如图,已知等边ABC ∆中,CE BD =,AD 与BE 交于点P,则=∠APE 。

9.如图,=∠︒=∠︒=∠∠=∠==3302251,,,,则,DAE BAC AE AD AC AB 。

10.如图,,4,6,,//,==⊥∠=∠PD OC OA PD OA PC BOP AOP OCP ∆的面积是_________。

第9题图 第10题图 第11题图 第12题图11.如图,已知ABC ∆的周长是21,OC OB ,分别平分ABC ∠和ACB ∠,BC OD ⊥于D ,且3=OD ,则ABC ∆的面积是 。

最新2019-2020年度人教版八年级数学上册《全等三角形》单元测试题及答案解析-精品试题

最新2019-2020年度人教版八年级数学上册《全等三角形》单元测试题及答案解析-精品试题

《第12章全等三角形》一、解答题1.如图,在△ABC中,AB=8,AC=5,AD是△ABC的中线,求AD的取值范围.2.如图,△ABC中,D是BC的中点,DE⊥DF,试判断BE+CF与EF的大小关系,并证明你的结论.3.如图,△ABC中,AD平分∠BAC,∠B=2∠C,求证:AB+BD=AC.4.已知∠BAC=90°,AB=AC,M是AC边的中点,AD⊥BM交BC于D,交BM于E,求证:∠AMB=∠DMC.5.如图,在正方形ABCD中,P、Q分别为BC、CD边上的点,且∠PAQ=45°,求证:PQ=PB+DQ.6.如图,已知等边△ABC边长为1,D是△ABC外一点且∠BDC=120°,BD=CD,∠MDN=60°.求证:△AMN的周长等于2.7.如图(1),AB=4cm,AC⊥AB,BD⊥AB,AC=BD=3cm.点P在线段AB上以1cm/s的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动.它们运动的时间为t(s).(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等,请说明理由,并判断此时线段PC和线段PQ的位置关系;(2)如图(2),将图(1)中的“AC⊥AB,BD⊥AB”为改“∠CAB=∠DBA=60°”,其他条件不变.设点Q的运动速度为x cm/s,是否存在实数x,使得△ACP与△BPQ全等?若存在,求出相应的x、t的值;若不存在,请说明理由.8.如图,已知正方形ABCD中,边长为10cm,点E在AB边上,BE=6cm.(1)如果点P在线段BC上以4cm/秒的速度由B点向C点运动,同时,点Q在线段CD上以acm/秒的速度由C点向D点运动,设运动的时间为t秒,①CP的长为cm(用含t的代数式表示);②若以E、B、P为顶点的三角形和以P、C、Q为顶点的三角形全等,求a的值.(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿正方形ABCD四边运动.则点P与点Q会不会相遇?若不相遇,请说明理由.若相遇,求出经过多长时间点P与点Q第一次在正方形ABCD的何处相遇?9.在等腰直角三角形ABC中,∠BAC=90°,AB=AC,直线MN过点A且MN∥BC,过点B为一锐角顶点作Rt△BDE,∠BDE=90°,且点D在直线MN上(不与点A重合),如图1,DE与AC交于点P,易证:BD=DP.(无需写证明过程)(1)在图2中,DE与CA延长线交于点P,BD=DP是否成立?如果成立,请给予证明;如果不成立,请说明理由;(2)在图3中,DE与AC延长线交于点P,BD与DP是否相等?请直接写出你的结论,无需证明.10.如图,已知∠AOB=120°,OM平分∠AOB,将等边三角形的一个顶点P放在射线OM上,两边分别与OA、OB(或其所在直线)交于点C、D.(1)如图①,当三角形绕点P旋转到PC⊥OA时,证明:PC=PD.(2)如图②,当三角形绕点P旋转到PC与OA不垂直时,线段PC和PD相等吗?请说明理由.(3)如图③,当三角形绕点P旋转到PC与OA所在直线相交的位置时,线段PC和PD相等吗?直接写出你的结论,不需证明.11.如图,在四边形ABCD中,AD=BC=8,AB=CD,BD=12,点E从点D出发,以每秒1个单位的速度沿DA向点A匀速移动,点F从点C出发,以每秒3个单位的速度,沿C→B→C做匀速移动,点G从点B出发沿BD向点D匀速移动,三个点同时出发,当有一个点到达终点时,其余两点也随之停止运动,假设移动时间为t秒.(1)试证明:AD∥BC;(2)在移动过程中,小明发现有△DEG与△BFG全等的情况出现,请你探究这样的情况会出现几次?并分别求出此时移动时间和G点的移动距离.12.如图1,四边形ABCD是正方形,G是CD边上的一个动点(点G与C、D不重合),以CG 为一边在正方形ABCD外作正方形CEFG,连接BG,DE.我们探究下列图中线段BG、线段DE 的长度关系及所在直线的位置关系.(1)猜想图1中线段BG、线段DE的长度关系及所在直线的位置关系;(2)将图1中的正方形CEFG绕着点C按顺时针(或逆时针)方向旋转任意角度a,得到如图2、如图3情形.请你通过观察、测量等方法判断(1)中得到的结论是否仍然成立,并选取图2证明你的判断.二、作图题(共5小题,满分0分)13.如图,已知∠AOB=a外有一点P,画点P关于直线OA的对称点P′,再作点P′关于直线OB的对称点P″.(1)试猜想∠POP″与a的大小关系,并说出你的理由.(2)当P为∠AOB 内一点或∠AOB边上一点时,上述结论是否成立?14.如图,铁路和公路都经过P地,曲线MN是一条河流,现欲在河上建一个货运码头Q,使其到铁路和公路的距离相等,请用直尺和圆规通过画图找到码头Q的位置.(注意:①保留作图痕迹;②在图中标出点Q)15.(1)如图(1),已知∠AOB和线段CD,求作一点P,使PC=PD,并且点P到∠AOB的两边距离相等(尺规作图,不写作法,保留作图痕迹,写出结论);(2)如图(2)在道路L上键一个水坝站P,使向A′B两村送水所用水管PA+PB最短,水坝站P应建何处?16.已知,P为∠AOB内一点,PO=24cm,∠AOB=30°,试在OA、OB上分别找出两点C、D,使△PCD周长最小,并求这个最小周长.17.(1)如图1,计划在三个住宅小区A、B、C之间修建一个购物中心,使得它到三个小区的距离相等,请作图找到购物中心的位置.(2)如图2,有a、b、c三条公路,先要建一个货物中转站到三条公路的距离相等,请作图找到货物中转站的位置.《第12章全等三角形》参考答案与试题解析一、解答题1.如图,在△ABC中,AB=8,AC=5,AD是△ABC的中线,求AD的取值范围.【考点】全等三角形的判定与性质;三角形三边关系.【分析】延长AD到E,使AD=DE,连结BE,证明△ADC≌△EDB就可以得出BE=AC,根据三角形的三边关系就可以得出结论.【解答】解:延长AD到E,使AD=DE,连结BE.∵AD是△ABC的中线,∴BD=CD.在△ADC和△EDB中,,∴△ADC≌△EDB(SAS),∴AC=BE.∵AB﹣AE<AE<AB+BE,∴AB﹣AC<2AD<AB+AC.∵AB=8,AC=5,∴1.5<AD<6.5.【点评】本题考查了全等三角形的判定及性质的运用,三角形的中线的性质的运用,三角形三边关系的性质的运用,解答时证明三角形全等是关键.2.如图,△ABC中,D是BC的中点,DE⊥DF,试判断BE+CF与EF的大小关系,并证明你的结论.【考点】全等三角形的判定与性质.【专题】证明题.【分析】可延长ED至P,使DP=DE,连接FP,连接CP,将BE转化为PC,EF转化为FP,进而在△PCF中即可得出结论.【解答】答:BE+CF>FP=EF.证明:延长ED至P,使DP=DE,连接FP,CP,∵D是BC的中点,∴BD=CD,在△BDE和△CDP中,∴△BDE≌△CDP(SAS),∴BE=CP,∵DE⊥DF,DE=DP,∴EF=FP,(垂直平分线上的点到线段两端点距离相等)在△CFP中,CP+CF=BE+CF>FP=EF.【点评】本题主要考查了全等三角形的判定及性质以及三角形的三边关系问题,能够熟练掌握.3.如图,△ABC中,AD平分∠BAC,∠B=2∠C,求证:AB+BD=AC.【考点】全等三角形的判定与性质.【专题】证明题.【分析】在AC上截取AE=AB,连接DE,证明△ABD≌△AED,得到∠B=∠AED,再证明ED=EC 即可.【解答】证明:在AC上截取AE=AB,连接DE,∵AD平分∠BAC,∴∠BAD=∠DAC,在△ABD和△AED中,,∴△ABD≌△AED(SAS),∴∠B=∠AED,BD=DE,又∠B=2∠C,∴∠AED=2∠C,而∠AED=∠C+∠EDC=2∠C,∴∠C=∠EDC,∴DE=CE,∴AB+BD=AE+CE=AC.【点评】本题考查了全等三角形的判定和性质;此题利用了全等三角形中常用辅助线﹣截长补短法构造全等三角形,然后利用全等三角形解题,这是解决线段和差问题最常用的方法,注意掌握.4.已知∠BAC=90°,AB=AC,M是AC边的中点,AD⊥BM交BC于D,交BM于E,求证:∠AMB=∠DMC.【考点】全等三角形的判定与性质;等腰三角形的性质.【专题】证明题.【分析】先延长AD至F,使得CF⊥AC,得出∠ABM=∠DAC,再根据AB=AC,CF⊥AC,得出△ABM≌△CAF,从而证出∠BMA=∠F,AM=CF,再根据所给的条件得出△FCD≌△MCD,即可得出∠AMB=∠F=∠CMD.【解答】证明:如图,延长AD至F,使得CF⊥AC.∵AB⊥AC,AD⊥BM,∴∠ABM=∠DAC,在△ABM与△CAF中,,∴△ABM≌△CAF(ASA),∴∠BMA=∠F,AM=CF,在△FCD与△MCD中,,∴△FCD≌△MCD(SAS),∴∠F=∠CMD,∴∠AMB=∠DMC.【点评】此题考查了解等腰直角三角形;解题的关键是根据题意画出图形,再根据解等腰直角三角形的性质和全等三角形的判断与性质进行解答即可.5.如图,在正方形ABCD中,P、Q分别为BC、CD边上的点,且∠PAQ=45°,求证:PQ=PB+DQ.【考点】正方形的性质;全等三角形的判定与性质.【专题】证明题.【分析】将△ADQ绕点A顺时针旋转90°得到△ABE,根据旋转的性质可得BE=DQ,AE=AQ,∠BAE=∠DAQ,然后求出∠EAP=∠PAQ=45°,再利用“边角边”证明△APE和△APQ全等,根据全等三角形对应边相等可得PQ=PE,再根据PE=PB+BE等量代换即可得证.【解答】证明:如图,将△ADQ绕点A顺时针旋转90°得到△ABE,由旋转的性质得,BE=DQ,AE=AQ,∠BAE=∠DAQ,∵∠PAQ=45°,∴∠EAP=∠PAQ=45°,在△APE和△APQ中,,∴△APE≌△APQ(SAS),∴PQ=PE,∵PE=PB+BE,∴PQ=PB+DQ.【点评】本题考查了正方形的性质,全等三角形的判定与性质,利用旋转作辅助线构造出全等三角形是解题的关键,也是本题的难点.6.如图,已知等边△ABC边长为1,D是△ABC外一点且∠BDC=120°,BD=CD,∠MDN=60°.求证:△AMN的周长等于2.【考点】等边三角形的性质;全等三角形的判定与性质.【专题】证明题.【分析】延长AC到E,使CE=BM,连接DE,求证△BMD≌△CDE可得∠BDM=∠CDE,进而求证△MDN≌△EDN可得MN=NE=NC+CE=NC+BM,即可计算△AMN周长,即可解题.【解答】解:延长AC到E,使CE=BM,连接DE,(如图)∵BD=DC,∠BDC=120°,∴∠CBD=∠BCD=30°,∵∠ABC=∠ACB=60°,∴∠ABD=∠ACD=∠DCE=90°,∴△BMD≌△CDE,∴∠BDM=∠CDE,DM=DE,又∵∠MDN=60°,∴∠BDM+∠NDC=60°,∴∠EDC+∠NDC=∠NDE=60°=∠NDM,又∵DN=DN,∴△MDN≌△EDN(SAS),∴MN=NE=NC+CE=NC+BM,所以△AMN周长=AM+AN+MN=AM+AN+NC+BM=AB+AC=2.【点评】本题考查了全等三角形的证明和全等三角形对应边、对应角相等的性质,等边三角形各边长相等、各内角为60°的性质,本题中求证MN=NE=NC+CE=NC+BM是解题的关键.7.如图(1),AB=4cm,AC⊥AB,BD⊥AB,AC=BD=3cm.点P在线段AB上以1cm/s的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动.它们运动的时间为t(s).(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等,请说明理由,并判断此时线段PC和线段PQ的位置关系;(2)如图(2),将图(1)中的“AC⊥AB,BD⊥AB”为改“∠CAB=∠DBA=60°”,其他条件不变.设点Q的运动速度为x cm/s,是否存在实数x,使得△ACP与△BPQ全等?若存在,求出相应的x、t的值;若不存在,请说明理由.【考点】全等三角形的判定与性质.【专题】动点型.【分析】(1)利用SAS证得△ACP≌△BPQ,得出∠ACP=∠BPQ,进一步得出∠APC+∠BPQ=∠APC+∠ACP=90°得出结论即可;(2)由△ACP≌△BPQ,分两种情况:①AC=BP,AP=BQ,②AC=BQ,AP=BP,建立方程组求得答案即可.【解答】解:(1)当t=1时,AP=BQ=1,BP=AC=3,又∠A=∠B=90°,在△ACP和△BPQ中,∴△ACP≌△BPQ(SAS).∴∠ACP=∠BPQ,∴∠APC+∠BPQ=∠APC+∠ACP=90°.∴∠CPQ=90°,即线段PC与线段PQ垂直.(2)①若△ACP≌△BPQ,则AC=BP,AP=BQ,,解得;②若△ACP≌△BQP,则AC=BQ,AP=BP,,解得;综上所述,存在或使得△ACP与△BPQ全等.【点评】此题考查全等三角形的判定与性质,注意分类讨论思想的渗透.8.如图,已知正方形ABCD中,边长为10cm,点E在AB边上,BE=6cm.(1)如果点P在线段BC上以4cm/秒的速度由B点向C点运动,同时,点Q在线段CD上以acm/秒的速度由C点向D点运动,设运动的时间为t秒,①CP的长为cm(用含t的代数式表示);②若以E、B、P为顶点的三角形和以P、C、Q为顶点的三角形全等,求a的值.(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿正方形ABCD四边运动.则点P与点Q会不会相遇?若不相遇,请说明理由.若相遇,求出经过多长时间点P与点Q第一次在正方形ABCD的何处相遇?【考点】四边形综合题.【分析】(1)①根据正方形边长为10cm和点P在线段BC上的速度为4cm/秒即可求出CP的长;②分△BPE≌△CPQ和△BPE≌△CQP两种情况进行解答;(2)根据题意列出方程,解方程即可得到答案.【解答】解:(1)①PC=BC﹣BP=10﹣4t;②当△BPE≌△CPQ时,BP=PC,BE=CQ,即4t=10﹣4t,at=6,解得a=4.8;当△BPE≌△CQP时,BP=CQ,BE=PC,即4t=at,10﹣4t=6,解得a=4;(2)当a=4.8时,由题意得,4.8t﹣4t=30,解得t=37.5,∴点P共运动了37.5×4=150cm,∴点P与点Q在点A相遇,当a=4时,点P与点Q的速度相等,∴点P与点Q不会相遇.∴经过37.5秒点P与点Q第一次在点A相遇.【点评】本题考查的是正方形的性质和全等三角形的判定和性质,正确运用数形结合思想和分类讨论思想是解题的关键.9.在等腰直角三角形ABC中,∠BAC=90°,AB=AC,直线MN过点A且MN∥BC,过点B为一锐角顶点作Rt△BDE,∠BDE=90°,且点D在直线MN上(不与点A重合),如图1,DE与AC交于点P,易证:BD=DP.(无需写证明过程)(1)在图2中,DE与CA延长线交于点P,BD=DP是否成立?如果成立,请给予证明;如果不成立,请说明理由;(2)在图3中,DE与AC延长线交于点P,BD与DP是否相等?请直接写出你的结论,无需证明.【考点】全等三角形的判定与性质;等腰直角三角形;平行四边形的性质.【专题】几何综合题.【分析】(1)如答图2,作辅助线,构造全等三角形△BDF≌△PDA,可以证明BD=DP;(2)如答图3,作辅助线,构造全等三角形△BDF≌△PDA,可以证明BD=DP.【解答】题干引论:证明:如答图1,过点D作DF⊥MN,交AB于点F,则△ADF为等腰直角三角形,∴DA=DF.∵∠1+∠FDP=90°,∠FDP+∠2=90°,∴∠1=∠2.在△BDF与△PDA中,∴△BDF≌△PDA(ASA)∴BD=DP.(1)答:BD=DP成立.证明:如答图2,过点D作DF⊥MN,交AB的延长线于点F,则△ADF为等腰直角三角形,∴DA=DF.∵∠1+∠ADB=90°,∠ADB+∠2=90°,∴∠1=∠2.在△BDF与△PDA中,∴△BDF≌△PDA(ASA)∴BD=DP.(2)答:BD=DP.证明:如答图3,过点D作DF⊥MN,交AB的延长线于点F,则△ADF为等腰直角三角形,∴DA=DF.在△BDF与△PDA中,∴△BDF≌△PDA(ASA)∴BD=DP.【点评】本题考查了全等三角形的判定与性质、等腰直角三角形的性质、平行线的性质等知识点,作辅助线构造全等三角形是解题的关键.10.如图,已知∠AOB=120°,OM平分∠AOB,将等边三角形的一个顶点P放在射线OM上,两边分别与OA、OB(或其所在直线)交于点C、D.(1)如图①,当三角形绕点P旋转到PC⊥OA时,证明:PC=PD.(2)如图②,当三角形绕点P旋转到PC与OA不垂直时,线段PC和PD相等吗?请说明理由.(3)如图③,当三角形绕点P旋转到PC与OA所在直线相交的位置时,线段PC和PD相等吗?直接写出你的结论,不需证明.【考点】全等三角形的判定与性质;角平分线的性质;等边三角形的性质.【分析】(1)根据角平分线上的点到角的两边的距离相等直接回答;(2)过P作OA、OB的垂线,构造图①的图形,利用(1)的结论证明PC、PD所在的三角形全等;(3)仿(2)的证明可得PC=PD.【解答】解:(1)证明:∵OP平分∠AOB,PC⊥OA于C,OM平分∠AOB,∴∠CPO=∠OPD=30°,∠AOP=∠POB=60°,∴PD⊥OB于D,∴PC=PD.(角平分线上的点到角的两边的距离相等)(2)解:PC=PD.过P点作PQ⊥OA于Q,PN⊥OB于N.由(1)得PQ=PN.∵∠AOB=120°,∴∠QPN=360°﹣90°﹣90°﹣120°=60°.∴∠QPC=∠NPD=60°﹣∠CPN.∴△PQC≌△PND.(ASA)∴PC=PD.(3)解:PC=PD.【点评】此题考查全等三角形的判定和性质,由易到难层层递进,把握解题思路是关键.11.如图,在四边形ABCD中,AD=BC=8,AB=CD,BD=12,点E从点D出发,以每秒1个单位的速度沿DA向点A匀速移动,点F从点C出发,以每秒3个单位的速度,沿C→B→C做匀速移动,点G从点B出发沿BD向点D匀速移动,三个点同时出发,当有一个点到达终点时,其余两点也随之停止运动,假设移动时间为t秒.(1)试证明:AD∥BC;(2)在移动过程中,小明发现有△DEG与△BFG全等的情况出现,请你探究这样的情况会出现几次?并分别求出此时移动时间和G点的移动距离.【考点】全等三角形的判定与性质.【分析】(1)由AD=BC=8,AB=CD,BD为公共边,所以可证得△ABD≌△CDB,所以可知∠ADB=∠CBD,所以AD∥BC;(2)设G点的移动距离为y,分两种情况,一种F由C到B,一种F由B到C,再结合△DEG≌△BFG可得到DE=BF,DG=BG,或DE=BG,DG=BF可得到方程,解出时间t和y的值即可.【解答】(1)证明:在△ABD和△CDB中∴△ABD≌△CDB,∴∠ADB=∠CBD,∴AD∥BC;(2)解:设G点的移动距离为y,当△DEG与△BFG时有:∠EDG=∠FBG,∴DE=BF,DG=BG,或DE=BG,DG=BF,当F由C到B,即0<t≤时,则有,解得,或,解得(舍去),当F由B到C,即时,有,解得,或,解得,综上可知共有三次,移动的时间分别为2秒、4秒、5秒,移动的距离分别为6、6、5.【点评】本题主要考查三角形全等的判定和性质,第(2)题解题的关键是利用好三角形全等,从而得到方程解得.12.如图1,四边形ABCD是正方形,G是CD边上的一个动点(点G与C、D不重合),以CG 为一边在正方形ABCD外作正方形CEFG,连接BG,DE.我们探究下列图中线段BG、线段DE 的长度关系及所在直线的位置关系.(1)猜想图1中线段BG、线段DE的长度关系及所在直线的位置关系;(2)将图1中的正方形CEFG绕着点C按顺时针(或逆时针)方向旋转任意角度a,得到如图2、如图3情形.请你通过观察、测量等方法判断(1)中得到的结论是否仍然成立,并选取图2证明你的判断.【考点】正方形的性质;全等三角形的判定与性质.【专题】动点型;操作型.【分析】(1)根据正方形的性质,显然三角形BCG顺时针旋转90°即可得到三角形DCE,从而判断两条直线之间的关系;(2)结合正方形的性质,根据SAS仍然能够判定△BCG≌△DCE,从而证明结论.【解答】解:(1)BG=DE,BG⊥DE;∵四边形ABCD和四边形CEFG是正方形,∴BC=DC,CG=CE,∠BCD=∠ECG=90°,∴∠BCG=∠DCE,在△BCG和△DCE中,BC=DC∠BCG=∠DCE CG=CE,∴△BCG≌△DCE(SAS),∴BG=DE;延长BG交DE于点H,∵△BCG≌△DCE,∴∠CBG=∠CDE,又∠CBG+∠BGC=90°,∴∠CDE+∠DGH=90°,∴∠DHG=90°,∴BH⊥DE,即BG⊥DE;(2)BG=DE,BG⊥DE仍然成立,在图(2)中证明如下∵四边形ABCD、四边形CEFG都是正方形∴BC=CD,CG=CE,∠BCD=∠ECG=90°∴∠BCG=∠DCE,∴△BCG≌△DCE(SAS)∴BG=DE,∠CBG=∠CDE,又∵∠BHC=∠DHO,∠CBG+∠BHC=90°∴∠CDE+∠DHO=90°∴∠DOH=90°∴BG⊥DE.【点评】此题考查的知识点是正方形的性质,解答本题关键要充分利用正方形的特殊性质,利用三角形全等论证.二、作图题(共5小题,满分0分)13.如图,已知∠AOB=a外有一点P,画点P关于直线OA的对称点P′,再作点P′关于直线OB的对称点P″.(1)试猜想∠POP″与a的大小关系,并说出你的理由.(2)当P为∠AOB 内一点或∠AOB边上一点时,上述结论是否成立?【考点】作图-轴对称变换.【分析】(1)根据轴对称的性质画出图形,再由HL定理得出△DOP′≌△DOP,△EOP″≌△EOP′根据全等三角形的性质即可得出结论;(2)根据题意画出图形,同(1)可得出结论.【解答】解:(1)猜想:∠POP″=2α.理由:如图1,在△DOP′与△DOP中∵,∴△DOP′≌△DOP.同理可得,△EOP″≌△EOP′∴∠POP″=2α;(2)成立.如图2,当点P在∠AOB内时,∵同(1)可得,△DOP′≌△DOP,EOP″≌△EOP′,∴∠POD=∠P′OD,∠EOP″=∠EOP′,∴∠POP″=∠P′OP″﹣∠POP′=3α﹣α=2α.如图3,当点P在∠AOB的边上时,∵同(1)可得△EOP″≌△EOP,∴∠POP″=2α.【点评】本题考查的是作图﹣轴对称变换,熟知轴对称的性质是解答此题的关键.14.如图,铁路和公路都经过P地,曲线MN是一条河流,现欲在河上建一个货运码头Q,使其到铁路和公路的距离相等,请用直尺和圆规通过画图找到码头Q的位置.(注意:①保留作图痕迹;②在图中标出点Q)【考点】作图—应用与设计作图.【分析】根据角平分线的作法,作出铁路与公路所形成的角的平分线,角平分线与河流的交点即为所求.【解答】解:如图所示:,点Q即为所求.【点评】此题主要考查了作图与应用作图,关键是掌握角平分线上的点到角两边的距离相等.15.(1)如图(1),已知∠AOB和线段CD,求作一点P,使PC=PD,并且点P到∠AOB的两边距离相等(尺规作图,不写作法,保留作图痕迹,写出结论);(2)如图(2)在道路L上键一个水坝站P,使向A′B两村送水所用水管PA+PB最短,水坝站P应建何处?【考点】轴对称-最短路线问题;角平分线的性质;线段垂直平分线的性质.【分析】(1)作∠AOB的平分线和线段CD的中垂线,两者的交点就是P;(2)作出A关于m的对称点A',连接A'B于直线m的交点就是P.【解答】解:如图所示:【点评】本题考查了基本作图,理解角平分线的性质、以及线段的中垂线的性质是关键.16.已知,P为∠AOB内一点,PO=24cm,∠AOB=30°,试在OA、OB上分别找出两点C、D,使△PCD周长最小,并求这个最小周长.【考点】轴对称-最短路线问题.【分析】分别作点P关于OA、OB的对称点P1、P2,连P1、P2,交OA于C,交OB于D,△PCD 的周长=P1P2,然后证明△OP1P2是等边三角形,即可求解.【解答】解:分别作点P关于OA、OB的对称点P1、P2,连P1、P2,交OA于C,交OB于D,则OP1=OP=OP2,∠P1OA=∠POA,∠POB=∠P2OB,CP=P1C,PD=P2D,则△PCD的周长的最小值=P1P2,∴∠P1OP2=2∠AOB=60°,∴△OP1P2是等边三角形,△PCD的周长=P1P2,∴P1P2=OP1=OP2=OP=24cm.【点评】本题考查了轴对称最短路线问题,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合本节所学轴对称变换来解决,多数情况要作点关于某直线的对称点.17.(1)如图1,计划在三个住宅小区A、B、C之间修建一个购物中心,使得它到三个小区的距离相等,请作图找到购物中心的位置.(2)如图2,有a、b、c三条公路,先要建一个货物中转站到三条公路的距离相等,请作图找到货物中转站的位置.【考点】作图—应用与设计作图.【分析】(1)利用线段垂直平分线的性质得出P点即可;(2)利用角平分线的性质分别得出符合题意的答案.【解答】解:(1)如图所示:P点即为所求;(2)如图所示:D,E,F,G点即为所求.【点评】此题主要考查了应用设计与作图,正确掌握角平分线的性质以及线段垂直平分线的性质是解题关键.。

人教版八年级数学上:第12章《全等三角形》单元测试(含答案)(含答案)

人教版八年级数学上:第12章《全等三角形》单元测试(含答案)(含答案)

第12章全等三角形一、选择题1.如图,在△ABC中,∠ABC=45°,AC=8cm,F是高AD和BE的交点,则BF的长是()A.4cm B.6cm C.8cm D.9cm2.如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,),则点C的坐标为()A.(﹣,1) B.(﹣1,) C.(,1)D.(﹣,﹣1)3.在连接A地与B地的线段上有四个不同的点D、G、K、Q,下列四幅图中的实线分别表示某人从A 地到B地的不同行进路线(箭头表示行进的方向),则路程最长的行进路线图是()A.B.C.D.4.如图,坐标平面上,△ABC与△DEF全等,其中A、B、C的对应顶点分别为D、E、F,且AB=BC=5.若A点的坐标为(﹣3,1),B、C两点在方程式y=﹣3的图形上,D、E两点在y轴上,则F点到y轴的距离为何?()A.2 B.3 C.4 D.55.平面上有△ACD与△BCE,其中AD与BE相交于P点,如图.若AC=BC,AD=BE,CD=CE,∠ACE=55°,∠BCD=155°,则∠BPD的度数为()A.110°B.125°C.130°D.155°6.如图,在△ABC和△BDE中,点C在边BD上,边AC交边BE于点F.若AC=BD,AB=ED,BC=BE,则∠ACB等于()A.∠EDB B.∠BED C.∠AFB D.2∠ABF7.如图,AB=4,射线BM和AB互相垂直,点D是AB上的一个动点,点E在射线BM上,BE=DB,作EF⊥DE并截取EF=DE,连结AF并延长交射线BM于点C.设BE=x,BC=y,则y关于x的函数解析式是()A.y=﹣B.y=﹣C.y=﹣D.y=﹣8.如图,在四边形ABCD中,AB=AD=6,AB⊥BC,AD⊥CD,∠BAD=60°,点M、N分别在AB、AD边上,若AM:MB=AN:ND=1:2,则tan∠MCN=()A.B.C.D.﹣29.如图,点E在正方形ABCD的对角线AC上,且EC=2AE,直角三角形FEG的两直角边EF、EG分别交BC、DC于点M、N.若正方形ABCD的边长为a,则重叠部分四边形EMCN的面积为()A. a2B. a2C. a2D. a2二、解答题(共21小题)10.如图,已知AB∥DE,AB=DE,AF=CD,∠CEF=90°.(1)若∠ECF=30°,CF=8,求CE的长;(2)求证:△ABF≌△DEC;(3)求证:四边形BCEF是矩形.11.已知△ABC为等边三角形,D为AB边所在的直线上的动点,连接DC,以DC为边在DC两侧作等边△DCE和等边△DCF(点E在DC的右侧或上侧,点F在DC左侧或下侧),连接AE、BF(1)如图1,若点D在AB边上,请你通过观察,测量,猜想线段AE、BF和AB有怎样的数量关系?并证明你的结论;(2)如图2,若点D在AB的延长线上,其他条件不变,线段AE、BF和AB有怎样的数量关系?请直接写出结论(不需要证明);(3)若点D在AB的反向延长线上,其他条件不变,请在图3中画出图形,探究线段AE、BF和AB 有怎样的数量关系,并直接写出结论(不需要证明)12.如图,△ABC与△DCB中,AC与BD交于点E,且∠A=∠D,AB=DC.(1)求证:△ABE≌DCE;(2)当∠AEB=50°,求∠EBC的度数?13.如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB于点E.(1)求证:△ACD≌△AED;(2)若∠B=30°,CD=1,求BD的长.14.如图,点D,E在△ABC的边BC上,AB=AC,BD=CE.求证:AD=AE.15.已知:如图,AD,BC相交于点O,OA=OD,AB∥CD.求证:AB=CD.16.如图,把一个直角三角形ACB(∠ACB=90°)绕着顶点B顺时针旋转60°,使得点C旋转到AB 边上的一点D,点A旋转到点E的位置.F,G分别是BD,BE上的点,BF=BG,延长CF与DG交于点H.(1)求证:CF=DG;(2)求出∠FHG的度数.17.如图,点B、F、C、E在一条直线上,FB=CE,AB∥ED,AC∥FD,求证:AC=DF.18.如图,△ABC和△ADE都是等腰三角形,且∠BAC=90°,∠DAE=90°,B,C,D在同一条直线上.求证:BD=CE.19.如图,已知点B、E、C、F在同一条直线上,BE=CF,AB∥DE,∠A=∠D.求证:AB=DE.20.已知△ABC为等腰直角三角形,∠ACB=90°,点P在BC边上(P不与B、C重合)或点P在△ABC 内部,连接CP、BP,将CP绕点C逆时针旋转90°,得到线段CE;将BP绕点B顺时针旋转90°,得到线段BD,连接ED交AB于点O.(1)如图a,当点P在BC边上时,求证:OA=OB;(2)如图b,当点P在△ABC内部时,①OA=OB是否成立?请说明理由;②直接写出∠BPC为多少度时,AB=DE.21.(1)如图1,在△ABC和△DCE中,AB∥DC,AB=DC,BC=CE,且点B,C,E在一条直线上.求证:∠A=∠D.(2)如图2,在矩形ABCD中,对角线AC,BD相交于点O,AB=4,∠AOD=120°,求AC的长.22.(1)如图,AB平分∠CAD,AC=AD,求证:BC=BD;(2)列方程解应用题把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本,这个班有多少学生?23.已知:如图,D是AC上一点,AB=DA,DE∥AB,∠B=∠DAE.求证:BC=AE.24.【问题提出】学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.【初步思考】我们不妨将问题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,然后,对∠B 进行分类,可分为“∠B是直角、钝角、锐角”三种情况进行探究.【深入探究】第一种情况:当∠B是直角时,△ABC≌△DEF.(1)如图①,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E=90°,根据______,可以知道Rt△ABC≌Rt△DEF.第二种情况:当∠B是钝角时,△ABC≌△DEF.(2)如图②,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是钝角,求证:△ABC≌△DEF.第三种情况:当∠B是锐角时,△ABC和△DEF不一定全等.(3)在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,请你用尺规在图③中作出△DEF,使△DEF和△ABC不全等.(不写作法,保留作图痕迹)(4)∠B还要满足什么条件,就可以使△ABC≌△DEF?请直接写出结论:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,若______,则△ABC≌△DEF.25.问题背景:如图1:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分别是BC,CD上的点.且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系.小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是______;探索延伸:如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是BC,CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由;实际应用:如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进.1.5小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.26.如图,在四边形ABCD中,AB=AD,CB=CD,AC与BD相交于O点,OC=OA,若E是CD上任意一点,连接BE交AC于点F,连接DF.(1)证明:△CBF≌△CDF;(2)若AC=2,BD=2,求四边形ABCD的周长;(3)请你添加一个条件,使得∠EFD=∠BAD,并予以证明.27.如图,已知四边形ABCD是平行四边形,点E、B、D、F在同一直线上,且BE=DF.求证:AE=CF.28.(1)如图1,正方形ABCD中,点E,F分别在边BC,CD上,∠EAF=45°,延长CD到点G,使DG=BE,连结EF,AG.求证:EF=FG.(2)如图,等腰直角三角形ABC中,∠BAC=90°,AB=AC,点M,N在边BC上,且∠MAN=45°,若BM=1,CN=3,求MN的长.29.如图,在△ABC中,∠ACB=90°,AC=BC,E为AC边的中点,过点A作AD⊥AB交BE的延长线于点D,CG平分∠ACB交BD于点G,F为AB边上一点,连接CF,且∠ACF=∠CBG.求证:(1)AF=CG;(2)CF=2DE.30.如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC+∠EAD=180°,△ABC不动,△ADE绕点A旋转,连接BE、CD,F为BE的中点,连接AF.(1)如图①,当∠BAE=90°时,求证:CD=2AF;(2)当∠BAE≠90°时,(1)的结论是否成立?请结合图②说明理由.第12章全等三角形参考答案一、选择题(共9小题)1.如图,在△ABC中,∠ABC=45°,AC=8cm,F是高AD和BE的交点,则BF的长是()A.4cm B.6cm C.8cm D.9cm【解答】解:∵F是高AD和BE的交点,∴∠ADC=∠ADB=∠AEF=90°,∴∠CAD+∠AFE=90°,∠DBF+∠BFD=90°,∵∠AFE=∠BFD,∴∠CAD=∠FBD,∵∠ADB=90°,∠ABC=45°,∴∠BAD=45°=∠ABD,∴AD=BD,在△DBF和△DAC中∴△DBF≌△DAC(ASA),∴BF=AC=8cm,故选C.2.如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,),则点C的坐标为()A.(﹣,1) B.(﹣1,) C.(,1)D.(﹣,﹣1)【解答】解:如图,过点A作AD⊥x轴于D,过点C作CE⊥x轴于E,∵四边形OABC是正方形,∴OA=OC,∠AOC=90°,∴∠COE+∠AOD=90°,又∵∠OAD+∠AOD=90°,∴∠OAD=∠COE,在△AOD和△OCE中,,∴△AOD≌△OCE(AAS),∴OE=AD=,CE=OD=1,∵点C在第二象限,∴点C的坐标为(﹣,1).故选:A.3.(2014•湖州)在连接A地与B地的线段上有四个不同的点D、G、K、Q,下列四幅图中的实线分别表示某人从A地到B地的不同行进路线(箭头表示行进的方向),则路程最长的行进路线图是()A.B.C.D.【解答】解:A、延长AC、BE交于S,∵∠CAB=∠EDB=45°,∴AS∥ED,则SC∥DE.同理SE∥CD,∴四边形SCDE是平行四边形,∴SE=CD,DE=CS,即走的路线长是:AC+CD+DE+EB=AC+CS+SE+EB=AS+BS;B、延长AF、BH交于S1,作FK∥GH与BH的延长线交于点K,∵∠SAB=∠S1AB=45°,∠SBA=∠S1BA=70°,AB=AB,∴△SAB≌△S1AB,∴AS=AS1,BS=BS1,∵∠FGH=180°﹣70°﹣43°=67°=∠GHB,∴FG∥KH,∵FK∥GH,∴四边形FGHK是平行四边形,∴FK=GH,FG=KH,∴AF+FG+GH+HB=AF+FK+KH+HB,∵FS1+S1K>FK,∴AS+BS>AF+FK+KH+HB,即AC+CD+DE+EB>AF+FG+GH+HB,C、D、同理可证得AI+IK+KM+MB<AS2+BS2<AN+NQ+QP+PB.综上所述,D选项的所走的线路最长.故选:D.4.如图,坐标平面上,△ABC与△DEF全等,其中A、B、C的对应顶点分别为D、E、F,且AB=BC=5.若A点的坐标为(﹣3,1),B、C两点在方程式y=﹣3的图形上,D、E两点在y轴上,则F点到y轴的距离为何?()A.2 B.3 C.4 D.5【解答】解:如图,作AH、CK、FP分别垂直BC、AB、DE于H、K、P.∴∠DPF=∠AKC=∠CHA=90°.∵AB=BC,∴∠BAC=∠BCA.在△AKC和△CHA中,∴△AKC≌△CHA(ASA),∴KC=HA.∵B、C两点在方程式y=﹣3的图形上,且A点的坐标为(﹣3,1),∴AH=4.∴KC=4.∵△ABC≌△DEF,∴∠BAC=∠EDF,AC=DF.在△AKC和△DPF中,,∴△AKC≌△DPF(AAS),∴KC=PF=4.故选:C.5.平面上有△ACD与△BCE,其中AD与BE相交于P点,如图.若AC=BC,AD=BE,CD=CE,∠ACE=55°,∠BCD=155°,则∠BPD的度数为()A.110°B.125°C.130°D.155°【解答】解:在△ACD和△BCE中,,∴△ACD≌△BCE(SSS),∴∠A=∠B,∠BCE=∠ACD,∴∠BCA=∠ECD,∵∠ACE=55°,∠BCD=155°,∴∠BCA+∠ECD=100°,∴∠BCA=∠ECD=50°,∵∠ACE=55°,∴∠ACD=105°∴∠A+∠D=75°,∴∠B+∠D=75°,∵∠BCD=155°,∴∠BPD=360°﹣75°﹣155°=130°,故选:C.6.如图,在△ABC和△BDE中,点C在边BD上,边AC交边BE于点F.若AC=BD,AB=ED,BC=BE,则∠ACB等于()A.∠EDB B.∠BED C.∠AFB D.2∠ABF【解答】解:在△ABC和△DEB中,,∴△ABC≌△DEB (SSS),∴∠ACB=∠DBE.∵∠AFB是△BFC的外角,∴∠ACB+∠DBE=∠AFB,∠ACB=∠AFB,故选:C.7.如图,AB=4,射线BM和AB互相垂直,点D是AB上的一个动点,点E在射线BM上,BE=DB,作EF⊥DE并截取EF=DE,连结AF并延长交射线BM于点C.设BE=x,BC=y,则y关于x的函数解析式是()A.y=﹣B.y=﹣C.y=﹣D.y=﹣【解答】解:作FG⊥BC于G,∵∠DEB+∠FEC=90°,∠DEB+∠BDE=90°;∴∠BDE=∠FEG,在△DBE与△EGF中∴△DBE≌△EGF,∴EG=DB,FG=BE=x,∴EG=DB=2BE=2x,∴GC=y﹣3x,∵FG⊥BC,AB⊥BC,∴FG∥AB,CG:BC=FG:AB,即=,∴y=﹣.故选:A.8.如图,在四边形ABCD中,AB=AD=6,AB⊥BC,AD⊥CD,∠BAD=60°,点M、N分别在AB、AD边上,若AM:MB=AN:ND=1:2,则tan∠MCN=()A.B.C.D.﹣2【解答】解:∵AB=AD=6,AM:MB=AN:ND=1:2,∴AM=AN=2,BM=DN=4,连接MN,连接AC,∵AB⊥BC,AD⊥CD,∠BAD=60°在Rt△ABC与Rt△ADC中,,∴Rt△ABC≌Rt△ADC(HL)∴∠BAC=∠DAC=∠BAD=30°,MC=NC,∴BC=AC,∴AC2=BC2+AB2,即(2BC)2=BC2+AB2,3BC2=AB2,∴BC=2,在Rt△BMC中,CM===2.∵AN=AM,∠MAN=60°,∴△MAN是等边三角形,∴MN=AM=AN=2,过M点作ME⊥CN于E,设NE=x,则CE=2﹣x,∴MN2﹣NE2=MC2﹣EC2,即4﹣x2=(2)2﹣(2﹣x)2,解得:x=,∴EC=2﹣=,∴ME==,∴tan∠MCN==故选:A.9.如图,点E在正方形ABCD的对角线AC上,且EC=2AE,直角三角形FEG的两直角边EF、EG分别交BC、DC于点M、N.若正方形ABCD的边长为a,则重叠部分四边形EMCN的面积为()A. a2B. a2C. a2D. a2【解答】解:过E作EP⊥BC于点P,EQ⊥CD于点Q,∵四边形ABCD 是正方形,∴∠BCD=90°,又∵∠EPM=∠EQN=90°,∴∠PEQ=90°,∴∠PEM+∠MEQ=90°,∵三角形FEG 是直角三角形,∴∠NEF=∠NEQ+∠MEQ=90°,∴∠PEM=∠NEQ ,∵AC 是∠BCD 的角平分线,∠EPC=∠EQC=90°, ∴EP=EQ ,四边形PCQE 是正方形,在△EPM 和△EQN 中,,∴△EPM ≌△EQN (ASA )∴S △EQN =S △EPM ,∴四边形EMCN 的面积等于正方形PCQE 的面积, ∵正方形ABCD 的边长为a ,∴AC=a ,∵EC=2AE ,∴EC=a ,∴EP=PC=a ,∴正方形PCQE 的面积=a ×a=a 2, ∴四边形EMCN 的面积=a 2,故选:D.二、解答题(共21小题)10.如图,已知AB∥DE,AB=DE,AF=CD,∠CEF=90°.(1)若∠ECF=30°,CF=8,求CE的长;(2)求证:△ABF≌△DEC;(3)求证:四边形BCEF是矩形.【解答】(1)解:∵∠CEF=90°.∴cos∠ECF=.∵∠E CF=30°,CF=8.∴CF=CF•cos30°=8×=4;(2)证明:∵AB∥DE,∴∠A=∠D,∵在△ABF和△DEC中∴△ABF≌△DEC (SAS);(3)证明:由(2)可知:△ABF≌△DEC,∴BF=CE,∠AFB=∠DCE,∵∠AFB+∠BFC=180°,∠DCE+∠ECF=180°,∴∠BFC=∠ECF,∴BF∥EC,∴四边形BCEF是平行四边形,∵∠CEF=90°,∴四边形BCEF是矩形.11.已知△ABC为等边三角形,D为AB边所在的直线上的动点,连接DC,以DC为边在DC两侧作等边△DCE和等边△DCF(点E在DC的右侧或上侧,点F在DC左侧或下侧),连接AE、BF(1)如图1,若点D在AB边上,请你通过观察,测量,猜想线段AE、BF和AB有怎样的数量关系?并证明你的结论;(2)如图2,若点D在AB的延长线上,其他条件不变,线段AE、BF和AB有怎样的数量关系?请直接写出结论(不需要证明);(3)若点D在AB的反向延长线上,其他条件不变,请在图3中画出图形,探究线段AE、BF和AB 有怎样的数量关系,并直接写出结论(不需要证明)【解答】解:(1)AE+BF=AB,如图1,∵△ABC和△DCF是等边三角形,∴CA=CB,CD=CF,∠ACB=∠DCF=60°.∴∠ACD=∠BCF,在△ACD和△BCF中∴△ACD≌△BCF(SAS)∴AD=BF同理:△CBD≌△CAE(SAS)∴BD=AE∴AE+BF=BD+AD=AB;(2)BF﹣AE=AB,如图2,易证△CBF≌△CAD和△CBD≌△CAE,∴AD=BF,BD=AE,∴BF﹣AE=AD﹣BD=AB;(3)AE﹣BF=AB,如图3,易证△CBF≌△CAD和△CBD≌△CAE,∴AD=BF,BD=AE,∴BF﹣AE=AD﹣BD=AB.12.(2013•舟山)如图,△ABC与△DCB中,AC与BD交于点E,且∠A=∠D,AB=DC.(1)求证:△ABE≌DCE;(2)当∠AEB=50°,求∠EBC的度数?【解答】(1)证明:∵在△ABE和△DCE中∴△ABE≌△DCE(AAS);(2)解:∵△ABE≌△DCE,∴BE=EC,∴∠EBC=∠ECB,∵∠EBC+∠ECB=∠AEB=50°,∴∠EBC=25°.13.如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB于点E.(1)求证:△ACD≌△AED;(2)若∠B=30°,CD=1,求BD的长.【解答】(1)证明:∵AD平分∠CAB,DE⊥AB,∠C=90°,∴CD=ED,∠DEA=∠C=90°,∵在Rt△ACD和Rt△AED中∴Rt△ACD≌Rt△AED(HL);(2)解:∵DC=DE=1,DE⊥AB,∴∠DEB=90°,∵∠B=30°,∴BD=2DE=2.14.如图,点D,E在△ABC的边BC上,AB=AC,BD=CE.求证:AD=AE.【解答】证明:∵AB=AC,∴∠B=∠C,在△ABD与△ACE中,∵,∴△ABD≌△ACE(SAS),∴AD=AE.15.已知:如图,AD,BC相交于点O,OA=OD,AB∥CD.求证:AB=CD.【解答】证明:∵AB∥CD,∴∠B=∠C,∠A=∠D,∵在△AOB和△DOC中,,∴△AOB≌△DOC(AAS),∴AB=CD.16.如图,把一个直角三角形ACB(∠ACB=90°)绕着顶点B顺时针旋转60°,使得点C旋转到AB 边上的一点D,点A旋转到点E的位置.F,G分别是BD,BE上的点,BF=BG,延长CF与DG交于点H.(1)求证:CF=DG;(2)求出∠FHG的度数.【解答】(1)证明:∵在△CBF和△DBG中,,∴△CBF≌△DBG(SAS),∴CF=DG;(2)解:∵△CBF≌△DBG,∴∠BCF=∠BDG,又∵∠CFB=∠DFH,又∵△BCF中,∠CBF=180°﹣∠BCF﹣∠CFB,△DHF中,∠DHF=180°﹣∠BDG﹣∠DFH,∴∠DHF=∠CBF=60°,∴∠FHG=180°﹣∠DHF=180°﹣60°=120°.17.如图,点B、F、C、E在一条直线上,FB=CE,AB∥ED,AC∥FD,求证:AC=DF.【解答】证明:∵FB=CE,∴FB+FC=CE+FC,∴BC=EF,∵AB∥ED,AC∥FD,∴∠B=∠E,∠ACB=∠DFE,∵在△ABC和△DEF中,,∴△ABC≌△DEF(ASA),∴AC=DF.18.如图,△ABC和△ADE都是等腰三角形,且∠BAC=90°,∠DAE=90°,B,C,D在同一条直线上.求证:BD=CE.【解答】证明:∵△ABC和△ADE都是等腰直角三角形∴AD=AE,AB=AC,又∵∠EAC=90°+∠CAD,∠DAB=90°+∠CAD,∴∠DAB=∠EAC,∵在△ADB和△AEC中∴△ADB≌△AEC(SAS),∴BD=CE.19.如图,已知点B、E、C、F在同一条直线上,BE=CF,AB∥DE,∠A=∠D.求证:AB=DE.【解答】证明:∵BE=CF,∴BC=EF.∵AB∥DE,∴∠B=∠DEF.在△ABC与△DEF中,,∴△ABC≌△DEF(AAS),∴AB=DE.20.已知△ABC为等腰直角三角形,∠ACB=90°,点P在BC边上(P不与B、C重合)或点P在△ABC 内部,连接CP、BP,将CP绕点C逆时针旋转90°,得到线段CE;将BP绕点B顺时针旋转90°,得到线段BD,连接ED交AB于点O.(1)如图a,当点P在BC边上时,求证:OA=OB;(2)如图b,当点P在△ABC内部时,①OA=OB是否成立?请说明理由;②直接写出∠BPC为多少度时,AB=DE.【解答】(1)证明:∵△ABC为等腰直角三角形,∴CA=CB,∠A=∠ABC=45°,由旋转可知:CP=CE,BP=BD,∴CA﹣CE=CB﹣CP,即AE=BP,∴AE=BD.又∵∠CBD=90°,∴∠OBD=45°,在△AEO和△BDO中,,∴△AEO≌△BDO(AAS),∴OA=OB;(2)成立,理由如下:连接AE,则△AEC≌△BCP,∴AE=BP,∠CAE=∠BPC,∵BP=BD,∴BD=AE,∵∠OAE=45°+∠CAE,∠OBD=90°﹣∠OBP=90°﹣(45°﹣∠BPC)=45°+∠PBC,∴∠OAE=∠OBD,在△AEO和△BDO中,,∴△AEO≌△BDO(AAS),∴OA=OB,②当∠BPC=135°时,AB=DE.理由如下:解法一:当AB=DE时,由①知OA=OB,∴OA=OB=OE=OD.设∠PCB=α,由旋转可知,∠ACE=α.连接OC,则OC=OA=OB,∴OC=OE,∴∠DEC=∠OCE=45°+α.设∠PBC=β,则∠ABP=45°﹣β,∠OBD=90°﹣∠ABP=45°+β.∵OB=OD,∴∠D=∠OBD=45°+β.在四边形BCED中,∠DEC+∠D+∠DBC+∠BCE=360°,即:(45°+α)+(45°+β)+(90°+β)+(90°+α)=360°,解得:α+β=45°,∴∠BPC=180°﹣(α+β)=135°.解法二(本溪赵老师提供,更为简洁):当AB=DE时,四边形AEBD为矩形则∠DBE=90°=∠DBP,∴点P落在线段BE上.∵△ECP为等腰直角三角形,∴∠EPC=45°,∴∠BPC=180°﹣∠EPC=135°.21.(1)如图1,在△ABC和△DCE中,AB∥DC,AB=DC,BC=CE,且点B,C,E在一条直线上.求证:∠A=∠D.(2)如图2,在矩形ABCD中,对角线AC,BD相交于点O,AB=4,∠AOD=120°,求AC的长.【解答】(1)证明:∵AB∥DC,∴∠B=∠DCE,在△ABC和△DCE中,∴△ABC≌△DCE(SAS),∴∠A=∠D;(2)解:∵四边形ABCD是矩形,∴AO=BO=CO=DO,∵∠AOD=120°,∴∠AOB=60°,∴△AOB是等边三角形,∴AO=AB=4,∴AC=2AO=8.22.(1)如图,AB平分∠CAD,AC=AD,求证:BC=BD;(2)列方程解应用题把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本,这个班有多少学生?【解答】(1)证明:∵AB平分∠CAD,∴∠CAB=∠DAB,在△ABC和△ABD中∴△ABC≌△ABD(SAS),∴BC=BD.(2)解:设这个班有x名学生,根据题意得:3x+20=4x﹣25,解得:x=45,答:这个班有45名学生.23.已知:如图,D是AC上一点,AB=DA,DE∥AB,∠B=∠DAE.求证:BC=AE.【解答】证明:∵DE∥AB,∴∠CAB=∠ADE,∵在△ABC和△DAE中,,∴△ABC≌△DAE(ASA),∴BC=AE.24.【问题提出】学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.【初步思考】我们不妨将问题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,然后,对∠B 进行分类,可分为“∠B是直角、钝角、锐角”三种情况进行探究.【深入探究】第一种情况:当∠B是直角时,△ABC≌△DEF.(1)如图①,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E=90°,根据HL ,可以知道Rt△ABC≌Rt△DEF.第二种情况:当∠B是钝角时,△ABC≌△DEF.(2)如图②,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是钝角,求证:△ABC≌△DEF.第三种情况:当∠B是锐角时,△ABC和△DEF不一定全等.(3)在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,请你用尺规在图③中作出△DEF,使△DEF和△ABC不全等.(不写作法,保留作图痕迹)(4)∠B还要满足什么条件,就可以使△ABC≌△DEF?请直接写出结论:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,若∠B≥∠A ,则△ABC≌△DEF.【解答】(1)解:HL;(2)证明:如图,过点C作CG⊥AB交AB的延长线于G,过点F作FH⊥DE交DE的延长线于H,∵∠ABC=∠DEF,且∠ABC、∠DEF都是钝角,∴180°﹣∠ABC=180°﹣∠DEF,即∠CBG=∠FEH,在△CBG和△FEH中,,∴△CBG≌△FEH(AAS),∴CG=FH,在Rt△ACG和Rt△DFH中,,∴Rt△ACG≌Rt△DFH(HL),∴∠A=∠D,在△ABC和△DEF中,,∴△ABC≌△DEF(AAS);(3)解:如图,△DEF和△ABC不全等;(4)解:若∠B≥∠A,则△ABC≌△DEF.故答案为:(1)HL;(4)∠B≥∠A.25.(2014•德州)问题背景:如图1:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分别是BC,CD上的点.且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系.小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是EF=BE+DF ;探索延伸:如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是BC,CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由;实际应用:如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进.1.5小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.【解答】解:问题背景:EF=BE+DF;探索延伸:EF=BE+DF仍然成立.证明如下:如图,延长FD到G,使DG=BE,连接AG,∵∠B+∠ADC=180°,∠ADC+∠ADG=180°,∴∠B=∠ADG,在△ABE和△ADG中,,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△GAF中,,∴△AEF≌△GAF(SAS),∴EF=FG,∵FG=DG+DF=BE+DF,∴EF=BE+DF;实际应用:如图,连接EF,延长AE、BF相交于点C,∵∠AOB=30°+90°+(90°﹣70°)=140°,∠EOF=70°,∴∠EOF=∠AOB,又∵OA=OB,∠OAC+∠OBC=(90°﹣30°)+(70°+50°)=180°,∴符合探索延伸中的条件,∴结论EF=AE+BF成立,即EF=1.5×(60+80)=210海里.答:此时两舰艇之间的距离是210海里.26.如图,在四边形ABCD中,AB=AD,CB=CD,AC与BD相交于O点,OC=OA,若E是CD上任意一点,连接BE交AC于点F,连接DF.(1)证明:△CBF≌△CDF;(2)若AC=2,BD=2,求四边形ABCD的周长;(3)请你添加一个条件,使得∠EFD=∠BAD,并予以证明.【解答】(1)证明:在△ABC和△ADC中,,∴△ABC≌△ADC(SSS),∴∠BCA=∠DCA,在△CBF和△CDF中,,∴△CBF≌△CDF(SAS),(2)解:∵△ABC≌△ADC,∴△ABC和△ADC是轴对称图形,∴OB=OD,BD⊥AC,∵OA=OC,∴四边形ABCD是菱形,∴AB=BC=CD=DA,∵AC=2,BD=2,∴OA=,OB=1,∴AB===2,∴四边形ABCD的周长=4AB=4×2=8.(3)当EB⊥CD时,即E为过B且和CD垂直时垂线的垂足,∠EFD=∠BCD,理由:∵四边形ABCD为菱形,∴BC=CD,∠BCF=∠DCF,∠BCD=∠BAD,∵△BCF≌△DCF,∴∠CBF=∠CDF,∵BE⊥CD,∴∠BEC=∠DEF=90°,∴∠BCD+∠CBF=90°,∠EFD+∠CDF=90°,∴∠EFD=∠BAD.27.如图,已知四边形ABCD是平行四边形,点E、B、D、F在同一直线上,且BE=DF.求证:AE=CF.【解答】证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠ABD=∠CDB,∴180°﹣∠ABD=180°﹣∠CDB,即∠ABE=∠CDF,在△ABE和△CDF中,,∴△ABE≌△CDF(SAS),∴AE=CF.28.(1)如图1,正方形ABCD中,点E,F分别在边BC,CD上,∠EAF=45°,延长CD到点G,使DG=BE,连结EF,AG.求证:EF=FG.(2)如图,等腰直角三角形ABC中,∠BAC=90°,AB=AC,点M,N在边BC上,且∠MAN=45°,若BM=1,CN=3,求MN的长.【解答】(1)证明:在正方形ABCD中,∠ABE=∠ADG,AD=AB,在△ABE和△ADG中,∴△ABE≌△ADG(SAS),∴∠BAE=∠DAG,AE=AG,∴∠EAG=90°,在△FAE和△GAF中,,∴△FAE≌△GAF(SAS),∴EF=FG;(2)解:如图,过点C作CE⊥BC,垂足为点C,截取CE,使CE=BM.连接AE、EN.∵AB=AC,∠BAC=90°,∴∠B=∠ACB=45°.∵CE⊥BC,∴∠ACE=∠B=45°.在△ABM和△ACE中,∴△ABM≌△ACE(SAS).∴AM=AE,∠BAM=∠CAE.∵∠BAC=90°,∠MAN=45°,∴∠BAM+∠CAN=45°.于是,由∠BAM=∠CAE,得∠MAN=∠EAN=45°.在△MAN和△EAN中,∴△MAN≌△EAN(SAS).∴MN=EN.在Rt△ENC中,由勾股定理,得EN2=EC2+NC2.∴MN2=BM2+NC2.∵BM=1,CN=3,∴MN2=12+32,∴MN=29.如图,在△ABC中,∠ACB=90°,AC=BC,E为AC边的中点,过点A作AD⊥AB交BE的延长线于点D,CG平分∠ACB交BD于点G,F为AB边上一点,连接CF,且∠ACF=∠CBG.求证:(1)AF=CG;(2)CF=2DE.【解答】证明:(1)∵∠ACB=90°,CG平分∠ACB,∴∠ACG=∠BCG=45°,又∵∠ACB=90°,AC=BC,∴∠CAF=∠CBF=45°,∴∠CAF=∠BCG,在△AFC与△CGB中,,∴△AFC≌△CBG(ASA),∴AF=CG;(2)延长CG交AB于H,∵CG平分∠ACB,AC=BC,∴CH⊥AB,CH平分AB,∵AD⊥AB,∴AD∥CG,∴∠D=∠EGC,在△ADE与△CGE中,,∴△ADE≌△CGE(AAS),∴DE=GE,即DG=2DE,∵AD∥CG,CH平分AB,∴DG=BG,∵△AFC≌△CBG,∴CF=BG,∴CF=2DE.30.如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC+∠EAD=180°,△ABC不动,△ADE绕点A旋转,连接BE、CD,F为BE的中点,连接AF.(1)如图①,当∠BAE=90°时,求证:CD=2AF;(2)当∠BAE≠90°时,(1)的结论是否成立?请结合图②说明理由.【解答】(1)证明:如图①,∵∠BAC+∠EAD=180°,∠BAE=90°,∴∠DAC=90°,在△ABE与△ACD中∴△ABE≌△ACD(SAS),∴CD=BE,∵在Rt△ABE中,F为BE的中点,∴BE=2AF,∴CD=2AF.(2)成立,证明:如图②,延长EA交BC于G,在AG上截取AH=AD,∵∠BAC+∠EAD=180°,∴∠EAB+∠DAC=180°,∵∠EAB+∠BAH=180°,∴∠DAC=∠BAH,在△ABH与△ACD中,∴△ABH≌△ACD(SAS)∴BH=DC,∵AD=AE,AH=AD,∴AE=AH,∵EF=FB,∴BH=2AF,∴CD=2AF.。

人教版八年级上册数学《全等三角形》单元测试题(附答案)

人教版数学八年级上学期《全等三角形》单元测试(考试时间:90分钟试卷满分:120分)一.全等三角形的性质1.(2019•上海)在△ABC和△A1B1C1中,已知∠C=∠C1=90°,AC=A1C1=3,BC=4,B1C1=2,点D、D1分别在边AB、A1B1上,且△ACD≌△C1A1D1,那么AD的长是.二.全等三角形的判定2.(2019•兴安盟)如图,已知AB=AC,点D、E分别在线段AB、AC上,BE与CD相交于点O,添加以下哪个条件仍不能判定△ABE≌△ACD()A.∠B=∠C B.AE=AD C.BD=CE D.BE=CD3.(2019•安顺)如图,点B、F、C、E在一条直线上,AB∥ED,AC∥FD,那么添加下列一个条件后,仍无法判定△ABC≌△DEF的是()A.∠A=∠D B.AC=DF C.AB=ED D.BF=EC第2题第3题第4题4.(2019•阿坝州)如图,已知E,B,F,C四点在一条直线上,EB=CF,∠A=∠D,添加以下条件之一,仍不能证明△ABC≌△DEF的是()A.∠E=∠ABC B.AB=DE C.AB∥DE D.DF∥AC5.(2020•齐齐哈尔)如图,已知在△ABD和△ABC中,∠DAB=∠CAB,点A、B、E在同一条直线上,若使△ABD≌△ABC,则还需添加的一个条件是.(只填一个即可)6.(2020•铜仁市)如图,∠B=∠E,BF=EC,AC∥DF.求证:△ABC≌△DEF.第5题第6题三.直角三角形全等的判定7.(2020•黑龙江)如图,Rt△ABC和Rt△EDF中,∠B=∠D,在不添加任何辅助线的情况下,请你添加一个条件,使Rt△ABC和Rt△EDF全等.四.全等三角形的判定与性质第7题8.(2020•鄂州)如图,在△AOB和△COD中,OA=OB,OC=OD,OA<OC,∠AOB=∠COD=36°.连接AC,BD交于点M,连接OM.下列结论:①∠AMB=36°,②AC=BD,③OM平分∠AOD,④MO平分∠AMD.其中正确的结论个数有()个.A.4B.3C.2D.19.(2019•临沂)如图,D是AB上一点,DF交AC于点E,DE=FE,FC∥AB,若AB=4,CF=3,则BD 的长是()A.0.5B.1C.1.5D.2第8题第9题10.(2020•菏泽)如图,在△ABC 中,∠ACB=90°,点E在AC的延长线上,ED⊥AB于点D,若BC=ED,求证:CE=DB.第10题11.(2020•泸州)如图,AC平分∠BAD,AB=AD.求证:BC=DC.第11题12.(2020•南充)如图,点C在线段BD上,且AB⊥BD,DE⊥BD,AC⊥CE,BC=DE.求证:AB=CD.第12题13.(2020•无锡)如图,已知AB∥CD,AB=CD,BE=CF.求证:(1)△ABF≌△DCE;(2)AF∥DE.第13题14.(2020•硚口区模拟)如图,点D在AB上,点E在AC上,AB=AC,∠B=∠C,求证:BD=CE.第14题15.(2018秋•溧水区期末)如图,点C 、E 、F 、B 在同一直线上,点A 、D 在BC 异侧,AB ∥CD ,AE =DF ,∠A =∠D .(1)求证:AB =CD ;(2)若AB =CF ,∠B =40°,求∠D 的度数.第15题五.全等三角形的应用16.(2019•南通)如图,有一池塘,要测池塘两端A ,B 的距离,可先在平地上取一个点C ,从点C 不经过池塘可以直接到达点A 和B .连接AC 并延长到点D ,使CD =CA .连接BC 并延长到点E ,使CE =CB .连接DE ,那么量出DE 的长就是A ,B 的距离.为什么?第16题六.角平分线的性质17.(2019•陕西)如图,在△ABC 中,∠B =30°,∠C =45°,AD 平分∠BAC 交BC 于点D ,DE ⊥AB ,垂足为E .若DE =1,则BC 的长为( ) A .22+ B .32+ C .32+ D .318.(2019•张家界)如图,在△ABC 中,∠C =90°,AC =8,DC =31AD ,BD 平分∠ABC ,则点D 到AB 的距离等于( )A .4B .3C .2D .1第17题第18题第19题19.(2019•湖州)如图,已知在四边形ABCD中,∠BCD=90°,BD平分∠ABC,AB=6,BC=9,CD=4,则四边形ABCD的面积是()A.24B.30C.36D.42参考答案一.全等三角形的性质(共1小题)1.(2019•上海)在△ABC 和△A 1B 1C 1中,已知∠C =∠C 1=90°,AC =A 1C 1=3,BC =4,B 1C 1=2,点D 、D 1分别在边AB 、A 1B 1上,且△ACD ≌△C 1A 1D 1,那么AD 的长是 .【分析】根据勾股定理求得AB =5,由△ACD ≌△C 1A 1D 1,所以可以将A 1点放在左图的C 点上,C 1点放在左图的A 点上,D 1点对应左图的D 点,从而得出BC ∥B 1C 1,根据其性质得出=2,解得求出AD 的长.【解答】解:∵△ACD ≌△C 1A 1D 1,可以将△C 1A 1D 1与△ACD 重合,如图,∵∠C =∠C 1=90°,∴BC ∥B 1C 1,∴, ∵AC =3,BC =4,∴AB =5, ,解得AD ,∴AD , .二.全等三角形的判定(共5小题)2.(2019•兴安盟)如图,已知AB =AC ,点D 、E 分别在线段AB 、AC 上,BE 与CD 相交于点O ,添加以下哪个条件仍不能判定△ABE ≌△ACD ( )AD AD -5BCC B BD AD 11A.∠B=∠C B.AE=AD C.BD=CE D.BE=CD【分析】根据全等三角形的判定定理判断.【解答】解:A、当∠B=∠C时,利用ASA定理可以判定△ABE≌△ACD;B、当AE=AD时,利用SAS定理可以判定△ABE≌△ACD;C、当BD=CE时,得到AD=AE,利用SAS定理可以判定△ABE≌△ACD;D、当BE=CD时,不能判定△ABE≌△ACD;故选:D.3.(2019•安顺)如图,点B、F、C、E在一条直线上,AB∥ED,AC∥FD,那么添加下列一个条件后,仍无法判定△ABC≌△DEF的是()A.∠A=∠D B.AC=DF C.AB=ED D.BF=EC【分析】分别判断选项所添加的条件,根据三角形的判定定理:SSS、SAS、AAS进行判断即可.【解答】解:选项A、添加∠A=∠D不能判定△ABC≌△DEF,故本选项符合题意;选项B、添加AC=DF可用AAS进行判定,故本选项不符合题意;选项C、添加AB=DE可用AAS进行判定,故本选项不符合题意;选项D、添加BF=EC可得出BC=EF,然后可用ASA进行判定,故本选项不符合题意.故选:A.4.(2019•阿坝州)如图,已知E,B,F,C四点在一条直线上,EB=CF,∠A=∠D,添加以下条件之一,仍不能证明△ABC≌△DEF的是()A.∠E=∠ABC B.AB=DE C.AB∥DE D.DF∥AC【分析】由EB=CF,可得出EF=BC,又有∠A=∠D,本题具备了一组边、一组角对应相等,为了再添一个条件仍不能证明△ABC≌△DEF,那么添加的条件与原来的条件可形成SSA,就不能证明△ABC ≌△DEF了.【解答】解:A.添加∠E=∠ABC,根据AAS能证明△ABC≌△DEF,故A选项不符合题意.B.添加DE=AB与原条件满足SSA,不能证明△ABC≌△DEF,故B选项符合题意;C.添加AB∥DE,可得∠E=∠ABC,根据AAS能证明△ABC≌△DEF,故C选项不符合题意;D.添加DF∥AC,可得∠DFE=∠ACB,根据AAS能证明△ABC≌△DEF,故D选项不符合题意;故选:B.5.(2020•齐齐哈尔)如图,已知在△ABD和△ABC中,∠DAB=∠CAB,点A、B、E在同一条直线上,若使△ABD≌△ABC,则还需添加的一个条件是AD=AC(∠D=∠C或∠ABD=∠ABC等).(只填一个即可)【分析】利用全等三角形的判定方法添加条件.【解答】解:∵∠DAB=∠CAB,AB=AB,∴当添加AD=AC时,可根据“SAS”判断△ABD≌△ABC;当添加∠D=∠C时,可根据“AAS”判断△ABD≌△ABC;当添加∠ABD=∠ABC时,可根据“ASA”判断△ABD≌△ABC.故答案为AD=AC(∠D=∠C或∠ABD=∠ABC等).6.(2020•铜仁市)如图,∠B=∠E,BF=EC,AC∥DF.求证:△ABC≌△DEF.【分析】首先利用平行线的性质得出∠ACB=∠DFE,进而利用全等三角形的判定定理ASA,进而得出答案.【解答】证明:∵AC∥DF,∴∠ACB=∠DFE,∵BF=CE,∴BC=EF,在△ABC和△DEF中,∠B=∠EBC=EF∠ACB=∠DFE,∴△ABC≌△DEF(ASA).三.直角三角形全等的判定(共1小题)7.(2020•黑龙江)如图,Rt△ABC和Rt△EDF中,∠B=∠D,在不添加任何辅助线的情况下,请你添加一个条件AB=ED(BC=DF或AC=EF或AE=CF等),使Rt△ABC和Rt△EDF全等.【分析】本题是一道开放型的题目,答案不唯一,可以是AB=ED或BC=DF或AC=EF或AE=CF等,只要符合全等三角形的判定定理即可.【解答】解:添加的条件是:AB=ED,理由是:∵在△ABC和△EDF中∠B=∠DAB=ED∠A=∠DEF,∴△ABC≌△EDF(ASA),故答案为:AB=ED.四.全等三角形的判定与性质(共9小题)8.(2020•鄂州)如图,在△AOB和△COD中,OA=OB,OC=OD,OA<OC,∠AOB=∠COD=36°.连接AC,BD交于点M,连接OM.下列结论:①∠AMB=36°,②AC=BD,③OM平分∠AOD,④MO平分∠AMD.其中正确的结论个数有()个.A.4B.3C.2D.1【分析】由SAS证明△AOC≌△BOD得出∠OCA=∠ODB,AC=BD,②正确;由全等三角形的性质得出∠OCA=∠ODB,由三角形的外角性质得:∠CMD+∠OCA=∠COD+∠ODB,得出∠CMD=∠COD=36°,∠AMB=∠CMD=36°,①正确;作OG⊥AM于G,OH⊥DM于H,如图所示:则∠OGA=∠OHB=90°,由AAS证明△OGA≌△OHB(AAS),得出OG=OH,由角平分线的判定方法得出OM平分∠AMD,④正确;假设OM平分∠AOD,则∠DOM=∠AOM,由全等三角形的判定定理可得△AMO≌△OMD,得AO=OD,而OC=OD,所以OA=OC,而OA<OC,故③错误;即可得出结论.【解答】解:∵∠AOB=∠COD=36°,∴∠AOB+∠BOC=∠COD+∠BOC,即∠AOC=∠BOD,在△AOC和△BOD中,OA=OB∠AOC=∠B0DOC=OD∴△AOC≌△BOD(SAS),∴∠OCA=∠ODB,AC=BD,故②正确;∵∠OCA=∠ODB,由三角形的外角性质得:∠CMD+∠OCA=∠COD+∠ODB,得出∠CMD=∠COD=36°,∠AMB=∠CMD=36°,故①正确;作OG⊥AM于G,OH⊥DM于H,如图所示,则∠OGA=∠OHB=90°,在△OGA和△OHB中,∵∠0GA=∠OHB=90°∠OAG=∠OBHOA=OB,∴△OGA≌△OHB(AAS),∴OG=OH,∴OM平分∠AMD,故④正确;假设OM平分∠AOD,则∠DOM=∠AOM,在△AMO与△DMO中,∠AOM=∠DOMOM=OM∠AMD=∠DMO,∴△AMO≌△OMD(ASA),∴AO=OD,∵OC=OD,∴OA=OC,而OA<OC,故③错误;正确的个数有3个;故选:B.9.(2019•临沂)如图,D是AB上一点,DF交AC于点E,DE=FE,FC∥AB,若AB=4,CF=3,则BD 的长是()A.0.5B.1C.1.5D.2【分析】根据平行线的性质,得出∠A=∠FCE,∠ADE=∠F,根据全等三角形的判定,得出△ADE≌△CFE,根据全等三角形的性质,得出AD=CF,根据AB=4,CF=3,即可求线段DB的长.【解答】解:∵CF∥AB,∴∠A=∠FCE,∠ADE=∠F,在△ADE和△FCE中∠A=∠FCE∠ADE=∠FDE=FE,∴△ADE≌△CFE(AAS),∴AD=CF=3,∵AB=4,∴DB=AB﹣AD=4﹣3=1.故选:B.10.(2020•菏泽)如图,在△ABC中,∠ACB=90°,点E在AC的延长线上,ED⊥AB于点D,若BC=ED,求证:CE=DB.【分析】由“AAS”可证△ABC≌△AED,可得AE=AB,AC=AD,由线段的和差关系可得结论.【解答】证明:∵ED⊥AB,∴∠ADE=∠ACB=90°,∠A=∠A,BC=DE,∴△ABC≌△AED(AAS),∴AE=AB,AC=AD,∴CE=BD.11.(2020•泸州)如图,AC平分∠BAD,AB=AD.求证:BC=DC.【分析】由“SAS”可证△ABC≌△ADC,可得BC=DC.【解答】证明:∵AC平分∠BAD,∴∠BAC=∠DAC,又∵AB=AD,AC=AC,∴△ABC≌△ADC(SAS),∴BC=CD.12.(2020•南充)如图,点C在线段BD上,且AB⊥BD,DE⊥BD,AC⊥CE,BC=DE.求证:AB=CD.【分析】证明△ABC≌△CDE(ASA),可得出结论.【解答】证明:∵AB⊥BD,ED⊥BD,AC⊥CE,∴∠ACE=∠ABC=∠CDE=90°,∴∠ACB+∠ECD=90°,∠ECD+∠CED=90°,∴∠ACB=∠CED.在△ABC和△CDE中,∠ACB=∠CEDBC=DE∠ABC=∠CDE,∴△ABC≌△CDE(ASA),∴AB=CD.13.(2020•无锡)如图,已知AB∥CD,AB=CD,BE=CF.求证:(1)△ABF≌△DCE;(2)AF∥DE.【分析】(1)先由平行线的性质得∠B=∠C,从而利用SAS判定△ABF≌△DCE;(2)根据全等三角形的性质得∠AFB=∠DEC,由等角的补角相等可得∠AFE=∠DEF,再由平行线的判定可得结论.【解答】证明:(1)∵AB∥CD,∴∠B=∠C,∵BE=CF,∴BE﹣EF=CF﹣EF,即BF=CE,在△ABF和△DCE中,∵AB=CD∠B=∠CBF=CE,∴△ABF≌△DCE(SAS);(2)∵△ABF≌△DCE,∴∠AFB=∠DEC,∴∠AFE=∠DEF,∴AF∥DE.14.(2020•硚口区模拟)如图,点D在AB上,点E在AC上,AB=AC,∠B=∠C,求证:BD=CE.【分析】要证BD=CE只要证明AD=AE即可,而证明△ABE≌△ACD,则可得AD =AE.【解答】证明:在△ABE与△ACD中∠A=∠AAB=AC∠B=∠C,∴△ABE≌△ACD.∴AD=AE.∴BD=CE.15.(2018秋•溧水区期末)如图,点C、E、F、B在同一直线上,点A、D在BC异侧,AB∥CD,AE=DF,∠A=∠D.(1)求证:AB=CD;(2)若AB=CF,∠B=40°,求∠D的度数.【分析】(1)根据平行线的性质求出∠B=∠C,根据AAS推出△ABE≌△DCF,根据全等三角形的性质得出即可;(2)根据全等得出AB=CD,BE=CF,∠B=∠C,求出CF=CD,推出∠D=∠CFD,即可求出答案.【解答】(1)证明:∵AB∥CD,∴∠B=∠C,在△ABE和△DCF中,∠A=∠D∠B=∠CAE=DF,∴△ABE≌△DCF(AAS),∴AB=CD;(2)解:∵△ABE≌△DCF,∴AB=CD,BE=CF,∠B=∠C,∵∠B=40°,∴∠C=40°∵AB=CF,∴CF=CD,∴∠D=∠CFD(180°﹣40°)=70°.五.全等三角形的应用(共1小题)16.(2019•南通)如图,有一池塘,要测池塘两端A,B的距离,可先在平地上取一个点C,从点C不经过池塘可以直接到达点A和B.连接AC并延长到点D,使CD=CA.连接BC并延长到点E,使CE=CB.连接DE,那么量出DE的长就是A,B的距离.为什么?【分析】利用“边角边”证明△ABC和△DEC全等,再根据全等三角形对应边相等解答.【解答】解:量出DE的长就等于AB的长,理由如下:在△ABC和△DEC中,BD=CE∠ACB=∠DCECA=CD,∴△ABC≌△DEC(SAS),∴AB=DE.六.角平分线的性质(共3小题)17.(2019•陕西)如图,在△ABC中,∠B=30°,∠C=45°,AD平分∠BAC交BC于点D,DE⊥AB,垂足为E.若DE=1,则BC的长为()A.B.C D.3【分析】过点D作DF⊥AC于F如图所示,根据角平分线的性质得到DE=DF=1,解直角三角形即可得到结论.【解答】解:过点D作DF⊥AC于F如图所示,∵AD为∠BAC的平分线,且DE⊥AB于E,DF⊥AC于F,∴DE=DF=1,在Rt△BED中,∠B=30°,∴BD=2DE=2,在Rt△CDF中,∠C=45°,∴△CDF为等腰直角三角形,∴CD=DF,∴BC=BD+CD=,故选:A.18.(2019•张家界)如图,在△ABC中,∠C=90°,AC=8,DC AD,BD平分∠ABC,则点D到AB 的距离等于()A.4B.3C.2D.1【分析】过点D作DE⊥AB于E,求出CD,再根据角平分线上的点到角的两边的距离相等解答.【解答】解:如图,过点D作DE⊥AB于E,∵AC=8,DC AD,∴CD=8=2,∵∠C=90°,BD平分∠ABC,∴DE=CD=2,即点D到AB的距离为2.故选:C.19.(2019•湖州)如图,已知在四边形ABCD中,∠BCD=90°,BD平分∠ABC,AB=6,BC=9,CD=4,则四边形ABCD的面积是()A.24B.30C.36D.42【分析】过D作DH⊥AB交BA的延长线于H,根据角平分线的性质得到DH=CD=4,根据三角形的面积公式即可得到结论.【解答】解:过D作DH⊥AB交BA的延长线于H,∵BD平分∠ABC,∠BCD=90°,∴DH=CD=4,∴四边形ABCD的面积=S△ABD+S△BCD=AB•DH+BC•CD=×6××9×4=30,故选:B.。

2019年人教版八年级上册数学《第12章全等三角形》单元测试卷(解析版)

2019年人教版八年级上册数学《第12章全等三角形》单元测试卷一.选择题(共12小题)1.下列说法正确的是()A.形状相同的两个三角形全等B.面积相等的两个三角形全等C.完全重合的两个三角形全等D.所有的等边三角形全等2.下列说法正确的是()A.所有的等边三角形都是全等三角形B.全等三角形是指面积相等的三角形C.周长相等的三角形是全等三角形D.全等三角形是指形状相同大小相等的三角形3.如图,△ABC≌△DEF,点A与D,B与E分别是对应顶点,且测得BC=5cm,BF=7cm,则EC长为()A.1cm B.2cm C.3cm D.4cm4.已知图中的两个三角形全等,则∠1等于()A.72°B.60°C.50°D.58°5.如图,AE∥DF,AE=DF,要使△EAC≌△FDB,需要添加下列选项中的()A.∠A=∠D B.EC=BF C.AB=CD D.AB=BC6.如图,在△ABC和△DEF中,∠B=∠DEF,AB=DE,添加下列一个条件后,仍然不能证明△ABC≌△DEF,这个条件是()A.∠A=∠D B.BC=EF C.AC=DF D.∠ACB=∠F7.在如图中,AB=AC,BE⊥AC于E,CF⊥AB于F,BE、CF交于点D,则下列结论中不正确的是()A.△ABE≌△ACF B.点D在∠BAC的平分线上C.△BDF≌△CDE D.点D是BE的中点8.下列条件,不能判定两个直角三角形全等的是()A.斜边和一直角边对应相等B.两个锐角对应相等C.一锐角和斜边对应相等D.两条直角边对应相等9.下列说法中:①形状相同的两个图形是全等形;②对应角相等的两个三角形是全等三角形;③全等三角形的面积相等;④若△ABC≌△DEF,△DEF≌△MNP,则△ABC≌△MNP.其中正确的说法共有()A.0个B.1个C.2个D.3个10.下列作图语句正确的是()A.延长线段AB到C,使AB=BCB.延长射线ABC.过点A作AB∥CD∥EFD.作∠AOB的平分线OC11.下列画图语句中,正确的是()A.画射线OP=3cm B.连接A,B两点C.画出A,B两点的中点D.画出A,B两点的距离12.尺规作图的画图工具是()A.刻度尺、量角器B.三角板、量角器C.直尺、量角器D.没有刻度的直尺和圆规二.填空题(共6小题)13.如图是由4个相同的小正方形组成的网格图,其中∠1+∠2等于.14.一个三角形的三条边的长分别是5,7,10,另一个三角形的三条边的长分别是5,3x﹣2,2y+1,若这两个三角形全等,则x+y的值是或.15.如图,AE=AD,∠B=∠C,BE=6,AD=4,则AC=.16.如图,△ABC中,AD⊥BC于D,要使△ABD≌△ACD,若根据“HL”判定,还需要加条件.17.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=35°,∠2=30°,则∠3=.18.某同学把一块三角形的玻璃打碎成了3块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的方法是,理由是.三.解答题(共3小题)19.如图,已知△ABC≌△DEF,∠A=30°,∠B=50°,BF=2,求∠DFE的度数和EC的长.20.如图,点E在△ABC外部,点D在BC边上,DE交AC于点F,若∠1=∠2=∠3,AC=AE,试说明:△ABC≌△ADE的理由.21.如图,已知Rt△ABC中,∠ACB=90°,CA=CB,D是AC上一点,E在BC的延长线上,且AE=BD,BD的延长线与AE交于点F.试通过观察、测量、猜想等方法来探索BF与AE有何特殊的位置关系,并说明你猜想的正确性.2019年人教版八年级上册数学《第12章全等三角形》单元测试卷参考答案与试题解析一.选择题(共12小题)1.下列说法正确的是()A.形状相同的两个三角形全等B.面积相等的两个三角形全等C.完全重合的两个三角形全等D.所有的等边三角形全等【分析】根据全等形的概念:能够完全重合的两个图形叫做全等形,以及全等三角形的判定定理可得答案.【解答】解:A、形状相同的两个三角形全等,说法错误,应该是形状相同且大小也相同的两个三角形全等;B、面积相等的两个三角形全等,说法错误;C、完全重合的两个三角形全等,说法正确;D、所有的等边三角形全等,说法错误;故选:C.【点评】此题主要考查了全等图形,关键是掌握全等形的概念.2.下列说法正确的是()A.所有的等边三角形都是全等三角形B.全等三角形是指面积相等的三角形C.周长相等的三角形是全等三角形D.全等三角形是指形状相同大小相等的三角形【分析】直接利用全等图形的定义与性质分析得出答案.【解答】解:A、所有的等边三角形都是全等三角形,错误;B、全等三角形是指面积相等的三角形,错误;C、周长相等的三角形是全等三角形,错误;D、全等三角形是指形状相同大小相等的三角形,正确.故选:D.【点评】此题主要考查了全等图形的性质与判定,正确利用全等图形的性质得出是解题关键.3.如图,△ABC≌△DEF,点A与D,B与E分别是对应顶点,且测得BC=5cm,BF=7cm,则EC长为()A.1cm B.2cm C.3cm D.4cm【分析】根据全等三角形性质求出EF=BC=5cm,求出CF,代入EF﹣CF即可求出答案.【解答】解:∵△ABC≌△DEF,∴EF=BC=5cm,∵BF=7cm,BC=5cm,∴CF=7cm﹣5cm=2cm,∴EC=EF﹣CF=3cm,故选:C.【点评】本题考查了全等三角形的性质得应用,关键是求出BC和CF的长,注意:全等三角形的对应边相等.4.已知图中的两个三角形全等,则∠1等于()A.72°B.60°C.50°D.58°【分析】根据三角形内角和定理求得∠2=58°;然后由全等三角形是性质得到∠1=∠2=58°.【解答】解:如图,由三角形内角和定理得到:∠2=180°﹣50°﹣72°=58°.∵图中的两个三角形全等,∴∠1=∠2=58°.故选:D.【点评】本题考查了全等三角形的性质,解题的关键是找准对应角.5.如图,AE∥DF,AE=DF,要使△EAC≌△FDB,需要添加下列选项中的()A.∠A=∠D B.EC=BF C.AB=CD D.AB=BC【分析】由条件可得∠A=∠D,结合AE=DF,则还需要一边或一角,再结合选项可求得答案.【解答】解:∵AE∥DF,∴∠A=∠D,∵AE=DF,∴要使△EAC≌△FDB,还需要AC=BD,∴当AB=CD时,可得AB+BC=BC+CD,即AC=BD,故选:C.【点评】本题主要考查全等三角形的判定,掌握全等三角形的判定方法是解题的关键.6.如图,在△ABC和△DEF中,∠B=∠DEF,AB=DE,添加下列一个条件后,仍然不能证明△ABC≌△DEF,这个条件是()A.∠A=∠D B.BC=EF C.AC=DF D.∠ACB=∠F【分析】根据全等三角形的判定,利用ASA、SAS、AAS即可得答案.【解答】解:∵∠B=∠DEF,AB=DE,∴添加∠A=∠D,利用ASA可得△ABC≌△DEF;∴添加BC=EF,利用SAS可得△ABC≌△DEF;∴添加∠ACB=∠F,利用AAS可得△ABC≌△DEF;故选:C.【点评】本题考查了全等三角形的判定,掌握全等三角形的判定方法:SSS、ASA、SAS、AAS和HL是解题的关键.7.在如图中,AB=AC,BE⊥AC于E,CF⊥AB于F,BE、CF交于点D,则下列结论中不正确的是()A.△ABE≌△ACF B.点D在∠BAC的平分线上C.△BDF≌△CDE D.点D是BE的中点【分析】根据全等三角形的判定对各个选项进行分析,从而得到答案.做题时,要结合已知条件与三角形全等的判定方法逐个验证.【解答】解:A、∵AB=AC,BE⊥AC于E,CF⊥AB于F,∠A=∠A∴△ABE≌△ACF(AAS),正确;B、∵△ABE≌△ACF,AB=AC∴BF=CE,∠B=∠C,∠DFB=∠DEC=90°∴DF=DE故点D在∠BAC的平分线上,正确;C、∵△ABE≌△ACF,AB=AC∴BF=CE,∠B=∠C,∠DFB=∠DEC=90°∴△BDF≌△CDE(AAS),正确;D、无法判定,错误;故选:D.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.8.下列条件,不能判定两个直角三角形全等的是()A.斜边和一直角边对应相等B.两个锐角对应相等C.一锐角和斜边对应相等D.两条直角边对应相等【分析】直角三角形全等的判定方法:HL,SAS,ASA,SSS,AAS,做题时要结合已知条件与全等的判定方法逐一验证.【解答】解:A、符合判定HL,故本选项正确,不符合题意;B、全等三角形的判定必须有边的参与,故本选项错误,符合题意;C、符合判定AAS,故本选项正确,不符合题意;D、符合判定SAS,故本选项正确,不符合题意.故选:B.【点评】本题考查直角三角形全等的判定方法,判定两个直角三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.9.下列说法中:①形状相同的两个图形是全等形;②对应角相等的两个三角形是全等三角形;③全等三角形的面积相等;④若△ABC≌△DEF,△DEF≌△MNP,则△ABC≌△MNP.其中正确的说法共有()A.0个B.1个C.2个D.3个【分析】根据全等形的定义,全等三角形的判定与性质对各小题分析判断后即可解答.【解答】解:①形状相同,大小相等的两个图形是全等形,故本小题错误;②三角形全等必须有边的参与,所以对应角相等的两个三角形是全等三角形错误,正确的说法:对应角相等的两个三角形不一定是全等三角形,故本小题错误;③全等三角形能够完全重合,所以面积相等,故本小题正确;④若△ABC≌△DEF,△DEF≌△MNP,则三个三角形都能够完全重合,故△ABC≌△MNP,故本小题正确;综上所述,说法正确的是③④共2个.故选:C.【点评】本题考查了全等形的定义,全等三角形的判定与性质,是基础题,需要特别注意,三角形全等的条件,必须有边的参与.10.下列作图语句正确的是()A.延长线段AB到C,使AB=BCB.延长射线ABC.过点A作AB∥CD∥EFD.作∠AOB的平分线OC【分析】根据基本作图的方法,逐项分析,从而得出正确的结论.【解答】解:A、应为:延长线段AB到C,BC=AB,故本选项错误;B、射线本身是无限延伸的,不能延长,故本选项错误;C、过点A作只能作CD或EF的平行线,CD不一定平行于EF,故本选项错误;D、作∠AOB的平分线OC,正确.故选:D.【点评】此题主要考查图形中延长线、平行线、角平分线的画法,是基本题型,特别是A选项,应该是作出的等于原来的,顺序不能颠倒.11.下列画图语句中,正确的是()A.画射线OP=3cm B.连接A,B两点C.画出A,B两点的中点D.画出A,B两点的距离【分析】根据基本作图的方法,逐项分析,从而得出正确的结论.【解答】解:A、射线没有长度,错误;B、连接A,B两点是作出线段AB,正确;C、画出A,B两点的线段,量出中点,错误;D、量出A,B两点的距离,错误.故选:B.【点评】本题考查常见的易错点,需在做题过程中加以熟练应用.12.尺规作图的画图工具是()A.刻度尺、量角器B.三角板、量角器C.直尺、量角器D.没有刻度的直尺和圆规【分析】根据尺规作图的定义可知.【解答】解:尺规作图的画图工具是没有刻度的直尺和圆规.故选:D.【点评】本题主要考查了尺规作图的画图工具,即没有刻度的直尺和圆规.二.填空题(共6小题)13.如图是由4个相同的小正方形组成的网格图,其中∠1+∠2等于180°.【分析】首先证明△ABC≌△DBE可得∠1=∠ACB,再根据等量代换可得∠1+∠2=180°.【解答】解:由题意得:AB=DB,AC=ED,∠A=∠D=90°,∵在△ABC和△DBE中,∴△ABC≌△DBE(SAS),∴∠1=∠ACB,∵∠ACB+∠2=180°,∴∠1+∠2=180°,故答案为:180°.【点评】此题主要考查了全等图形,关键是掌握全等三角形的判定与性质.14.一个三角形的三条边的长分别是5,7,10,另一个三角形的三条边的长分别是5,3x﹣2,2y+1,若这两个三角形全等,则x+y的值是7或.【分析】根据全等三角形的性质,可知分两种情况:①,②;解答出即可;【解答】解:由题意得,①,解得,,∴x+y=3+=;②,解得,,∴x+y=4+3=7;故答案为:或7.【点评】本题主要考查了全等三角形的性质,掌握全等三角形的性质,知道本题可分两种情况,是解答的关键.15.如图,AE=AD,∠B=∠C,BE=6,AD=4,则AC=10.【分析】先根据已知证得△ABD≌△ACE,得出AB=AC.进而推出BE=DC,那么就可以求得AC=10.【解答】解:∵AE=AD,∠B=∠C,∠A=∠A∴△ABD≌△ACE∴AB=AC∵AE=AD∴BE=DC∴AC=AD+BE=10.故填10.【点评】此题主要考查全等三角形的判定,常用的判定有SAS,AAS,SSS,HL等.做题时要结合图形得到答案.16.如图,△ABC中,AD⊥BC于D,要使△ABD≌△ACD,若根据“HL”判定,还需要加条件AB =AC.【分析】根据斜边和一条直角边对应相等的两个直角三角形全等(可以简写成“斜边、直角边”或“HL”)可得需要添加条件AB=AC.【解答】解:还需添加条件AB=AC,∵AD⊥BC于D,∴∠ADB=∠ADC=90°,在Rt△ABD和Rt△ACD中,,∴Rt△ABD≌Rt△ACD(HL),故答案为:AB=AC.【点评】此题主要考查了直角三角形全等的判定,关键是正确理解:斜边和一条直角边对应相等的两个直角三角形全等.17.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=35°,∠2=30°,则∠3=65°.【分析】由∠BAC=∠DAE可以得出∠1=∠CAE,就可以得出△ABD≌△ACE就可以得出结论.【解答】解:∵∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,∴∠1=∠CAE.在△ABD和△ACE中,∴△ABD≌△ACE(SAS),∴∠ABD=∠2=30°.∵∠3=∠1+∠ABD,∴∠3=35°+30°=65°.故答案为:65°.【点评】本题考查了等式的性质的运用,全等三角形的判定及性质的运用,三角形的外角与内角的关系的运用.解答时证明三角形全等是关键.18.某同学把一块三角形的玻璃打碎成了3块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的方法是带③去,理由是ASA.【分析】根据全等三角形的判定,已知两角和夹边,就可以确定一个三角形.【解答】解:第一块和第二块只保留了原三角形的一个角和部分边,根据这两块中的任一块均不能配一块与原来完全一样的;第三块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA来配一块一样的玻璃.最省事的方法是应带③去,理由是:ASA.故答案为:带③去,ASA.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL,做题时要根据已知条件进行选择运用.三.解答题(共3小题)19.如图,已知△ABC≌△DEF,∠A=30°,∠B=50°,BF=2,求∠DFE的度数和EC的长.【分析】根据三角形的内角和等于180°求出∠ACB的度数,然后根据全等三角形对应角相等即可求出∠DFE,全等三角形对应边相等可得EF=BC,然后推出EC=BF.【解答】解:∵∠A=30°,∠B=50°,∴∠ACB=180°﹣∠A﹣∠B=180°﹣30°﹣50°=100°,∵△ABC≌△DEF,∴∠DFE=∠ACB=100°,EF=BC,∴EF﹣CF=BC﹣CF,即EC=BF,∵BF=2,∴EC=2.【点评】本题主要考查了全等三角形对应边相等,全等三角形对应角相等的性质,三角形的内角和定理,比较简单,熟记性质是解题的关键.20.如图,点E在△ABC外部,点D在BC边上,DE交AC于点F,若∠1=∠2=∠3,AC=AE,试说明:△ABC≌△ADE的理由.【分析】由条件可证得∠B=∠ADE,∠BAC=∠DAE,结合AC=AE,可证明△ABC≌△ADE.【解答】证明:∵∠1=∠2,∴∠1+∠DAC=∠2+∠DAC,即∠BAC=∠DAE,∵∠B+∠1=∠ADE+∠3,且∠1=∠3,∴∠B=∠ADE,在△ABC和△ADE中∴△ABC≌△ADE(AAS).【点评】本题主要考查全等三角形的判定,掌握全等三角形的判定方法是解题的关键,即SSS、SAS、ASA、AAS和HL.21.如图,已知Rt△ABC中,∠ACB=90°,CA=CB,D是AC上一点,E在BC的延长线上,且AE=BD,BD的延长线与AE交于点F.试通过观察、测量、猜想等方法来探索BF与AE有何特殊的位置关系,并说明你猜想的正确性.【分析】猜想:BF⊥AE先证明△BDC≌△AEC得出∠CBD=∠CAE,从而得出∠BFE=90°,即BF⊥AE.【解答】解:猜想:BF⊥AE.理由:∵∠ACB=90°,∴∠ACE=∠BCD=90°.又BC=AC,BD=AE,∴△BDC≌△AEC(HL).∴∠CBD=∠CAE.又∴∠CAE+∠E=90°.∴∠EBF+∠E=90°.∴∠BFE=90°,即BF⊥AE.【点评】主要考查全等三角形的判定方法,以及全等三角形的性质.猜想问题一定要认真观察图形,根据图形先猜后证.。

2019-2020学年八年级数学上学期《12.2三角形全等的判定》测试卷及答案解析

A.OA=ODB.AB=DCC.OB=OCD.∠ABO=∠DCO
16.如图,D是AB上一点,DF交AC于点E,FC∥AB,则下列结论错误的是( )
A.若AE=CE,则DE=FEB.若DE=FE,则AE=CE
C.若BC=CF,则AD=CFD.若AD=CF,则DE=FE
17.如图,在四边形ABCD中∠ADC=∠ABC=90°,AD=CD,DP⊥AB于点P,若四边形ABCD的面积是9,则DP的长是( )
A.∠ACB=∠DBCB.AB=DCC.∠A=∠DD.OC=OB
7.如图所示,CD=BD,∠B=∠C,给出下列结论:①BM=CN;②△ACN≌△ABM;③∠1=∠2;④AE=AF;⑤∠E=∠F=90°.其中正确的结论是( )
A.①②B.①②③C.①②③④D.①②③④⑤
8.如图,四边形ABCD中,AB=AD,AC=5,∠DAB=∠DCB=90°,则四边形ABCD的面积为( )
其中错误的结论有( )
A.0个B.1个C.2个D.3个
12.如图,点B、F、C、E在一条直线上,AC=DF,BF=CE,那么添加下列一个条件后,仍无法判断△ABC≌△DEF的是( )
A.∠A=∠D=90°B.∠BCA=∠EFDC.∠B=∠ED.AB=DE
13.如图,在△ABC中,AD是∠BAC的平分线,且AB=AC+CD,若∠BAC=n°,则∠ABC的大小为( )
A.15B.12.5C.14.5D.17
9.如图,∠ACB=90°,AC=BC.AD⊥CE,BE⊥CE,垂足分别是点D、E,AD=3,BE=1,则DE的长是( )
A. B.2C.2 D.
10.如图,AD是△ABC的中线,E,F分别是AD和AD延长线上的点,且DE=DF,连接BF,CE,下列说法中正确的个数是( )

2019-2020学年八年级数学上学期《第12章全等三角形》测试卷及答案解析

D、全等图形的周长、面积相等,故本选项正确;
故选:D.
【点评】本题考查的是全等形的概念:能够完全重合的两个图形叫做全等形.所谓完全重合是指形状相同,大小相等.熟记定义是解题的关键.同时考查了全等图形的性质:全等图形的周长、面积相等.
3.如图,若△ABC≌△CDA,则下列结论错误的是( )
A.∠2=∠1B.AC=CAC.∠B=∠DD.BC=DC
【分析】直接利用全等三角形的性质得出对应角以及对应边相等进而得出答案.
2019-2020学年八年级数学上学期《第12章全等三角形》测试卷
一.选择题(共12小题)
1.下列各组的两个图形属于全等图形的是( )
A. B.
C. D.
2.下列说法中,正确的是( )
A.全等图形是形状相同的两个图形
B.全等三角形是指面积相同的两个三角形
C.等边三角形都是全等三角形
D.全等图形的周长、面积都相等
(2)试判断AB与AF,EB之间存在的数量关系.并说明理由.
2019-2020学年八年级数学上学期《第12章全等三角形》测试卷参考答案与试题解析
一.选择题(共12小题)
1.下列各组的两个图形属于全等图形的是( )
A. B.
C. D.
【分析】根据全等形是ห้องสมุดไป่ตู้够完全重合的两个图形进行分析判断.
【解答】解:A、两个图形能够完全重合,故本选项正确.
18.如图,已知AB,CD相交于O,△ACO≌△BDO,AE=BF,求证:CE=FD.
19.如图,在△ABC中,AB=AC,CD⊥AB于点D,BE⊥AC于点E.求证:BD=CE.
20.如图,∠A=∠B=90°,E是AB上的一点,且AD=BE,∠1=∠2,求证:Rt△ADE≌Rt△BEC.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版数学八年级上册单元测试题第十二章《全等三角形》一、选择题(每小题3分,总计30分。

请将唯一正确答案的字母填写在表格内)1.下列说法:①全等三角形的形状相同、大小相等 ②全等三角形的对应边相等、对应角相等③面积相等的两个三角形全等 ④全等三角形的周长相等 其中正确的说法为( ) A .①②③④ B .①②③C .②③④D .①②④2.如图所示,△ABC ≌△AEF ,AB=AE ,有以下结论:①AC=AE ;②∠FAB=∠EAB ;③EF=BC ;④∠EAB=∠FAC ,其中正确的个数是( )A .1B .2C .3D .43.下列各图中a 、b 、c 为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC 全等的是( )A .甲和乙B .乙和丙 C.甲和丙 D .只有丙4.如图,如果AD ∥BC ,AD=BC ,AC 与BD 相交于O 点,则图中的全等三角形一共有()A .3对 B .4对 C .5对 D .6对5.下列说法中,正确的是( )A .两边及其中一边的对角分别相等的两个三角形全等B .两边及其中一边上的高分别相等的两个三角形全等C .有一直角边和一锐角分别相等的两个直角三角形全等D .面积相等的两个三角形全等6.在平面直角坐标系中,第一个正方形ABCD 的位置如图所示,点A 的坐标为(2,0),点D 的坐标为(0,4),延长CB 交x 轴于点A 1,作第二个正方形A 1B 1C 1C ;延长C 1B 1交x 轴于点A 2,作第三个正方形A 2B 2C 2C 1…按这样的规律进行下去,第2018个正方形的面积为( )A .20×()2017 B .20×()2018 C .20×()4036 D .20×()40347.如图,两棵大树间相距13m ,小华从点B 沿BC 走向点C ,行走一段时间后他到达点E ,此时他仰望两棵大树的顶点A 和D ,两条视线的夹角正好为90°,且EA=ED .已知大树AB 的高为5m ,小华行走的速度为lm/s ,小华走的时间是( )A .13B .8C .6D .58.如图,把两根钢条AB ,CD 的中点O 连在一起,可以做成一个测量工件内槽宽的工具(卡钳).只要量得AC 之间的距离,就可知工件的内径BD .其数学原理是利用△AOC ≌△BOD ,判断△AOC≌△BOD 的依据是( ) A .SAS B .SSS C .ASA D .AAS9.观察图中尺规作图痕迹,下列说法错误的是( )姓名 学号 班级---------------------------------------------------装-----------------------------------订----------------------------------线--------------------------------------------------A .OE 是∠AOB 的平分线 B .OC=ODC .点C 、D 到OE 的距离不相等 D .∠AOE=∠BOE10.如图,OP 平分∠BOA ,PC ⊥OA ,PD ⊥OB ,垂足分别是C 、D ,则下列结论中错误的是( ) A .PC=PDB .OC=ODC .OC=OPD .∠CPO=∠DPO二、 填空题(每空3分,总计30分)11.如图,在3×3的正方形网格中标出了∠1和∠2,则∠1+∠2= .12.如图①,已知△ABC 的六个元素,则图②中甲、乙、丙三个三角形中与图①中△ABC 全等的图形是 .13.如图是5×5的正方形网格,△ABC 的顶点都在小正方形的顶点上,像△ABC 这样的三角形叫格点三角形.画与△ABC 有一条公共边且全等的格点三角形,这样的格点三角形最多可以画出 个.14.如图,点D 、E 分别在AB 、AC 上,CD 、BE 相交于点F ,若△ABE ≌△ACD ,∠A=50°,∠B=35°,则∠EFC 的度数为 .15.如图,在△ABC 和△DEF 中,点B ,F ,C ,E 在同一直线上,BF=CE ,AB ∥DE ,请添加一个条件,使△ABC ≌△DEF ,这个添加的条件可以是 (只需写一个,不添加辅助线).16.如图,AB=12,CA ⊥AB 于A ,DB ⊥AB 于B ,且AC=4m ,P 点从B 向A 运动,每分钟走1m ,Q 点从B 向D 运动,每分钟走2m ,P 、Q 两点同时出发,运动 分钟后△CAP 与△PQB 全等.17.如图,若AB=AC ,BD=CD ,∠B=20°,∠BDC=120°,则∠A 等于 度.18.小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有①,②,③,④的四块),你认为将其中的哪一块带去,就能配一块与原来一样大小的三角形?应该带第 块. 19.如图,要测量池塘的宽度AB ,在池塘外选取一点P ,连接AP 、BP 并各自延长,使PC=PA ,PD=PB ,连接CD ,测得CD 长为25m ,则池塘宽AB 为 m ,依据是 .20.如图,点O在△ABC内,且到三边的距离相等,若∠A=60°,则∠BOC=.三.解答题(共6小题60分)21.如图,AB=AE,∠B=∠AED,∠1=∠2,求证:△ABC≌△AED.22.阅读并理解下面的证明过程,并在每步后的括号内填写该步推理的依据.已知:如图,AM,BN,CP是△ABC的三条角平分线.求证:AM、BN、CP交于一点.证明:如图,设AM,BN交于点O,过点O分别作OD⊥BC,OF⊥AB,垂足分别为点D,E,F.∵O是∠BAC角平分线AM上的一点(),∴OE=OF().同理,OD=OF.∴OD=OE().∵CP是∠ACB的平分线(),∴O在CP上().因此,AM,BN,CP交于一点.23.如图,两根旗杆AC与BD相距12m,某人从B点沿AB走向A,一定时间后他到达点M,此时他仰望旗杆的顶点C和D,两次视线夹角为90°,且CM=DM.已知旗杆AC的高为3m,该人的运动速度为0、5m/s,求这个人走了多长时间?24.小明家所在的小区有一个池塘,如图,A、B两点分别位于一个池塘的两侧,池塘西边有一座假山D,在BD的中点C处有一个雕塑,小明从A出发,沿直线AC一直向前经过点C走到点E,并使CE=CA,然后他测量点E到假山D的距离,则DE的长度就是A、B两点之间的距离.(1)你能说明小明这样做的根据吗?(2)如果小明未带测量工具,但是知道A和假山、雕塑分别相距200米、120米,你能帮助他确定AB的长度范围吗?25.如图(1),AB=4cm,AC⊥AB,BD⊥AB,AC=BD=3cm.点P在线段AB上以1cm/s的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动.它们运动的时间为t(s).(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等,并判断此时线段PC和线段PQ的位置关系,请分别说明理由;(2)如图(2),将图(1)中的“AC⊥AB,BD⊥AB”为改“∠CAB=∠DBA=60°”,其他条件不变.设点Q的运动速度为x cm/s,是否存在实数x,使得△ACP与△BPQ全等?若存在,求出相应的x、t的值;若不存在,请说明理由.26.如图,在△ABC中,AB=AC,DE是过点A的直线,BD⊥DE于D,CE⊥DE于点E;(1)若B、C在DE的同侧(如图所示)且AD=CE.求证:AB⊥AC;(2)若B、C在DE的两侧(如图所示),其他条件不变,AB与AC仍垂直吗?若是请给出证明;若不是,请说明理由.参考答案一、选择题(每小题3分,总计30分。

请将唯一正确答案的字母填写在表格内)二、填空题(每空3分,总计30分)11、45°12、丙13、614、60°15、AB=ED16、417、8018、①19、25,全等三角形对应边相等20、120°三、解答题(共4小题60分)21.证明∵∠1=∠2,∴∠BAC=∠EAD,在△ABC和△AED中,,∴△ABC≌△AED.22.证明:设AM,BN交于点O,过点O分别作OD⊥BC,OF⊥AB,垂足分别为点D,E,F.∵O是∠BAC角平分线AM上的一点(已知),∴OE=OF(角平分线上的一点到这个角的两边的距离相等).同理,OD=OF.∴OD=OE(等量代换).∵CP是∠ACB的平分线(已知),∴O在CP上(角的内部到角的两边距离相等的点在这个角的平分线上).因此,AM,BN,CP交于一点;23.解:∵∠CMD=90°,∴∠CMA+∠DMB=90°,又∵∠CAM=90°,∴∠CMA+∠ACM=90°,∴∠ACM=∠DMB,在△ACM和△BMD中,,∴△ACM≌△BMD(AAS),∴AC=BM=3m,∴他到达点M时,运动时间为3÷0.5=6(s),答:这个人从B点到M点运动了6s.24.解:(1)证明:在△ACB和△ECD中∵,∴△ACB≌△ECD(SAS),∴DE=AB;(2)如图,连接AD,AD=200米,AC=120米,∴AE=240米,∴40米<DE<440米,∴40米<AB<440米.25.解:(1)当t=1时,AP=BQ=1,BP=AC=3,又∠A=∠B=90°,在△ACP和△BPQ中,,∴△ACP≌△BPQ(SAS).∴∠ACP=∠BPQ,∴∠APC+∠BPQ=∠APC+∠ACP=90°.∴∠CPQ=90°,即线段PC与线段PQ垂直.(2)①若△ACP≌△BPQ,则AC=BP,AP=BQ,则,解得;②若△ACP≌△BQP,则AC=BQ,AP=BP,则,解得:;综上所述,存在或,使得△ACP与△BPQ全等.26.(1)证明:∵BD⊥DE,CE⊥DE,∴∠ADB=∠AEC=90°,在Rt△ABD和Rt△ACE中,∵,∴Rt△ABD≌Rt△CAE.∴∠DAB=∠ECA,∠DBA=∠ACE.∵∠DAB+∠DBA=90°,∠EAC+∠ACE=90°,∴∠BAD+∠CAE=90°.∠BAC=180°﹣(∠BAD+∠CAE)=90°.∴AB⊥AC.(2)AB⊥AC.理由如下:同(1)一样可证得Rt△ABD≌Rt△ACE.∴∠DAB=∠ECA,∠DBA=∠EAC,∵∠CAE+∠ECA=90°,∴∠CAE+∠BAD=90°,即∠BAC=90°,∴AB⊥AC.。

相关文档
最新文档